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Nuclear Fusion

In modern plasma physics, numerically solving the Vlasov–
Maxwell (VM) equations  using the particle-in-cell (PIC) 
method has become the most important tool [1, 2] for theo-
retical studies in the last half century. Many innovative algo-
rithms, such as the Boris scheme for advancing particles [3, 4]  
and Villasenor–Buneman’s charge-conserving deposition 
scheme [5], have been developed and successfully applied. 

Recently, a new geometric numerical methodology has been 
adopted for PIC simulations. This exciting trend begins with 
the discovery of symplectic algorithms for Hamiltonian equa-
tions that govern charged particle dynamics [6–16]. The Boris 
algorithm was discovered to be volume-preserving [17, 18] 
and high-order volume-preserving methods have been found 
[19]. In addition, the Vlasov–Maxwell system [20–24] and 

Canonical symplectic particle-in-
cell method for long-term large-scale 
simulations of the Vlasov–Maxwell 
equations

Hong Qin1,2, Jian Liu1,3, Jianyuan Xiao1,3, Ruili Zhang1,3, Yang He1,3, 
Yulei Wang1,3, Yajuan Sun4, Joshua W. Burby2, Leland Ellison2 and Yao Zhou2

1 School of Nuclear Science and Technology and Department of Modern Physics, University of Science 
and Technology of China, Hefei, Anhui 230026, People’s Republic of China
2 Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA
3 Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, People’s Republic of China
4 LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, 
People’s Republic of China

E-mail: hongqin@ustc.edu.cn

Received 15 April 2015, revised 11 September 2015
Accepted for publication 9 October 2015
Published 2 December 2015

Abstract
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the Vlasov–Poisson system [25] have been discretised from 
a variational symplectic perspective that preserves symplec-
tic structures and exhibits excellent long-term accuracy and 
"delity.

In this letter, we develop a new canonical symplectic 
PIC method for solving the VM equations by discretising its 
canonical Poisson bracket [26]. The distribution function f 
is "rst discretised in phase space through the Klimontovich 
representation by a "nite number of Lagrangian sampling 
points ( )X P,i i  (i  =  1, ..., N ), where Xi and Pi are the posi-
tion and canonical momentum of the ith particle, and N is 
the total number of sampling points. The electromagnetic 
"eld is discretised point-wise on a given spatial grid, and the 
Hamiltonian functional is expressed as a function of the sam-
pling points and the discretised electromagnetic "eld. This 
procedure generates a "nite-dimensional Hamiltonian system 
with a canonical symplectic structure. The number of degrees 
of freedom for the discrete system is D  =  3N  +  3M, where M 
denotes the total number of discrete grid-points.

In general, for a Hamiltonian function whose momen-
tum dependence and position dependence are not separable, 
it is not possible to make symplectic integration algorithms 
explicit [9, 14]. For the discrete Hamiltonian system devel-
oped here for the VM equations, the dimension of the system 
is usually very large, and root searching algorithms required 
by implicit methods are too time-consuming to be practical. 
However, we discovered that if the symplectic Euler algorithm 
[9] is applied to the discrete VM Hamiltonian system at hand, 
the implicit time advance can be carried out as inexpensively 
as an explicit method by just inverting a ×3 3 matrix for every 
particle separately. The resulting canonical symplectic PIC 
method for the VM system inherits all the good numerical 
features of canonical symplectic algorithms, such as the long-
term bound on energy-momentum error. Being symplectic 
means that the numerical solution satis"es D(2D  −  1) con-
straints as the exact solution does. Since D is a large num-
ber, the symplectic condition is much stronger than a few 
constraints on global energy and momentum. The symplectic 
condition almost implies imposing local conservation every-
where in phase space.

Two examples of application are given. In the "rst exam-
ple, we simulate the dynamics of nonlinear Landau damp-
ing. It also serves as a test of the algorithm. The discrete VM 
Hamiltonian system for this study has more than ×2.69 108 
degrees of freedom. The damping rate from the numerical 
results agrees exactly with the theoretical result. Furthermore, 
long-term simulations reveal that the phase mixing dynamics 
in velocity space is the physical mechanism of the nonlinear 
Landau damping, as recently proven by Mouhot and Villani 
[27, 28] for the Vlasov–Poisson system and conjectured by 
Villani [29] for the Vlasov–Maxwell system. In the second 
application, we study the nonlinear mode conversion process 
from extraordinary modes to Bernstein modes (X-B mode 
conversion) in an inhomogeneous hot plasma. Simulations 
show that nonlinear mode excitations and self-interaction of 
the Bernstein waves signi"cantly modify the re#ectivity and 
conversion rate. It is the long-term accuracy and "delity of 
the canonical symplectic PIC algorithm that enables us to 

numerically con"rm Mouhot and Villani’s theory and conjec-
ture over several orders of magnitude using the PIC method, 
and to calculate the nonlinear evolution of the re#ectivity dur-
ing the X-B mode conversion.

We start from the canonical Poisson bracket and 
Hamiltonian for the Vlasov–Maxwell equations [26],
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Here, F, G and the Hamiltonian H are functionals of the dis-
tribution function f, vector potential A and ≡∂ ∂tY A/ . The 
bracket { }h g, xp inside the "rst term on the right-hand side of 
equation (1) is the canonical Poisson bracket for functions h 
and g of canonical phase space ( )x p, . The temporal gauge, i.e. 
φ = 0, has been explicitly chosen for this Poisson bracket to 
be valid. The Poisson bracket de"ned in equation (1) can be 
formally derived from the point of view of co-adjoint orbit 
theory [26], and can be used to derive the non-canonical 
Morrison–Marsden–Weinstein bracket in the ( )f E B, ,  and 
( )x v,  coordinates [26, 30, 31]. First, we discretise the distribu-
tion function using the Klimontovich representation
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where ( )X P,i i  (i  =  1, ..., N) are the particles’ coordinates in 
phase space. Under this discretisation, it can be shown that
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from which we obtain
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It then follows that the "rst term on the right-hand side of 
equation (1) is

∫ ∑δ
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A similar derivation of the discretised bracket can be found 
in the context of the Hamiltonian description of vortex #uid 
[32, 33].

To discretise the second term on the right-hand side of 
equation (1), we "rst discretise the "elds ( )tA  and ( )tY  on a 
Eulerian spatial grid as

( ) ( ) ( ) ( ) ( ) ( )∑ ∑= Ψ − = Ψ −
= =

t t t tA x A x x Y x Y x x, , , ,
J

M

J
J

M

J JJ
1 1

 (8)
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where the discrete "elds ( )tAJ  and ( )tYJ  are the "elds evalu-
ated on the grid-point xJ. The subscript J is the index of the 
grid-point, and M is the total number of the grid-points. Here, 

( )Ψ −x xJ  is the step function,

⎧
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Under this discretisation of ( )tA  and ( )tY , we have
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where ∆V  is the volume of each cell, which is taken to be 
a constant in the present study. For the second equal sign in 
equation (10), use has been made of the fact that
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The discretisation of the second term on the right-hand side of 
equation (1) is thus
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Finally, the discrete Poisson bracket for the VM system is
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(13)
for functions F and G of the particles ( )X P,i i  and the discre-
tised "eld ( )A Y,J J .

Next, we need to express the Hamiltonian functional given 
by equation (2) in terms of ( )X P,i i  and ( )A Y,J J . The particles’ 
total kinetic energy is the sum of each particle’s kinetic energy. 
The vector potential at a particle’s position can be interpolated 
from ( )tAJ  as
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 (14)

where ( )−W X xj J  is a chosen interpolation function. Note that 
( )−W X xj J  is not necessarily the same as the step function 
( )Ψ −x xJ  in equation (8). This is of course allowed as long as 

the consistency condition is satis"ed, i.e. the continuous limit 
is recovered when the grid-size goes to zero. The Hamiltonian 
then becomes
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where ( )∇ ×Ad J is the discrete curl operator acting on the dis-
crete vector potential evaluated at the Jth grid-point. Finally, 
the discrete Hamiltonian (15) and discrete Poisson structure 
(13) form a canonical symplectic discretisation of the original 
continuous Vlasov–Maxwell system. The ordinary differential 
equations for the canonical system are
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This equation system consists of 6(M  +  N ) equations describ-
ing the dynamics of N particles and "elds on M discrete grid-
points. The last term in equation (19) is de"ned to be
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The notation of ∇ ×∇ ×Ad
T

d  indicates that the right-hand side 
of equation (20) can be viewed as the discretised ∇×∇×A 
for a well-chosen discrete curl operator ∇d. To wit, we note 
that the term ∇×A in the Hamiltonian is discretised using the 
step function ( )Ψ −x xJ ,
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As an example, we de"ne the discrete curl operator 
( ) ( )∇ × = ∇×A Ad J i j k, ,  to be
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which can be written as a linear operator on the space of 
3M-vectors as
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Here, Γ is a ×M M3 3  sparse matrix specifying the discrete 
curl operator. The partial derivative with respect to AJ can be 
expressed as
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where ΓT is the transposition of Γ. Obviously, the notation in 
equation (20) or (24) is meaningful for any linear discrete curl 
operator ∇d.

It is clear from equations (16)–(19) that the particles and 
"elds interact through the interpolation function ( )−W X xi J . 
The function ( )− ∆W VX x /i L  distributes the particles’ charge 
over the grid-points as if they are ‘charged clouds’ with "nite 
size [1].

Once the canonical symplectic structure is given, canoni-
cal symplectic algorithms can be readily constructed using 
well-developed methods [6–13]. For a reason soon to be made 
clear, we adopt the semi-explicit symplectic Euler method 
for time advance. The symplectic Euler method for a generic 
canonical Hamiltonian system is
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∂

+ +p p t
H
q

p q, ,n n n n1 1 (25)

( )= +∆ ∂
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+ +q q t
H
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p q, .n n n n1 1 (26)

where ∆t is the time step, and the superscript n in pnand 
qn denotes that they are the value at the n-th time step. It is 
implicit for p, but explicit for q. Making use of this algorithm, 
the iteration rules for equations (16)–(19) are
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(30)
These difference equations  furnish a canonical symplectic 
PIC method for the Vlasov–Maxwell equations.

As discussed above, symplectic algorithms for a 
Hamiltonian system with non-separable momentum and posi-
tion dependence are implicit in general. This is indeed the case 
for the difference equations (27)–(30), because the right-hand 
sides of equations (27)–(30) depend on values of the (n  +  1)
th time-step. However, they are semi-explicit, because equa-
tions (27), (28) and (30) are explicit for +Xi

n 1, AJ
n 1+  and Y ,J

n 1+  
respectively. Another good property of the system is that the 
only implicit equation (29) is linear in terms of Pi

n 1+ , and it 
is only implicit for each particle, i.e. equation (29) does not 
couple +Pi

n 1 and +Pk
n 1 when ≠i k. Therefore, the system can 

be solved without root searching iterations as follows. We "rst 
solve the linear equation (29) for +Pi

n 1 for every index i sepa-
rately, which amounts to inverting a ×3 3 matrix for every 
i. Then Xi

n 1+  and +YJ
n 1 are advanced explicitly according to 

Figure 1. Perturbed electrical "eld as a function of time. The slope 
of the green line is the theoretical damping rate.

Figure 2. Electron distribution function in velocity space as a 
function of time. Different colours denote the amplitude of the 
perturbation. The mechanism of phase mixing in velocity space is 
clearly demonstrated. The wave-number in velocity space increases 
with time, which results in a decrease in density perturbation and 
thus attenuation of the electrical "eld.
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equations (27) and (30), and the last step is to advance AJ
n 1+ , 

also explicitly, according to equation (28).
The preservation of the symplectic structure exerts 

D(2D  −  1) constraints on the numerical solution. Because 
D is a large number, preservation of symplectic structure is 
a very strong constraint and signi"cantly reduces the errors 
of numerical solutions. We can also appreciate this advantage 
from the viewpoint of symplectic capacity, which is de"ned 
on any open set of the phase space. Symplectic maps preserve 
symplectic capacity [34], and in principle there are in"nite 
constraints that symplectic algorithms can satisfy as the con-
tinuous systems do.

We now apply this canonical symplectic PIC scheme to 
simulate the nonlinear Landau damping process. This study 
also serves as a test of the algorithm. Previously, similar 
studies and tests have been performed for other algorithms, 
e.g. the Eulerian algorithms for the Vlasov–Poisson system 
[22, 35]. The ions are treated as a uniform positively charged 
background, and the dynamics of electrons are simulated. The 
electron density is = ×n 1.149 10e

16 m−3, and the thermal 
velocity of electrons is vT  =  0.1c, where c is the light veloc-
ity in vacuum. The three-dimensional computational region is 
divided into × ×896 1 1 cubic cells. The size of the grid is cho-
sen to be ∆ = × −x 2.4355 10 4 m, the time step ∆ = ∆t x c/2 . 
The interpolation function is chosen to be 8th order, i.e.

( ) ( ) ( ) ( )= ∆ ∆ ∆W W x x W y x W z xx / / / ,1 1 1 (31)
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It can be proven that the kernel function W is 3rd order con-
tinuous in the whole space. According to our performance 
benchmarks, this 8th-order kernel is about 30% more com-
putationally costly than a 2nd-order kernel, which is accept-
able since a higher order continuous kernel gives more 
numerical "delity. Initially, 105 sampling points of electrons 
are distributed in each cell. The total number of particles  
is = ×N 8.96 107, and the number of degrees of freedom is 
= ×D 2.69 108. The initial electrical "eld perturbation is 

( )= E kxE ecos ,x1 1  where the wave number is π= ∆k x2 /224  
and the amplitude of the perturbation electric "eld is 
= ×E 9.103 101

4 V m−1. The simulations are performed for 
80 000 time steps, during which a complete picture of the 
nonlinear Landau damping is revealed. As expected for sym-
plectic algorithms, the numerical error of energy does not 
increase with time and is bounded within 1% for all time. The 

theoretical damping rate calculated from the dispersion rela-
tion is ω = − ×1.3926 10i

9 s−1, and the theoretical real fre-
quency is ω = ×9.116 10r

9 s−1. In "gure 1, the slope of the 
green line is the theoretical damping rate and the blue curve is 
the evolution of the electrical "eld observed in the simulation. 
It is evident that the simulation and theory agree perfectly. 
After ω=t 30/ r, the energy of the wave drops below the level 
of numerical noise, and the damping process stops. The evolu-
tion of the electron distribution function is plotted in "gure 2, 
which clearly demonstrates the mechanism of phase mixing in 
velocity space. We observe in "gure 2 that the wave number in 
velocity space increases with time, which results in a decrease 
in density perturbation and thus attenuation of the electrical 
"eld. More importantly, this mechanism of phase mixing is 
the dominant physics for the entire nonlinear evolution of the 
Landau damping, as proven by Mouhot and Villani [27, 28] 
recently for the electrostatic Vlasov–Poisson system. In addi-
tion, our simulation is electromagnetic and it shows that this 
physical picture of nonlinear Landau damping is also valid 
for the electromagnetic Vlasov–Maxwell system, as Villani 
conjectured [29]. It is the long-term accuracy and "delity of 
the canonical symplectic PIC algorithm that enables the con-
"rmation of Mouhot and Villani’s theory and conjecture over 
several orders of magnitude.

Even though Mouhot and Villani rigorously proved that 
when the initial perturbation amplitude is small enough, the 
electrical perturbation will decay to zero, plasma physicists 

have known this fact since the 1960s [36, 37]. It is also known 
that when the initial electrical perturbation is large enough, 
the perturbation will bounce back after initial phase of damp-
ing [36, 37]. One such case simulated is plotted in "gure 3. 
For this case, the amplitude of the initial electrical "eld is 
0.494 MV m−1 and the wave number is π= ∆k x2 /272 . 
Figure  4 shows the bounce-time as a function of the initial 
amplitude of the electrical "eld obtained in simulations. The 
physics demonstrated in our PIC simulations agrees with that 
obtained from Eulerian solvers [35], except that our simula-
tions are carried out for the full Vlasov–Maxwell system.

In the second application, the 1D nonlinear mode con-
version of extraordinary waves to electron Bernstein waves 
(X-B mode conversion) in a inhomogeneous hot plasma is 
simulated for a long time. The plasma density pro"le in the 
simulation is
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where = ×n 2.3 100
19 m−3, nr  =  380, and x 2.773 10 m5∆ = × −  

is the grid size. The thickness of the plasma boundary is 
∆n xr . The electron temperature is =T 57.6e  eV, and the con-

stant external magnetic "eld is = BB ez0  with B0  =  0.6 T.  
The simulation domain is a × ×1584 1 1 cubic mesh. At 
both boundaries in the x-direction, the Mur’s absorbing 
condition is used, and periodic boundary conditions are 
adopted in the y- and z-directions. The time step is chosen 
to be ∆ = ∆t x c/2 . At the left boundary, a source is placed 
to excite an electromagnetic perturbation at ω = ∆t0.0145/  
with = EE ey1 1  and E1  =  900 kV. As illustrated in "gure 5, 
the extraordinary wave excited at the left boundary "rst 
propagates to the region of cutoff–resonance–cutoff near 

∆ =x x/ 500. The wave is then partially re#ected back, and 
partially converted into electron Bernstein waves [24]. The 
re#ectivity evolution is plotted in "gure 6. Nonlinear excita-
tions and self-interactions of the Bernstein modes dominate 
the long-time dynamics of the mode conversion process. As 
a consequence, the re#ectivity of the incident wave evolves 
nonlinearly, as shown in "gure  6. For this set of chosen 
parameters, the incident wave is completely re#ected at the 
later time of the process.

In conclusion, we have developed a canonical symplectic 
particle-in-cell simulation method for the Vlasov–Maxwell 
system by discretising its canonical Poisson bracket. In 
phase space, the distribution function is discretised by the 
Klimontovich representation using Lagrangian markers, and 
the electromagnetic "eld is discretised point-wise on a spatial 
grid. The resulting canonical Hamiltonian system with a large 
number of degrees of freedom is integrated by the symplec-
tic Euler method, whose difference equations can be solved 
inexpensively by inverting a ×3 3 matrix locally for every 
particle. Implicit root searching and global matrix inversion 

Figure 3. In nonlinear Landau damping, the perturbation will 
bounce back after the initial phase of damping if the initial 
perturbation is large enough. The amplitude of the initial electric 
"eld in this case is 0.494 MV m−1.

Figure 4. Relationship between the initial amplitude E1 and the 
bounce time tb in nonlinear Landau damping.

Figure 5. The space-time dependence of Ey(t, x) during the 
nonlinear X-B mode conversion.

Figure 6. The evolution of re#ectivity during the nonlinear X-B 
mode conversion.
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are avoided entirely. This technique makes large-scale appli-
cations of the developed canonical symplectic PIC method 
possible. To suppress numerical noise caused by the coarse 
sampling, smoothing functions for sampling points can also 
be conveniently implemented into the canonical symplectic 
PIC algorithm. By incorporating the smoothing functions into 
the Hamiltonian functional before the discretisation, we are 
able to rein in all the bene"ts of smoothing functions without 
destroying the canonical symplectic structure. Progress in this 
and other directions will be reported in future publications.
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