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Abstract
Courant-Snyder (CS) theory for one degree of freedom is generalized to the case of coupled

transverse dynamics in general linear focusing lattices with quadrupole, skew-quadrupole, dipole,

and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy.

The envelope function is generalized into an envelope matrix, and the phase advance is generalized

into a 4D sympletic rotation. The envelope equation, transfer matrix, and the CS invariant of

the original CS theory, all have their counterparts, with remarkably similar expressions, in the

generalized theory.

PACS numbers: 29.27.-a,52.20.Dq
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For a charged particle in an uncoupled quadrupole focusing lattice, the classical Courant-

Snyder (CS) theory [1] gives a complete description of its dynamics. Because the dynamics

in the x−direction and y−direction are decoupled, the equations of motion in both directions

are given by

q̈ + κq(t)q = 0 , (1)

where q represents either of the transverse coordinates, x or y, and κq(t) is the time-

dependent linear focusing strength. For a quadrupole lattice, κx (t) = −κy (t) . The CS

theory states that the solution of Eq. (1) can be expressed as a time-dependent symplectic

map applied to the initial phase space coordinates, i.e., (q, q̇)T = M1 (t) (q0, q̇0)T ,

M1 (t) =


√
β

β0
[cosφ+ α0 sinφ]

√
ββ0 sinφ

−1 + αα0√
ββ0

sinφ+ α0 − α√
ββ0

cosφ
√
β0

β
[cosφ− α sinφ]

 , (2)

where the superscript “T” denotes the transpose operation, and α (t) , β (t) , and φ (t) are

time-dependent functions defined in terms of the envelope function w (t) by

β (t) ≡ w2 (t) , α (t) ≡ −wẇ , φ (t) ≡
ˆ t

0

dt

β (t) . (3)

The envelope function w (t) is determined by the nonlinear envelope equation

ẅ + κq (t)w = w−3 . (4)

In Eq. (2) q0 = q (t = 0) , q̇0 = q̇ (t = 0) , β0 = β (t = 0) , and α0 = α (t = 0) are initial

conditions. The transfer matrix M1 (t) can be decomposed as [2]

M1 (t) =

 w 0

ẇ
1
w


 cosφ sinφ

− sinφ cosφ


 w−1

0 0

−ẇ0 w0

 , (5)

from which it is clear that the physical meaning of φ is the phase advance, and β−1 = w−2

is the rate of phase advance. The Courant-Snyder invariant [1, 3] is given by

I = q2

w2 + (wq̇ − ẇq)2 = (q, q̇)

 γ α

α β


 q

q̇

 , (6)

γ(t) ≡ w−2 + ẇ2 . (7)

The functions α (t) , β (t) , and γ (t) defined by Eqs. (3) and (7) are known as the Twiss

parameters. These main results of the CS theory constitute a parameterization of the
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symplectic transfer mapM1(t) for a standard uncoupled quadrupole lattice, and provide the

foundation for accelerator and beam physics. Mathematically, there are different schemes to

parameterize a time-dependent symplectic map. Among these, the CS parameterization is

unique because it describes the physics of charged particle dynamics. The main components

of the CS theory, i.e., the phase advance, the envelope equation, the transfer matrix, and

the CS invariant are of considerable importance to beam physics. The envelope function

describes the transverse dimensions in configuration space while the CS invariant defines the

emittance in phase space. This theoretical framework also makes it possible to investigate

collective effects associated with high-intensity beams. For instance, it is used to construct

the Kapchinskij-Vladimirskij distribution [4–6].

However, the CS theory can only be applied to the ideal case of an uncoupled quadrupole

focusing lattices. In realistic accelerators, there also exist bending magnets, torsion of the

design orbit (fiducial orbit), and skew-quadrupole components introduced intentionally or

by misalignment. In certain applications, such as the NDCX-II experiment [7], solenoidal

magnets are also used. When these additional linear components are included, the transverse

dynamics are coupled, and the dynamics of a charged particle relative to the fiducial orbit

are governed by a general time dependent Hamiltonian [8]

H = 1
2z

TAz , A =

 κ (t) R (t)

R (t)T m−1 (t)

 . (8)

Here, z = (x, y, px, py)T are the transverse phase space coordinates, and κ(t), R (t) , and

m−1 (t) are time-dependent 2×2 matrices. The matrices κ(t) andm−1 (t) are also symmetric.

The skew-quadrupole and dipole components are included in the off-diagonal terms of κ (t) ,

and the solenoidal component and the torsion of the fiducial orbit are included in R (t) . The

variation of beam energy along the the fiducial orbit is reflected in the mass matrix m−1 (t) .

For complete generality, we further allow m−1 (t) to be any real symmetric matrix. The

transfer matrixM(t) corresponding to H is a time-dependent 4×4 symplectic matrix, which

has 10 time-dependent parameters and admits many different schemes for parameterization.

Teng and Edwards [9–11] first derived a set of parameterization schemes for M (t) , some

of which have been adopted in lattice design and particle tracking codes, such as the MAD

code [12]. A class of different parameterizations has also been developed by Dattoli, et al.

[13]. However, these parameterization schemes are rather mathematical and fail to connect
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with important physical paramenters of the beam, in contrast to the original CS theory. For

example, they cannot be used effectively to describe the instability properties of the coupled

dynamics, and are not directly related to beam envelopes and emittance. In order to describe

beam envelopes for coupled dynamics, Ripken [14, 15] developed a method without using

these parameterization schemes. In short, the elegant and much-needed connection with the

physics of beam dynamics in the original CS theory for 1-degree of freedom is lost in these

parameterization schemes.

Recently we have generalized the CS theory for uncoupled dynamics to treat coupled

dynamics induced by a skew-quadrupole lattice [16–19]. In this Letter, we complete the de-

velopment of the generalized CS theory by allowing the focusing lattice to assume the most

general form in Eq. (8), with bending magnets, torsion of the design orbit, and solenoidal

magnets, in addition to quadrupole and skew-quadrupole components. In this generalized

theory, the physics components of the original CS theory, i.e., the phase advance, the en-

velope equation, the transfer matrix, and the CS invariant are all generalized to the 2D

coupled case with identical structure.

We will use a time-dependent symplectic transformation technique [16, 19, 20]. A gener-

alized envelope equation in 2×2 matrix form for the most general form of coupled dynamics

is developed [see Eq. (16)]. In the original CS theory, the 1D envelope equation (4) plays

a central role. It is also an important equation in other branches of physics, and has been

discovered or re-discovered many times [21–25]. In quantum physics, it is also known as

the Ermakov-Milne-Pinney equation [21–23], which has been utilized to study non-adiabatic

Berry phases [26] in 1D time-dependent quantum systems [27, 28]. A brief account of the

history of the 1D envelope equation can be found in Ref. [3]. The generalization of the 1D

envelope equation to higher dimensions for the most general Hamiltonian is also expected to

have many possible applications in areas other than beam physics. In addition, the 1D CS

invariant given by Eq. (6), also known as the Lewis invariant [24, 25] in quantum physics, is

generalized to higher dimension in Eq. (22).

The 1D phase advance concept is generalized to a time-dependent matrix P , which be-

longs to the symplectic rotation group Sp(4)⋂SO(4) = U(2). Here, Sp(4), SO(4), and U(2)

denote the groups of 4 × 4 symplectic matrices, 4 × 4 rotation matrices, and 2 × 2 unitary

matrices, respectively.

The generalized decomposition for the symplectic map M(t) is given by Eq. (21), which
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has exactly the same structure as the original 1D CS theory given by Eq. (5). In addition

to its aesthetic appearance, the generalized CS theory provide an effective tool to describe

the beam physics determined by the most general Hamiltonian. The 2× 2 envelope matrix

w defines the transverse dimension of the beam, and the generalized CS invariant defines

the emittance. We will also show that the stability properties of a charged particle are

completely determined by the generalized phase advance P (t), which is a time-dependent

curve in Sp(4)⋂SO(4) = U(2).

The most essential part of the generalized theory is the decomposition of the time-

dependent symplectic coordinate transformation G given by Eq. (20). The decomposition of

G as a product of SP is the well-known Iwasawa decomposition for a semi-simple Lie group

[29]. However, the unique feature of the theory developed here is that the decomposition is

given from the viewpoint of dynamics and self-consistently constructed from the generalized

envelope equation. It is a pleasant surprise to find the deep connection between the original

CS theory for charged particle dynamics [1] and the Iwasawa decomposition for Lie groups

[29], two theoretical works developed concurrently.

For the present application to beam transverse dynamics, the degree of freedom is 2.

But the theory developed is valid for any degree of freedom. For a system with n-degrees

of freedom, the time-dependent matrix A(t) specifying the Hamiltonian in Eq. (8) will

be 2n × 2n, the envelope matrix will be n × n, and the phase advance will belong to

Sp(2n)⋂SO(2n) = U(n).

We now present the detailed derivation of the generalized CS theory. We start by quickly

reviewing the time-dependent symplectic transformation technique developed by Leach [20].

For a Hamiltonian given by H1 = 1
2z

T
1 A1(t)z1, we seek a time-dependent linear symplectic

coordinate transformation z2 = S(t)z1 such that in the z2 coordinates, the dynamics are

governed by H2 = 1
2z

T
2 A2(t)z2. Here H1 is specified by a 2n × 2n symmetric matrix A1(t),

and H2 is a targeted Hamiltonian specified by a desired 2n × 2n symmetric matrix A2(t).

The required symplectic matrix S(t) must satisfy the matrix equation [20]

Ṡ = JA2S − SJA1 , (9)

where J =

 0 I

−I 0

 is the 2n × 2n unit symplectic matrix. The derivation of Eq. (9) can

be found in Refs. [16, 17, 20], and its geometric interpretation is given in Ref. [19].
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We now apply this technique to the Hamiltonian given by Eq. (8). We proceed in two

steps. First, we seek a coordinate transformation z̄ = Sz such that, in the z̄ coordinates,

the Hamiltonian assumes the form

H̄ = 1
2 z̄

T Āz̄ , Ā =

 µ(t) 0

0 µ(t)

 , (10)

where µ(t) is a 2 × 2 matrix to be determined. In terms of 2 × 2 blocks, S =

 S1 S2

S3 S4

,
and Eq. (9) splits into four matrix equations. Including µ(t), we have five 2× 2 matrices to

be determined. Thus we let S2 = 0. We define w ≡ S4 because it will be clear later that S4

is the envelope matrix. Equation (9) becomes

Ṡ1 = µS3 − S1R
T (11)

S1 = µwm , (12)

Ṡ3 = −µS1 − S3R
T + wκ , (13)

S3 = −ẇm+ wRm. (14)

Because Eqs. (11)-(14) describe a curve in Sp(4), they are consistent with the symplectic

condition S1w
T = I, which implies

µ =
(
wmwT

)−1
. (15)

Then, from Eqs. (13) and (14) we immediately obtain the following matrix differential equa-

tion for the envelope matrix w,
d

dt

(
dw

dt
m− wRm

)
+ dw

dt
mRT + w

(
κ−RmRT

)
−
(
wTwmwT

)−1
= 0 . (16)

This is the generalized envelope equation. It generalizes the 1D envelope equation (4) (or

Ermakov-Milne-Pinney equation [21–23]), as well as the previous matrix envelope equation

for the case with only quadrupole and skew-quadrupole magnets [16–19]. For n-degrees

of freedom, the envelope matrix w will be n × n, and the generalized envelope equation

has the same format as Eq. (16). Once w is solved for from the envelope equation, we can

determine S1 from Eq. (12) and S3 from Eq. (14). In terms of the envelope matrix w, the

first symplectic transformation S and its inverse are given by

S =

 w−T 0

(wR− ẇ)m w

 , S−1 =

 wT 0

(w−1ẇ −R)mwT w−1

 . (17)
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The second step is to use another coordinate transformation ¯̄z = P (t)z̄ to transform H̄

into a vanishing Hamiltonian ¯̄H = 0, thereby rendering the dynamics trivial in the new

coordinates. In this case, the determining equation for the transformation P (t) is

Ṗ = −PJĀ = P

 0 −µ

µ 0

 . (18)

It is straightforward to verify that −JĀ ∈ sp(4)⋂ so(4), where sp(4) and so(4) are the Lie

algebras of Sp(4) and SO(4), respectively. Thus P (t) is a curve in the group of 4D symplectic

rotations, i.e., P (t) ∈ Sp(4)⋂SO(4) = U(2), provided the initial condition of P (t) is chosen

such that P (0) ∈ Sp(4)⋂SO(4) = U(2). We call P (t) the generalized phase advance, an

appropriate title in light of the fact that P (t) is a symplectic rotation. The Lie algebra

element (infinitesimal generator) −JĀ =

 0 −µ

µ 0

 is therefore the phase advance rate,

and it is determined by the envelope matrix through Eq. (15). Since Sp(4)⋂SO(4) = U(2),

P and its inverse must have the form of

P =

 P1 P2

−P2 P1

 , P−1 = P T =

 P T
1 −P T

2

P T
2 P T

1

 . (19)

Combining the two symplectic coordinate transformations, we obtain the transformation

¯̄z = G(t)z = P (t)S(t)z . (20)

As mentioned above, the decomposition of G as a product of a symplectic rotation (unitary)

matrix P and a lower-triangular matrix S of the specified form is the well-known Iwasawa

decomposition for a semi-simple Lie group [29]. Given that we have derived the decompo-

sition from purely dynamical considerations, the theory developed here can be viewed as a

dynamical interpretation of the Iwasawa decomposition for the symplectic group.

Because ¯̄H = 0, ¯̄z = const. Therefore, the symplectic matrix specifying the map between

z0 and z = M(t)z0 is

M(t) = S−1P−1P0S0 =

 wT 0

(w−1ẇ −R)mwT w−1

P T

 w−T 0

(wR− ẇ)m w


0

, (21)

where subscript “0” denotes initial conditions at t = 0, and P0 is taken to be I without

lose of generality since P is a symplectic rotation. This expression for M(t) generalizes
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the decomposition of the symplectic map for the original 1D CS theory given by Eq. (5).

Specifically, the 2D rotation matrix, which is also symplectic, in Eq. (5) is generalized into a

4D symplectic rotation P T . The phase advance P is generated by the infinitesimal generator

determined by the envelope matrix through µ =
(
wmwT

)−1
, just as in the original 1D CS

theory where the infinitesimal generator of the phase advance is w−2 for a scalar envelope

w. The first and the third matrices in Eq. (5) obviously have the same construction as their

counterparts in Eq. (21).

Given the lattice function A(t), we need to solve the envelope equation (16) and the

phase advance equation (18) to construct M(t) according to Eq. (21). The initial conditions

for w and ẇ can be arbitrary except that they have to satisfy the symplectic condition

wST3 = S3w
T , which is a single constraint since w is a 2× 2 matrix. The envelope equation

(16) admits a 1D gauge freedom as well. For any constant matrix c ∈ O(2), we can show

by straightforward calculation that if w is a solution of Eq. (16), then cw is also a solution.

However, P (t) and M(t) are independent of this gauge. The number of initial conditions

for Eq. (16) is 8, and the dimension of P (t) as the U(2) group is 4. Subtracting the one

symplectic constraint on the initial conditions and the one gauge freedom, the total number

of independent parameters for M(t) is 10, as expected.

Because ¯̄z = const,

Iξ = zTSTP T ξPSz (22)

is a constant of motion for any constant 4 × 4 positive definite matrix ξ. This expression

generalizes the CS invariant [1] (or Lewis invariant [24, 25]) for 1-degree of freedom in

Eq. (6). In particular, we can define Iξ, with ξ being the unit matrix, to be the special

invariant corresponding to the original CS invariant. In this case, the phase advance P in

Eq. (22) drops out, and

ICS ≡ zTSTSz = zT

 γ α

αT β

 z ,
where α, β, and γ are the generalized Twiss parameters defined by

α ≡ wTS3 ,

β ≡ wTw ,

γ ≡ ST3 S3 + w−1w−T .
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It is straightforward to verify that as time-dependent 2× 2 matrices, α, β, and γ satisfy

βγ = I + α2, (23)

which is a familiar relationship in the original CS theory between the scalar Twiss parameters

defined by Eqs. (3) and (7). Use has been made of the symplectic condition, wST3 = S3w
T ,

in obtaining Eq. (23).

The envelope matrix w and the invariant Iξ define the beam dimensions and emittance

for both low intensity beams and high intensity beams with strong space-charge potential.

Investigation of these properties will be reported on in future publications. Here we demon-

strate how to use the generalized theory to study the instability properties of the transverse

dynamics governed by the HamiltonianH(t) specified in Eq. (8) for a general periodic lattice.

After solving for a matched envelope matrix, the one-turn map Mc (t) is given by

Mc (t) = S−1(t)P T
c (t)S(t) , (24)

where P T
c (t) is the one-turn phase advance transposed. Equation (24) states that Mc(t) is

similar to P T
c (t), and thus we reach the remarkable conclusion that the stability proper-

ties of the dynamics are completely determined by the one-turn phase advance Pc(t). This

significantly simplifies the stability analysis and showcases the physical relevance of the gen-

eralized CS parameterization scheme developed here. Since Pc(t) is a symplectic rotation,

whose determinant is one, we obtain the following stability criterion: a necessary and suffi-

cient condition for the general transverse dynamics to be unstable is that PT (t) has an eigen

value λ with |λ| 6= 1.
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