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a b s t r a c t

Dynamic stabilization of the ablative Rayleigh–Taylor instability of a heavy ion fusion target induced by a
beam wobbling system is studied. Using a sharp-boundary model and Courant–Synder theory, it is
shown, with an appropriately chosen modulation waveform, that the instability can be stabilized in
certain parameter regimes. It is found that the stabilization effect has a strong dependence on the
modulation frequency and the waveform. Modulation with frequency comparable to the instability
growth rate is most effective in terms of stabilizing the instability. A modulation with two frequency
components can result in a reduction of the growth rate larger than the sum of that due to the two
components when applied separately.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

In heavy ion fusion, the compression dynamics of the target is
subject to the well-known Rayleigh–Taylor (RT) instability. To
reduce the deleterious effects of the RT instability on target
performance and increase the coupling efficiency, it is necessary
to reduce the initial seed for instability growth by making the
target illumination by ion beams as symmetric and smooth as
possible. In laser-driven inertial fusion research, a sophisticated
smoothing system using distributed phase-plate technology has
been developed [1]. Recently, a similar technology using oscillating
wobbler fields has been proposed for ion-beam-driven inertial
fusion energy [2–10] to achieve the desired uniform illumination
over an annular region (see Fig. 1). The improvement of stability
properties can be attributed to two factors. First, uniform illumi-
nation reduces the initial seeding amplitude of the RT instability
[4,11–13]. Second, at a given location on the target, the energy/
momentum input is pulsating rapidly with time, which results in a
dynamic stabilization effect on the instability.

The dynamical stabilization of the Rayleigh–Taylor instability
was first studied by Wolf [14] and by Troyon [15]. For applications
to inertial confinement fusion, the concept has been investigated
by Boris [16] and Betti et al. [17]. In particular, Betti et al. [17]
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derived an ordinary differential equation for the interface oscilla-
tion associated with the ablative RT instability with time-
dependent acceleration and ablation [see Eq. (1)]. For heavy ion
fusion application, Kawata et al. [11,18,19] showed that time-
dependent acceleration effectively reduces the growth of the RT
instability. On the other hand, Piriz et al. [20] concluded that time-
modulation of the acceleration is ineffective using a model of
time-modulation consisting of a sequence of pulsed accelerations
with the shape of δ-functions.

In this paper, we show that the time-modulated acceleration
rendered by the wobbler system for heavy ion fusion drivers can
significantly reduce the growth rate of the ablative Rayleigh–
Taylor instability with an appropriate choice of the time-
modulation waveform.

Before our discussion of dynamic stabilization using a wobbler,
we note that a beam wobbling system might increase the trans-
verse dimension of the beam, and thus brings in a trade-off
between beam brightness and smoothing afforded by the wobbler.
Such a trade-off needs to be carefully studied for specific heavy ion
fusion driver designs.

To study the dynamic stabilization theoretically, we adopt a
sharp-boundary model with an ablative front [17,21], and start from
the differential equation derived by Betti et al. [17]. The difficulty in
correctly describing the dynamical behavior of the instability in this
case is the time-dependence of the acceleration, the driving force of
the instability. It turns out that Courant–Snyder theory [22] for a
second-order ordinary differential equation with general time-
dependent coefficient is an ideal theoretical tool to tackle this
problem, even though the original Courant–Snyder theory was
thods in Physics Research A (2013), http://dx.doi.org/10.1016/j.
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Fig. 1. Schematic of wobbler system and solenoidal focusing lattice for heavy ion
fusion.
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Fig. 2. Inverted pendulum on a moving platform.

Fig. 3. Sharp-boundary model for the ablative Rayleigh–Taylor instability.
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intended only for stable cases. Using this method, we find that the
stabilization effect has a strong dependence on the modulation
frequency. In particular, modulation with frequency comparable to
the growth rate is most effective in terms of stabilizing the instability.
It is also found that the reduction in growth rate has a complicated
dependence on the modulation waveform. For example, a modula-
tion with two frequency components can result in a reduction of the
growth rate larger than the sum of the reductions due to the two
components when applied separately. With a properly chosen
modulation waveform, the instability can be completely stabilized
in certain parameter regimes.

The basic idea of dynamic stabilization can be amply illustrated
by the example of the inverted pendulum on a moving platform as
shown in Fig. 2. If the platform is fixed, the pendulum is obviously
unstable. However when a time-dependent force F(t) is applied,
the platform will move accordingly, and with an appropriate
choice of the functional form of F(t) it is possible to stabilize the
dynamics of the inverted pendulum. In general, the types of time-
dependent force F(t) can be divided into three categories: feedback
controlled, pre-described, and random. For the first type, the
driving force is generated dynamically according to the position
of the pendulum. This is how an acrobat stabilizes an upside-down
wine bottle on one finger. An acrobat can train his motor system
and visual system into an excellent feedback control system for the
upside-down wine bottle, but it is not possible to design a
feedback control system for the RT instability in a heavy ion fusion
target. This is because the timescale of the instability is several
nanoseconds, which is too fast for any possible beam feedback
control. The third type, randommodulation, is probably the easiest
to implement while also being the most ineffective with the same
modulation amplitude. The wobbler system for heavy ion fusion
fits into the second category. Needless to say that the challenge is
to find a systematic method to determine the optimal time-
modulation waveform for the driving beam.

Note that in Refs. [11,19], the stabilizing effects due to the
second type of modulation are referred as “dynamic mitigation”.
Please cite this article as: H. Qin, et al., Nuclear Instruments & Me
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In this paper, we do not adopt this terminology, and use the
general phrase “dynamic stabilization” for the stabilizing effect due
to any type of time-modulation.

The paper is organized as follows. In Section 2, we introduce
the sharp-boundary model for the ablative Rayleigh–Taylor
instability. The Courant–Snyder theory for unstable solutions of
second-order ordinary differential equations with time-dependent
coefficients is described in Section 3, and the dynamic stabilization
of the ablative RT instability with wobbling beams for heavy ion
fusion applications is studied in Section 4.
2. Sharp-boundary model for the ablative Rayleigh–Taylor
instability

In this section, we describe the sharp-boundary model for the
ablative Rayleigh–Taylor instability and the corresponding govern-
ing differential equation that will be used in the study of the
dynamic stabilization of the instability in Section 4. In this model,
the heavy medium and the light medium are separated by a sharp-
boundary interface (see Fig. 3). The density is constant on both
sides of the interface, but discontinuous across the interface,
which is accelerated in the ex direction with an acceleration g(t)
by the ablative force. In the frame moving with the interface, an
object with mass m is subject to an inertial force mg(t) in the −ex
direction. The density and ablative velocity in the moving frame in
the two regions are denoted by ðρ1; v1Þ and ðρ2; v2Þ; respectively.
The values of g(t), v1 and v2 are positive.

The ablative Rayleigh–Taylor instability can be characterized by
the unstable perturbation of the interface, ηðy; tÞ∼ηðtÞexpðiky−iωtÞ,
between the heavy and light media. It is assumed that k40 without
loss of generality. In the limit of A≡ðρ2−ρ1Þ=ðρ2 þ ρ1Þ-1, the ordinary
differential equation for ηðtÞ derived by Betti et al. [17] is

d2η

dt2
þ kvA

dη
dt

−kAgη¼ 0 ð1Þ

where g is the acceleration, and vA≡v240 is the ablative velocity of
the heavy medium. Both g and vA are time-dependent, determined
by the time-dependent energy deposition by the driver at the
ablative front. In the present study, we treat g(t) and vA(t) as
prescribed functions. The first-order derivative term in Eq. (1) can
be transformed away by the following transformation from η to ξ:

η¼ ξ exp −
1
2

Z t

0
kvAðt′Þ dt′

� �
: ð2Þ

In terms of ξ, the differential equation is

d2ξ

dt2
− kAg þ 1

4
k2v2A þ

k
2
dvA
dt

� �
ξ¼ 0: ð3Þ

From Eq. (2), it is evident that η is more stable than ξ due to the factor
expð−1

2

R t
0 kvAðt′Þ dt′Þ, which is the well-known effect of ablative

stabilization. Once the ablative velocity vA(t) is prescribed, this
stabilization effect is determined, and we only need to focus on the
dynamics of ξ.
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The coefficient of ξ in Eq. (3) can be viewed as a time-
dependent drive for ξ. To separate the time-dependent part of
the drive from the time-independent part, we write

gðtÞ ¼ g0 þ δgðtÞ; vAðtÞ ¼ vA0 þ δvAðtÞ: ð4Þ

Then, it can be shown that

kAg þ 1
4
k2v2A þ

k
2
dvA
dt

¼ γ20 þ δγ2 ð5Þ

γ0≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAg0 þ 1

4k
2v2A0

q
ð6Þ

where γ0 is the growth rate when there is no time-modulation,
and δγ2 is the time-dependent part of the drive. If we normalize
the time t by the 1=γ0, then by using the normalized time s≡tγ0, Eq.
(3) can be simplified to give

d2ξ

ds2
−hðsÞξ¼ 0 ð7Þ

hðsÞ≡1þ δhðsÞ; δhðsÞ≡δγ2=γ20: ð8Þ

We assume here that δhðsÞ has a prescribed functional form
determined by the time variation of the beam energy. According
to the study by Betti et al. [17] and Takabe et al. [23], the typical
size of δhðtÞ is in the range of 3:5≤δhðtÞ≤5:5. We will use Eq. (7) to
study the dynamic stabilization of the ablative RT instability with a
time-dependent drive in the next two sections.
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Fig. 4. Growth rate plotted as a function of the modulation amplitude q for
normalized period S¼1 and S¼2.
3. Courant–Snyder theory

Eq. (7) is a second-order ordinary differential equation with a
time-dependent coefficient. It describes a harmonic oscillator with
time-dependent spring constant, which can be viewed as the
second simplest physics problem and has many important appli-
cations [24,25]. The well-studied Matthew's equation is a special
case of Eq. (7). If δhðsÞ is piece-wise constant or a series of
δ-functions, then the solution of Eq. (7) can be constructed
piece-wise [20]. However, it is not desirable to restrict to a specific
class of functions, since our goal is to find the most optimal
functional form of the modulation such that the dynamic stabili-
zation effect is maximized.

It turns out that the Courant–Synder theory for a second-order
ordinary differential equation with a time-dependent coefficient is
an effective tool to tackle Eq. (7), even though the Courant–Synder
theory [22] was first developed for stable charged particle
dynamics in a focusing lattice. It applies to the unstable case
studied here with only little modification. Here we list the main
result of the Courant–Synder theory without a detailed derivation,
which can be found in Refs. [22,26].

The solution of Eq. (7) can be expressed as a linear map M(s) of
the initial conditions ðξ0; _ξ0Þ at s¼ s0 [22,26], i.e.,

ξ
_ξ

 !
¼MðsÞ

ξ0
_ξ0

 !
: ð9Þ

The linear map is given by

MðsÞ ¼
w 0
_w 1

w

 !
cos ϕ sin ϕ

− sinϕ cosϕ

 !
w−1

0 0
− _w0 w0

 !
ð10Þ

where w(s) is a solution of the envelope equation

d2w

ds2
−hðsÞw¼w−3 ð11Þ

with initial conditions ðw0; _w0Þ at s¼ s0, and ϕðsÞ is the phase
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advanced associated with w(s):

ϕðsÞ ¼
Z s

s0

1
w2ðs′Þ ds′: ð12Þ

In general, we can choose h(s) to be a periodic function of s≡γ0t
with normalized period S¼ γ0T , where T is the unnormalized
period. Then the one-period map M(S) completely determines the
dynamic behavior of ξ. The eigenvalues of M(S) determines the
eigenfrequencies of the dynamics of ξ. In particular, let μ denote
the eigenvalue of M(S) with the largest absolute value, then the
growth rate of ξ is given by ln jμj. Using the symmetry properties
of the envelope equation [24], it can be proven that the eigenva-
lues of M(S) are independent of the choice of the initial time s0 and
initial conditions. Therefore, any one-period solution of Eq. (11)
from s¼ s0 to s¼ s0 þ S for any initial condition ðw0; _w0Þ can be
used to calculate the growth rate ln jμj of the ξ dynamics.
4. Dynamic stabilization of the ablative Rayleigh–Taylor
instability

In this section, we apply the Courant–Snyder theory outlined in
Section 3 to calculate the growth rate of the transformed interface
displacement ξ for different choices of the modulation function
δhðsÞ with the form

hðsÞ ¼ 1þ δhðsÞ ¼ 1þ q sin ð2πs=SÞ ð13Þ
where s≡γ0t is the normalized time, q is the modulation amplitude,
and S≡γ0T is the normalized period. The modulation amplitude is
selected to be in the range of 0oqo6.

Shown in Fig. 4 is the growth rate plotted as a function of the
modulation amplitude q for two different periodicities corresponding
to S¼1 and S¼2. It is clear that larger modulation amplitude results
in a larger reduction in growth rate, as expected. For a modulation
with a period twice the unmodulated e-folding time, S≡γ0T ¼ 2, the
instability can be completely suppressed when the modulation
amplitude q reaches 4.6. Comparing the two curves in Fig. 4, we
note that a slower modulation generates a larger reduction of growth
rate. This fact is further demonstrated in Fig. 5, where the growth rate
is plotted as a function of the periodicity S for two different
modulation amplitudes. For the case of q¼6, the instability can be
stabilized when S¼1.5. We note that the slope of the curve near
S¼1.5 is steep, indicating a sensitive functional dependence of the
growth rate on the periodicity S≡γ0T . The complex functional
dependence is further illustrated in Fig. 6, where two modulations
with different amplitudes and periodicities are applied simulta-
neously. An interesting synergy is observed. For the first modulation
thods in Physics Research A (2013), http://dx.doi.org/10.1016/j.
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Fig. 5. Plots of growth rate as a function of the periodicity S≡γ0T for q¼6 and q¼3.
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with ðq; SÞ ¼ ð2;1Þ there is almost no reduction in growth rate. For the
second modulation with ðq; SÞ ¼ ð4;2Þ; the reduction is about 44%.
However, when the two modulations are applied together with a
relative phase α, i.e., hðsÞ ¼ 1þ 2 sin ð2πsÞ þ 4 sin ðπsþ αÞ, the reduc-
tion reaches 67% provided the relative phase α is chosen correctly.
This reduction in growth rate is much larger than the sum of the
reductions due to the two modulations when applied separately.
Furthermore, when the relative phase α between the two modula-
tions is not selected correctly, the reduction can be even smaller than
that when the second modulation is applied alone. These results
imply that when a wobbler system for heavy ion fusion drivers is
designed, it is necessary to carry out a thorough optimization of the
modulation waveform, such that the dynamic stabilization effect can
be maximized for a given modulation amplitude. For heavy ion
fusion targets, the expected growth rate of the ablative RT instability
is γ0∼2� 109 Hz. The case of S¼1 corresponds to a modulation
frequency of 13 GHz. If the wobbler plates are placed at the beam
upstream before the drift compression, then the frequency of the
wobbler field required is in the range of 130 MHz, if we assume a
typical longitudinal compression ratio of 100.
5. Conclusions and future work

To conclude, we have studied the dynamic stabilization of the
ablative Rayleigh–Taylor instability induced by a beam wobbler
system that can deliver a time-modulated energy deposition on the
Please cite this article as: H. Qin, et al., Nuclear Instruments & Me
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ablation front. Using a sharp-boundary model for the ablative
Rayleigh–Taylor instability and Courant–Synder theory, we have
shown, with an appropriately chosen modulation waveform, that
the instability can be completely stabilized in certain parameter
regimes. It is found that the stabilization effect has a strong
dependence on the modulation frequency. Modulation with fre-
quency comparable to the growth rate is most effective in terms of
stabilizing the instability. It is also found that the reduction of the
growth rate has a complex dependence on the modulation wave-
form. For example, a modulation with two frequency components
can result in a reduction of the growth rate larger than the sum of the
reductions due to the two components when applied separately.

The sharp-boundary model reduces the collective dynamics to a
second-order ordinary differential equation for the displacement of
the interface with a time-dependent coefficient. Because it is a
system with one degree of freedom, the analysis of the dynamics is
greatly simplified. In principle, the dynamic stabilization mechanism
should also be applicable when more degrees of freedom are
allowed. Generalization of the analysis to higher dimensions [27–
29] can include more physical effects, such as compression and heat
conductivity, in the system, and thus increases the fidelity of the
model. It is also possible to develop numerical simulation methods
for the dynamic stabilization process in a more realistic geometry
with smooth density gradient, which corresponds to a dynamic
system with infinite degrees of freedom. Progress in these directions
will be reported in the future.
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