
Beam envelope calculations in general linear coupled lattices

Moses Chung,1,a) Hong Qin,2,3 Lars Groening,4 Ronald C. Davidson,2 and Chen Xiao4

1Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 689-798, South Korea
2Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA
3Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
4GSI Helmholtzzentrum f€ur Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt, Germany

(Received 15 October 2014; accepted 19 November 2014; published online 13 January 2015)

The envelope equations and Twiss parameters (b and a) provide important bases for uncoupled
linear beam dynamics. For sophisticated beam manipulations, however, coupling elements between
two transverse planes are intentionally introduced. The recently developed generalized Courant-
Snyder theory offers an effective way of describing the linear beam dynamics in such coupled
systems with a remarkably similar mathematical structure to the original Courant-Snyder theory. In
this work, we present numerical solutions to the symmetrized matrix envelope equation for b which
removes the gauge freedom in the matrix envelope equation for w. Furthermore, we construct the
transfer and beam matrices in terms of the generalized Twiss parameters, which enables calculation
of the beam envelopes in arbitrary linear coupled systems. VC 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4903457]

I. INTRODUCTION

The fundamental framework for the design and analysis
of an uncoupled quadrupole lattice is the Courant-Snyder
(CS) theory.1 Many standard textbooks on accelerator and
beam physics introduce the CS theory to begin discussions
on linear uncoupled beam dynamics.2–4 Interestingly, one of
the recent trends in the beam physics community is to intro-
duce coupling elements between two planes intentionally for
sophisticated beam manipulations.5–9 Several ideas have
been proposed to generalize the original CS theory for the
systematic beam dynamics description of such coupled
systems with as much similarity as possible to the original
CS theory.6,10,11

In recent papers,12,13 the dynamics of charged particles
in general linear coupled lattices has been formulated in
terms of a generalized CS theory, which extends the original
CS theory to the fully coupled cases. The generalized CS
theory can be applied to systems with quadrupoles, skew-
quadrupoles, dipoles, and solenoidal components, as well as
include the effects of torsion of the design orbit and variation
of the beam energy. Furthermore, the generalized CS theory
contains remarkably similar mathematical structure and
physical meaning to their counterparts in the original CS
theory. The 1D envelope equation is generalized to a matrix
envelope equation in higher dimensions, and the phase
advance is generalized to a symplectic rotation. Particularly
in Ref. 13, the gauge group structure of the generalized CS
theory was analyzed using the polar decomposition theorem.
It has been shown that the gauge freedom in the matrix enve-
lope equation for w can be bypassed by solving the symme-
trized envelope equation for the generalized Twiss parameter
b. This gauge adjustment makes the numerical algorithms of
searching for matched solutions for b and b0 more efficient
than for matched solutions for w and w0. In the matrix

envelope equation for w, in principle, there are an infinite
number of matched solutions for w and w0.

In this paper, we present a detailed analysis in Secs. II
and III of the symmetrized envelope equation for b, and for-
mulate the transfer matrix (M) and beam matrix (R) in terms
of the generalized Twiss parameters a and b, which turn out
to be remarkably consistent with the original CS theory. We
also present beam envelope calculations in Sec. IV for sev-
eral linear coupled systems, which indeed demonstrate the
validity and usefulness of the generalized CS theory.
Conclusions are summarized in Sec. V.

II. GENERALIZED COURANT-SNYDER THEORY WITH
GAUGE ADJUSTMENT

The general form of the time-dependent Hamiltonian in
general linear focusing lattices is given by12,13

H ¼ 1

2
zTAcz; Ac ¼

j sð Þ R sð Þ
RT sð Þ m$1 sð Þ

! "
; (1)

where z ¼ ðx; y; px; pyÞT are the transverse phase space coor-
dinates. Here, jðsÞ, R(s), and m$1ðsÞ are time-dependent
2% 2 matrices. Note that the matrices Ac, jðsÞ, and m$1ðsÞ
are also symmetric. The superscript T denotes the transpose
operation on a matrix, and pxðpyÞ is the scaled canonical
momentum variable conjugate to the transverse coordinate
x(y) relative to the design orbit. The variable s plays the role
of a time-like variable, and the prime denotes a derivative
with respect to s.

If we apply the final results of the generalized CS theory
described in Ref. 13 to the Hamiltonian in Eq. (1), we can
construct the formal solution for the transverse beam dynam-
ics in terms of a time-dependent linear map from the initial
condition z0 according to

zðsÞ ¼ MðsÞz0; (2)

where the transfer matrix M(s) is given by
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MðsÞ ¼ S$1
u P$1

u Su0: (3)

Here,

S$1
u ¼

u 0

u$1ðu0 þ Du$ uRÞmu u$1

" #

; (4)

P$1
u ¼ PT

u ¼
PT

u1 $PT
u2

PT
u2 PT

u1

" #

; (5)

Su0 ¼
u$1 0

$ðu0 þ Du$ uRÞm u

" #

0

: (6)

The matrix u is the symmetrized version of the envelope ma-
trix w used in our previous calculations,14–17 and here it is
equal to the square root of the generalized Twiss parameter
b, i.e.,

uðsÞ ¼ bðsÞ1=2 ¼
ffiffiffiffiffiffiffiffiffi
bðsÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTðsÞwðsÞ

p
: (7)

Here, u(s) is symmetric and positive-definite according to
the polar decomposition theorem. Because b ¼ wTw is also
symmetric and positive-definite by definition, we note in Eq.
(7) a well-known fact in fundamental linear algebra that a
positive-definite matrix has a unique positive-definite square
root.18 Therefore, u(s) can be uniquely determined by calcu-
lating the principal square root of bðsÞ.

The symmetrized envelope equation for b is given by13

b00 $ 2w0Tw0 þ wTw0gþ gTw0Twþ bhþ hTb

¼ 2m$1b$1m$1: (8)

This is the main governing equation we need to solve
numerically. Here, g and h are given by the lattice configura-
tion as

g ¼ ðm0 $ Rmþ mRTÞm$1; (9)

h ¼ ðj$ RmRT $ R0m$ Rm0Þm$1: (10)

The terms containing w and w0 can be expressed in terms of
u, u0, and D according to

w0Tw0 ¼ u0Duþ u02 $ uD2u$ uDu0; (11)

wTw0 ¼ uDuþ uu0: (12)

Now the task is to express u0 and D in terms of b and b0. In
Ref. 13, two linear equations are derived as

u0uþ uu0 ¼ b0; (13)

ðumuÞDþDðumuÞ¼ ðumu0$u0muÞþuðRm$mRTÞu: (14)

We note that the above two linear equations are indeed
special cases of a more general Lyapunov equation.19 While
in Ref. 13 the inversion of a linear transformation L was for-
mulated in terms of an eigenvalue problem, in the present
work we use the general solution of the Lyapunov equation.
The Lyapunov equation is a special class of linear matrix
equations given by

AX þ XB ¼ C; (15)

where A, B, and C are assumed, for simplicity, to be square
matrices of the same dimensions. Then the solution X can be
shown to be

vecðXÞ ¼ ðI ' Aþ BT ' IÞ$1vecðCÞ: (16)

Here, I is the unit matrix, the symbol ' represents the
Kronecker product of two matrices, and the symbol “vec”
represents an operator of a matrix which stacks the col-
umns into a vector.19 Applying Eq. (16) in Eqs. (13) and
(14), we can easily obtain expressions for u0 and D in terms
of b and b0. Now it is clear that Eq. (8) is a second-order
nonlinear ordinary differential equation for the matrix
elements of b. Making use of symbolic computational
software such as MATHEMATICA,20 we solve Eq. (8)
numerically without having explicit expressions for the
matrix elements.

To calculate the phase advance which is a 4D symplec-
tic rotation, we need to solve the modified phase advance
equation for Pu given by13

P0u ¼ $ Pu
0 lu

$lu 0

 !

$
D 0

0 D

 !" #

; (17)

lu ¼ ðumuÞ$1: (18)

We choose the initial condition as Pu0 ¼ I without loss of
generality.

III. TRANSFER AND BEAM MATRICES

The transfer matrix in the original CS theory is decom-
posed into the elegant form2

M sð Þ ¼

ffiffiffi
b
p

0

$ affiffiffi
b
p 1ffiffiffi

b
p

2

64

3

75
cos / sin /

$sin / cos /

" # 1ffiffiffi
b
p 0

affiffiffi
b
p

ffiffiffi
b
p

2

6664

3

7775

0

:

(19)

The third matrix on the right-hand side of Eq. (19) performs
a canonical transformation of coordinates into normal
forms, making the linear betatron motion a simple coordi-
nate rotation given by the second matrix. The first matrix
represents a back-transformation into the original coordinate
system.

Since the governing equations in the generalized CS
theory with gauge adjustment, i.e., Eqs. (8) and (17), seem
rather complicated, at first glance it appears to be difficult to
express Eqs. (4) and (6) in terms of Twiss parameters similar
to Eq. (19). However, we note that if we define another
Twiss parameter a as

a ¼ $uðu0 þ Du$ RÞm; (20)

we can express the transfer map into a surprisingly similar
form to the original Courant-Snyder theory. We obtain
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MðsÞ¼
ffiffiffi
b
p

0

$aT
ffiffiffi
b
p $1 ffiffiffi

b
p $1

" #
PT

u1 $PT
u2

PT
u2 PT

u1

! " ffiffiffi
b
p $1

0ffiffiffi
b
p $1a

ffiffiffi
b
p

" #

0

:

(21)

In deriving Eq. (21), we used the symplectic condition
(SuJST

u ¼ J, where J is the unit symplectic matrix) imposed
on the canonical transformation matrix Su, which can be
expressed in terms of Twiss parameters as

ab ¼ baT : (22)

This condition is trivial in the original CS theory. In the gen-
eralized CS theory, this symplectic condition is equivalent to
calculating D properly. Indeed, Eq. (14) for D is derived from
the symplectic condition. Therefore, once b and b0 are known
from the envelope calculations, a ¼ $uðu0 þ Du$ RÞm can
be calculated straightforwardly without violating the sym-
plectic condition. This fact is also confirmed in our numerical
calculations. It should be emphasized that the single-particle
trajectory is determined in terms of the initial phase-space
coordinates z0 and lattice configurations, not from the form of
the parametrization. Therefore, the transfer matrix itself is
independent of the choice of b and b0. Here, we have used the
symbols “b; a;M” to represent physical quantities in both the
original and generalized CS theories without causing any
confusion. For example, b is a scalar quantity in the original
CS theory, while it is interpreted as 2% 2 matrix in the gener-
alized CS theory. In this way, we can clearly display the
correspondence between the two theories.

The beam matrix (second-order moments of the beam
distribution) can be constructed by noting that the canonical
transformation "z ¼ PuSuz makes "z normalized coordinates in
4D phase space, and the normalized coordinates are invariant
("z ¼ const:) during the linear coupled motion.17 For the case
of a Gaussian distribution, the beam matrix R ¼ hzzTi can be
expressed as 17

R ¼ S$1
u P$1

u ePuS$T
u ; (23)

where h( ( (i denotes the statistical average over the beam dis-
tribution. Here,

e ¼ ! 0
0 !

$ %
; ! ¼ !1 0

0 !2

$ %
; (24)

and !1 and !2 are two eigen-emittances. We note thatffiffiffiffiffiffiffiffiffiffiffiffiffi
detðRÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
detðeÞ

p
¼ !1!2 ) !2

?. In terms of the Twiss

parameters a and b, the beam matrix can also be expressed
as

R ¼
ffiffiffi
b
p

0

$aT
ffiffiffi
b
p $1 ffiffiffi

b
p $1

2

4

3

5

%
ðPT

u1!Pu1 þ PT
u2!Pu2Þ ðPT

u1!Pu2 $ PT
u2!Pu1Þ

$ðPT
u1!Pu2 $ PT

u2!Pu1Þ ðPT
u1!Pu1 þ PT

u2!Pu2Þ

" #

%
ffiffiffi
b
p

$
ffiffiffi
b
p $1a

0
ffiffiffi
b
p $1

2

4

3

5: (25)

For the case of unequal emittances, the phase advance
term does not cancel out. Hence the beam matrix depends
not only on the Twiss parameters but also on the phase
advance. When the two eigen-emittances are equal
(!1 ¼ !2 ¼ !? and ! ¼ !?I), the beam matrix becomes

R ¼ !?
b $a

$aT c

 !

; (26)

where c is another generalized Twiss parameter defined by

bc ¼ I þ a2: (27)

This generalizes the familiar relation between the Twiss
parameters a, b, and c in matrix form. We note that the beam
matrix is expressed in a remarkably similar form to the origi-
nal CS theory.3 From Eqs. (3) and (23), we also confirm that
the relation for transforming the initial beam matrix R0 is

RðsÞ ¼ MR0MT : (28)

IV. NUMERICAL EXAMPLES

In this section, we present numerical solutions of the
beam envelopes for two lattice configurations using
the generalized CS theory introduced Secs. II and III.
The first case is a periodic lattice system with solenoidal fo-
cusing field,21 and the second case is the emittance transfer
experiment (EMTEX) beam line at GSI, which is composed
of solenoids, quadrupoles, and skew-quadrupoles.7,22

A. Periodic system

We consider a Gaussian beam with negligible space-
charge force propagating through a periodic focusing sole-
noidal field21 with axial periodicity length S¼ const. In this
case, the symmetric matrices in the Hamiltonian (1) are
m$1 ¼ I and

jðsÞ ¼ X2ðsÞ 0

0 X2ðsÞ

 !
: (29)

The 2% 2 matrix R is given by

RðsÞ ¼
0 $XðsÞ

XðsÞ 0

 !

; (30)

where XðsÞ ¼ ebBzðsÞ=2cbmbbbc is the normalized Larmor
frequency. Here, BzðsÞ ¼ Bzðsþ SÞ is the axial component of
solenoidal field at ðx; yÞ ¼ ð0; 0Þ, bbc ¼ const: is the average

axial velocity, cb ¼ ð1$ b2
bÞ
$1=2 is the relativistic mass fac-

tor, ebðmbÞ is the charge (rest mass) of a beam particle, and c
is the speed of light in vacuo.

When the applied focusing forces are periodic as in the
periodic solenoidal system, it is desirable to determine the
matched-beam envelopes. In general, the matched-beam
envelopes provide minimum radial excursions in periodic
lattice channels.23 A general condition for the matched solu-
tion is24
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Rðsþ SÞ ¼ RðsÞ; (31)

and it requires certain initial conditions. Here, for simplicity,
we consider the case of equal eigen-emittances only. In this
case, matched beam envelopes are found by imposing peri-
odic boundary conditions when solving Eq. (8) as

bð0Þ ¼ bðSÞ; b0ð0Þ ¼ b0ðSÞ: (32)

In addition, we can compare our approach to the well-known
method based on the Larmor-frame transformation.21 For
negligible space-charge forces, the envelope equation for a
circular cross-section beam with r ¼

ffiffiffiffiffiffiffiffi
hx2i

p
¼

ffiffiffiffiffiffiffiffi
hy2i

p
is

given by21

d2r
ds2
þ X2 sð Þr$

!2
?

r3
¼ 0: (33)

The matching conditions are

r 0ð Þ ¼ r Sð Þ; dr
ds

&&&&
0

¼ dr
ds

&&&&
S

: (34)

We choose a periodic step-function lattice with amplitude
X̂ ¼ const: and filling factor g illustrated in Fig. 1.

Plotted in Fig. 2 is the evolution of the matched beam
envelope for one lattice period, 0 * s=S * 1. Here, the trans-
verse dimension is normalized by

ffiffiffiffiffiffiffiffi
!?S
p

. It is clear in Fig. 2
that the numerical values calculated from the generalized CS
theory are in excellent agreement with the numerical solution
obtained from solving the envelope equation (33). This indi-
cates that the formulation used in the generalized CS theory
is valid, and also that the numerical routines for solving Eq.
(8) are implemented correctly. The two envelope equations
(8) and (33) are derived by two drastically different
approaches. For example, in deriving Eq. (8) we do not
involve the Larmor-frame transformation explicitly. While
Eq. (33) cannot be easily extended to include more general
coupled lattice elements such as skew-quadrupoles, Eq. (8)
can be readily applied to systems with both skew-
quadrupoles and solenoids.

B. Single-pass system

For a single-pass system, the initial beam matrix R0 is
given, and we only need to propagate it through the channel
using Eq. (28). As mentioned earlier, the transfer matrix M
itself is independent of the choices of b and b0. Therefore,
we can pick arbitrary initial values for b and b0 as long as
they do not cause a singularity at s¼ 0.

We consider a beam line for the EMTEX facility at
GSI.7,22 The major components of the EMTEX section are a
solenoid with stripper foil inside, a quadrupole triplet, and a
skew quadrupole triplet. The parameters of the components
included in this calculation are listed in Table I. The purpose
of the EMTEX is to demonstrate transverse emittance
partitioning. Under symplectic transformations, the eigen-
emittances, determined from the beam matrix in canonical
coordinates, are invariant. Therefore, to change the beam
eigen-emittances, a non-symplectic transformation is
required. In the EMTEX system, a charge stripper inside the
solenoid performs the non-symplectic transformation. The
charge stripping process changes the input beam rigidity
ðBqÞin to ðBqÞout suddenly, and causes splitting of the
initially equal eigen-emittances into two different values.

FIG. 1. Plot of XðsÞ versus s for periodic step-function lattice with ampli-
tude X̂ ¼ const: and filling factor g.

FIG. 2. Plots of rðsÞ=
ffiffiffiffiffiffiffiffi
!?S
p

versus s/S for periodic matched-beam solutions.
The solid curve is obtained by solving the envelope equation (33), and
the circles represent the numerical values calculated using the generalized
Courant-Snyder theory. Here, the lattice parameters are taken to be
X̂

2
S2 ¼ 4 and g ¼ 0:5.

TABLE I. The lattice of the EMTEX beam line.22

Element Effective length [mm] Field strength or gradient

Half solenoid 100 1.000 T

Foil 0 Du ¼ 0.226 mrad

Half solenoid 100 1.000 T

Drift 300 …

Drift 200 …

Quad 319 þ10.464 T/m

Drift 201 …

Quad 319 $9.431 T/m

Drift 201 …

Quad 319 þ8.421 T/m

Drift 500 …

Skew quad 200 þ5.110 T/m

Drift 20 …

Skew quad 400 $2.229 T/m

Drift 20 …

Skew quad 200 þ8.861 T/m
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The transverse inter-plane correlations are removed by a
decoupling section following the solenoid. More detailed
theoretical descriptions are given in Refs. 7 and 22.

We assume the initial beam matrix at the entrance of the
solenoid is

R0 ¼

hx2i hxyi hxpxi hxpyi
hyxi hy2i hypxi hypyi
hpxxi hpxyi hp2

xi hpxpyi
hpyxi hpyyi hpypxi hp2

yi

0

BBBBB@

1

CCCCCA

0

¼

!0b0 0 0 0

0 !0b0 0 0

0 0 !0=b0 0

0 0 0 !0=b0

0

BBBB@

1

CCCCA
: (35)

The initial beam has equal horizontal (x-direction) and verti-
cal (y-direction) rms emittances and no inter-plane correla-
tion. Note that we adopt a canonical coordinate system
ðx; y; px; pyÞ instead of ðx; x0; y; y0Þ used in Refs. 7 and 22. In
this numerical example, we consider a low-intensity beam of
Dþ6 with energy 11.4 MeV/u. The beam is stripped to 3Dþ2 in
a 22 lg=cm2 carbon foil placed in the middle of the 0.2-m
long solenoid. The initial beam parameters are a0 ¼ 0; b0 ¼
2:5 mm/mrad, and !0 ¼ 0:51 mm mrad. During the stripping
process, there is a finite amount of scattering Du, which is
estimated to be Du ¼ 0:226 mrad.22 The decoupling section
described in Table I is set up for 1.0 T solenoidal field
strength.

In Ref. 22, eigen-emittances and rms emittances along
the EMTEX system are calculated by an analytical method
based on the multiplication of a series of transfer matrices
for each lattice element. Here, we apply the generalized CS
theory, and calculate the eigen-emittances and rms emittan-
ces using a different approach. Since the envelope equation
(8) (which is derived from the generalized CS theory) is
valid for symplectic processes only, we need to divide the
calculation domain into two regions: before stripping, and
after stripping. First, we calculate the transfer matrix (Min)
from the solenoid entrance to the stripping foil with initial
beam rigidity ðBqÞin. Then, we obtain the beam matrix at the
stripping foil from Rfoil ¼ MinR0MT

in. Finally, we apply
another transfer matrix (Mout) from the foil with final beam
rigidity ðBqÞout to calculate the beam matrix along the
decoupling section as RðsÞ ¼ MoutðsÞR0foilM

T
outðsÞ, where R0foil

includes the scattering effects on the angular spreads in Rfoil.
In this way, we can correctly calculate the propagation of the
beam matrix across the non-symplectic element. It should be
emphasized again that, different from periodic matching
problems, there is no need to find initial values for b and b0

which yield the given initial beam matrix.
The eigen-emittances and rms emittances at the exit of

the solenoid are plotted in Fig. 3 as functions of the sole-
noidal field strength. The eigen-emittances are calculated
from

detðJR$ i!1;2IÞ ¼ 0; (36)

or equivalently,22

!1;2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

$tr RJð Þ2
h i

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2 RJð Þ2
h i

$ 16det Rð Þ
rs

: (37)

The results in Fig. 3 are obtained from the generalized CS
theory, and they match almost perfectly with the results pre-
sented in Ref. 22. Partitioning of the eigen-emittances is
clearly seen, and the initially uncoupled beam becomes
strongly coupled. Once the beam passes through the EMTEX
decoupling section, the inter-plane correlations are removed.
Figure 4 shows the eigen-emittances and rms emittances at
the exit of the skew quadrupole triplet. The decoupling proc-
esses are clearly shown, i.e., the eigen-emittances become
equal to the rms emittances. The results in Fig. 4 reproduce
the results presented in Ref. 22 almost exactly. It should be
noted that the EMTEX decoupling section performs very
well for a wide range of solenoidal field strengths.25 While
the solenoidal field strength is changed, the settings for the
EMTEX beamline are kept constant at the values used to
decouple the beam manipulated by a solenoidal field of
1.0 T. Figures 3 and 4 confirm the validity of the theoretical
model and numerical procedure presented here, and also
provide an independent cross-check for the emittance parti-
tioning theory developed for the EMTEX system.

FIG. 3. Plots of the eigen-emittances (solid lines with circles) and rms emit-
tances (dashed lines with squares) at the exit of the solenoid. The numerical
calculations are based on the generalized Courant-Snyder theory. The initial
beam has circular cross-section with !1 ¼ !2 ¼ !0 ¼ 0:51 mm mrad. Note
that the dashed lines for !x and !y are completely overlapped.

FIG. 4. Plots of the eigen-emittances (solid lines with circles) and rms emit-
tances (dashed lines with squares) at the exit of the skew quadrupole triplet.
The numerical calculations are based on the generalized Courant-Snyder
theory. The initial beam has circular cross-section with !1 ¼ !2 ¼ !0 ¼ 0:51
mm mrad. The gradient settings of the EMTEX beamline listed in Table I
are used for all longitudinal magnetic field values.
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V. CONCLUSIONS

In this paper, we have formulated the transfer matrix
(M) and beam matrix (R) in terms of the generalized Twiss
parameters b and a. The recently derived symmetrized enve-
lope equation for b, i.e., Eq. (8), has been solved numeri-
cally. The linear coupled beam dynamics is effectively
described by the generalized Twiss parameters and a 4D
symplectic rotation, which extends the elegant mathematical
structure of the original CS theory. The validity of the for-
mulation has been tested using two numerical examples. The
numerical calculations based on the present formulation
work very well for both periodic and single-pass systems.
Furthermore, we note that the formulation can be applied to
a non-symplectic lattice configuration by setting appropriate
boundary conditions around the non-symplectic element.
Since the formulation can include arbitrary linear coupled fo-
cusing elements as functions of s, it can be easily used to
design and study a complex coupled lattice system for spe-
cial beam manipulations, such as the EMTEX system.

ACKNOWLEDGMENTS

This work was supported by the 2014 Research Fund
(1.140075.01) of UNIST (Ulsan National Institute of Science
and Technology). This work was also supported by the U.S.
Department of Energy Grant No. DE-AC02-09CH11466.

1E. D. Courant and H. S. Snyder, Ann. Phys. 3, 1 (1958).
2S. Y. Lee, Accelerator Physics (World Scientific, Singapore, 2004),
Chap. 2.

3J. B. Rosenzweig, Fundamentals of Beam Physics (Oxford University
Press, Oxford, 2003), Chap. 5.

4D. A. Edwards and M. J. Syphers, An Introduction to the Physics of High
Energy Accelerators (Wiley, New York, 1993), Chap. 3.

5K.-J. Kim, Phys. Rev. ST Accel. Beams 6, 104002 (2003).
6A. V. Lebedev and S. A. Bogacz, JINST 5, P10010 (2010).
7L. Groening, Phys. Rev. ST Accel. Beams 14, 064201 (2011).
8C. Xiao, L. Groening, and O. K. Kester, Nucl. Instrum. Methods Phys.
Res. A 738, 167 (2014).

9B. E. Carlsten, K. A. Bishofberger, S. J. Russell, and N. A. Yampolsky,
Phys. Rev. ST Accel. Beams 14, 084403 (2011).

10L. C. Teng, Fermi National Accelerator Laboratory Report FN-229
(1971).

11G. Ripken, Deutsches Elektronen-Synchrotron Internal Report R1-70/04
(1970).

12H. Qin, R. C. Davidson, M. Chung, and J. W. Burby, Phys. Rev. Lett. 111,
104801 (2013).

13H. Qin, R. C. Davidson, J. W. Burby, and M. Chung, Phys. Rev. ST Accel.
Beams 17, 044001 (2014).

14H. Qin and R. C. Davidson, Phys. Plasmas 16, 050705 (2009).
15H. Qin and R. C. Davidson, Phys. Rev. ST Accel. Beams 12, 064001

(2009).
16M. Chung, H. Qin, and R. C. Davidson, Phys. Plasmas 17, 084502 (2010).
17M. Chung, H. Qin, E. P. Gilson, and R. C. Davidson, Phys. Plasmas 20,

083121 (2013).
18See http://faculty.plattsburgh.edu/robert.reams/research/uniqsqroots.pdf

for the uniqueness of matrix square roots.
19See http://matrixcookbook.com for the matrix cookbook.
20See http://www.wolfram.com/mathematica/ for Wolfram mathematica.
21R. C. Davidson and H. Qin, Physics of Intense Charged Particle Beams in

High Energy Accelerators (World Scientific, Singapore, 2001), Chap. 3.
22C. Xiao, O. K. Kester, L. Groening, H. Leibrock, M. Maier, and P.

Rottl€ander, Phys. Rev. ST Accel. Beams 16, 044201 (2013).
23S. M. Lund and B. Bukh, Phys. Rev. ST Accel. Beams 7, 024801

(2004).
24D. Chernin, Part. Accel. 24, 29 (1988).
25L. Groening, e-print arXiv:1403.6962 (2014).

013109-6 Chung et al. Phys. Plasmas 22, 013109 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
49.175.113.22 On: Wed, 14 Jan 2015 15:22:15


