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In a linear trap confining a one-component nonneutral plasma, the external focusing force is a

linear function of the configuration coordinates and/or the velocity coordinates. Linear traps

include the classical Paul trap and the Penning trap, as well as the newly proposed rotating-radio-

frequency traps and the Mobius accelerator. This paper describes a class of self-similar nonlinear

solutions of nonneutral plasma in general time-dependent linear focusing devices, with self-

consistent electrostatic field. This class of nonlinear solutions includes many known solutions as

special cases. VC 2011 American Institute of Physics. [doi:10.1063/1.3600623]

Nonneutral plasmas are often confined in traps with

external focusing fields, such as the Paul trap1,2 and the Pen-

ning trap.3–8 For most of the often-used traps, the external fo-

cusing forces are linear functions of the configuration

coordinates and/or the velocity coordinates. For example, in

a Paul trap the external focusing force in the transverse

direction is proportional to the transverse displacement from

the trap axis, whereas in a Penning trap the transverse focus-

ing force is proportional to the transverse velocity. (Strictly

speaking, this linearity is valid near the axis for real devices.)

We call these types of traps linear traps. The strength of the

external focusing field is generally allowed to vary with

time. In many cases, such as the Paul trap, it is necessary to

have time-dependent focusing fields to provide transverse

confinement. Obviously, the quadrupole and solenoidal fo-

cusing lattices in particle accelerators9 are also linear focus-

ing devices. Recently, new types of traps, such as rotating-

radio-frequency ion traps,10 and new types of focusing latti-

ces, such as the Mobius accelerator,11 have been proposed.

The main feature of these new devices is that the focusing

force components in different directions are linearly coupled,

which offers advantages in terms of stability and focusing

strength over standard traps and focusing lattices. Yet, they

all fit into the category of linear focusing devices. In this pa-

per, we describe a class of self-similar nonlinear dynamical

solutions of nonneutral plasmas in general linear focusing

devices, with self-consistent electrostatic potential generated

by the oscillating one-component plasma. The starting point

of the present study is the set of macroscopic fluid equations

with self-consistent electric field, which model the nonlinear

dynamics of nonneutral plasmas. The class of nonlinear dy-

namical solutions admitted by the fluid equations includes

many of the known modes in linear focusing systems as spe-

cial cases, such as the well-known transverse envelope oscil-

lations of a charged particle bunch in focusing lattices of

accelerators and store rings, and the equilibrium solution of a

cold nonneutral plasma in a time-independent Penning trap.

It also includes new collective oscillation modes that have

not been reported before. As an example, a nonlinear collec-

tive oscillating mode in a time-dependent Penning trap is

identified.

Collective dynamics of nonneutral plasmas are of con-

siderable practical importance.2,12–20 Previous approaches

for investigating collective dynamics of a nonneutral plasma

typically first find an equilibrium solution, then analyze the

evolution of linear perturbations relative to the equilibrium.

An excellent example is the linear eigenmode analysis by

Dubin13,14,16,17 and Bollinger et al..2 Dubin14 also developed

a class of self-similar solution for the penning trap [detailed

discussion is given after Eq. (11)]. Compared with the classi-

cal studies, the analysis presented here examines a new class

of nonlinear modes that are applicable to time-dependent lin-

ear focusing devices, including Paul traps, and Penning traps

with time-dependent confining magnetic field B0(t)ez, where

there exists no quasi-steady equilibrium state (@/@t¼ 0) for

the plasma. It also applies to the periodic focusing lattice

with quadrupole and solenoidal magnets in accelerators and

storage rings.

We model the dynamics of a one-component nonneutral

plasma in an applied linear focusing field including the

effects of the self-generated electrostatic field, E ¼ �ru, by

the following set of macroscopic fluid equations:

@n

@t
þr � nvð Þ ¼ 0 ; (1)

@v

@t
þ v � rvþ q

m
ruþrP

mn
þ j1 tð Þ � xþ j2 tð Þ � v ¼ 0 ; (2)

@

@t
þ v � r

� �
P

nc

� �
¼ 0 ; (3)

r2u ¼ �4pqn ; (4)

where –j1(t)�x is the applied focusing force proportional to

the displacement x, and –j2(t)�v is the focusing force propor-

tional to the average flow velocity v. Here, q and m are the

particle charge and mass, respectively, n(x,t) is the particle

number density, v(x,t) is the average flow velocity, and
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uðx; tÞ is the space-charge potential generated by the charged

particles. The conducting boundaries are assumed to be far

away, i.e., xwj j ! 1. The time-dependent tensors j1(t) and

j2(t) include all of the known linear focusing forces as spe-

cial cases. In a Paul trap, the focusing coefficients are

j1 tð Þ ¼ Diag½jxx tð Þ; jyy tð Þ; jzz tð Þ�; j2 tð Þ ¼ 0 : (5)

Here, Diag[a,b,c] denotes the 3� 3 diagonal matrix with di-

agonal components a, b, and c. For a standard Paul trap, the

transverse field is a quadrupole potential, and jxx(t)¼ –jyy(t)
are the (oscillatory) transverse focusing coefficients, and the

focusing coefficient jzz(t)> 0 provides longitudinal confine-

ment of the particles in the z-direction. [In Eq. (5), we do not

generally require that jxx (t)¼ –jyy(t). The meaning of Paul

trap here is a bit more general than the standard convention.]

In a Penning trap, transverse confinement is provided by a

uniform axial magnetic field B0 (t) ez, and j1 (t) and j2 (t)
are given by

j1 tð Þ ¼
� 1

2
x2

z tð Þ �X0 tð Þ 0

X0 tð Þ � 1
2
x2

z tð Þ 0

0 0 x2
z tð Þ

0
B@

1
CA;

j2 tð Þ ¼
0 �2X tð Þ 0

2X tð Þ 0 0

0 0 0

0
B@

1
CA; (6)

where X(t)¼ qB0(t)/2mc is the Larmor frequency, and

x2
z ðtÞ > 0 is the focusing coefficient in the longitudinal

direction. The term X0(t) denotes the time derivative of X(t),
representing the force due to the inductive electric field

when B0(t) varies with time. As a simple model, the pressure

P(x,t) is taken to be a scalar, and the energy balance equation

for the fluid is assumed to have the polytropic form in

Eq. (3), where c is the polytropic index. We emphasize that

the energy equation adopted in the present analysis is a sim-

ple theoretical model to allow analytical progress, as dis-

cussed in detail by Dubin14 and Amiranashvili and Stenflo.21

The physics conclusions obtained in this paper are not sensi-

tive to this choice of model.

The class of nonlinear collective dynamical solutions of

the one-component nonneutral plasma is specified by the fol-

lowing solution structures admitted by the system of fluid-

Poisson equations (1)–(4). The density n(x,t) is taken to be

uniform inside an ellipsoid and zero outside. The shape and

orientation of the ellipsoid depend on time t, and are deter-

mined from (see Fig. 1)

S x; tð Þ ¼ Dij tð Þxixj < 1 : (7)

Inside the ellipsoid, the field quantities are assumed to be of

the form

nðx; tÞ ¼ n tð Þ; viðx; tÞ ¼ vij tð Þxj; Pðx; tÞ ¼ p0 tð Þ� pij tð Þxixj :

(8)

Here, xi (i¼ 1,2,3) denotes the three configuration coordi-

nates of the displacement vector x, and vi (i¼ 1,2,3) denotes

the three components of the flow velocity vector v. There is

an implicit summation over the repeated indices in Eq. (8).

Equations (7) and (8) specify a particular space-time struc-

ture of the dynamical solutions. The velocity vector vi is a

linear function of the displacement vector xi, and the coeffi-

cient is a time-dependent tensor vij(t). The pressure P is

given by a time-dependent function p0(t) plus a quadratic

function of the displacement vector, specified by the sym-

metric tensor pij(t).
The ellipsoid S(x,t)¼Dij(t)xixj< 1 is determined self-

consistently by the velocity field according to

dS

dt
¼ @S

@t
þ v � @S

@x
¼ 0 ; (9)

In terms of the matrices v and D, Eq. (9) can be expressed as

D0 þ vTDþ Dv ¼ 0; or D0ij þ vliDlj þ Dilvlj ¼ 0; (10)

where vT denotes the transpose of v. If Dij is initially sym-

metric and positive-definite, then the solution for Dij(t) deter-

mined by Eq. (10) is symmetric and positive-definite at all

subsequent times. This is because vljDljþDljvlj is symmetric,

and Dij cannot cross the boundary jDijj ¼ 0, which corre-

sponds to infinitely large density and pressure. In addition, if

the initial conditions are chosen such that the pressure P(x,t)
vanishes at the boundary of the ellipsoid S(x,t)¼ 1 at t¼ 0,

then Eqs. (3) and (9) guarantee that the pressure vanishes at

the boundary at all time, i.e., Pðx; tÞjSðx;tÞ ¼ 1 for t � 0.

For given Dij and total number of charged particles N,

the solution to Poisson’s equation (4) with boundary condi-

tion of uðjxj ! 1Þ ¼ 0 is given by9

u ¼ � 3Nq

4

ð1
0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ s
� �

k2
2 þ s

� �
k2

3 þ s
� �q

� 1� X2

k2
1 þ s

� Y2

k2
2 þ s

� Z2

k2
3 þ s

 !
: (11)

Here, k�2
1 , k�2

2 , k�2
3 are the three eigenvalues of Dij,

and (X,Y,Z)T¼Q–1(x,y,z)T denotes rotated coordinates. The

orthogonal matrix Q is constructed from the three

FIG. 1. (Color online) The density n(x,t) is uniform inside the ellipsoid and

zero outside. The shape and orientation of the ellipsoid depend on time, and

are determined from S(x,t)¼Dij(t)xixj< 1.
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eigenvectors a1, a2, a3 of Dij as Q¼ (a1, a2, a3). Note that ki

and Q are uniquely determined by the matrix Dij.

The self-similar solution has the form of homogeneous

deformations, and the solution ansatz is similar to that con-

structed by Dubin14 for a time-independent Penning trap.

The fact that homogeneous deformations of flows lead to

exact solutions of hydrodynamic equation system is well-

known. Such solutions can be traced back to the 18th century

and were first obtained for gravitating fluids by

Chandrasekhar.22

Assuming the solution ansatz in Eq. (8), we find that the

spatial dependence in the fluid equations (1)–(4) drops out,

and the system reduce to a set of ordinary differential equa-

tions (ODEs) for the density n(t), velocity matrix vij(t), pres-

sure matrix pij(t), and p0(t) given by

n0 tð Þ þ nTrðvÞ ¼ 0 ; (12)

v0 þ vv� q

m
QEQ�1 þ j1 þ j2v� 2p

mn
¼ 0 ; (13)

p0 þ vTpþ pv� cp
n0

n
¼ 0 ; (14)

p0

nc

� �0
¼ 0 : (15)

Here, Tr(v) denotes the trace of v, and E is the matrix repre-

sentation of the self-electric field, which expresses the elec-

tric field in (X, Y, Z) coordinates as EijXj. From Eq. (11), we

obtain

Eij ¼ Diag E1;E2;E3ð Þ ;

E1 ¼
3Nq

2k3
1

G
k2

k1

;
k3

k1

� �
; E2 ¼

3Nq

2k3
2

G
k1

k2

;
k3

k2

� �
;

E3 ¼
3Nq

2k3
3

G
k1

k3

;
k2

k3

� �
;

G u; vð Þ �
ð1

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sð Þ u2 þ sð Þ v2 þ sð Þ

p : (16)

Note that the space-charge force qQEQ–1/m in Eq. (13) is

uniquely determined by the matrix Dij.

Equations (10) and (12)–(14) form a system of ODEs

for Dij, n, vij, and pij, which determines a class of nonlinear

dynamical solutions of the one-component plasma in the

external focusing field.

For certain forms of applied focusing fields, Eqs. (10)

and (12)–(14) admit solutions with reduced dimensions. For

example, in the time-dependent Paul trap described by

Eq. (5), the system obviously admits solutions with Q¼ I,
where I is the identity matrix, and diagonal solutions with vij,

pij, and Dij,

vij ¼ Diag½u1; u2; u3�; pij ¼ Diag½p1; p2; p3�;

Dij ¼ Diag½D1;D2;D3�: (17)

The ODE system for n, ui, pi, and Di is then given by

n0 tð Þ þ n
X3

i¼1

ui ¼ 0 ; (18)

u0i þ u2
i �

q

m
Ei þ jii �

2pi

mn
¼ 0 ; (19)

p0i þ 2uipi � cpi
n0

n
¼ 0; (20)

D0i þ 2uiDi ¼ 0: (21)

In the above equations, there is no summation over a

repeated index i.
The dynamics in three dimensions are coupled through

the space-charge potential and density. From Eq. (21), we

obtain ui ¼ k0i=ki, where ki ¼ 1=
ffiffiffiffiffi
Di

p
: Then Eq. (19) reduces

to an equation for ki,

k00i þ jiiki �
q

m
Eiki �

2piki

mn
¼ 0 : (22)

Equation (22) has a similar form to the familiar envelope

equation for charged particle beams in a periodic focusing

lattice. To see this, let us consider the special case where

c¼ 2, jxx¼ j yy¼ jr, and the beam cross-section is circular,

i.e., k1¼ k2¼ rb. We further assume that the ellipsoid is very

long, i.e., k1¼ k2¼ rb¼ k3, and the focusing in the z-direc-

tion is sufficiently weak that the charge bunch is uniform in

the z-direction over a scale-length comparable to rb. Then

E1 ¼ E2 ¼ 3Nq=ðk32r2
bÞ,

9 where N ¼ 4pnr2
bk3=3 ¼ const: is

the total number of particles in the long charge bunch. From

Eq. (18), we obtain n ¼ Nl=pr2
b , where Nl : 3N/4k3 repre-

sents the line density. Equation (20) can be integrated to give

pik
2
i n�2 ¼ const: Making use of Eq. (15), we obtain the pres-

sure solution as

P ¼ p0ðtÞ 1� x2

k2
1

� y2

k2
2

� z2

k2
3

 !
; (23)

which vanishes on the plasma boundary. The equations for

rb¼ k1¼ k2 then becomes

r00b þ jrrb �
Kb

r2
b

� e2

r3
b

¼ 0 : (24)

Here, Kb : 2Nlq
2/m and e2 � 2prr

2
bn�2Nl=m represent the

self-field perveance and the transverse emittance-squared.

Note that the emittance is constructed from the constant of

the motion prr
2
bn�2, and the line density Nl, which is approxi-

mately constant for a long charge bunch. The envelope equa-

tion (24) is identical to Eq. (6.60) in Ref. 9.

Another interesting example is the time-dependent Pen-

ning trap given by Eq. (6). It is a well-known fact that in a

Penning trap, the single-particle transverse equations of

motion transform to uncoupled linear oscillator equations in

a frame rotating with the instantaneous Larmor frequency

X(t).26 The rotation matrix is given by

R hð Þ ¼
cos h sin h 0

� sin h cos h 0

0 0 1

0
@

1
A; h ¼ �

ðt

0

X tð Þdt :
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Here, we show that the macroscopic fluid dynamics also

enjoys this desirable transformation property. The density n,

velocity matrix vij, pressure matrix pij, and shape matrix Dij

in the laboratory frame are transformed to their counterparts

�n, �vij, �pij, �Dij in the rotating frame as

n ¼ �n; D ¼ �DR hð Þ ; p ¼ R �hð Þ�pR hð Þ ; (25)

v ¼ R �hð Þ�vR �hð Þ þ X
dR hð Þ

dh
R hð Þ : (26)

Substituting Eqs. (25) and (26) into Eqs. (1) and (4), we find

that the �n, �vij, �pij, and �Dij satisfy the following equations in

the rotating frame,

�n0 tð Þ þ �nTrð�vÞ ¼ 0 ; (27)

�v0 þ �v�v� q

m
�Q �E �Q�1 þ �j1 �

2�p

m�n
¼ 0 ; (28)

�p0 þ �vT �pþ �p�v� c�p
�n0

�n
¼ 0 ; (29)

�D0 þ �vT �Dþ �D�v ¼ 0: (30)

Here, the transformed focusing matrix �j1 is diagonal,

�j1 ¼ Diag X2 tð Þ � 1

2
x2

z tð Þ;X2 tð Þ � 1

2
x2

z tð Þ;x2
z tð Þ

	 

; (31)

and there is no �j2 term in the rotating frame. This is similar

in form to the case of a Paul trap in the laboratory frame.

The difference is that the (1,1) and the (2,2) components of

�j1ij are the same, whereas in the case of a standard Paul trap,

jxx¼ –jyy. Because of this, Eqs. (27)–(30) admit diagonal

solutions of the form in Eq. (17) with �Q ¼ I, �p1 ¼ �p2 ¼ pr,

and �D1 ¼ �D2 ¼ 1=r2
b . Equations (27) and (29) can be inte-

grated to give prr
2
b=nc ¼ const: and pzz

2
b=nc ¼ const:, or

equivalently, prr
2þ2c
b zc

b ¼ const: and pzr
2c
b z2þc

b ¼ const:,

where using ncr2
bzc

b ¼ ð3N=4pÞc ¼ const:. The corresponding

nonlinear envelope equations for rb and zb are given by

r00b þ X2 � 1

2
x2

z tð Þ
� �

rb �
3Nq

2r2
b

G 1;
zb

rb

� �
�

e2
r;c

r2c�1
b zc�1

b

¼ 0 ;

(32)

z00b þ x2
z zb �

3Nq

2z2
b

G
rb

zb
;
rb

zb

� �
�

e2
z;c

r2c�2
b zc

b

¼ 0 ; (33)

where e2
r;c � 8pprr

2cþ2
b zc

b=3mN and e2
z;c � 8ppzr

2c
b z2þc

b =3mN
are two constants of the motion. Here, pz ¼ �p3 and
�D3 ¼ 1=z2

b. For a time-dependent Penning trap, X and xz are

time-dependent, and the nonlinear dynamical solutions are

described by Eqs. (32) and (33). It can be shown that

Eq. (32) reduces exactly to Eq. (24) when c¼ 2 and the

transverse focusing is weak and the plasma ellipsoid is long,

i.e., zb � rb.

When X and xz are time-independent, Eqs. (27)–(30)

possess another class of stationary (@/@t¼ 0) solutions with
�Q ¼ I, �D ¼ Diag½1=r2

b; 1=r2
b; 1=z2

b� ¼ const:; �p ¼ Diag½pr; pr;
pz� ¼ const; and

v ¼
0 xr 0

�xr 0 0

0 0 0

0
@

1
A ¼ const (34)

In this case, Eqs. (27)–(30) reduce to

x2
r þ

qEr

m
� X2 þ 1

2
x2

z tð Þ þ 2pr

mn
¼ 0 ; (35)

qEz

m
� x2

z þ
2pz

mn
¼ 0 : (36)

When the nonneutral plasma ellipsoid is long in the z-direc-

tion and the transverse pressure pr is negligibly small,

Eq. (35) recovers to the well-known equilibrium radial force-

balance equation for a cold nonneutral plasma column in a

Penning trap (in the un-rotated laboratory frame)23 as a special

case with qEr=m ¼ 3Nq2=2zbr2
bm ¼ x2

p=2. For other types of

linear focusing devices, such as rotating-radio-frequency traps

and the Mobius accelerator, the nonlinear dynamical solutions

described by Eqs. (8)–(14) can be calculated in a straightfor-

ward manner, using the particular j1 and j2 for each trap.

Because of page limitations, these applications will be pre-

sented in a future paper.
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