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This paper makes use of a one-dimensional kinetic model to investigate the nonlinear longitudinal
dynamics of a long coasting beam propagating through a perfectly conducting circular pipe with radius rw.
The average axial electric field is expressed as hEzi ¼ −ð∂=∂zÞhϕi ¼ −ebg0∂λb=∂z − ebg2r2w∂3λb=∂z3,
where g0 and g2 are constant geometric factors, λbðz; tÞ ¼

R
dpzFbðz; pz; tÞ is the line density of beam

particles, and Fbðz; pz; tÞ satisfies the 1D Vlasov equation. Detailed nonlinear properties of traveling-wave
and traveling-pulse (soliton) solutions with time-stationary waveform are examined for a wide range of
system parameters extending from moderate-amplitudes to large-amplitude modulations of the beam
charge density. Two classes of solutions for the beam distribution function are considered, corresponding
to: (i) the nonlinear waterbag distribution, where Fb ¼ const in a bounded region of pz-space; and
(ii) nonlinear Bernstein-Green-Kruskal (BGK)-like solutions, allowing for both trapped and untrapped
particle distributions to interact with the self-generated electric field hEzi.
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I. INTRODUCTION

High-energy accelerators and transport systems [1–6]
have a wide variety of applications ranging from basic
research in high energy and nuclear physics, to applications
such as spallation neutron sources, medical physics, and
heavy ion fusion. As a consequence, it is increasingly
important to develop an improved understanding of
collective processes and the nonlinear dynamics of intense
charged particle beam systems. While there has been
considerable progress in three-dimensional numerical
and analytical investigations of the nonlinear Vlasov-
Maxwell equations describing intense beam propagation,
there is also considerable interest in the development and
application of simplified one-dimensional kinetic models to
describe the longitudinal nonlinear dynamics of long
coasting beams [7–15] in linear (linac) or large-major-
radius ring geometries. The present paper employs the one-
dimensional kinetic formalism recently developed by
Davidson and Startsev [14] for a long coasting beam
propagating through a perfecting conducting circular pipe
with radius rw. In Ref. [14] the average longitudinal electric
field is expressed as hEziðz; tÞ ¼ −ð∂=∂zÞhϕiðz; tÞ ¼
−ebg0∂λb=∂z − ebg2r2w∂3λb=∂z3, where eb is the particle
charge, g0 and g2 are constant geometric factors that depend
on the location of the conducting wall and the shape of the

transverse density profile, and λbðz; tÞ ¼
R
dpzFbðz; pz; tÞ

is the line density. In a previous application of the 1D
kinetic formalism developed in Ref. [14], the analyses in
Ref. [15] assumed that the longitudinal distribution
Fbðz; pz; tÞ corresponded to a so-called waterbag distribu-
tion [16–19], where Fb ¼ const within moving boundaries
in the phase space ðz; pzÞ. The weakly nonlinear analysis
in Ref. [15] showed that disturbances moving near the
sound speed evolve according to the Korteweg-deVries
(KdV) equation [20–24]. The classical KdV equation,
which arises in several areas of nonlinear physics in which
there are cubic dispersive corrections to sound-wave-like
signal propagation, also has the appealing feature that it is
exactly solvable using inverse scattering techniques.
While the analysis in Ref. [15] reveals many interesting

properties of the nonlinear evolution of longitudinal dis-
turbances in intense charged particle beams, it is restricted
to the weakly nonlinear regime. In the present analysis, we
remove the restriction to the weakly nonlinear regime, and
make use of the 1D kinetic model developed in Ref. [14],
allowing for moderate to large-amplitude modulation in the
charge density of the beam particles. The organization of
this paper is the following. In Sec. II, the 1D kinetic model
[14] is briefly reviewed (Sec. II A), and exact (local and
nonlocal) nonlinear conservation constraints are derived
(Sec. II B) for the conservation of particle number, momen-
tum, and energy per unit length of the beam, making use of
the nonlinear Vlasov equation for Fbðz; pz; tÞ in Eq. (1),
and the expression for hEiðz; tÞ in Eq. (2). Removing the
assumption of weak nonlinearity made in Ref. [15], Sec. III
focuses on use of the fully nonlinear kinetic waterbag
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model (Sec. III A) to investigate detailed properties of
nonlinear pulselike (soliton) or periodic traveling-wave
disturbances propagating with constant normalized velocity
M ¼ const relative to the beam frame (Sec. III B). In
normalized variables, Z0 ¼ Z −MT and T 0 ¼ T, the wave-
form of the disturbance is assumed to be time-stationary
(∂=∂T 0 ¼ 0) in the frame moving with velocity M ¼ const
relative to the beam frame. Nonlinear solutions are exam-
ined over a wide range of system parameters, including
regimes where the modulation in beam line density λb
exceeds 50%, corresponding to a strongly bunched beam.
Finally, in Sec. IV we examine the kinetic model based on
Eqs. (9) and (10) [equivalent to Eqs. (1) and (2)] for an even
broader class of distribution functions Fbðz; pz; tÞ, recog-
nizing that Eqs. (9) and (10) are Galilean invariant. [Keep in
mind that the variables (z; pz; t) are in the beam frame,
where the particle motion is assumed to be nonrelativistic.]
Introducing the appropriately scaled variables (see Sec. IV)
Z0 ¼ Z −MT, V 0

z ¼ Vz −M, T 0 ¼ T, where M ¼ const,
we transform Eqs. (9) and (10) to primed variables, and
look for solutions that are time stationary (∂=∂T 0 ¼ 0) in
the frame moving with velocity M ¼ const relative to the
beam frame. The analysis in Sec. IV parallels the original
Bernstein-Greene-Kruskal (BGK) formulation of BGK
solutions to the 1D Vlasov-Poisson equations [25,26],
except for the fact that Eq. (10), which connects the
effective potential hϕiðz; tÞ to the line density λbðz; tÞ,
has a very different structure than the 1D Poisson’s
equation used in the original BGK analysis. Depending
on the choices of trapped-particle and untrapped-particle
distribution functions, the kinetic model described in
Sec. IV supports a broad range of nonlinear pulselike
(soliton) solutions and periodic traveling-wave solutions
that have time-stationary waveform in the frame moving
with velocity M ¼ const relative to the beam frame.
Similar to Sec. III B, the modulation of beam line density
can have large amplitude, corresponding to a strong
bunching of the beam particles. Specific examples are
presented in Sec. IV corresponding to nonlinear periodic
traveling-wave solutions.

II. THEORETICAL MODEL AND ASSUMPTIONS

This section provides a brief summary of the one-
dimensional kinetic g-factor model (Sec. II A) developed
by Davidson and Startsev [14] to describe the nonlinear
longitudinal dynamics of a long coasting beam propagating
in the z-direction through a circular, perfectly conducting
pipe with radius rw. The 1D kinetic Vlasov equation for
the distribution function Fbðz; pz; tÞ is used (Sec. II B) to
derive several important conservation laws (both local and
global) corresponding to conservation of particle number,
momentum, and energy per unit length of the charge bunch.
The results in Secs. II A and II B form the basis for the
nonlinear traveling-wave and traveling-pulse solutions
studied in Secs. III and IV.

A. Theoretical model and assumptions

This paper makes use of a one-dimensional kinetic
model [14] that describes the nonlinear dynamics of the
longitudinal distribution function Fbðz; pz; tÞ, the average
self-generated axial electric field hEziðz; tÞ, and the line
density λbðz; tÞ ¼

R
dpzFbðz; pz; tÞ, for an intense charged

particle beam propagating in the z-direction through a
circular, perfectly conducting pipe with radius rw. For
simplicity, the analysis is carried out in the beam frame,
where the longitudinal particle motion in ðz; pzÞ phase
space is assumed to be nonrelativistic, and the beam
intensity is assumed to be sufficiently low that the beam
edge radius rb and rms radius Rb ¼ hr2i1=2 ¼ hx2 þ y2i1=2
have a negligibly small dependence on line density λb.
Furthermore, properties such as the number density
nbðr; z; tÞ of beam particles are assumed to be azimuthally
symmetric about the beam axis (∂=∂θ ¼ 0), where x ¼
r cos θ and y ¼ r sin θ are cylindrical polar coordinates.
Finally, the axial spatial variation in the line density
λbðz; tÞ ¼ 2π

R rw
0 drrnbðr; z; tÞ is assumed to be sufficiently

slow that k2zr2w ≪ 1, where ∂=∂z∽kz∽L−1
z is the inverse

length scale of the z-variation of beam properties.
Making use of these assumptions, it can be shown that

the one-dimensional kinetic equation describing the non-
linear evolution of the longitudinal distribution function
Fbðz; pz; tÞ and average longitudinal electric field
hEziðz; tÞ can be expressed in the beam frame correct to
order k2zr2w as [14]

∂
∂t Fb þ vz

∂
∂zFb þ ebhEzi

∂
∂pz

Fb ¼ 0; ð1Þ

and

eb
mb

hEzi ¼ −
U2

b0

λb0

∂
∂z λb −

r2wU2
b2

λb0

∂3λb
∂z3 : ð2Þ

Here, eb and mb are the charge and rest mass of a beam
particle, and λb0 ¼ const is a measure of the characteristic
line density of beam particles, e.g., its average value.
Moreover, the constants U2

b0 and U2
b2 have dimensions

of speed-squared, and are defined by

U2
b0 ¼

λb0g0e2b
mb

; U2
b2 ¼

λb0g2e2b
mb

; ð3Þ

where g0 and g2 are the geometric factors defined by [14]

g0 ¼ 2

Z
rw

0

dr
r

!
2π

Z
r

0
drr

nb
λb

"
2

; ð4Þ

g2 ¼
2

r2w

Z
rw

0

dr
r
2π

!Z
r

0
drr

nb
λb

"

×
Z

r

0
drr

Z
rw

r

dr
r

!
2π

Z
r

0
drr

nb
λb

"
: ð5Þ
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In obtaining Eqs. (1)–(5), a perfectly conducting cylindrical
wall with Ezðr ¼ rw; z; tÞ ¼ 0 has been assumed.
For the purposes of illustration, we consider the class of

axisymmetric density profiles nbðr; z; tÞ of the form

nb ¼

(
λb
πr2b

fð rrbÞ; 0 ≤ r < rb;

0; rb < r ≤ rw:
ð6Þ

Here, λb ¼
R
dpzFbðz; pz; tÞ ¼ 2π

R rw
0 drrnbðr; z; tÞ is the

line density, rb is the beam edge radius, assumed inde-
pendent of λb, and fðr=rbÞ is the profile shape function
with normalization

R
1
0 dxxfðxÞ ¼ 1=2. As an example, for

fðr=rbÞ ¼ ðnþ 1Þð1 − r2=r2bÞn, n ¼ 0; 1; 2;…, over the
interval 0 ≤ r < rb, it can be shown that [14]

g0 ¼ ln
!
r2w
r2b

"
þ
Xnþ1

m¼1

nþ 1

mðmþ nþ 1Þ
; ð7Þ

g2 ¼
1

2

#
1 −

1

ðnþ 2Þ
r2b
r2w

!
1þ ln

r2w
rb2

"

−
Xnþ1

m¼1

1

mðmþ nþ 2Þ
r2b
r2w

$
: ð8Þ

From Eqs. (6)–(8), we note that n ¼ 0 corresponds to a
step-function density profile; n ¼ 1 corresponds to a para-
bolic density profile; n ≥ 2 corresponds to an even more
peaked density profile; and that the precise values of g0
and g2 depend on the profile shape [14]. Finally, for the
choice of shape function fðr=rbÞ ¼ ðnþ 1Þð1 − r2=r2bÞn,
n ¼ 0; 1; 2;…, it is readily shown that the mean-square
beam radius is R2

b ¼ λ−1b 2π
R rw
0 drrr2nb ¼ ðnþ 2Þ−1r2b, so

that for fixed value of rms radius Rb, the edge radius rb
increases with increasing value of the density profile shape
factor n.

B. Conservation relations

Equations (1) and (2) possess several important conser-
vation laws, both local and global, corresponding to con-
servation of particle number, momentum, and energy per
unit length. For present purposes we express hEziðz; tÞ ¼
−ð∂=∂zÞhϕiðz; tÞ. Equations (1) and (2) then describe the
evolution of Fbðz; pz; tÞ and hϕiðz; tÞ according to

∂
∂t Fb þ vz

∂
∂z Fb − eb

∂hϕi
∂z

∂Fb

∂pz
¼ 0; ð9Þ

where vz ¼ pz=mb and

eb
∂
∂z hϕi ¼ mbU2

b0
∂
∂zNb þmbU2

b2r
2
w
∂3

∂z3Nb: ð10Þ

Here,

Nbðz; tÞ ¼
λbðz; tÞ
λb0

¼ λ−1b0

Z
dpzFbðz; pz; tÞ ð11Þ

is a dimensionless measure of the line density λbðz; tÞ, and
λb0 ¼ const is the characteristic (e.g., average) value of
line density.
It is convenient to introduce the macroscopic moments

NbVb ¼ Nbhvzi ¼ λ−1b0

Z
dpzvzFb; ð12Þ

Nbhvnz i ¼ λ−1b0

Z
dpzvnzFb; ð13Þ

where Nb ¼ λb=λb0 is defined in Eq. (11), and Vbðz; tÞ ¼
ð
R
dpzvzFbÞ=ð

R
dpzFbÞ is the average axial flow velocity

in the beam frame. Note that the effective “pressure”
Pbðz; tÞ and “heat flow” Qbðz; tÞ are defined (relative to
the average flow velocity Vb) by

Pbðz; tÞ ¼ λb0Nbmbhðvz − VbÞ2i

¼ mb

Z
dpzðvz − VbÞ2Fb; ð14Þ

and

Qbðz; tÞ ¼ λb0Nbmbhðvz − VbÞ3i

¼ mb

Z
dpzðvz − VbÞ3Fb; ð15Þ

where Vbðz; tÞ is the average flow velocity defined
in Eq. (12).
We now make use of Eqs. (9) and (10) to derive the local

and global conservation laws corresponding to the con-
servation of particle number, momentum, and energy per
unit length of the beam. The subsequent analysis applies to
the two classes of beam systems: (i) a very long, finite-
length charge bunch (Lb ≫ rw) with Nbðz → %∞; tÞ ¼ 0;
and (ii) a circulating beam in a large-aspect-ratio (R0 ≫ rw)
ring with periodic boundary condition Nbðzþ 2πR0; tÞ ¼
Nbðz; tÞ as the beam circulates around the ring with major
radius R0. (Here, z can be viewed as the arc length around
the perimeter of the ring with large radius R0.)

1. Number conservation

From Eqs. (9), (11), and (12), operating on Eq. (9) with
λ−1b0

R
dpz & & &, and integrating by parts with respect to pz,

we obtain

∂
∂t Nb þ

∂
∂z ðNbVbÞ ¼ 0; ð16Þ

where Nbðz; tÞ ¼ λbðz; tÞ=λb0 is the normalized line den-
sity, and Vbðz; tÞ is the axial flow velocity [Eqs. (11)
and (12)]. Equation (16) is a statement of local number
conservation, i.e., the time rate of change of the local
density, ∂Nb=∂t, is equal to minus the derivative of the
local flux of particles, −ð∂=∂zÞðNbVbÞ. If we integrate
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Eq. (16) over z, applying the boundary conditions described
earlier in this section, we obtain

∂
∂t

Z
dzNb ¼ 0; ð17Þ

which corresponds to the global conservation of the
number of beam particles.

2. Momentum conservation

We now operate on Eq. (9) with λ−1b0
R
dpzpz & & &, where

pz ¼ mbvz, and make use of Eqs. (12) and (13). This gives

∂
∂t NbmbVb þ

∂
∂zNbmbhvzvziþ ebNb

∂
∂z hϕi ¼ 0; ð18Þ

where −ð∂=∂zÞhϕi is defined in Eq. (10), and we have
integrated by parts with respect to pz to obtain Eq. (18)
from Eq. (9). Equation (18) can be expressed in an alternate
form by making use of Eq. (10) to eliminate ebð∂=∂zÞhϕi
and combine Eqs. (12)–(14) to express

Nbmbhvzvzi ¼ NbmbVbVb þ λ−1b0Pb; ð19Þ

where Vbðz; tÞ is the average flow velocity, and Pbðz; tÞ is
the effective pressure of the beam particles. Substituting
Eqs. (10) and (19) into Eq. (18), we obtain

∂
∂t NbmbVb þ

∂
∂z fNbmbVbVb þ λ−1b0Pbg

þ Nbmb

%
U2

b0
∂Nb

∂z þ U2
b2r

2
w
∂3Nb

∂z3
&

¼ ∂
∂t NbmbVb þ

∂
∂z

%
NmbVbVb þ λ−1b0Pb þ

1

2
mbU2

b0N
2
b

&

þ ∂
∂z

%
mbU2

b2r
2
w

#
Nb

∂2Nb

∂z2 −
1

2

!∂Nb

∂z
"

2
$&

¼ 0: ð20Þ

Note that Eq. (20) expresses the local force balance
equation in the form of a local conservation relation for
the momentum density of a beam fluid element. Moreover,
integrating Eq. (20) over z and applying the boundary
conditions described earlier in Sec. II gives

∂
∂t

Z
dzNbmbVb ¼ 0; ð21Þ

which corresponds to global momentum conservation.

3. Energy conservation

We now operate on Eq. (9) with λ−1b0
R
dpz

1
2mbv2z & & & and

make use of Eqs. (11)–(13) and pz ¼ mbvz. Integrating by
parts with respect to pz, we readily obtain

∂
∂z

!
1

2
Nbmbhv2zi

"
þ ∂
∂z

!
1

2
Nbmbhv3zi

"
þ eb

∂hϕi
∂z NbVb

¼ 0: ð22Þ

From Eqs. (10) and (16), some straightforward algebraic
manipulation gives

eb
∂hϕi
∂z NbVb ¼

∂
∂z

#
1

2
mbU2

b0N
2
b −

1

2
mbU2

b2r
2
w

!∂Nb

∂z
"

2
$

þ ∂
∂z

%
mbU2

b0ðNbNbVbÞ þmbU2
b2r

2
w

×
#
NbVb

∂2Nb

∂z2 þ ∂Nb

∂z
∂Nb

∂t
$&

: ð23Þ

Substituting Eq. (23) into Eq. (22) and rearranging terms,
we obtain

∂
∂t

%
1

2
Nbmbhv2ziþ

1

2
mbU2

b0N
2
b −

1

2
mbU2

b2r
2
w

!∂Nb

∂z
"

2
&

þ ∂
∂z

%
1

2
Nbmbhv3ziþmbU2

b0N
2
bVb þmbU2

b2r
2
w

×
#
NbVb

∂2Nb

∂z2 þ ∂Nb

∂z
∂Nb

∂t
$&

¼ 0; ð24Þ

which corresponds to local conservation of energy. Global
energy conservation follows upon integrating Eq. (24) over
z, which gives

∂
∂t
Z

dz
%
1

2
Nbmbhv2ziþ

1

2
mbU2

b0N
2
b−

1

2
mbU2

b2r
2
w

!∂Nb

∂z
"

2
&

¼0: ð25Þ

Note that Eq. (25) describes the balance in energy exchange
between particle kinetic energy and electrostatic field
energy. Moreover, the final two terms inside curly brackets
in Eq. (25) correspond to electrostatic field energy, and
the term inside the curly brackets proportional to U2

b0 is
positive, whereas the term proportional toU2

b2 is manifestly
negative. Because of the negative sign of the third term in
Eq. (25), note that any increase in ð∂Nb=∂zÞ2 averaged
over z must compensated by a corresponding increase in
the first two terms in Eq. (25).
To summarize, the local conservation laws in Eqs. (16),

(18), and (24), and the global conservation laws in Eqs. (17),
(21), and (25), provide powerful nonlinear constrains on
the evolution of the normalized line density Nb, momentum
density NbmbVb, and kinetic energy density Nbmbhv2zi=
2 ¼ NbmbV2

b=2þ λ−1b0Pb=2. Furthermore, these conserva-
tion constraints are exact consequences of the 1D nonlinear
Vlasov equation (9) for Fbðz; pz; tÞ, where ebð∂=∂zÞhϕi
ðz; tÞ is defined in Eq. (10), and U2

b0 and U2
b2 are expressed

in terms of the geometric factors g0 and g2 in Eq. (3).
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Finally, the energy balance equation (22), the momentum
balance equation (18), and the continuity equation (16) can
be combined to give a dynamical equation for the evolution
of the effective pressure Pbðz; tÞ of the beam particles. We
make use of Nbmbhv2zi ¼ NbmbV2

b þ λ−1b0Pb, to express

Nbmbhv3zi ¼ Nbmbhðvz − Vb þ VbÞ3i
¼ NbmbV3

b þ 3NbmbVbhðvz − VbÞ2i
þ Nbmbhðvz − VbÞ3i

¼ NbmbV3
b þ 3NbVbλ−1b0Pb þ λ−1b0Qb; ð26Þ

where Qb is the effective heat flow defined in Eq. (15).
Without presenting algebraic details, some straightforward
manipulation of Eq. (22) that makes use of Eqs. (16)
and (18) then gives

! ∂
∂tþ Vb

∂
∂z

"
Pb þ 3Pb

∂Vb

∂z þ ∂
∂zQb ¼ 0: ð27Þ

To summarize, Eqs. (16), (20), and (27) describe the self-
consistent nonlinear evolution of Nbðz; tÞ, Vbðz; tÞ and
Pbðz; tÞ. In the special case where the heat flow contribu-
tion ð∂=∂zÞQb is negligibly small in Eq. (27), the pressure
Pbðz; tÞ evolves approximately according to

! ∂
∂tþ Vb

∂
∂z

"
Pb þ 3Pb

∂Vb

∂z ¼ 0: ð28Þ

The continuity equation (16) can be expressed as

! ∂
∂tþ Vb

∂
∂z

"
Nb þ Nb

∂Vb

∂z ¼ 0: ð29Þ

Combining Eqs. (27) and (28), we obtain

! ∂
∂tþ Vb

∂
∂z

"!
Pb

N3
b

"
¼ 0; ð30Þ

which can be integrated to give the triple-adiabatic pressure
relation ðPb=N3

bÞ ¼ const. Therefore, for negligibly small
heat flow in Eq. (27), the macroscopic fluid model obtained
by taking moments of the 1D Vlasov equation (9) closes,
and the nonlinear evolution of Nb, Vb and Pb is described
by Eqs. (16), (20), and (30).
In Sec. III, we discuss a particular choice of distribution

function Fbðz; pz; tÞ, corresponding to the so-called water-
bag distribution, for which the heat flow Qbðz; tÞ is exactly
zero during the nonlinear evolution of the system. In this
case, the closure is exact, and the nonlinear evolution of the
system is fully described by Eqs. (16), (20), and (30).

III. COHERENT NONLINEAR STRUCTURES
OBTAINED FROM THE KINETIC

WATERBAG MODEL

The 1D kinetic g-factor model based on Eqs. (1) and (2)
can be used to determine the nonlinear evolution of the
beam distribution function Fbðz; pz; tÞ for a broad range of
system parameters and initial distribution functions. In this
section, we examine Eqs. (1) and (2) for the class of exact
solutions for Fbðz; pz; tÞ corresponding to the so-called
waterbag distribution in which Fbðz; pz; tÞ has uniform
density in phase space (Sec. III A). The subclass of
coherent nonlinear traveling-wave and traveling-pulse
solutions with undistorted waveform are then examined
(Sec. III B) for disturbances traveling in the longitudinal
direction with constant normalized velocity M ¼ const.

A. Kinetic Waterbag model

Equations (1) and (2), or equivalently, Eqs. (9) and (10)
constitute the starting point in the present 1D kinetic
description of the longitudinal nonlinear dynamics of a long
coasting beam. The detailed wave excitations associated
with Eqs. (9) and (10) of course depend on the form of
the distribution function Fbðz; pz; tÞ. For small-amplitude
perturbations, Eqs. (1) and (2) support solutions correspond-
ing to sound-wave-like disturbances with signal speed
depending on Ub0 and the momentum spread of Fb, and
cubic dispersive modifications depending on Ub2 [14].
In this section, we specialize to the class of exact

nonlinear solutions for Fbðz; pz; tÞ to Eq. (1) corresponding
to the waterbag distribution [15–19]

Fbðz;pz; tÞ ¼
%
A¼ const; mV−

b ðz; tÞ<pz <mbV
þ
b ðz; tÞ;

0; otherwise;

ð31Þ

for −∞ < z < ∞ (long coasting beam in linear geometry)
or 0 < z < 2πR0 (large-aspect-ratio ring with major radius
R0). In Eq. (31), the distribution function Fb ¼ A remains
constant within the boundary curves mbV−

b and mbV
þ
b , and

zero outside. The boundary curves, mbV−
b ðz; tÞ and

mbV
þ
b ðz; tÞ, are assumed to be single-valued, and of course

the boundary curves distort nonlinearly as the system
evolves according to Eqs. (1) and (2) [or equivalently,
Eqs. (9) and (10)]. We integrate across the two boundary
curves in Eq. (31) by operating on Eq. (1) with

lim
ϵ→0þ

Z
mbV−

b ð1þϵÞ

mbV−
b ð1−ϵÞ

dpzpz & & & ; and

lim
ϵ→0þ

Z
mbV

þ
b ð1þϵÞ

mbV
þ
b ð1−ϵÞ

dpzpz & & & ; ð32Þ

where pz ¼ mbvz. Integrating by parts with respect to pz,
and taking the limit ϵ → 0þ, we obtain for the nonlinear
evolution of the boundary curves V−

b ðz; tÞ and Vþ
b ðz; tÞ
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∂
∂t V

−
b þ V−

b
∂
∂z V

−
b ¼ eb

mb
hEzi; ð33Þ

∂
∂t V

þ
b þ Vþ

b
∂
∂z V

þ
b ¼ eb

mb
hEzi; ð34Þ

where hEzi is defined in Eq. (2).
To summarize, for each value of z, the waterbag

distribution in Eq. (31) has a flat-top distribution in pz
(also called a “top-hat” distribution) between the boundary
curves pz ¼ mbV−

b ðz; tÞ and pz ¼ mbV
þ
b ðz; tÞ. While the

momentum derivative proportional to ∂Fb=∂pz becomes
singular at the boundaries, pz ¼ mbV−

b ðz; tÞ and pz ¼
mbV

þ
b ðz; tÞ, for the choice of waterbag distribution in

Eq. (31), it is precisely this delta-function singularity that
permits the integration in Eq. (32) over the Vlasov
equation (1) to be carried out exactly, leading to the
dynamical equations (33) and (34) for the boundary curves
mbV−

b ðz; tÞ and mbV
þ
b ðz; tÞ. Indeed, for the choice of

waterbag distribution in Eq. (31), the nonlinear Vlasov
equation (1) is exactly equivalent to the two dynamical
equations (33) and (34) for V−

b ðz; tÞ and Vþ
b ðz; tÞ.

Furthermore, it can be shown exactly that if Fbðz; pz; tÞ
has the form of the waterbag distribution in Eq. (31) at
t ¼ 0, then the flat-top waterbag form is maintained at all
subsequent times t by the Vlasov equation (1), where the
boundary curves mbV−

b ðz; tÞ and mbV
þ
b ðz; tÞ evolve non-

linearly according to Eqs. (33) and (34), and hEzi is
determined from Eq. (2).
The positive features of the choice of waterbag distri-

bution function in Eq. (31) in simplifying the analysis of
the nonlinear Vlasov-Poisson equations (1) and (2) will
become apparent in the remainder of Sec. III. In this regard,
it is important to recognize that beam distribution functions
typically tend to be smooth, differentiable functions with
respect to z and pz, rather than have singular derivatives, as
does the distribution in Eq. (31) with respect to pz. For this
reason, in Sec. IV we describe a more general formulation
of nonlinear, coherent structures and traveling-wave sol-
utions to the Vlasov-Poisson equations (1) and (2) that
accommodates smooth distribution functions Fb [see
Eqs. (76) and (89) in Sec. IV]. It is certainly the case that
the detailed shape of the distribution function in phase
space ðz; pzÞ can have an important influence on beam
stability properties and collective excitations [1,14,15].
Nonetheless, what is also noteworthy is the fact that the
waterbag model does a very good job in describing the
nonlinear evolution of the beam line density, beam flow
velocity, and beam particle pressure in circumstances where
the heat lowQb can be treated as negligibly small [compare
Eqs. (27) and (41), and see related discussions].
For the choice of waterbag distribution in Eq. (31), we

calculate several macroscopic fluid quantities [see also
Eqs. (11)–(15)] corresponding to line density

λb ¼
Z

dpzFb ¼ AmbðVþ
b − V−

b Þ; ð35Þ

axial flow velocity

Vb ¼ λ−1b

Z
dpzvzFb ¼

1

2
ðVþ

b þ V−
b Þ; ð36Þ

beam particle pressure

Pb ¼ mb

Z
dpzðvz − VbÞ2Fb ¼

1

12
m2

bAðVþ
b − V−

b Þ3

¼ 1

12mbA2
λ3b; ð37Þ

and beam particle heat flow

Qb ¼ mb

Z
dpzðvz − VbÞ3Fb ¼ 0: ð38Þ

Note that the heat flow is exactly Qb ¼ 0 for the choice of
waterbag distribution in Eq. (31).
Making use of the dynamical equations for V−

b ðz; tÞ and
Vþ
b ðz; tÞ in Eqs. (33) and (34), where hEzi is defined in

Eq. (2), some straightforward algebra shows that λbðz; tÞ,
Vbðz; tÞ, and Pbðz; tÞ evolve according to [15]

∂
∂t λb þ

∂
∂z ðλbVbÞ ¼ 0; ð39Þ

λb

! ∂
∂t Vb þ Vb

∂
∂z Vb

"
þ 1

m
∂Pb

∂z

¼ −λb
!
U2

b0

λb0

∂
∂z λb þ

U2
b2r

2
w

λb0

∂3λb
∂z3

"
; ð40Þ

! ∂
∂tþ Vb

∂
∂z

"!
Pb

λ3b

"
¼ 0: ð41Þ

Note from Eqs. (37) and (41) that Pbðz; tÞ can be
expressed as

Pbðz; tÞ ¼
Pb0

λ3b0
λ3bðz; tÞ; ð42Þ

where Pb0 ¼ const and λb0 ¼ const represent the character-
istic (e.g., average) values of the pressure and line density,
respectively, of the beam particles, and Pb0=λ3b0 ¼
1=12mbA2 ¼ const, where A is the constant phase-space
density in Eq. (31). By virtue of the fact that the heat flow
Qbðz; tÞ ¼ 0 exactly for the choice of distribution function
Fbðz; pz; tÞ in Eq. (31), it is not surprising that Eqs. (39)–
(42) are identical to the macroscopic fluid equations (16),
(20) and (30), obtained in Sec. II B, where Eq. (30) has
made the assumption of negligible heat flow in Eq. (27).
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Note here that Nbðz; tÞ and λbðz; tÞ are related by
Nbðz; tÞ ¼ λbðz; tÞ=λb0.
For the present purposes, we introduce the effective

thermal speed UbT associated with the waterbag distribu-
tion in Eq. (31) defined by

U2
bT ¼ 3Pb0

λb0mb
; ð43Þ

and the normalized (dimensionless) fluid quantities ηðz; tÞ
and Uðz; tÞ defined by

η ¼ Nb − 1 ¼ λb − λb0
λb0

; U ¼ Vb

ðU2
b0 þ U2

bTÞ1=2
: ð44Þ

In Eq. (44), ðU2
b0 þU2

bTÞ1=2 is the effective sound speed
associated with the geometric factor g0 and the thermal
speed UbT . Furthermore, we introduce the scaled (dimen-
sionless) time variable T and spatial variable Z defined by

T ¼
!
U2

b0 þ U2
bT

U2
b2

"
Ub2t
rw

; Z ¼
!
U2

b0 þU2
bT

U2
b2

"
1=2 z

rw
:

ð45Þ

Making use of the macroscopic equations (39), (40),
and (42), and the definitions in Eqs. (43)–(45), it is
straightforward to show that the continuity equation (39)
and force balance equation (40) reduce in dimensionless
variables exactly to

∂
∂T ηþ ∂

∂Z ðU þ ηUÞ ¼ 0; ð46Þ

∂
∂T U þ ∂

∂Z
!
1

2
U2 þ ηþ 1

2

U2
bT

U2
b0 þU2

bT
η2 þ ∂2

∂Z2
η
"

¼ 0:

ð47Þ

The fluid description in scaled variables provided by
Eqs. (46) and (47) is exactly equivalent to the kinetic
description provided by Eqs. (1) and (2) for the choice of
waterbag distribution in Eq. (31).

B. Coherent nonlinear traveling-wave
and traveling-pulse solutions

Within the context of the present 1D model, Eqs. (46)
and (47) can be used to investigate detailed properties of
collective excitations over a wide range of system param-
eters. For example, in the weakly nonlinear regime, for
small-amplitude disturbances moving near the sound
speed ðU2

b0 þU2
bTÞ1=2, Eqs. (46) and (47) can be shown

to reduce to the Korteweg-deVries equation [15], which
exhibits the generation and interaction of coherent struc-
tures (solitons) for a wide range of initial density pertur-
bations ηðZ; T ¼ 0Þ ≠ 0 [22]. While the analysis in

Ref. [15] has several interesting features, the results are
limited to the weakly nonlinear regime where jηj ≪ 1
and jUj ≪ 1.
In this paper, we examine Eqs. (46) and (47) in circum-

stances where there are no a priori restrictions to small
amplitude, i.e., η ¼ ðλb − λb0Þ=λb0 is allowed to be of order
unity, as long as λb=λb0 > 0, which corresponds to η > −1.
Furthermore, we look for solutions to Eqs. (46) and (47)
that depend on Z and T exclusively through the variables
Z0 ¼ Z −MT and T 0 ¼ T, where M ¼ const is the nor-
malized pulse speed measured in units of the sound speed
ðU2

b0 þ U2
bTÞ1=2. Making use of ∂=∂Z ¼ ∂=∂Z0 and

∂=∂T ¼ ∂=∂T 0 −M∂=∂Z0 and looking for time-stationary
solutions (∂=∂T 0 ¼ 0) in the frame of reference moving
with normalized velocityM ¼ const, Eqs. (46) and (47) for
ηðZ0Þ and UðZ0Þ become

∂
∂Z0 ½ð−M þUÞηþU( ¼ 0; ð48Þ

∂
∂Z0

#
1

2
U2 −MU þ ηþ 1

2

U2
bT

U2
b0 þ U2

bT
η2 þ ∂2η

∂Z02

$
¼ 0:

ð49Þ

Integrating with respect to Z0, Eqs. (48) and (49) give

−Mηþ ð1þ ηÞU ¼ const; ð50Þ

1

2
U2 −MU þ ηþ 1

2

U2
bT

U2
b0 þU2

bT
η2 þ ∂2η

∂Z02 ¼ const;

ð51Þ

which relate ηðZ0Þ and UðZ0Þ, where Z0 ¼ Z −MT.
The solutions for ηðZ0Þ and UðZ0Þ to Eqs. (50) and (51)

depend on the values of the constants in Eqs. (50) and (51).
For the present purposes we consider boundary conditions
such that U ¼ 0 when η ¼ 0, and η00 ¼ 0 when U ¼ 0 and
η ¼ 0. In this case the values of the constants in Eqs. (50)
and (51) are zero, which gives

U ¼ M
η

1þ η
: ð52Þ

∂2η
∂Z02 þ

%
1

2
ðU −MÞ2 − 1

2
M2 þ ηþ 1

2

U2
bT

U2
b0 þ U2

bT
η2
&

¼ 0:

ð53Þ

Substituting Eq. (52) into Eq. (53), we obtain

∂2η
∂Z02 þ

%
1

2
M2

#
1

ð1þ ηÞ2
− 1

$
þ ηþ 1

2

U2
bT

U2
b0 þ U2

bT
η2
&

¼ 0;

ð54Þ
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which is a second-order nonlinear differential equation for
the perturbation in line density ηðZ0Þ ¼ ½λbðZ0Þ − λb0(=λb0,
where Z0 ¼ Z −MT. Some straightforward algebraic
manipulation shows that Eq. (54) can be expressed in
the equivalent form

∂2η
∂Z02 ¼ −

∂
∂ηVðηÞ; ð55Þ

where VðηÞ is the effective potential defined by

VðηÞ ¼ 1

2

η2

1þ η
fϵTη2 þ ð1þ ϵTÞηþ ð1 −M2Þg; ð56Þ

and the dimensionless parameter ϵT, defined by

ϵT ¼ 1

3

!
U2

bT

U2
b0 þU2

bT

"
; ð57Þ

is a measure of the longitudinal thermal speed of the beam
particles.
Equations (55) and (56) can be used to determine the

solutions for ηðZ0Þ for a broad range of dimensionless
parameters ϵT andM. Furthermore, Eqs. (55) and (56) have
been obtained from Eqs. (50) and (51) for the special class
of boundary conditions whereU ¼ 0 and η00 ¼ 0 when η ¼
0 [see discussion prior to Eqs. (52) and (53)]. Indeed, we
will show below that Eqs. (55) and (56) support two classes
of solutions consistent with these boundary conditions.
These correspond to: (i) localized (pulselike) soliton
solutions when M2 > 1, satisfying ηðZ0 ¼ %∞Þ ¼ 0,
UðZ0 ¼ %∞Þ ¼ 0, and ½∂2η=∂Z02(Z0¼%∞ ¼ 0; and (ii) non-
linear periodic traveling-wave solutions when M2 < 1,
with ηðZ0Þ¼ηðZ0þLÞ, and ηðZ0¼0Þ¼0, UðZ0 ¼ 0Þ ¼ 0,
and ½∂2η=∂Z02(Z0¼0 ¼ 0.
In general, the effective potential VðηÞ in Eq. (57) can be

expressed as

VðηÞ ¼ 1

2

η2

1þ η
ϵT ½ðη − ηþÞðη − η−Þ(; ð58Þ

where

η% ¼ 1

2

%
−
!
1þ 1

ϵT

"
%
#!

1þ 1

ϵT

"
2

þ 4

ϵT
ðM2 − 1Þ1=2

$&
:

ð59Þ

In Eqs. (58) and (59), ϵT is restricted to the range
0 < ϵT < 1=3, and M2 can satisfy M2 > 1 or M2 < 1.
Examination of Eq. (59) shows that

η− < −1; ηþ > −1; ð60Þ

for all allowed values of ϵT and M2. Furthermore, it is also
clear from Eq. (59) that

%
ηþ > 0; for M2 > 1;
ηþ < 0; for M2 < 1:

ð61Þ

Recall that η ¼ ðλb − λb0Þ=λb0. Then λb=λb0 ≥ 0 implies
that η ≥ −1 is the region of interest physically for solutions
to Eq. (55).
Note that Eq. (55) has the form of a dynamical equation

of motion, with η playing the role of displacement, Z0

playing the role of time, and VðηÞ playing the role of
an effective potential, or so-called pseudopotential.
Multiplying Eq. (55) by ∂η=∂Z0 and integrating, we obtain

1

2

! ∂η
∂Z0

"
2

þ VðηÞ ¼ E ¼ const ð62Þ

Equation (62) plays the role of an effective energy con-
servation constraint, and can be integrated to determine
ηðZ0Þ for the pseudopotential VðηÞ defined in Eq. (58).
We now examine solutions to Eq. (62) for the two cases
identified earlier: M2 < 1 and −1 < ηþ < 0; and M2 > 1
and ηþ > 0.

1. Nonlinear traveling-wave solutions
(M2 < 1 and −1 < ηþ < 0)

Figure 1 shows a schematic plot of VðηÞ versus η for the
case where M2 < 1 and −1 < ηþ < 0. For the purposes of
illustration, the values of the specific parameters in Fig. 1
have been chosen to be M2 ¼ 0.09 and ϵT ¼ 4=15 in
plotting VðηÞ versus η. The corresponding values of ηþ,
ηm and VðηmÞ are ηþ ¼ −0.882, ηm ¼ −0.715, and
VðηmÞ ¼ 0.126. For different choices of values for ϵT
and M2 < 1, the shape of the VðηÞ versus η curve is
qualitatively similar to that shown in Fig. 1. Referring to
Fig. 1, when the effective energy E (the red horizontal line
in Fig. 1 lies in the interval 0 < E < VðηmÞ, Eq. (66)
supports nonlinear periodic solutions for ηðZ0Þ that oscillate
as a function of Z0. Here VðηmÞ is the local maximum
of VðηÞ, which occurs at η ¼ ηm in Fig. 1. Depending
on system parameters, these nonlinear traveling-wave

η +

mV

mη

E

FIG. 1. Illustrative plot of VðηÞ versus η obtained from Eq. (56)
forM2 ¼ 0.09 and ϵT ¼ 4=15. Here, ηþ ¼ −0.882, ηm ¼ −0.715
and VðηmÞ ¼ 0.126.
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η +

mV

mη

(a) (b)0.005E =

Z ′

(
)

Z
η

′

(c)0.02E =

Z ′

(
)

Z
η

′

FIG. 2. For M2 ¼ 0.36, ϵT ¼ 0, ηþ ¼ −0.64, ηm ¼ −0.476 and VðηmÞ ¼ 0.0355, plots are shown for (a) VðηÞ versus η; (b) ηðZ0Þ
versus Z0 for η0ð0Þ ¼ 0.1 and E ¼ ð1=2Þ½η0ð0Þ(2 ¼ 0.005; and (c) ηðZ0Þ versus Z0 for η0ð0Þ ¼ 0.2 and E ¼ ð1=2Þ½η0ð0Þ(2 ¼ 0.02.

η +

mV

mη

(a) (b)0.005E =

Z ′

(
)

Z
η

′

(c)0.0110707E =

Z ′

(
)

Z
η

′

FIG. 3. For M2 ¼ 0.36, ϵT ¼ 0.8, ηþ ¼ −0.442, ηm ¼ −0.306 and VðηmÞ ¼ 0.0111, plots are shown for (a) VðηÞ versus η; (b) ηðZ0Þ
versus Z0 for η0ð0Þ ¼ 0.1 and E ¼ ð1=2Þ½η0ð0Þ(2 ¼ 0.005; and (c) ηðZ0Þ versus Z0 for η0ð0Þ ¼ 0.1488 and
E ¼ ð1=2Þ½η0ð0Þ(2 ¼ 0.0110707.
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η +

mV

mη

(a)
(b)0.005E =

Z ′

(
)

Z
η

′

(c)0.054483E =

Z ′

(
)

Z
η

′

FIG. 5. For M2 ¼ 0.09, ϵT ¼ 0.8, ηþ ¼ −0.767, ηm ¼ −0.557 and VðηmÞ ¼ 0.0545, plots are shown for (a) VðηÞ versus η; (b) ηðZ0Þ
versus Z0 for η0ð0Þ ¼ 0.1 and E ¼ ð1=2Þ½η0ð0Þ(2 ¼ 0.005; and (c) ηðZ0Þ versus Z0 for η0ð0Þ ¼ 0.3301 and
E ¼ ð1=2Þ½η0ð0Þ(2 ¼ 0.054483. Shown in (d) is a self-consistent phase-space plot for the waterbag distribution [Eq. (31)] for the
choice of system parameters in Fig. 5(c).

η +

mV

mη

(a) (b)0.005E =

Z ′

(
)

Z
η

′

(c)0.125E =

Z ′

(
)

Z
η

′

FIG. 4. ForM2 ¼ 0.09, ϵT ¼ 0, ηþ ¼ −0.91, ηm ¼ −0.764 and VðηmÞ ¼ 0.181, plots are shown for (a) VðηÞ versus η; (b) ηðZ0Þ versus
Z0 for η0ð0Þ ¼ 0.1 and E ¼ ð1=2Þ½η0ð0Þ(2 ¼ 0.005; and (c) ηðZ0Þ versus Z0 for η0ð0Þ ¼ 0.5 and E ¼ ð1=2Þ½η0ð0Þ(2 ¼ 0.125.
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solutions can have large amplitude, representing a signifi-
cant modulation in beam line density.
Referring to the discussion preceding Eq. (58), the

boundary conditions used to derive Eqs. (55) and (56)
from Eqs. (50) and (51) correspond to

ηð0Þ ¼ 0 ¼ η00ð0Þ ð63Þ

for the class of nonlinear periodic wave solutions obtained
from Eq. (62) when M2 < 1 and −1 < ηþ < 0. Further-
more, from Fig. 1 and Eq. (62), we note that Vðη ¼ 0Þ ¼ 0
and the effective energy E can be expressed as

E ¼ 1

2
½η0ð0Þ(2: ð64Þ

Typical numerical solutions for ηðZ0Þ, obtained by inte-
grating Eq. (62) with VðηÞ specified by Eq. (58), are
illustrated in Figs. 2–5 for several values ofM2 < 1 and ϵT ,
and different values of effective energy level E. These
correspond to: M2 ¼ 0.36, ϵT ¼ 0, E ¼ 0.005, and E ¼
0.0110707 (Fig. 2); M2 ¼ 0.36, ϵT ¼ 4=15, E ¼ 0.005,
and E ¼ 0.020 (Fig. 3); M2 ¼ 0.09, ϵT ¼ 0, E ¼ 0.005,
and E ¼ 0.054483 (Fig. 4); M2 ¼ 0.09, ϵT ¼ 4=15,
E ¼ 0.005, and E ¼ 0.125 (Fig. 5). Close examination
of Figs. 2–5 shows several interesting trends. First, for
smaller values of M2, the potential wells are deeper and
broader (compare Figs. 2a and 4a, and Figs. 3a and 5a); and
for smaller values of ϵT , the potential wells are deeper
(compare Figs. 2a and 3a, and Figs. 4a and 5a).
Furthermore, the nonlinear wave amplitude tends to be
larger for smaller values of M2 (compare Figs. 2a and 3a,
and Figs. 4a and 5a), whereas the wavelength dependence
onM2 and ϵT tends to be relatively weak (compare Figs. 2,
3, 4, 5). In any case, for M2 < 1, it is clear from Figs. 1–5
that Eqs. (62) and (58) support a broad class of nonlinear
traveling-wave solutions for the theoretical model devel-
oped here, based on the 1D kinetic waterbag model for
intense beam propagation. Indeed, the modulation of the
beam line density is about%50% for the system parameters
in Figs. 4(c) and 5(c).

2. Nonlinear traveling-pulse (soliton)
solutions (M2 > 1 and ηþ > 0)

We now consider Eqs. (62) and Eq. (58) [or equivalently,
Eq. (56)] in circumstances where M2 > 1 and ηþ > 0. In
this case, the effective potential has the qualitative shape
illustrated in Fig. 6, which has been plotted for the choice
of parameters M2 ¼ 9 and ϵT ¼ 1=30. The physically
allowed, localized pulse solutions (soliton solutions) cor-
responds to the energy level

E ¼ 0; ð65Þ

which is the red horizontal line in Fig. 6, and boundary
conditions

ηðZ0 ¼ %∞Þ ¼ 0 ¼ η00ðZ0 ¼ %∞Þ ð66Þ

discussed prior to Eq. (58). Referring to Fig. 6, when
Eq. (62) is integrated forward from Z0 ¼ −∞ where η ¼ 0,
the perturbed line density, η increases monotonically
through positive values to a maximum amplitude ηþ (the
soliton amplitude) and then decreases monotonically to
η ¼ 0 when Z0 ¼ þ∞. The regime where M2 > 1 by a
sufficiently large amount corresponds to a strongly non-
linear regime where the density compression is large with
ηþ > 1. On the other hand, when M2 − 1 ¼ ϵ is small

0E =

η +

FIG. 6. Illustrative plot of VðηÞ versus η obtained from Eq. (56)
for M2 ¼ 9 and ϵT ¼ 1=50. Here, ηþ ¼ 6.908, and the energy
level E ¼ 0 corresponds to soliton solutions with maximum
amplitude ηþ ¼ 6.908.

η +

(a)

η +

(b)

Z ′

(
)

Z
η

′

FIG. 7. Plots of (a) VðηÞ versus η; and (b) ηðZ0Þ versus Z0,
obtained from Eqs. (56) and (62) for M2 ¼ 4, ϵT ¼ 0 and E ¼ 0,
corresponding to soliton amplitudes ηþ ¼ 3.0.
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with 0 < ϵ ≪ 1, the soliton amplitude is correspondingly
small. This will become apparent from the numerical
solutions to Eqs. (62) and (58) consistent with Eqs. (65)
and (66) presented later in this section in Figs. 7–10.
Typical numerical solutions to Eqs. (62) and (58), subject

to Eqs. (65) and (66), are illustrated in Figs. 7–10 for
several values of M2 > 1 and ϵT . These correspond to:
M2 ¼ 4 and ϵT ¼ 0 (Fig. 7); M2 ¼ 4 and ϵT ¼ 4=15
(Fig. 8); M2 ¼ 1.2 and ϵT ¼ 0 (Fig. 9); and M2 ¼ 1.2
and ϵT ¼ 4=15 (Fig. 10). Close examination of Figs. 7–10
shows that the soliton amplitude increases with increasing
M2 (compare Figs. 7 and 8 with Figs. 9 and 10), reaching a
highly nonlinear regime with ηþ ¼ 3.0 in Fig. 7 and ηþ ¼
1.735 in Fig. 8, where M2 ¼ 4. In contrast, the soliton
width trends show a relatively weak dependence on
longitudinal velocity spread, as measured by ϵT (compare
Fig. 8 with Fig. 7, and Fig. 10 with Fig. 9). It is clear
from Figs. 7–10 that the soliton solutions to Eqs. (62)
and (58) exhibit a strong nonlinear dependence onM2, and
can correspond to highly compressed line density for
sufficiently large M2.
In the special circumstances where M2 exceeds 1 by a

small amount, i.e., M2 ¼ 1þ Δ where 0 < Δ ≪ 1. it is
readily shown that Eq. (54) can be approximated for
small η by

∂2η
∂Z02 þ

%#
3

2
M2 þ 3

2
ϵT

$
η − ðM2 − 1Þ

&
η ¼ 0: ð67Þ

Equation (67) can be solved exactly for ηðZ0Þ ¼
λbðZ0Þ=λb0 − 1 to give

ηðZ0Þ ¼
!
M2 − 1

M2 þ ϵT

"
sech2

#
1

2
ðM2 − 1Þ1=2ðZ −MTÞ

$
:

ð68Þ

Note that the soliton amplitude in Eq. (68) is small for
M2 ¼ 1þ Δ with Δ ≪ 1. Also, the sech2f& & &g pulse shape
in Eq. (68) is similar to the soliton pulse shape obtained
from the Korleweg-deVries equation in the weakly non-
linear regime [15].
Finally, it should be noted that the oscillatory solutions

obtained from Eqs. (58) and (62) when M2 > 1 and the
energy level E in Fig. 6 is negative with Vmin < E < 0 are
not considered here. These solutions are unphysical
because they oscillate about a positive nonzero average
value of η̄ ¼ λ̄b=λb0 − 1 > 0, rather than oscillate about
η̄ ¼ λ̄b=λb0 − 1 ≈ 0, as occurs in Figs. 2–5 when M2 < 1.
In concluding Sec. III, it should be noted that once ηðZ0Þ

is determined from Eq. (62) for specified system param-
eters, then Eqs. (35), (36), and (52) can readily be used to
develop plots of the nonlinearly distorted phase-space
boundaries Vþ

b and V−
b , both for the case of nonlinear

traveling wave solutions (Figs. 1–5) and for nonlinear
traveling soliton solutions (Figs. 6–10). Normalizing Vþ

b ,
V−
b , and Vb to the effective sound speed Veff ¼ ðU2

b0 þ
U2

bTÞ1=2 according to Uþ
b ¼ Vþ

b =Veff , U−
b ¼ V−

b =Veff , and
U ¼ Vb=Veff , Eqs. (35), (36), and (52) give ηþ 1 ¼

η +

(a)

η +

(b)

Z ′

(
)

Z
η

′

FIG. 8. Plots of (a) VðηÞ versus η; and (b) ηðZ0Þ versus Z0,
obtained from Eqs. (56) and (62) for M2 ¼ 4, ϵT ¼ 4=15 and
E ¼ 0, corresponding to soliton amplitudes ηþ ¼ 1.735.

η +

(a)

η +

(b)

Z ′

(
)

Z
η

′

FIG. 9. Plots of (a) VðηÞ versus η; and (b) ηðZ0Þ versus Z0,
obtained from Eqs. (56) and (62) for M2 ¼ 1.2, ϵT ¼ 0 and
E ¼ 0, corresponding to soliton amplitudes ηþ ¼ 0.4.
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ðAmbVeff=λb0ÞðUþ
b −U−

b Þ, and U ¼ ðUþ
b þ U−

b Þ=2 ¼
Mη=ð1þ ηÞ. For example, for the choice of system
parameters and nonlinear traveling-wave solution for
ηðZ0Þ illustrated in Fig. 5(c), shown in Fig. 5(d) is the
corresponding self-consistent phase-space plot for the
waterbag distribution, which shows clearly how the boun-
dary curves Uþ

b ðZ0Þ and U−
b ðZ0Þ evolve nonlinearly as the

beam line density alternately compresses and decompresses
as shown in Fig. 5(c). By contrast, for the choice of system
parameters and compressive soliton solution for ηðZ0Þ
illustrated in Fig. 10(b), shown in Fig. 10(c) is the
corresponding phase-space plot for the waterbag distribu-
tion, which shows how the boundary curves Uþ

b ðZ0Þ and
U−

b ðZ0Þ evolve as the beam line density experiences a single
soliton compression with moderately large amplitude.

IV. COHERENT NONLINEAR STRUCTURES
OBTAINED FROM FULLY KINETIC

G-FACTOR MODEL

The kinetic waterbag model developed in Sec. III of this
paper has clearly demonstrated the rich variety of coherent
nonlinear structures supported by the 1D kinetic model
based on Eqs. (9) and (10) [or equivalently, Eqs. (1)
and (2)] for the specific choice of waterbag distribution
Fbðz; pz; tÞ in Eq. (31). In this section, we examine
solutions to Eqs. (9) and (10) for an even broader class
of distribution functions Fbðz; pz; tÞ, recognizing that
Eqs. (9) and (10) are Galilean invariant. That is, if we

transform variables to a frame of reference moving with
constant longitudinal velocity V0 ¼ const according to
z0 ¼ z − V0t, p0

z ¼ pz −mbV0, t0 ¼ t, then in the new
dynamical variables ðz0; p0

z; t0Þ, the equations for
Fbðz0; p0

z; t0Þ and hϕiðz0; t0Þ are identical in form to
Eqs. (9) and (10). Time-stationary solutions (∂=∂t0 ¼ 0)
in the new variables ðz0; p0

z; t0Þ then correspond to undis-
torted traveling-wave or traveling-pulse solutions moving
with constant velocity V0 ¼ const in the original variables
ðz; pz; tÞ. The present analysis of Eqs. (9) and (10) parallels
the original Bernstein-Greene-Kruskal (BGK) formulation
of BGK solutions to the 1D Vlasov-Poisson equa-
tions [25,26], except for the fact that Eq. (10), which
connects hϕiðz; tÞ to the line density λbðz; tÞ, has a very
different structure than the 1D Poisson equation.
Referring to Eqs. (9) and (10), we introduce the scaled

dimensionless variables (Z; Pz; T) defined by

Z ¼
!
U2

b0 þU2
bT

U2
b2

"1
2 z
rw

; T ¼
!
U2

b0 þ U2
bT

U2
b2

"
Ub2t
rw

;

Pz ¼
pz

mbðU2
b0 þ U2

bTÞ1=2
¼ vz

ðU2
b0 þ U2

bTÞ1=2
≡ Vz; ð69Þ

whereU2
b0 andU

2
b2 are defined in Eq. (3), andU

2
bT ¼ const

is the longitudinal velocity spread characteristic of the
distribution function Fb. We further introduce the dimen-
sionless distribution function F̂bðZ; Pz; TÞ defined by

η +

(a)

η +

(b)

Z ′

(
)

Z
η

′

FIG. 10. Plots of (a) VðηÞ versus η; and (b) ηðZ0Þ versus Z0, obtained from Eqs. (56) and (62) for M2 ¼ 1.2, ϵT ¼ 4=15 and E ¼ 0,
corresponding to soliton amplitudes ηþ ¼ 0.297. Shown in (c) is a self-consistent phase-space plot for the waterbag distribution
[Eq. (31)] for the choice of system parameters in Fig. 10(b).
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F̂b ¼ λ−1b0
Fb

mbðU2
b0 þ U2

bTÞ1=2
; ð70Þ

where λb0 ¼ const is the characteristic line density of the
beam particles, e.g., the average value. From Eqs. (69), (70)
and the definition of line density λb ¼

R
dpzFb, it follows

that the perturbation in line density η ¼ λb=λb0 − 1 can be
expressed as

ηðZ; TÞ ¼
Z

dPzF̂bðZ;Pz; TÞ − 1; ð71Þ

where the Pz integration covers the range−∞ < Pz < ∞ in
Eq. (71). Transforming variables according to Eqs. (69)
and (70), and making use of Eq. (71), it is readily shown
that Eqs. (9) and (10) can be expressed in the new variables
as

∂F̂b

∂T þ Vz
∂F̂b

∂Z −
∂ψ
∂Z

∂F̂b

∂Pz
¼ 0; ð72Þ

and

ψ ¼ ηþ ∂2η
∂Z2

; ð73Þ

where ψðZ; TÞ is the normalized (dimensionless) potential
defined by

ψ ¼ ehϕi
mbðU2

b0 þU2
bTÞ1=2

: ð74Þ

Equations (72) and (73), where η and
R
dPzF̂b are related

by Eq. (71), constitute coupled nonlinear equations describ-
ing the self-consistent evolution of the distribution function
F̂bðZ; Pz; TÞ, normalized potential ψðZ; TÞ, and normal-
ized perturbed line density ηðZ; TÞ. Equations (71)–(73) are
fully equivalent to the original dynamical equations (9)–
(11), and can be used to investigate 1D kinetic properties of
the nonlinear beam dynamics over a wide range of system
parameters.
Keeping in mind that Eqs. (72) and (73) are Galilean

invariant, if we transform Eqs. (72) and (73) from the
variables ðZ; Pz; TÞ to a frame moving with normalized
velocity M ¼ const. according to Z0 ¼ Z −MT,
V 0
z ¼ Vz −M, T 0 ¼ T, then Eqs. (72) and (73) have exactly

the same form in the new variables, with ðZ; Pz; TÞ
replaced by ðZ0; P0

z; T 0Þ, i.e.,

∂F̂b

∂T 0 þ V 0
z
∂F̂b

∂Z0 −
∂ψ
∂Z0

∂F̂b

∂P0
z
¼ 0; ð75Þ

and

ψ ¼ ηþ ∂2η
∂Z02 : ð76Þ

Here, P0
z ¼ V 0

z, and F̂bðZ0; P0
z; T 0Þ and ηðZ0; T 0Þ are

related by

ηðZ0; T 0Þ ¼
Z

dP0
zF̂bðZ0; P0

z; T 0Þ − 1: ð77Þ

Therefore, the traveling-pulse or traveling-wave solutions
that have a time-stationary profile shape in the primed
variables ðZ0; P0

z; T 0Þ are determined by setting ∂=∂T 0 ¼ 0
in Eqs. (75)–(77).
Setting ∂F̂b=∂T 0 ¼ 0 in Eq. (75) gives for F̂bðZ0; P0

zÞ

V 0
z
∂F̂b

∂Z0 −
∂ψ
∂Z0

∂F̂b

∂P0
z
¼ 0; ð78Þ

where ψðZ0Þ and ηðZ0Þ solve Eq. (76), and ηðZ0Þ is related
to F̂bðZ0; P0

zÞ by Eq. (77). We introduce the energy variable
W0 defined by

W0 ¼ 1

2
V 0
z
2 þ ψðZ0Þ: ð79Þ

Then the solution to Eq. (78) for F̂bðZ0; P0
zÞ can be

expressed exactly as

F̂bðZ0; V 0
zÞ ¼ F̂>

b ðW0ÞΘðV 0
zÞ þ F̂<

b ðW0ÞΘð−V 0
zÞ; ð80Þ

where P0
z ¼ V 0

z, and

ΘðV 0
zÞ ¼

%
1; for V 0

z > 0;
0; for V 0

z < 0:
ð81Þ

Note from Eq. (79) that

dVz
0 ¼ %dW0=½2ðW0 − ψÞ(1=2; ð82Þ

where þ corresponds to Vz
0 > 0, and − corresponds to

Vz
0 < 0. Substituting Eqs. (80) and (82) into Eq. (77)

gives

η ¼
Z

∞

ψ
dW0 ½F̂

>
b ðW0Þ þ F̂<

b ðW0Þ(
½2ðW0 − ψÞ(1=2

− 1; ð83Þ

which relate the perturbation in beam line density ηðZ0Þ to
the potential ψðZ0Þ and the distribution functions F̂>

b ðW0Þ
and F̂<

b ðW0Þ.
To summarize, solutions to the nonlinear Vlasov equa-

tion (75) that are time-stationary (∂=∂T 0 ¼ 0) in a frame of
reference moving with normalized velocity M ¼ const are
determined from (78), which in turn has exact solutions for
the distribution function F̂bðZ0; Vz

0Þ of the general form
given in Eq. (80), where W0 is the total particle energy
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(kinetic plus potential) defined in Eq. (79). Although the
class of distributions described by Eqs. (79) and (80) is
broad, it should be kept in mind that not all choices of
distribution function F̂bðW0Þ are likely to be physically
realized.
To reiterate the main features of the present model, for

time-stationary solutions (∂=∂T 0 ¼ 0) in the moving frame,
the normalized self-field potential ψðZ0Þ and perturbed line
density ηðZ0Þ ¼ ½λbðZ0Þ − λb0(=λb0 are related by Eq. (76),
and in turn ηðZ0Þ is related self-consistently to the
distribution function F̂bðW0Þ ¼ F̂>

b ðW0Þ þ F̂<
b ðW0Þ by

Eq. (83), where W0 ¼ ð1=2ÞV 02
z þ ψðZ0Þ is the particle

energy (kinetic plus potential). Therefore, for particles
distributed in energyW0 according to a specified functional

form for F̂bðW0Þ, one can envision calculating self-
consistently η½ψðZ0Þ( from Eq. (83), and ψðZ0Þ from
Eq. (76). Once ψðZ0Þ is determined self-consistently for
particles distributed in energyW0 according to F̂bðW0Þ, it is
both reasonable and informative to examine the motion of
an individual “test” particle with energyW0 in the self-field
potential ψðZ0Þ. For time-stationary potential ψðZ0Þ, par-
ticles move on constant energy surfaces with energy W0 ¼
ð1=2ÞV 02

z þ ψðZ0Þ ¼ const [see Eq. (79)]. For W0 > ψðZ0Þ,
the orbit Z0ðT 0Þ of a particle with energy W0 is determined
from dZ0=dT 0 ¼ V 0

z ¼ %½2ðW − ψðZ0Þ(1=2. Keeping in
mind that F̂bðW0Þ is the distribution of particles (in energy)
that self-consistently generates the potential ψðZ0Þ, the
preceding discussion forms the basis for examining quali-
tative features of the single-particle motion for different
values ofW0, both for isolated pulse disturbances (Fig. 11),
and nonlinear traveling wave distributions (Fig. 12).
Figure 11 shows an illustrative plot of the potential ψðZ0Þ

as a function of Z0. Depending on the values of the energy
W0 and the range of Z0, there are three classes of particle
orbits: (i) particles that are reflected from the potential;
(ii) particles that are trapped and undergo periodic motion;
and (iii) passing (untrapped) particles that do not change
direction, but pass over the potential maximum, first
slowing down and then speeding up during the motion.
For the trapped particles and the reflected particles, it
follows that F̂>ðW0Þ ¼ F̂<ðW0Þ so that

F̂TrðW0Þ ¼ F̂<
TrðW0Þ þ F̂>

TrðW0Þ ¼ 2F̂<
TrðW0Þ ¼ 2F̂>

TrðW0Þ
ð84Þ

and

F̂RefðW0Þ ¼ F̂<
RefðW0Þ þ F̂>

RefðW0Þ ¼ 2F̂<
RefðW0Þ

¼ 2F̂>
RefðW0Þ: ð85Þ

On the other hand, for the passing (untrapped) particles,
F̂>
UnðW0Þ and F̂<

UnðW0Þ can be specified independently,
depending on whether the particles have Vz

0 > 0 or
Vz

0 < 0, respectively.
The form of ψðZ0Þ shown in Fig. 11 corresponds to a

stationary isolated pulse in primed variables, with
ψðZ0 ¼ %∞Þ ¼ 0. By contrast, Fig. 12 shows a plot of
ψðZ0Þ versus Z0 for the case where ψðZ0Þ has a periodic
nonlinear wave structure with

ψðZ0 þ LÞ ¼ ψðZ0Þ: ð86Þ

From Fig. 12, trapped particles with energyW0 in the range

ψmin < W0 < ψmax ð87Þ

exhibit periodic motion. On the other hand, passing
particles with energy W0 in the range (see Fig. 12)

FIG. 12. Illustrative plot of the effective potential ψðZ0Þ versus
Z0 for the case where ψðZ0Þ has a nonlinear periodic waveform
with ψðZ0 þ LÞ ¼ ψðZ0Þ, where L is the periodicity length. In the
figure, passing particles with energy W0 > ψmax are untrapped,
whereas particles with energy ψmin < W0 < ψmax are trapped and
exhibit periodic motion in the potential ψðZ0Þ.

FIG. 11. Illustrative plot of the effective potential ψðZ0Þ versus
Z0 occurring in Eq. (33) showing the three classes of particle
orbits corresponding to: passing (untrapped) particles with energy
W0

3; reflected particles with energy W0
2; and reflected or trapped

particles (depending on the range of Z0) with energy W0
1. The

form of ψðZ0Þ in Fig. 11 corresponds to an isolated pulse with
ψðZ0 → %∞Þ ¼ 0.
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W0 > ψmax ð88Þ

correspond to untrapped particles that pass over the
potential ψðZ0Þ, periodically speeding up and slowing
down, but not changing their direction of motion.
Furthermore, for the nonlinear periodic waveform for the
potential ψðZ0 þ LÞ ¼ ψðZ0Þ shown in Fig. 12, it follows
from Eqs. (76) and (83) that the waveform for the
perturbation in line charge also satisfies ηðZ0 þ LÞ ¼
ηðZ0Þ. Here, ηðZ0Þ is related to ψðZ0Þ and the trapped-
particle and untrapped-particle distribution functions by
Eq. (83), which gives

1þ η ¼
Z

ψmax

ψ
dW0 F̂TrðW0Þ

½2ðW0 − ψÞ(1=2

þ
Z

∞

ψ
dW0 F̂UnðW0Þ

½2ðW0 − ψÞ(1=2
: ð89Þ

In Eq. (89), the integration over the trapped-particle
distribution F̂TrðW0Þ is over the interval of W0 correspond-
ing to ψmin < ψ < W0 < ψmax, and the integration over the
untrapped particle distribution F̂UnðW0Þ is over the interval
of W0 corresponding to ψmax < ψ < W0 < ∞.
Equations (76) and (89) can be used to determine

detailed properties of self-consistent nonlinear periodic
solutions for ηðZ0Þ and ψðZ0Þ for a broad range of choices
of F̂TrðW0Þ and F̂UnðW0Þ. Furthermore, depending on
system parameters, the amplitudes of the wave perturba-
tions can range from small to moderately large amplitude.
For purposes of illustration, the procedure for solving
Eqs. (76) and (89) for the case of nonlinear periodic
solutions for ηðZ0Þ and ψðZ0Þ, we consider the special
case where F̂TrðW0Þ ¼ 0, and the untrapped distribution
function has the monoenergetic form

F̂UnðW0Þ ¼ A
ffiffiffiffiffiffiffiffiffiffi
2W0

U

p
δðW0 −W0

UÞ; ð90Þ

where W0
U ¼ const, A ¼ const, and W0

U > ψmax (see
Fig. 12). Substituting F̂TrðW0Þ ¼ 0 and Eq. (90) into
Eq. (89) readily gives

1þ ηðZ0Þ ¼ A
½1 − ψðZ0Þ=W0

U(1=2
: ð91Þ

For present purpose, we choose the normalization constant
A in Eq. (91) such that the line density perturbation ηðZ0Þ ¼
λbðZ0Þ=λb0 − 1 and potential perturbation ψðZ0Þ are simul-
taneously zero for all Z0, i.e., ηðZ0Þ ¼ 0 for all Z0, when
ψðZ0Þ ¼ 0. From Eq. (91), this readily gives A ¼ 1 for the
value of the constant A. Squaring Eq. (91) and solving for
ψðZ0Þ when A ¼ 1 readily gives

ψ ¼ W0
U

#
1 − 1

ð1þ ηÞ2

$
: ð92Þ

Note that Eq. (92) determines ψðZ0Þ as a function of
ηðZ0Þ, which can be substituted into Eq. (76) to solve for
ηðZ0Þ.
Similar to the analysis in Sec. III B for the class of

nonlinear periodic traveling-wave solutions with
ηðZ0 þ LÞ ¼ ηðZ0Þ and ψðZ0 þ LÞ ¼ ψðZ0Þ, we examine
Eqs. (76) and (92) for the case where the boundary
conditions correspond to ηðZ0 ¼ 0Þ ¼ 0 and
½∂2η=∂Z02(Z0¼0 ¼ 0. Substituting Eq. (92) into Eq. (76)
we readily obtain

∂2η
∂Z02 þ η ¼ W0

U

#
1 −

1

ð1þ ηÞ2

$
; ð93Þ

which can also be expressed as

∂2η
∂Z02 þ

∂V
∂η ¼ 0; ð94Þ

where

∂V
∂η ¼ η −W0

U

#
1 −

1

ð1þ ηÞ2

$

¼ η
ð1þ ηÞ2

½η2 þ ð2 −W0
UÞηþ ð1 − 2W0

UÞ(: ð95Þ

Note that Eq. (94) has the form of a dynamical equation of
motion, with η playing the role of displacement, Z0 playing
the role of time, and VðηÞ playing the role of an effective
potential, or so-called pseudopotential. Making use of
Eq. (95), it is readily shown that

∂2V
∂η2 ¼ 1 −

2W0
U

ð1þ ηÞ3
; ð96Þ

and

VðηÞ ¼ 1

2
η2 −W0

U

#
ηþ 1

1þ η
− 1

$

¼ 1

2

η2

ð1þ ηÞ2
fηþ ½1 − 2W0

U(g; ð97Þ

where the constant of integration in Eq. (97) has been
chosen so that Vðη ¼ 0Þ ¼ 0.
Close examination of Eqs. (93)–(96) shows that Eq. (94)

supports oscillatory solutions for ηðZ0Þ about η ¼ 0 pro-
vided ½∂2V=∂η2(η¼0 > 0, or equivalently,

2W0
U < 1: ð98Þ

When the inequality in Eq. (98) is satisfied, the plot of VðηÞ
versus η has the characteristic shape illustrated in Fig. 13
for the choice of parameter 2W0

U < 1. Here, VðηÞ has a
minimum at η ¼ 0, and passes through zero at
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η ¼ ηþ ¼ −½1 − 2W0
U(; ð99Þ

where Vðη ¼ ηþÞ ¼ 0 [see Eqs. (97) and (99)]. Similar
to the analysis in Sec. III B, Eq. (94) can be integrated
to give the effective energy conservation relation
ð1=2Þ½∂η=∂Z0(2 þ VðηÞ ¼ E ¼ const [see also Eq. (62)],
where E ¼ ð1=2Þ½η0ð0Þ(2 is the effective energy level.
Referring to Fig. 13, Eqs. (94) and (97) support nonlinear
periodic oscillatory solutions for ηðZ0Þ for E in the range
0 < E < Vm, where Vm ≡ Vðη ¼ ηmÞ is the local maxi-
mum of VðηÞ at η ¼ ηm. For the choice of dimensionless
parameter 2W0

u ¼ 1=2 in Fig. 13, it is readily shown that
ηm ¼ −0.360 and Vm ¼ Vðη ¼ ηmÞ ¼ 0.014.
Recall that the primed variables ðZ0; V 0

z; T 0Þ are related to
ðZ; Vz; TÞ by Z0 ¼ Z −MT, V 0

z ¼ Vz −M, and T 0 ¼ T,
where M ¼ const is the dimensionless velocity of the
traveling wave relative to the unprimed frame.
Therefore, for a nonlinear wave that is time stationary
(∂=∂T 0 ¼ 0) in the primed variables, it is reasonable to
identify WU

0 with W0
U ¼ ð1=2ÞM2 for a monoenergetic

beam. In this case, we make the identification 2W0
U < 1,

so the condition for Eqs. (94) and (95) to have nonlinear
periodic solutions for ηðZ0Þ [see Eq. (98)] can be
expressed as

M2 < 1: ð100Þ

Typical numerical solutions for ηðZ0Þ, obtained by inte-
grating Eq. (94) with VðηÞ specified in Eq. (97), are
illustrated in Figs. 14-17 for several choices of M2 < 1
and different values of effective energy level E. These
correspond to: M2 ¼ 0.5, E ¼ 0.005, ηm ¼ −0.360, and
VðηmÞ ¼ 0.014 (Fig. 14); M2 ¼ 0.5, E ¼ 0.054883,
ηm ¼ −0.360, and VðηmÞ ¼ 0.014 (Fig. 15); M2 ¼ 0.09,
E ¼ 0.05, ηm ¼ −0.764, and VðηmÞ ¼ 0.181 (Fig. 16); and
M2 ¼ 0.09, E ¼ 0.18, ηm ¼ −0.764, and VðηmÞ ¼ 0.181
(Fig. 17). Figures 14–17 illustrate several interesting trends
in the nonlinear periodic wave solutions for ηðZ0Þ. [These
should be compared with the nonlinear periodic wave

η +

mV

mη

(a)

(b)0.005E =

(
)

Z
η

′

FIG. 14. Plots are shown for (a) VðηÞ versus η, and (b) ηðZ0Þ
versus Z0, obtained from Eq. (94) for M2 ¼ 0.5, η0ð0Þ ¼ 0.1,
E ¼ ð1=2Þ½η0ð0Þ(2 ¼ 0.005, ηþ ¼ −0.5, ηm ¼ −0.36 and
VðηmÞ ¼ 0.014.

η +

mV

mη

(a)

(b)0.054483E =

Z ′

(
)

Z
η

′

FIG. 15. Plots are shown for (a) VðηÞ versus η, and (b) ηðZ0Þ
versus Z0, obtained from Eq. (94) for M2 ¼ 0.5, η0ð0Þ ¼ 0.1863,
E ¼ ð1=2Þ½η0ð0Þ(2 ¼ 0.054883, ηþ ¼ −0.5, ηm ¼ −0.36 and
VðηmÞ ¼ 0.014.

η +

mV

mη

E

FIG. 13. Plot of VðηÞ versus η obtained from Eq. (97) for
2W0

u ¼ 0.5 and ηþ ¼ −0.5. Here, ηm ¼ −0.36, and
VðηmÞ ¼ 0.014. Nonlinear periodic solutions for ηðZ0Þ exist
for energy level E in the range 0 < E < VðηmÞ.
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solutions in Figs. 2–5 obtained in Sec. III for the kinetic
waterbag model.] First, for smaller values of M2, the
potential wells are deeper and broader (compare
Figs. 14a and 15a with Figs. 16a and 17a). Furthermore,
the nonlinear wave amplitudes tend to be large for
sufficiently large values of energy level E in the effective
potential well (compare Figs. 15 and 17 with Figs. 14
and 16).

V. CONCLUSIONS

In this paper, the 1D kinetic model developed in
Ref. [14] was used to describe the nonlinear longitudinal
dynamics of intense beam propagation, allowing for
moderate-to-large-amplitude modulation in the charge
density of the beam particles. Particular emphasis has been
placed on investigating detailed properties of nonlinear
pulselike (soliton) and periodic traveling-wave disturb-
ances propagating with constant normalized velocity M ¼
const relative to the beam frame. The 1D kinetic formalism
[14] was briefly summarized in Sec. II A, and exact (local
and nonlocal) nonlinear conservation constraints were
derived in Sec. II B for the conserved particle number,
momentum, and energy per unit length of the beam,
making use of the nonlinear Vlasov equation for
Fbðz; pz; tÞ in Eq. (1) and the expression for hEziðz; tÞ
in Eq. (2). Removing the assumption of weak nonlinearity
made in Ref. [15], Sec. III made use of the fully nonlinear
kinetic waterbag model to investigate detailed properties of
traveling nonlinear disturbances propagating with velocity
M ¼ const relative to the beam frame. In normalized
variables, Z0 ¼ Z −MT and T 0 ¼ T, the waveform of
the disturbance was assumed to be time-stationary
(∂=∂T 0 ¼ 0) in the frame moving with velocity
M ¼ const. Nonlinear solutions were examined over a
wide range of system parameters for both traveling-pulse
(soliton) and nonlinear traveling-wave solutions in which
the modulation in beam density was large-amplitude,
corresponding to a strongly bunched beam. Finally, in
Sec. IV we examined the kinetic model based on Eqs. (9)
and (10) [equivalent to Eqs. (1) and (2)] for an even broader
class of distribution functions Fbðz; pz; tÞ. The analysis in
Sec. IV parallels the original Bernstein-Greene-Kruskal
(BGK) formulation of BGK solutions to the 1D Vlasov-
Poisson equations [25,26], except for the fact that Eq. (10),
which connects the effective potential hϕiðz; tÞ to the line
density λbðz; tÞ, has a very different structure than the 1D
Poisson’s equation used in the original BGK analysis.
Depending on the choices of trapped-particle and
untrapped-particle distribution functions, the kinetic model
described in Sec. IV supports a broad range of nonlinear
pulselike (soliton) solutions and periodic traveling-wave
solutions that have stationary waveform in a frame of
reference moving with velocity M ¼ const relative to the
beam frame. Similar to Sec. III, the modulation in beam line
density can have large amplitude, corresponding to a strong
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η
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FIG. 17. Plots are shown for (a) VðηÞ versus η, and (b) ηðZ0Þ
versus Z0, obtained from Eq. (94) for M2 ¼ 0.09, η0ð0Þ ¼ 0.6,
E ¼ ð1=2Þ½η0ð0Þ(2 ¼ 0.18, ηþ ¼ −0.91, ηm ¼ −0.764 and
VðηmÞ ¼ 0.181.
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FIG. 16. Plots are shown for (a) VðηÞ versus η, and (b) ηðZ0Þ
versus Z0, obtained from Eq. (94) for M2 ¼ 0.09, η0ð0Þ ¼ 0.1,
E ¼ ð1=2Þ½η0ð0Þ(2 ¼ 0.05, ηþ ¼ −0.91, ηm ¼ −0.764 and
VðηmÞ ¼ 0.181.
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bunching of the beam particles. Specific examples were
considered in Sec. IV corresponding to nonlinear periodic
traveling-wave solutions of Eqs. (9) and (10).
In summary, the analysis in Secs. III and IV has

identified a broad class of nonlinear traveling-wave and
traveling-pulse (soliton) solutions with time-stationary
waveform using a one-dimensional kinetic model based
on Eqs. (1) and (2) [14]. Properties of these coherent
nonlinear structures depend on the self-consistent inter-
action of the beam particles with the conducting wall
through the geometric factors g0 and g2 occurring in
Eqs. (2) and (3). Properties of the coherent structures also
depend on the detailed distribution of particles in phase
space ðz; pzÞ. For example, coherent traveling-wave struc-
tures can evolve as the nonlinear saturated state of mild or
strong two-stream instability driven by a double-peaked
distribution of beam particles in momentum space pz. The
linear (small-signal) theory for collective excitations based
on Eqs. (1) and (2) has been developed in Sec. IV of
Ref. [14], and will be explored in future studies as a basis
for collective excitation of the class of coherent nonlinear
structures described in the present article.
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