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It has been realized in recent years that coupled focusing lattices in accelerators and storage
rings have significant advantages over conventional uncoupled focusing lattices, especially for
high-intensity charged particle beams. A theoretical framework and associated tools for analyzing
the spectral and structural stability properties of coupled lattices are formulated in this paper, based
on the recently developed generalized Courant-Snyder theory for coupled lattices. It is shown
that for periodic coupled lattices that are spectrally and structurally stable, the matrix envelope
equation must admit matched solutions. Using the technique of normal form and pre-Iwasawa
decomposition, a new method is developed to replace the (inefficient) shooting method for finding
matched solutions for the matrix envelope equation. Stability properties of a continuously rotating
quadrupole lattice are investigated. The Krein collision process for destabilization of the lattice is
demonstrated. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4920961]

I. INTRODUCTION

The transverse focusing lattice is one of the few crucial
subsystems in modern accelerators and storage rings. Most
contemporary accelerators and storage rings are designed
based on an uncoupled linear transverse lattice,1 where the
two degrees of freedom in the transverse directions are
decoupled. Well-known analyses of the effects of weak
coupling on stability properties have left the incorrect
impression that the coupling between the x-dynamics and
y-dynamics always results in instabilities or other deleterious
effects. It has been realized recently that coupled lattices are
not necessarily more unstable than uncoupled lattices. On
the contrary, it is believed that coupled lattice can be more
advantageous in comparison with conventional uncoupled
lattices, especially for high-intensity charged particle
beams.2–11 This is because the parameter space for coupled
lattices is much larger than that for uncoupled lattices, and
one can explore the larger parameter space for a coupled
lattice to optimize the lattice design.

Of course, the most important consideration in lattice
design is its stability properties. A thorough study of lattice
stability requires one to distinguish two types of stability
properties, spectral stability and structural stability.12–17 The
spectral stability of a linear periodic lattice is determined by
the eigenvalues of the one-period map M of the lattice. If
there exists a vector v such that Mlv!1 as l!1, then
the map is spectrally unstable. Otherwise, it is spectrally sta-
ble. This is the most familiar stability property that is often
analyzed. The structural stability of the lattice refers to the
robustness of the spectral stability properties of the lattice
with respect to a structural perturbation, such as imperfec-
tions in the magnets, or misalignment of the beam-line. A

lattice is structurally unstable if there exists a spectrally
unstable lattice infinitesimally close-by. Otherwise, it is
structurally stable.

Unfortunately, our understanding of the stability proper-
ties of coupled lattices is far from comprehensive due to the
lack of an effective mathematical tool to describe the
coupled dynamics. For 1D uncoupled dynamics, the de facto
standard for parameterizing the focusing lattice is the
Courant-Snyder (CS) theory,1 which is mathematically ele-
gant and directly linked to the physics of the beam dynamics.
For coupled lattices, several parameterization schemes have
been developed.18–26 But none of these schemes is as effec-
tive for coupled lattices as the CS theory is for uncoupled
lattices. Recently, we have developed a generalized Courant-
Snyder theory for coupled lattices,17,27–34 which generalizes
every important aspect of the original CS theory to higher
dimensions. Especially, the key components of the original
CS theory, i.e., the envelope function (or the b function) and
the associated envelope equation are generalized into a
matrix envelope function and the associated matrix envelope
equation.

In the present study, we apply the generalized CS theory
to investigate the stability properties of coupled lattices. We
prove an important proposition that a necessary condition for
a periodic coupled lattice to be spectrally and structurally
stable is that the generalized matrix envelope equation
admits a matched solution. We also show how to apply the
techniques of pre-Iwasawa decomposition35,36 and normal
form to construct a matched solution of the matrix envelope
equation by simply solving the initial value problem once.
This new method is of great value even for uncoupled latti-
ces. Previously, one used the conventional shooting method
to solve the initial value problem many times to search for
a matched solution. Using the example of a continuously
rotating quadrupole lattice, we illustrate in this paper how
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the lattice becomes spectrally unstable through an interesting
process called the Krein collision.

The paper is organized as follows. In Sec. II, we
describe the spectral and structural stability properties of a
generic linear periodic Hamiltonian system and the associ-
ated Krein collision. The generalized Courant-Snyder theory
for coupled lattices is introduced in Sec. III, and the connec-
tion between stability properties and matched lattice func-
tions is discussed in Sec. IV. The formalism developed here
is applied to study the stability properties of a continuously
rotating quadrupole lattice in Sec. V.

II. SPECTRAL AND STRUCTURAL STABILITY
PROPERTIES OF LINEAR HAMILTONIAN SYSTEMS

The dynamics of a charged particle in a coupled or
uncoupled periodic focusing system is completely specified
by the one-period map. Because of the Hamiltonian nature of
the dynamics, the one-period map is symplectic. For the
linear focusing lattices considered in the present study, the
one-period map is specified by a symplectic matrix M. In
this section, we discuss the stability properties of M as a
general symplectic matrix. The calculation and stability anal-
ysis of M for a specific choice of focusing lattice will be
discussed in Secs. III and IV using the generalized Courant-
Snyder theory.

Let the dimension of M be 2n! 2n, and let kl ðl ¼ 1;…;
2nÞ be the eigenvalues of M. It is straightforward to prove
that if k is an eigenvalue of a symplectic matrix, then its
inverse 1=k and its complex conjugate !k are also eigenval-
ues. Then, the eigenvalue distribution can be divided into
four categories:

(1) All eigenvalues are distinct and on the unit circle of the
complex plane, i.e., jklj ¼ 1 and kl 6¼ km for l 6¼ m:

(2) All eigenvalues are on the unit circle. There are repeated
eigenvalues. But the geometric multiplicity for all eigen-
values are the same as the algebraic multiplicity, i.e.,
MulgðklÞ ¼ MulaðklÞ for all l.

(3) All eigenvalues are on the unit circle. There are repeated
eigenvalues with algebraic multiplicity greater than geo-
metric multiplicity, i.e., MulgðklÞ < MulaðklÞ for some l.

(4) There exits at least one eigenvalue not on the unit circle,
i.e., jklj 6¼ 1 for some l.

Here, an eigenvalue kl of M is a root of the characteristic
polynomial DetðI % kMÞ, and the algebraic multiplicity of an
eigenvalue MulaðklÞ is the order of the root. The geometric
multiplicity of an eigenvalue MulgðklÞ is the number of inde-
pendent eigenvectors corresponding to the eigenvalue. In
general, MulgðklÞ & MulaðklÞ. According to the basic theory
of linear algebra, cases (1) and (2) are spectrally stable, and
cases (3) and (4) are spectrally unstable. For cases (1) and
(2), we would like to know whether their spectral stability
will be sustained under a small structural perturbation. Case
(1) can also be shown to be structurally stable by considering
the symplectic nature of M. As the structure of the system is
perturbed, the eigenvalues will move accordingly. However,
they cannot move off the unit circle due to a small structural
perturbation on M for case (1). This is because for every

eigenvalue k off the circle, there exits another eigenvalue
1=!k, which is on the opposite side of the unit circle. If one of
the eigenvalues of case (1) were allowed to move off the unit
circle, then there would be more than 2n eigenvalues. This
forbidden situation is illustrated in Fig. 1 for n¼ 2. When
there are repeated eigenvalues for case (2), the constraints on
the locations of the eigenvalues do not prohibit the eigenval-
ues moving off the unit circle due to structural perturbations,
which is the so-called Krein collision,12–17 as illustrated in
Fig. 2 for n ¼ 2: Krein collisions preserve the symmetry of
the eigenvalue distribution with respect to the real axis and
the unit circle and are the only possible pathways in parame-
ter space for a spectrally stable system to become spectrally
unstable. When this happens, the system is structurally
unstable. What is more interesting is that not all possibilities
in case (2) are structurally unstable. Case (2) needs to be
further divided into two sub-categories:

(2.1) For all repeated eigenvalues, the corresponding eigen-
vectors have the same signatures.
(2.2) There is at least one repeated eigenvalue whose eigen-
vectors have different signatures.

Here, the signature of an eigenvector w of M is defined
to be the sign of its self-product hw;wi ¼ w'iJw: Here, J is
the 2n! 2n unit symplectic matrix, i.e.,

J ¼ 0 In

%In 0

! "
: (1)

The product between two vectors w and / in general is
defined to be

hw;/i ( w'iJ/; (2)

where w' is the complex conjugate of wT . Krein,12 Gel’fand
and Lidskii,13 and Moser14 proved that case (2.1) is structur-
ally stable, and that case (2.2) is structurally unstable. This is
the celebrated Krein-Gel’fand-Lidskii-Moser theorem.

Let us use the example of a 1D uncoupled lattice (n¼ 1)
to demonstrate the process of a Krein collision. For a 1D
uncoupled periodic lattice, the one-period transfer map M is17

M ¼ S%1
0 PS0; (3)

FIG. 1. Eigenvalues are forbidden to move off the unit circle for case 1.
Illustrated here is the case of n ¼ 2:
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P ¼ cos / sin /
%sin / cos /

! "
; (4)

S0 ¼
w%1

0 0
% _w0 w0

! "
; (5)

/ ¼
ðT

0

dt

b tð Þ
; (6)

bðtÞ ¼ w2ðtÞ; (7)

where w(t) is a matched envelope function, w0 ¼ wð0Þ and
_w0 ¼ _wð0Þ are the initial conditions for w(t), and / is the

one-period phase advance. The envelope function w(t) is
determined by the envelope equation

€w þ jqðtÞw ¼ w%3: (8)

Since M is similar to P, and the eigenvalues and signatures
are preserved by a similarity transformation [see Eq. (32)],
the spectral and structural stability properties of the lattice
are completely determined by the phase advance matrix P.
The eigenvalues, eigenvectors, and signatures are

kþ ¼ cos /þ i sin /; wþ ¼ ð1; iÞ
T ; rþ ¼ %1; (9)

k% ¼ cos /% i sin /; w% ¼ ð1;%iÞT ; r% ¼ 1: (10)

Evidently, the system is spectrally and structurally stable
when / 6¼ np; which corresponds to case (1). As the system
parameters vary, the phase advance / changes. A Krein col-
lision occurs at / ¼ np; where kþ ¼ k% and rþ ¼ %r%.
This is case (2.2), which is structurally unstable. Starting
from a stable lattice with a small phase advance, we can
increase the focusing strength and thus the phase advance

gradually. The system is stable until the phase advance
approaches p:

III. GENERALIZED COURANT-SNYDER THEORY

To prepare for the investigation of the stability proper-
ties for general coupled lattice, we briefly summarize here
the generalized Courant-Snyder theory, a thorough descrip-
tion of which can be found in Ref. 17.

The linear dynamics of a charged particle relative to the
fiducial orbit are governed by a general time-dependent
Hamiltonian37 of the form

H ¼ 1

2
zTKz; K ¼ j tð Þ R tð Þ

R tð ÞT m%1 tð Þ

! "
: (11)

Here, z ¼ ðx; y; px; pyÞT are the transverse phase space coor-
dinates, and jðtÞ; RðtÞ; and m%1ðtÞ are time-dependent 2! 2
matrices. The matrices jðtÞ, m%1ðtÞ, and K are also symmet-
ric. In this general Hamiltonian, the quadrupole component
is in the diagonal terms of the jðtÞ matrix. The off-diagonal
terms of jðtÞ contain the skew-quadrupole and dipole com-
ponents. The solenoidal component and the torsion of the
fiducial orbit38 are included in the RðtÞ matrix. The symplec-
tic matrix specifying the map between z0 and z ¼ MðtÞz0 is

MðtÞ ¼ S%1PTS0; (12)

S ¼ w%T 0
ðwR% _wÞm w

! "
; (13)

where subscript “0” denotes initial conditions at t¼ 0, and w
is a 2! 2 envelope matrix function satisfying the matrix en-
velope equation

d

dt

dw

dt
m% wRm

! "
þ dw

dt
mRT þ w j% RmRTð Þ

% wTwmwTð Þ%1 ¼ 0: (14)

In Eq. (12), P 2 Spð4Þ \ SOð4Þ ¼ Uð2Þ is a symplectic rota-
tion, which is the generalized phase advance, determined by

_P ¼ %P
0 %l
l 0

! "
; (15)

l ( ðwmwTÞ%1: (16)

Alternatively and preferably, the transfer matrix M(t)
can be expressed in terms of a symmetric envelope matrix
uðtÞ; which is defined to be the symmetric component of w(t)
in its polar decomposition

uðtÞ (
ffiffiffiffiffiffiffiffi
bðtÞ

p
; (17)

bðtÞ ( wTðtÞwðtÞ: (18)

In terms of u, the transfer matrix is

MðtÞ ¼ S%1
u P%1

u Su0; (19)

Su (
u%1 0

ðuR% Du% _uÞm u

! "
; (20)

FIG. 2. Eigenvalues are allowed to move off the unit circle for case 2 when
there are repeated eigenvalues. This is the so-called Krein collision.
Illustrated in (a) and (b) are two possibilities for the case of n ¼ 2: For each
possibility, the eigenvalue distribution on the left is before the collision, and
the one on the right is after the collision.
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D ( L%1
umu½ðum _u % _umuÞ þ uðRm% mRTÞu+; (21)

where Pu 2 Spð4Þ \ SOð4Þ ¼ Uð2Þ is a symplectic rotation
determined by the differential equation

_Pu ¼ %Pu
0 lu

%lu 0

! "
% D 0

0 D

! "% &
; (22)

lu ( ðumuTÞ%1: (23)

In Eq. (21), L%1
V is the inverse of the Lyapunov operator

defined as

LVðXÞ ¼ VX þ XV; (24)

for a symmetric, positive-definite matrix V. A detailed dis-
cussion of the Lyapunov operator can be found in Ref. 17.
The envelope matrix uðtÞ (

ffiffiffiffiffiffiffiffi
bðtÞ

p
is determined from the

differential equation for b

€b ¼ 2e% fg% gTf T % bh% hTbþ 2m%1b%1m%1; (25)

e ( _uDuþ _u2 % uD2u% uD _u; (26)

f ( uDuþ u _u; (27)

g ( ð _m % Rmþ mRTÞm%1; (28)

h ( ðj% RmRT % _Rm% R _mÞm%1; (29)

_u ¼ L%1ffiffi
b
p ð _bÞ: (30)

Equation (25) is a second-order ordinary differential equa-
tion for b, since every term on the right-hand-side is a func-
tion of b and _b.

For every t, M(t) is specified by two n! n symmetric
matrices b and _b; and a U(n) matrix Pu: The dimension of
M(t) is thus ðn2 þ nÞ=2þ ðn2 þ nÞ=2þ n2 ¼ nð2nþ 1Þ, as
expected for symplectic matrices. Another important
advantage of using the symmetric envelope matrix u over
the unsymmetric envelope matrix w is that Eq. (19) enables
the application of advanced techniques of pre-Iwasawa
decomposition and normal form to find a matched solution
for the b matrix without using the (inefficient) shooting
method.

IV. STABILITY ANALYSIS AND MATCHED LATTICE
FUNCTIONS

For practical applications of coupled lattices, it is desira-
ble to design a coupled lattice that belongs to cases (1) and
(2.1), which are both spectrally and structurally stable. As
mentioned previously, the parameter space satisfying this
condition for a coupled lattice is larger than that for an
uncoupled lattice. The generalized Courant-Snyder theory
described in Sec. III provides an effective tool to study the
stability properties of coupled lattices. One of the important
results is that if a matched solution for b exists, then the sta-
bility property of a general coupled lattice is completely
determined by the phase advance matrix Pu. Using a
matched solution for b; the one-period map is

MðTÞ ¼ S%1
u0 PuðTÞTSu0; (31)

which indicates that M(T) is similar to the inverse of the
phase advance PuðTÞT and thus has the same eigenvalues
and multiplicity as PuðTÞT . Because PuðTÞT is a rotation, its
eigenvalues are on the unit circle. Now we show that the
phase advance PuðTÞ also determines the structural stability
of M(T). For an eigenvector w of M(T), Su0w is an eigenvec-
tor of PuðTÞT ; and the product between the two eigenvectors
defined in Eq. (2) is preserved by the similarity transforma-
tion, i.e.,

hSu0w; Su0/i ¼ w'ST
u0iJSu0/ ¼ w'iJ/ ¼ hw;/i: (32)

Therefore, PuðTÞT and M(T) have the same eigenvalues,
signatures, and thus structural stability properties.

As in the case of a 1D uncoupled lattice, matched
solutions for b are much more preferable than unmatched
solutions, because the lattice functions can be completely
determined by a matched b solution in one lattice period,
i.e., the lattice functions are periodic in terms of the lattice
period. On the other hand, if an unmatched b solution is
used, the b function and other lattice functions have to be
solved in the entire time domain of 0 < t <1: Does a
matched b solution always exist? The answer is negative.
What are the conditions for the existence of a matched b so-
lution? We prove now that for cases (1) and (2.1), Eq. (25)
admits a matched solution for b: The proof utilizes the tech-
nique of normal form and pre-Iwasawa decomposition35,36

for symplectic matrices.
First, let us invoke the established result that for case

(1), M can always be transformed into the following normal
form with a symplectic matrix A

M ¼ ANA%1; (33)

N ¼

R1

R2

:::
Rn

0

BB@

1

CCA; (34)

Rl ¼
cos /l sin /l

%sin /l cos /l

! "
: (35)

Obviously, N 2 Spð2nÞ \ SOð2nÞ ¼ UðnÞ is a symplectic
rotation. This fact is proved16 from the existence of a
complete set of 2n orthonormal eigenvectors ðwl;w%lÞ;
ðl ¼ 1; 2;…; nÞ, satisfying

hwl;wmi ¼ dlm; (36)

hw%l;w%mi ¼ %dlm; (37)

hwl;w%mi ¼ 0: (38)

Here, wl and w%l ¼ !wl are a pair of eigenvectors correspond-
ing to the eigenvalues kl and k%l ¼ !kl, respectively.
Equations (36) and (37) state that wl and w%l have different
signatures. The normal form is actually explicitly con-
structed. The transfer matrix A is given as16

A ¼
ffiffiffi
2
p
ðn1; g1; n2; g2;…; nn; gnÞ; (39)

where nl and gl are real and imaginary components of the
eigenvector wl, i.e., wl ¼ nl þ igl:
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We now show that for case (2.1), such a set of orthonor-
mal bases exists as well. For a repeated eigenvector k with
MulgðkÞ ¼ MulaðkÞ, the corresponding eigenvectors span a
subspace Mk of R2n: Because the signature never vanishes in
Mk; we can always select a set of orthonormal bases for Mk

through a Gram-Schmidt process. The subspace M%k, a com-
plex conjugate image of Mk, has the same structure except
that the signature has the opposite sign. Therefore, for both
case (1) and case (2.1), the normal form given by Eq. (33)
exists.

Second, we apply the pre-Iwasawa decomposition to the
symplectic matrix A. According to the theory of Iwasawa
decomposition,35,36 a symplectic matrix G can always be
uniquely factored as

G ¼ P
Y 0

QY Y%1

! "
; (40)

where P 2 Spð2nÞ \ SOð2nÞ ¼ UðnÞ is a symplectic rotation,
and Y and Q are symmetric. The statement is true as well if
the decomposition is defined alternatively to be

G ¼ Y 0
QY Y%1

! "
P: (41)

Let the unique pre-Iwasawa decomposition of A be

A ¼ PASA; (42)

SA ¼
Y 0

QY Y%1

! "

A

: (43)

Then, the transfer matrix is M ¼ S%1
A P%1

A NPASA: We choose
the initial conditions for b and _b such that

Su0 ¼ SA; (44)

and the solution of b will give the same transfer map

M ¼ S%1
u P%1

u SA ¼ S%1
A P%1

A NPASA: (45)

Thus

S%1
u P%1

u ¼ S%1
A P%1

A NPA: (46)

The uniqueness of pre-Iwasawa decomposition requires that

S%1
u ¼ S%1

A ; (47)

P%1
u ¼ P%1

A NPA: (48)

Equations (44) and (47) prove that S%1
u ¼ S%1

u0 , i.e., the b so-
lution is matched. Thus we have proven the proposition that
for cases (1) and (2.1), Eq. (25) admits matched solutions.
This proof is a constructive one, which can be used as an
effective method to find a matched solution for b. The con-
ventional method for finding matched solutions is the shoot-
ing method, where one takes an initial condition for b and
solves the ordinary differential equation once in one period.
In general, the solution is not matched, i.e., bðTÞ 6¼ bð0Þ or
_bðTÞ 6¼ _bð0Þ: The shooting method requires one to estimate
a better initial condition based on the size of the mismatch,

and solve the differential equation again. This iteration is
carried out many times until a matched solution is found.
The new method suggested by the above constructive proof
of the existence of matched solution only requires solving
Eq. (25) once with an arbitrary initial condition. We can con-
struct the one-period map M(T) using any matched or
unmatched solution of Eq. (25), then the eigenvectors of
M(T) can be calculated. When the set of bases satisfying
Eqs. (36)–(38) exists, the initial condition for a matched so-
lution is uniquely given by Eq. (44). This new method
applies to both 1D uncoupled lattices and coupled lattices in
higher dimensions. Of course, this procedure fails when the
set of bases satisfying Eqs. (36)–(38) does not exist.
However, for the desirable cases (1) and (2.1), such a set of
bases exists. Another practical implication of the existence
of a matched b solution is that when a matched solution for
b cannot be found, the lattice must be unstable.

V. CONTINUOUSLY ROTATING QUADRUPOLE
LATTICES

As an illustrative application of the theoretical formal-
ism developed in Secs. III and IV, we investigate here the
stability properties of a continuously rotating quadrupole lat-
tice.2–8 The Hamiltonian of a charged particle in such a lat-
tice is31,34

H ¼ 1

2
zTKz; K ¼ j tð Þ 0

0 I

! "
; (49)

jðtÞ ¼ jq0
cosð2pt=TÞ sinð2pt=TÞ
%sinð2pt=TÞ cosð2pt=TÞ

! "
: (50)

FIG. 3. Matched solutions for the cases of (a) jq0T2 ¼ 8 and (b)jq0T2 ¼ 9.
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We will smoothly vary jq0T2 and observe the movement of
the eigenvalues of the one-period map. For a given value of
jq0T2, we find a matched b solution using the procedure
described above. The calculation is carried out using a code
developed in Ref. 34. The matched b solutions for the cases
of jq0T2 ¼ 8 and jq0T2 ¼ 9 are plotted in Fig. 3. The eigen-
value distributions for different values of jq0T2 are plotted in
Fig. 4. For jq0T2 ¼ 8 and jq0T2 ¼ 9, it belongs to case (1).
The two eigenvalues on the left half circle have different sig-
natures, and move towards one another as jq0T2 increases.
At jq0T2 ¼ p2, these two eigenvalues collide at k ¼ %1:
Since their signatures are different, this is an unstable Krein
collision and thus structurally unstable. Right after the colli-
sion at jq0T2 ¼ 10, these two eigenvalues moves off the unit
circle, and lead to an unstable lattice. This is the scenario
depicted in Fig. 2(b). These analyses can be straightfor-
wardly carried out for any coupled lattice, such as the
N-rolling lattice31 and the M€obius accelerator.9 We note that
to calculate the eigenvalues displayed in Fig. 4, it is not nec-
essary to find the matched b solutions. Any solution of the b
matrix over one lattice period can be used. Matched

solutions are preferable when the b matrix is used as a lattice
function for the machine.

VI. CONCLUSIONS AND FUTURE WORK

We have studied in this paper the spectral and structural
stability of charged particle dynamics in a coupled focusing
lattice as a Hamiltonian system. The recently developed gen-
eralized Courant-Synder theory for coupled lattices has been
applied. It is has been demonstrated that for coupled lattices
that are spectrally and structurally stable, the matrix enve-
lope equation must admit matched solutions. A new method
is presented to determine a matched solution for the matrix
envelope using the technique of normal form and pre-
Iwasawa decomposition. If a matched solution exists, this
method is able to determine the matched solution simply
by solving the envelope equation once without using the
(inefficient) shooting procedure. As an example, stability
properties of a continuously rotating quadrupole lattice are
investigated. The Krein collision process for destabilization
of the lattice has also been demonstrated.

FIG. 4. Eigenvalues of continuously rotating quadrupole lattices. The two eigenvalues on the left half circle have different signatures in (a), and move towards
one other as jq0T2 increases in (b). The Krein collision occurs at jq0T2 ¼ p2 in (c), after which the two eigenvalues on the left move off the unit circle and
lead to an unstable lattice in (d).
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The application of coupled lattices to high-intensity
charged particle beams39–43 will be investigated in future
studies. The theoretical framework and analytical tools
developed in the present study are also expected to be effec-
tive for the current theoretical and experimental investiga-
tions of emittance exchange technologies.44–50
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