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It is commonly believed as a fundamental principle that energy-momentum conservation of a physical system is
the result of space-time symmetry. However, for classical particle-field systems, e.g., charged particles interacting
through self-consistent electromagnetic or electrostatic fields, such a connection has only been cautiously
suggested. It has not been formally established. The difficulty is due to the fact that the dynamics of particles and
the electromagnetic fields reside on different manifolds. We show how to overcome this difficulty and establish the
connection by generalizing the Euler-Lagrange equation, the central component of a field theory, to a so-called
weak form. The weak Euler-Lagrange equation induces a new type of flux, called the weak Euler-Lagrange
current, which enters conservation laws. Using field theory together with the weak Euler-Lagrange equation
developed here, energy-momentum conservation laws that are difficult to find otherwise can be systematically
derived from the underlying space-time symmetry.
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I. INTRODUCTION

It has been widely accepted as a fundamental principle
of physics that energy-momentum conservation of a classical
or quantum system is due to the underlying space-time
symmetry that the system admits. However, for classical
systems with particles and self-generated interacting fields,
the connection between energy-momentum conservation and
space-time symmetry has only been cautiously suggested [1]
and has not been formally established. Examples of such
classical particle-field systems include charged particles in
an accelerator or a magnetic confinement device interacting
through the self-consistent electromagnetic fields [2]. To
understand and overcome this difficulty, we need to examine
the details of the field theory. In the standard field theory, one
writes down a Lagrangian density L, and the associated Euler-
Lagrange equation determines the dynamics of the system.
When the Euler-Lagrange equation is satisfied, a symmetry
condition is equivalent to a conservation law. This is of course
the celebrated Noether’s theorem [3,4]. It is surprising to find
out for classical particle-field systems that the standard Euler-
Lagrange equation does not hold anymore. This is because the
dynamics of the particles and the electromagnetic fields reside
on different manifolds. The electromagnetic fields are defined
on the space-time domain, whereas the particle trajectories
as a field are only defined on the time-axis. This is why the
link between the symmetry and conservation law breaks down
for these systems. This unique feature has not been discussed
before, and it makes a significant difference in the formulation
of the field theory presented here. What we have discovered is
that when the standard Euler-Lagrange equation breaks down,
the field equations of these systems assume a more general
form that can be viewed as a weak Euler-Lagrange equation.
It a pleasant surprise to find out that this weak Euler-Lagrange
equation can also link symmetries with conservation laws
as in the standard field theory, where the regular Euler-
Lagrange equation provides the link. The difference is that
the weak Euler-Lagrange equation induces a new type of
current (unknown previously), called the weak Euler-Lagrange
current, in conservation laws, in addition to the Noether current

for the standard field theory. For many classical particle-field
systems, such as particles interacting through electrostatic
potentials [2,5] or attracting Newtonian potentials [6,7],
energy-momentum conservation laws are difficult to find.
Using the field theory with the weak Euler-Lagrange equation
developed here, energy-momentum conservation laws can
be systematically derived from the underlying space-time
symmetries.

This paper is organized as follows. In Sec. II, classical
particle-field systems and the difficulty of establishing the
connections between symmetries and conservation laws are
introduced. The weak Euler-Lagrange equation and its role in
establishing conservation laws are given in Sec. III. The last
section summarizes the main results of the paper.

II. CLASSICAL PARTICLE-FIELD SYSTEMS

The classical non-relativistic particle-field system in flat
space is governed by the Newton-Maxwell equations

Ẍ sp =
(

q

m

)

s

(
E + 1

c
Ẋ sp×B

)
, (1)

∇ · E = 4π
∑

s,p

qsδ(X sp − x), (2)

∇×B = 4π

c

∑

s,p

qs Ẋ spδ(X sp − x) + 1
c

∂ E
∂t

, (3)

∇×E = −1
c

∂ B
∂t

, (4)

∇ · B = 0, (5)

where X sp(t) as a function of time is the trajectory of
the pth particle of the s-species, and qs and ms are the
particle charge and mass, respectively. The electric field E(x,t)
and the magnetic field B(x,t) are functions of space-time.
Equations (1)–(3) can be expressed equivalently in the form
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of the Klimontovich-Maxwell (KM) equations [2]

∂Fs

∂t
+ v · ∂Fs

∂x
+

(
q

m

)

s

(
E + 1

c
v×B

)
· ∂Fs

∂v
= 0, (6)

∇ · E = 4π
∑

s

qs

∫
Fsd

3
s v, (7)

∇×B = 4π

c

∑

s

qs

∫
Fsvd3v + 1

c

∂ E
∂t

, (8)

where Fs(x,v,t) =
∑

p δ(X sp − x)δ(Ẋ sp − v) is the Klimon-
tovich distribution function in the phase space (x,v).

Reduced models are often used in plasma physics. For
example, the electrostatic Klimontovich-Poisson (KP) system
is given by

∂Fs

∂t
+ v · ∂Fs

∂x
+

(
q

m

)

s

(
−∇φ + 1

c
v×B0

)
· ∂Fs

∂v
= 0,

(9)

∇2φ = −4π
∑

s

qs

∫
Fsd

3v, (10)

where B0(x) is a background magnetic field produced by
steady external currents, and E = −∇φ is the longitudinal
electric field. Another well-known reduced model is the
Klimontovich-Darwin (KD) system [8–11],

∂Fs

∂t
+ v · ∂Fs

∂x
+

(
q

m

)

s

(
E + 1

c
v×B

)
· ∂Fs

∂v
= 0, (11)

∇2φ + ∇ ·
(

1
c

∂ A
∂t

)
= −4π

∑

s

qs

∫
Fsd

3v, (12)

∇×(∇×A) + 1
c

∂∇φ

∂t
= 4π

c

∑

s

qs

∫
Fsvd3v, (13)

E ≡ −1
c

∂ A
∂t

− ∇φ, B ≡ ∇×A. (14)

The local energy-momentum conservation laws for the
Klimontovich-Maxwell system (6)–(8) is well known [2],

∂

∂t

[
E2 + B2

8π
+

∑

s,p

ms Ẋ2
sp

2
δ2

]

+ ∇ ·
[

cE×B
4π

+
∑

s,p

ms Ẋ2
sp

2
Ẋ spδ2

]

= 0, (15)

∂

∂t

[
E×B
4πc

+
∑

s,p

ms Ẋ spδ2

]

+ ∇ ·
[

E2 + B2

8π
I − E E + B B

4π
+

∑

s,p

ms Ẋ sp Ẋ spδ2

]

= 0, (16)

where we have introduced δ2 ≡ δ(X sp − x) to simplify the notation. Through the following identities:

∑

p

Ẋ2
sp

2
δ2 =

∫
d3vFs

v2

2
,

∑

p

Ẋ2
sp

2
Ẋ spδ2 =

∫
d3vFs

v2

2
v, (17)

∑

p

Ẋ spδ2 =
∫

d3vFsv,
∑

p

Ẋ sp Ẋ spδ2 =
∫

d3vFsvv, (18)

the conservation laws can be expressed equivalently in terms of the distribution function Fs ,

∂

∂t

[
E2 + B2

8π
+

∑

s

∫
d3vFsms

v2

2

]

+ ∇ ·
[

cE×B
4π

+
∑

s

∫
d3vFsms

v2

2
v

]

= 0, (19)

∂

∂t

[
E×B
4πc

+
∑

s

∫
d3vFsmsv

]

+ ∇ ·
[

E2 + B2

8π
I − E E + B B

4π
+

∑

s

∫
d3vFsmsvv

]

= 0. (20)

For the reduced systems, e.g., the KP system and the
KD system, it is also critical to know the exact local
energy-momentum conservation laws admitted by the models.
In practical applications, such as current drive and heating
with lower-hybrid waves [12], and electrostatic drift-wave
turbulence, such local energy-momentum conservation laws
for the reduced system have profound implications [13–15].
We emphasize that we are looking for the exact conservation
laws admitted by the KP and KD systems, which are not
exact special cases of the KM system, and should be viewed
as independent systems in their own right. For example,
we cannot take the exact energy-momentum equations (19)
and (20), and approximate E by −∇φ and B by B0 to obtain
the exact energy-momentum conservation law for the KP

system, even though the conservation law obtained this way
could be an approximate one for the KP system. The existence
of exact local conservation laws is a necessary condition for
the models to be theoretically well posed and for the validity
of particle simulations based on the KP or KD systems [10].

On the other hand, conservation laws and symmetries are
closely related. It is commonly believed that, according to
Noether’s theorem [3,4], conservation laws can be derived
from the symmetries of the corresponding field theories. In
standard field theories, this is certainly true, and the symmetry
in time for the action is related to energy conservation, and the
symmetry in space corresponds to momentum conservation.
Therefore, it is reasonable to expect that by analyzing the
symmetries of the actions and Lagrangian densities for the
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reduced systems considered here, we may be able to system-
atically derive the desired conservation laws. However, it is
surprising to find out that for particle-field systems considered
here, the field theory works differently. First, let us recall the
action and Lagrangian density for the KM system given by
Low [16],

A[φ,A,X sp] =
∫

LKMd3xdt, LKM = LKMF + LKMP,

(21)

LKMF =
(

1
c

∂ A
∂t

+ ∇φ

)2/
8π − (∇×A)2/8π, (22)

LKMP =
∑

s,p

[
−qsφ + qs

c
Ẋ sp · A + ms

2
Ẋ2

sp

]
δ2. (23)

It is straightforward to verify that Eqs. (1)–(5) follow from
δA/δX sp = 0, δA/δφ = 0, and δA/δ A = 0. For the KP
system, the action and Lagrangian density are given by

A[φ,X sp] =
∫

LKPd
3xdt, LKP = LKPF + LKPP, (24)

LKPF = (∇φ)2/8π,

LKPP =
∑

s,p

[
−qsφ + qs

c
Ẋ sp · A0 + ms

2
Ẋ2

sp

]
δ2, (25)

where A0 is the vector potential for a given external magnetic
field B0 = ∇×A0. For the KD system, the action and
Lagrangian density for the KM system are

A[φ,A,X sp] =
∫

LKDd3xdt, LKD = LKDF + LKDP,

(26)

LKDF =
[

2
c
∇φ · ∂ A

∂t
+ (∇φ)2

]/
8π − (∇×A)2/8π, (27)

LKDP =
∑

s,p

[
−qsφ + qs

c
Ẋ sp · A + ms

2
Ẋ2

sp

]
δ2. (28)

Based on the spirit of Noether’s theorem, we would like to
determine whether the local energy-momentum conservation
laws can be derived from the symmetries of the corresponding
Lagrangian density. It turns out that the answer to this question
is not as simple as that in standard field theory. This is because
the fields in the present field theory, i.e., X sp(t), φ(x,t), and
A(x,t) are defined on different domains. The potentials are
defined on the space-time domain (x,t), whereas the particle
trajectory X sp(t) is only defined on the time-axis. This unique
feature has not been discussed before, and it makes a significant
difference in the formulation of the field theory presented
here.

In the next section, we develop the field theory for classical
particle-systems with this feature, in particular, the KM
system, the KP system, and the KD system. The most distinct
characteristic of the field theory presented here is that the
field equation for X sp(t) assumes a form we call the weak

Euler-Lagrange (EL) equation, which is different from the
standard Euler-Lagrange equation. The necessity of using the
weak EL equation is mandated by the fact that X sp(t), as a field,
is not defined on the entire space-time domain, but only on the
time-axis. The weak EL equation with respect to X sp(t) plays
an indispensable role in the symmetry analysis and derivation
of local conservation laws. For the KP system and KD system,
the analysis developed here enables us to determine the desired
local conservation laws, which have not been systematically
discussed in the literature. For the KM system, where the local
energy-momentum conservation laws (19), (20) are known,
the present analysis serves the purpose of establishing a
connection between the energy-momentum conservation laws
and symmetries of the Lagrangian density LKM. Interestingly,
such a connection has only been cautiously suggested [1]
but not explicitly established previously. This is perhaps not
surprising, because the weak EL equation developed here is
needed to establish the connection. Due to the space limitation,
we present in Sec. III the detailed derivation of the field
theory and new conservation laws only for the KP system
of a magnetized plasma, and summarize the main results for
the KM and the KD systems at the end.

In plasma physics, one often works with the Vlasov-
Maxwell (VM) system. Equations (6)–(8) recover the VM
equations when two-particle correlations (collisions) become
negligibly small as the number of particles becomes increas-
ingly large, while holding total charge and and charge to
mass ratio fixed. In the present study, we work with the
Klimontovich-Maxwell system, Eqs. (6)–(8) or Eqs. (1)–(3),
and pass to the limit of the Vlasov-Maxwell system when
necessary under the assumption of negligible collisions.
Similarly, the Vlasov-Poisson (VP) and Vlasov-Darwin (VD)
systems are regarded as the collisionless limits of the KP and
KD systems, respectively.

As a reduced system, the KP (or VP) system describes
many important physical processes when the characteristic
velocity of the particles or waves are much slower than the
speed of light. These include electrostatic waves in plasmas
(Langmuir waves) [5], and collective dynamics and excitations
in charged particle beams in a frame moving with the beam [2].
The fundamental theory of Landau damping [17] was first
developed for the VP (or KP) system. In astrophysics, the
VP (or KP) system has also been used to model the collective
dynamics of self-gravitating systems with an attractive Newto-
nian potential [6,7]. Because of these important applications,
the VP (or KP) system and its associated Landau damping
have also been studied with great interest in the mathematical
physics community [18,19].

We also note that while our focus here is on particle-field
systems, Eulerian field theories for the VM and VP systems
have been developed by Morrison et al. [20–23] using a
variety of theoretical constructions. In Eulerian theories, the
particle distribution in phase space replaces X sp(t) as the field
variable.

III. WEAK EULER-LAGRANGE EQUATION,
SYMMETRY, AND CONSERVATION LAWS

We begin with Eq. (24) for the KP system, and determine
how the action and Lagrangian density vary in response to the
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field variation δX sp and δφ(x,t),

δA =
∫

d3xdt δφEφ(LKP)

+
N∑

s,p=1

∫
dt δX sp ·

∫
d3x EX sp

(LKP), (29)

Eφ(LKP) ≡ ∂LKP

∂φ
− D

Dxi

∂LKP

∂φ,i

,

(30)

EX sp
(LKP) ≡ ∂LKP

∂ X sp

− D

Dt

(
∂LKP

∂ Ẋ sp

)
.

In Eq. (29), φ,i ≡ ∂φ/∂xi and integration by parts has been
applied with respect to terms containing ∂LKP/∂φ,i and
∂LKP/∂ Ẋ sp. Here, Eφ(LKP) and EX sp

(LKP) are the Euler
operators with respect to φ and X sp, respectively. For a variable
h, Dh/Dxi and Dh/Dt represent the space-time derivatives
when h = h(x,t) is considered as a field on the space-time
domain. Because δφ(x,t) is arbitrary, δA/δφ = 0 requires the
Euler-Lagrange (EL) equation for φ to hold, i.e., Eφ(LKP) = 0,
which is indeed the Poisson equation (10), as expected. The
field equation for X sp is more interesting. Because δX sp is
arbitrary only on the time-axis, the condition δA/δX sp = 0
requires only that the integral of EX sp

(LKP) over space vanish,
i.e.,

∫
d3xEX sp

(LKP) = 0. (31)

Equation (31) will be called the submanifold Euler-Lagrangian
equation because it is defined only on the time-axis after the
integrating over the spatial variable. If X sp were a function of
the entire space-time domain, then EX sp

(LKP) would vanish
everywhere, as in the case for φ(x,t). In general, we expect
that EX sp

(LKP) %= 0.
We now derive an explicit expression for EX sp

(LKP). For
the first term in EX sp

(LKP),

∂LKP

∂ X sp

=
(

qs

c
A0 · Ẋ sp − qsφ + ms

2
Ẋ2

sp

)
∂δ2

∂ X sp

= ∂

∂x
(Hsp−Ẋ sp · P sp) +

(
qs

c

∂ A0

∂x
· Ẋ sp − qs

∂φ

∂x

)
δ2,

(32)

where the momentum P sp density and Hamiltonian Hsp

density are defined as

P sp(x,t) ≡ ∂LKP

∂ Ẋ sp

=
(

ms Ẋ sp + qs

c
A0

)
δ2,

Hsp(x,t) ≡
(

qsφ + ms

2
Ẋ2

sp

)
δ2. (33)

The second term in EX sp
(LKP) is given by

D

Dt

∂LKP

∂ Ẋ sp

= ms Ẍ spδ2 +
(

ms Ẋ sp + qs

c
A0

)
∂δ2

∂t

= ms Ẍ spδ2 − ∂

∂x
· (Ẋ sp P sp) + qs

c
Ẋ sp · ∂ A0

∂x
δ2.

(34)

Therefore,

EX sp
(LKP)

=
[
qs

c

(
∂ A0

∂x
· Ẋ sp − Ẋ sp · ∂ A0

∂x

)
− qs

∂φ

∂x
− ms Ẍ sp

]
δ2

+ ∂

∂x
(Hsp − Ẋ sp · P sp) + ∂

∂x
· (Ẋ sp P sp). (35)

Substituting Eq. (35) into the submanifold EL equation (31),
we immediately recover Newton’s equation for X sp, i.e.,

ms

qs

Ẍ = −∂φ

∂x
+ 1

c
Ẋ sp×B0, (36)

which reduces Eq. (35) to

EX sp
(LKP) ≡ ∂LKP

∂ X sp

− D

Dt

(
∂LKP

∂ Ẋ sp

)

= ∂

∂x
(Hsp − Ẋ sp · P sp) + ∂

∂x
· (Ẋ sp P sp). (37)

As expected, EX sp
(LKP) %= 0. We will refer to Eq. (37) as

the weak Euler-Lagrange equation, which is the foundation
for the subsequent analysis of the local conservation laws.
The qualifier “weak” is used to indicate the fact that only the
spatial integral of the Euler derivative EX sp

(LKP) is zero [see
Eq. (31)], in comparison with the standard EL equation, which
demands that the Euler derivative vanishes everywhere.

We define a symmetry of the action A[φ,X sp] to be a group
of transformation

(x,t,φ,X sp) &→ (x̃,t̃ ,φ̃,X̃ sp) (38)

such that
∫

LKP[x,t,φ,X sp]d3xdt =
∫

LKP[x̃,t̃ ,φ̃,X̃ sp]d3 x̃dt̃ . (39)

If the symmetry is generated by a vector field on the space of
(x,t,φ,X sp),

V = ξ · ∂

∂x
+ ξ t ∂

∂t
+ ψ

∂

∂φ
+ Yp · ∂

∂ X sp

,

then the infinitesimal criteria of invariance is given by [4]

prV (L) + L Divξ = 0, (40)

where Divξ is the divergence of the vector field

ξ = ξ · ∂

∂x
+ ξ t ∂

∂t
(41)

on the space-time domain, and prV is the prolongation of the
vector field V on (x,t,φ,X sp). The prolongation prV is a vector
field on the jet space, consisting of the space of (x,t,φ,X sp)
and the space of derivatives of (φ,X sp) with respect to (x,t).
A comprehensive description of this subject can be found in
Ref. [4]. Given the symmetry vector field V , the infinitesimal
criteria for invariance will generate the desired conservation
law corresponding to the symmetry vector field V, after use is
made of the EL equation as well as the weak EL equation for
the systems in the present study. We first look for the symmetry
group that generates local energy conservation. The group of
transformation

(x̃,t̃ ,φ̃,X̃ sp) = (x,t + ε,φ,X sp), ε ∈ R (42)
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is a symmetry of LKP, because LKP does not depend on t
explicitly, i.e., ∂LKP/∂t = 0, which can be written as

DLKP

Dt
− φ,t

∂LKP

∂φ
− φ,j t

∂LKP

∂φ,j

−
∑

s,p

(
Ẋ sp · ∂LKP

∂ X sp

+ Ẍ sp · ∂LKP

∂ Ẋ sp

)
= 0. (43)

Equation (43) is the special form of Eq. (40) for this symmetry
group. From the EL equation for φ, i.e., Eφ(LKP) = 0, we
obtain

φ,t

∂LKP

∂φ
+ φ,j t

∂LKP

∂φ,j

= D

Dxj

(
φ,t

∂LKP

∂φ,j

)
. (44)

The weak EL equation for X sp, i.e., Eq. (37), gives

Ẋ sp · ∂LKP

∂ X sp

+ Ẍ sp · ∂LKP

∂ Ẋ sp

= ∂

∂x
·
[

Ẋ sp

(
qsφ + ms

2
Ẋ2

sp

)
δ2

]
+ D

Dt
(Ẋ sp · P sp). (45)

Combining Eqs. (44) and (45), we obtain the first local energy
conservation law,

∂

∂t

[
(∇φ)2

8π
−

∑

s,p

(
qsφ + ms

2
Ẋ2

sp

)
δ2

]

+ ∂

∂x
·
[

−1
4π

φ,t∇φ −
∑

s,p

Ẋ sp

(
qsφ + ms

2
Ẋ2

sp

)
δ2

]

= 0.

(46)

We subtract the identify

1
4π

∂

∂t
[(∇φ)2 + φ∇2φ] + 1

4π

∂

∂x
· (−φ,t∇φ − φ∇φ,t ) = 0

(47)

from Eq. (46) to express the energy conservation law in another
equivalent form

∂

∂t

[
(∇φ)2

8π
+

∑

s,p

ms Ẋ2
sp

2
δ2

]

+ ∂

∂x
·
[
∑

s,p

Ẋ sp

(
qsφ +

ms Ẋ2
sp

2

)
δ2 − 1

4π
φ∇φ,t

]

= 0.

(48)

In terms of the distribution function Fs, we obtain

∂

∂t

[
(∇φ)2

8π
+

∑

s

∫
Fs

msv
2

2
d3v

]

+ ∂

∂x
·
(

∑

s

∫
Fs

msv
2

2

vd3v +
∑

s

qsφ

∫
Fsvd3v − 1

4π
φ∇φ,t

)

= 0. (49)

We emphasize again that Eq. (49) is the exact energy
conservation law admitted by the KP system Eqs. (9) and (10),
and it cannot be obtained by replacing E by −∇φ and B by
B0 in the energy conservation law for the KM sytem (19).
The sum of the last two terms in Eq. (49) is the electrostatic

Poynting flux of the KP system, first discussed by Similon [24]
for an unmagnetized plasma by algebraic manipulation. Its
importance for electrostatic particle simulations was addressed
by Decyk [25]. Here, it appears naturally as a consequence
of the symmetry analysis. We observe that the external B0
does not contribute to the energy flux of the electromagnetic
field. To further appreciate the importance of the exact energy
conservation law (49), let us consider the well-established
technique of current drive and heating of a magnetized plasma
using electrostatic lower-hybrid (LH) waves [12], which are
adequately described by the VP (or KP) system. In this
application, the energy and momentum of the LH waves
are converted to those of the particles, and it is of practical
importance to know the heating power of a specific LH wave
system. However, if we calculated the energy flux of the LH
waves from Eq. (19) by replacing E by −∇φ and B by B0, we
would find that ∇ · [∇φ×B0] = 0, i.e., the LH waves do not
carry an energy flux. This is obviously erroneous. The typical
power of such systems in modern magnetic fusion devices is
several megawatts. The correct way to calculate the energy
flux of the LH waves is to use Eq. (49) instead. Specifically,
the several megawatts of energy carried by the LH waves flow
into the plasma through the last two terms in Eq. (49).

Up to now, we have treated the KM and KP systems as
independent systems, each of which has its own governing
equations, Lagrangian, and conservation laws. On the other
hand, it is also correct to treat the KP system as the electrostatic
approximation to the KM system. From the perspective of
the governing equations, this approximation is equivalent to
replacing E by −∇φ and B by B0 in the KM system. But this
simple procedure does not work for the corresponding conser-
vation laws. What is needed here is a more rigorous procedure
to derive the electrostatic approximation that reduces from the
KM system to the KP system. After this rigorous procedure is
carried out, we find that the correct energy conservation law for
the KP system obtained from that of the KM system is actually
Eq. (49), instead of that obtained from Eq. (19) by replacing
E by −∇φ and B by B0. A similar argument applies to the
momentum conservation law for the KP system, i.e., Eq. (57).
These derivations are given in detail in the Appendix.

Our next goal is to search for the symmetry that generates
the momentum conservation law. In standard field theories, if
the Lagrangian density does not depend on x explicitly, then it
admits the symmetry of spatial translation, x̃ = x + εu, for a
constant vector u and ε ∈ R. Then the usual form of Noether’s
theorem leads to momentum conservation. This strategy does
not work here because LKP depends on x explicitly through
δ2 ≡ δ(X sp − x) and A0(x). However, if we simultaneously
translate both x and X sp by the same amount, then δ2 is
invariant. Thus, we consider the translational transformation

(x̃,t̃ ,φ̃,X̃ sp) = (x + εu,t,φ,X sp + εu), ε ∈ R (50)

under which φ̃(x̃) = φ(x) = φ(x̃ − εu) and X̃ sp(t̃) = X sp(t) +
εu. When A0(x) = 0, we can verify that Eq. (40) is satisfied,
and Eq. (50) is indeed a symmetry admitted by LKP. The
corresponding vector field is

V = ∂

∂x
+

∑

s,p

∂

∂ X sp

, (51)

043102-5



HONG QIN, JOSHUA W. BURBY, AND RONALD C. DAVIDSON PHYSICAL REVIEW E 90, 043102 (2014)

and V is the only non-vanishing component of PrV since it
is a constant. The notation ∂/∂x here represents ∂/∂xi for
i = 1,2,3. In this case, the infinitesimal criterion of invariance
in Eq. (40) is

∂LKP

∂x
+

∑

s,p

∂L

∂ X sp

= 0. (52)

When A0(x) %= 0, the right-hand side of Eq. (52) will have a
source term, and instead we obtain

∂LKP

∂x
+

∑

s,p

∂L

∂ X sp

=
∑

s,p

Ẋ sp · ∂ A0

∂x
δ2. (53)

It will be clear shortly that this term represents a part of the
momentum input due to the external magnetic field through
the Lorentz force. For the first term in Eq. (53), we invoke the
EL equation Eφ(LKP) = 0 to obtain

∂LKP

∂x
= DLKP

Dx
− D

Dxj

(
∂LKP

∂φ,j

∇φ

)
. (54)

For the second term in Eq. (53), the weak EL equation for X sp

Eq. (37) is applied, which gives

∂L

∂ X sp

= D P sp

Dt
+ ∂

∂x
(Hsp − Ẋ sp · P sp) + ∂

∂x
· (Ẋ sp P sp).

(55)

Therefore, the conservation law generated by Eq. (53) is

∂

∂t

(
∑

s,p

ms Ẋ spδ2

)

+ ∂

∂x
·
[
∑

s,p

ms Ẋ sp Ẋ spδ2 + I
8π

(∇φ)2

− 1
4π

∇φ∇φ

]

=
∑

s,p

ms

Ẋ sp

c
×B0δ2. (56)

Evidently, this is the local momentum conservation. In terms
of the distribution function Fs , it can be expressed as

∂

∂t

(
∑

s

ms

∫
Fsvd3v

)

+ ∂

∂x
·
[
∑

s

ms

∫
Fsvvd3v

+ I
8π

(∇φ)2 − 1
4π

∇φ∇φ

]

=
∑

s

qs

(∫
Fs

v

c
d3v

)
×B0.

(57)

The first term on the left-hand side of Eqs. (56) and (57) is the
rate of variation of the momentum density, the second term
is the divergence of the flux, and the term on the right-hand
side is the momentum input due to the background magnetic
field. Note that the momentum density is purely mechanical,
and does not include the electromagnetic momentum density
−∇φ×B0/4πc. This is not totally intuitive. This conservation
law is the result of the symmetry (50), which is different
from the well-known translational symmetry for standard
field theory. Because LKP depends on x explicitly through
δ2 ≡ δ(X sp − x), a translation in x alone is not a symmetry of
LKP, even when A0(x) = 0. Instead, the symmetry group (50)
simultaneously translates the space x and the field X sp by the
same amount.

For the KD system, the weak EL equation for X sp is

EX sp
(LKD) ≡ ∂LKD

∂ X sp

− D

Dt

∂LKD

∂ Ẋ sp

= ∂

∂x

[(
−A · Ẋ sp + φ − 1

2
Ẋ2

sp

)
δ2

]

+ ∂

∂x
· [Ẋ sp(Ẋ sp + A)δ2]. (58)

Energy conservation follows from the infinitesimal crite-
rion (40) for the symmetry transformation (42) after the weak
EL equation (58) for X sp and the EL equations for φ and A
are applied, i.e.,

∂

∂t

[
(∇φ)2 + B2

8π
+

∑

s

∫
Fs

msv
2

2
d3v

]

+ ∂

∂x
·
(

∑

s

∫
Fs

msv
2

2
vd3v + φ,t A,t + E×B

4π

)

= 0.

Similarly, the infinitesimal criterion for the symmetry
group (50) gives the momentum conservation relation

∂

∂t

(
∑

s

ms

∫
Fsvd3v + E×B

4π

)

+ ∂

∂x
·
[
∑

s

ms

∫
Fsvvd3v + (∇φ)2 + B2 + 2∇φ · A,t

8π
I

− E E + B B − A,t A,t

4π

]

= 0. (59)

For the KM system, the weak EL equation for X sp is

EX sp
(LKD) ≡ ∂LKD

∂ X sp

− D

Dt

∂LKD

∂ Ẋ sp

= ∂

∂x

[(
−A · Ẋ sp + φ − 1

2
Ẋ2

sp

)
δ2

]

+ ∂

∂x
· [Ẋ sp(Ẋ sp + A)δ2]. (60)

The symmetry groups (42) and (50) give the energy and
momentum conservation laws (19) and (20) after the weak EL
equation for X sp and EL equations for φ and A are applied.

IV. SUMMARY AND CONCLUSIONS

In summary, a close examination of the field theory
for classical particle-field systems reveals that the particle
field X sp and the electromagnetic field reside on different
manifolds. This unique feature is fount to imply that EX sp

(L),
the Euler derivative of the Lagrangian density L with respect
to particle’s trajectory X sp, does not vanish on the space-time
manifold, which is surprisingly different from the standard
field theory. In fact,

EX sp
(L) ≡ ∂L

∂ X sp

− D

Dt

(
∂L

∂ Ẋ sp

)
= ∂

∂x
· T , (61)
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for some non-vanishing tensor T . Equation (61) is what we
call the weak Euler-Lagrange equation, and it is the most
essential component in establishing the connection between
energy-momentum conservation and space-time symmetry for
classical particle-field systems. In fact, the energy-momentum
conservation law follows from the infinitesimal criterion of the
space-time system, after the weak Euler-Lagrange equation
is applied. The non-vanishing tensor T is a new type of
flux called the weak Euler-Lagrange current that enters the
conservation laws. For the Klimontovich-Maxwell (or Vlasov-
Maxwell) system, this theoretical construction explicitly links
the well-known energy-momentum conservation law with the
space-time symmetry, which was only cautiously suggested
previously. For reduced systems, such as the Klimontovich-
Poisson (or Vlasov-Poisson) system and the Klimontovich-
Darwin (Vlasov-Darwin) system, this theoretical construction
enable us to start from fundamental symmetry properties
to systematically derive the energy-momentum conservation
laws, which are difficult to determine otherwise.
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APPENDIX

In Sec. III, we have treated the Klimontovich-Maxwell
(KM) and Klimontovich-Poisson (KP) systems as independent
systems, each of which has its own governing equations,
Lagrangian, and conservation laws. The Vlasov-Poisson (VP)
and Vlasov-Darwin (VD) systems are regarded as the colli-
sionless limits of the KP and KD systems, respectively.

On the other hand, it is also correct to treat the KP system
as the electrostatic approximation to the KM system. From
the perspective of the governing equations, this approximation
is equivalent to replacing E by −∇φ and B by B0 in the
KM system. But this simple procedure does not work for the
corresponding conservation laws. In this section, we present a
more rigorous procedure to carry out the electrostatic approx-
imation that passes from the KM system to the KP system.
After this rigorous procedure is carried out, we find that the
correct energy conservation law for the KP system obtained
from that of the KM system is actually Eq. (49), instead of that
obtained from Eq. (19) by replacing E by −∇φ and B by B0.

The electrostatic approximation applies when the charac-
teristic velocity of the particles v and phase velocity of the
waves ω/k is much slower than the speed of light, i.e., when
v/c ∼ ω/ck ∼ ε * 1. When this condition is satisfied, it turns
out that the KM (or VM) system admits solutions with the
following ordering:

El = E(0)
l + ε E(1)

l + ε2 E(2)
l + O(ε3), (A1)

Et = ε2 E(2)
t + O(ε3), (A2)

B = B0 + ε B(1) + ε2 B(2) + O(ε3), (A3)

Fs = F (0)
s + εF (1)

s + ε2F (2)
s + O(ε3), (A4)

where El and Et are the longitudinal and transverse compo-
nents of the electric field, respectively, and B0 is the externally
applied magnetic field with ∇×B0 = 0 inside the plasma. The
superscripts “(0)”, “(1)”, and “(2)” represent the orders ε0, ε1,
and ε2. To the leading order in ε, i.e., O(ε0), the KM system
is

∂F (0)
s

∂t
+ v · ∂F (0)

s

∂x
+

(
q

m

)

s

×
(

−∇φ + 1
c
v×B0

)
· ∂F (0)

s

∂v
= 0, (A5)

∇2φ = −4π
∑

s

qs

∫
F (0)

s dv, (A6)

E(0)
l ≡ −∇φ, (A7)

which is indeed the KP system. Higher-order equations can be
derived in a straightforward manner.

For present purposes, we only need the first-order equation
for the first-order magnetic field B(1),

∇×B(1) = 4π

c

∑

s

qs

∫
vF (0)

s dv + 1
c

∂ E(0)
l

∂t
. (A8)

Note that B(1) is determined by the leading-order fields F (0)
s

and E(0)
l due to the fact that v/c ∼ ω/ck ∼ ε * 1. Even

though B(1) does not enter the governing equations for the
KP system, i.e., Eqs. (A5) and (A6), it will enter the leading
order energy conservation law for the KP system. Starting
from the exact energy conservation law for the KM system,
i.e., Eq. (19), we retain all the leading-order terms to obtain

∂

∂t

[
(∇φ)2

8π
+

∑

s

∫
F (0)

s

msv
2

2
d3v

]

+∇ ·
[

−c∇φ×B(1)

4π
+

∑

s

∫
F (0)

s

msv
2

2
vd3v

]

= 0.

(A9)

The term −c∇φ×B(1)/4π is the Poynting flux due to the
leading-order longitudinal electric field E(0)

l and the first-order
magnetic field B(1), and it must be included in the leading-order
energy equation, because ck/ω ∼ 1/ε raises the order of this
term by one. Since B(1) is uniquely determined by F (0)

s and E(0)
l

through Eq. (A8), the Poynting flux term can be expressed as

∇ ·
[−c∇φ×B(1)

4π

]
= c

4π
∇φ · ∇×B(1)

=
[
∑

s

qs

∫
vF (0)

s dv − 1
4π

∇φ,t

]

· ∇φ

= ∇ ·
(

∑

s

qsφ

∫
F (0)

s vd3v − 1
4π

φ∇φ,t

)

, (A10)

where the continuity equation derived from Eq. (A5) has
been used. Finally, the leading-order energy conservation

043102-7



HONG QIN, JOSHUA W. BURBY, AND RONALD C. DAVIDSON PHYSICAL REVIEW E 90, 043102 (2014)

equation is

∂

∂t

[
(∇φ)2

8π
+

∑

s

∫
F (0)

s

msv
2

2
d3v

]

+ ∂

∂x
·
(

∑

s

∫
F (0)

s

msv
2

2
vd3v

+
∑

s

qsφ

∫
F (0)

s vd3v − 1
4π

φ∇φ,t

)

= 0, (A11)

which is identical to Eq. (49), if F (0)
s is identified with

Fs. This demonstrates that the energy conservation derived
from the field theoretical approach for the KP system is
not only more rigorous in mathematical treatment, but also
more correct in physics content than the simple approach of
replacing E by −∇φ and B by B0 in the energy conservation
law for the KM system. A similar argument applies to
the momentum conservation law for the KP system, i.e.,
Eq. (57).
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