Transport Properties of Intense Ion Beam Pulse
Propagation for High Energy Density Physics

and Inertial Confinement Fusion Applications

Mikhail A. Dorf

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY
RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF

ASTROPHYSICAL SCIENCES

PROGRAM IN PLASMA PHYSICS

Adviser: Ronald C. Davidson

SEPTEMBER, 2010



© Copyright 2010 by Mikhail A. Dorf.

All rights reserved.



Abstract

The design of ion drivers for warm dense matter and high energy density physics
applications and heavy ion fusion involves the acceleration and compression of intense
ion beams to a small spot size on the target. Typically, ion beam acceleration and
transport in vacuum is provided by a periodic focusing accelerator. Then, a dense
background plasma is used to neutralize the beam space-charge during the longitudinal
compression process. Finally, additional transverse focusing can be provided by a strong
(several Tesla) final focus solenoid. In this thesis, the transport properties of an intense
ion beam pulse propagating in an ion driver are investigated by making use of advanced
numerical particle-in-cell simulations and reduced analytical models.

In particular, in order to study the properties of an intense beam quasi-equilibrium
matched to a periodic focusing lattice, a numerical scheme is developed that allows for
the quiescent formation of a matched beam distribution. Also, the problem of controlling
the transverse beam envelope by variations in the lattice amplitude is addressed, and a
detailed quantitative analysis of the associated halo particle production is performed. lon
beam pulse transport though a dense background plasma is investigated with emphasis on
the effects of a weak solenoidal magnetic field ( ~100 G), which can be present inside the
long drift section due to the fringe fields of the strong final focus solenoid. In particular,
whistler wave excitation and the effects of self-focusing on ion beam propagation through

a background plasma along a solenoidal magnetic field are analyzed. Finally, the
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feasibility of using a weak (~ 100 G) collective focusing lens for a tight final focus of the
ion beam is investigated. The results of the thesis research are analyzed for the
parameters characteristic of the Neutralizing Drift Compression Experiment (NDCX-I)

and its planned upgrade (NDCX-II).
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Chapter 1

Introduction

The high efficiency of energy delivery and deposition makes intense ion beam pulses
particularly attractive for high energy density physics applications and inertial
confinement fusion [Davidson, 2002]. Recent advances in ion accelerators and focusing
systems have made possible the production of high energy density condition and warm
dense matter phenomena under controlled laboratory conditions. For instance, density-
temperature regimes similar to the interiors of giant planets and low-mass stars can be
accessible in compact beam-driven experiments [Logan et al., 2007]. In addition to
fundamental physics applications, the use of intense heavy ion beams for compression
and heating of a target fuel is a promising approach to inertial confinement fusion energy
applications (so-called heavy ion fusion) [Arnold, 1978]. lon-beam-driven high energy
density physics and heavy ion fusion attract the interest of leading research institutions
and laboratories around the world, including the United States [Logan et al., 2007; HIFS
White Paper, 2008], Russia [Sharkov, 2007], Germany [Hoffmann et al., 2009], and
Japan [Horioka et al., 2009].

An intense high energy ion beam is produced and delivered to the target by an ion
driver. In this thesis work, transport properties of an intense ion beam pulse propagating

in an ion driver are investigated.
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1.1 Ion Drivers

A schematic of an ion driver for warm dense matter and high energy density physics
applications, and heavy ion fusion is shown in Fig. 1.1. Leaving the ion source, an ion
beam pulse is matched into the accelerator region, where the directed kinetic energy of
the beam ions is significantly increased. The transverse confinement of the ion beam in
the accelerator section against strong space-charge forces is typically provided by a
periodic focusing lattice consisting of quadrupole or solenoidal focusing magnetic or
electrostatic lenses. In order to increase the intensity of the long ion beam pulse, temporal
and spatial compression occurs in the subsequent compression section. One of the
modern approaches to the compression process is to use dense background plasma, which
charge neutralizes the ion charge bunch, and hence facilitates compression of the charge
bunch against strong space-charge forces. Finally, additional focusing is provided in the

final focus section, and then the compressed ion bunch deposits its energy into the target.

Ion | | Acceleration | |  Neutralized Drift | | Final Focus | |

. . . . Target
source Section Compression Section Section &

Fig. 1.1: Block diagram of an ion driver for ion-beam-driven warm dense matter and

high energy density physics applications, and inertial confinement fusion.
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Conceptual design of a heavy ion fusion driver:

A block diagram of a possible heavy ion fusion driver [Kwan, 2004] presenting the
conceptual design parameters of an ion beam pulse as it propagates through the driver is
shown in Fig. 1.2. The total beam current from the ion source is typically designed to be
in the range 50-100 A. Therefore, to overcome the space-charge forces associated with
high-current heavy ion beams, a heavy ion fusion driver is usually designed to contain an
array of ~100 parallel ion beam channels at ~0.5 A each. The acceleration of the ion
beam pulses starting from a 2-3 MeV injector to 100GeV can be provided by induction
linear accelerators, which are also capable of compression of the beam pulses from

~10,000 ns at the source to ~100 ns at the end of the accelerator section [Kwan, 2004].

possible recirculation
¢ target

i — i —— ) chamber
ion source — acceleration —> acceleration ransport
and — with electric with magnetic ranspo
injector —| focusing = focusing
AR Sfinal focusing
/ bending
matching beam combining compression
23 MeV -~ 100 MeV ~10 GeV ~10 GeV
-1 A/beam ~10 A/beam ~400 A/beam _4000 A/beam
~10 us -4 ps ~100 ns ~10ns

Fig. 1.2: Block diagram of a typical heavy ion beam driver for inertial fusion energy

[Kwan, 2004].
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Neutralized Drift Compression Experiment-1 (NDCX-1):

Although a full-scale heavy ion fusion test facility with high-gain target physics is
presently in a design stage, a compact heavy ion driver for warm dense matter
experiments (NDCX-I) has been recently built at the Lawrence Berkeley National
Laboratory [Seidl et al., 2009]. In this ion-beam-driven experiment the ion beam energy
is deposited into a thin (a few microns) target aiming to reach warm dense matter
conditions, regimes corresponding to solid-state densities and temperatures of order 1 eV.
More specifically, a target temperature of 0.2 eV - 0.5 eV is expected to be achieved in
experiments on the NDCX-I facility. It should be pointed out that a few micron target
will hydro-expand in a few nanoseconds at 1 eV, and therefore the energy has to be
deposited by short pulses of order 1 ns duration. The schematic of the Neutralized Drift
Compression Experiment is shown in Fig. 1.3. A singly-ionized Potassium (K") ion beam
pulse with duration of several microseconds and directed ion energy of ~300 keV is
produced from an alumino silicate source powered by a Marx generator. The beam pulse
carries a current I, ~ 30 mA, and the characteristic beam radius is the order of 1 cm.
Leaving the source, the beam is matched into a solenoidal transport lattice, which
controls the beam envelope. In order to compensate for misalignments of the beamline
components, which can lead to an offset of the beam centroid, three steering dipoles are
placed inside the gaps between the solenoids. Passing through the final (4™) transport
solenoid, the ion beam acquires a radial convergence angle, typically of the order 10

mrad, and then a head-to-tail velocity tilt is imparted to the beam pulse inside the
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< 428 cm
4— 14 cm ——P
_ 26cm [P
i B Target
| . | |7~ | I e arge
Pierce | Suppres:lon ftlectrodes ) Diagnostid | chambor
cone and aperture Suppression box
ne—R
Lo

Emitter
surface

Extractor| ||

S
| Induction{ el =N

plate 4] Dipole .
magnets E-r:ttrfnage i 7%  Bunching dll
- : { Module | FF ol
Tilt Gap - | Solenoid FCAPS
Exit Pipe radius
19 mm

Fig. 1.3: Elevation view of the Neutralized Drift Compression Experiment - I (NDCX-I)
[Seidl et al., 2009].

acceleration (tilt) gap of the induction bunching module. A schematic of the induction
bunching module is shown in Fig. 1.4. A time-dependent current passes through high-
voltage feedthroughs encircling the ferromagnetic core(s). As a result, the azimuthal
magnetic flux through the ferromagnetic materials varies in time and induces a time-
dependent longitudinal electric field in the accelerator gap as illustrated in Fig. 1.4. The
charge bunch encounters the induced electric field only within the acceleration gap, and
the pulse modulators and cores are external to the beam-plasma-chamber system. The
time-dependent electric field produced inside the acceleration gap imparts a head-to-tail
velocity tilt to the beam pulse by decelerating the head of the beam pulse, and
accelerating the tail of the beam pulse. As a result, the ion bunch undergoes a
longitudinal compression as it propagates through the long drift section (L~=85 cm) filled
with a dense neutralizing plasma. Provided the plasma is sufficiently dense it can

effectively neutralize the charge and current of the ion beam pulse [Kaganovich ef al.,
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Fig. 1.4: The physics principles of the induction module (left). A cross-section (right,
with ¢ symmetry) of the induction module: acceleration gap (load circuit region under
vacuum) (1), transformer oil insulation for induction cavity (leakage circuit region) (2),
insulated power feed (3), ferromagnetic core (4), exposed face of core (5), and vacuum
insulator (6). The Ez field direction in the gap is indicated for the given B, field direction

in the ferromagnetic core [Sefkow, 2007].

2010]. Therefore, nearly-ballistic (field-free) simultaneous longitudinal and transverse
beam compression occurs inside the drift section. Finally, an additional transverse
focusing of the ion beam pulse is provided by a short (/; = 10 cm) high-field (B, =8 T)
final focus solenoid, which is placed downstream of the drift section. Note that in order to
compensate for the strong space-charge forces of the compressed ion beam pulse, the
final focus solenoid has to be filled with a neutralizing plasma as well.

In the present configuration of the Neutralized Drift Compression Experiment — I
(NDCX-I), the large volume neutralizing background plasma inside the drift section is

produced by a ferroelectric plasma source [Efthimion et al., 2007]. This plasma source



1.1. Ion Drivers 7

utilizes the concept of large electric fields on a surface of a ferroelectric material (with a
large dielectric constant), and allows for the generation of high-density surface plasma. In
the present NDCX-I configuration, the walls of the drift section are made of a
ferroelectric material, and a surface discharge is produced by applying a pulsed biased
voltage between rear and front electrodes placed on both sides of the ferroelectric wall. A
high-density surface plasma, initially created on the ferroelectric surfaces, then flows
toward the axis and fills the entire drift section. It was demonstrated [Sefkow et al., 2008]
that this source provides plasma density of ~10'cm™ on the axis of the beamline, which
can be enough to provide complete charge neutralization in the drift section for the ion
beams explored in the NDCX-I.

The density of the plasma created by the ferroelectric plasma source decreases to
zero outside the drift section over a short distance of several centimeters. Therefore, to
provide a neutralizing background inside the final focus solenoid, four cathodic-arc
plasma sources (CAPS) are used in the present configuration of the NDCX-I device. The
sources are placed out of the line-of-sight of the beamline in order to avoid interaction
with the ion beam, and angled toward the axis of the final focus solenoid (Fig. 1.3). It
should be noted that filling the strong magnetic solenoid with a neutralizing plasma is
itself a challenging problem [Roy et al., 2009], and providing improved neutralizing
plasma background inside the final focus solenoid is still one of the critical problems in

NDCX-I optimization.
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Fig. 1.5: Schematic of the longitudinal compression of ion beam pulses in the
Neutralized Drift Compression Experiment — I (NDCX-I). The frames illustrate the time
dependence of (a) the ion beam current at the ion source, (b) the directed beam energy at

the exit of the tilt gap, and (c) the ion beam current at the longitudinal focal plane.

It is straightforward to show for the case of ballistic (field-free) beam

compression that the beam tail will meet the beam head at the longitudinal focal plane,

provided the voltage waveform, AV, (¢)= JEZ (t)dz , produced across the acceleration

(tilt) gap of the induction bunching module is specified by [Welch et al., 2005; Sefkow,

2007]

m,

c? 2 B :
2e 'Bb_(l—cﬂht/LfJ '

Here, B, =v,/c is the normalized directed beam velocity upstream of the tilt gap,

AV () =

B, =0.0037 is the normalized velocity of the beam head downstream of the tilt gap, and

Ly corresponds to the drift length to the ideal longitudinal focal plane. The volt-second
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Fig. 1.6: (Color) Time-dependent transverse beam distributions demonstrating the
simultaneous transverse focusing at the time of peak compression. The full width at half

maximum (FWHM) of the peak is =2.5 ns [Seidl ef al., 2009].
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capability of the induction bunching module allows compression of only a ~200 ns
portion of the entire (several microsecond) ion beam pulse, and the schematic of the
longitudinal beam dynamics is shown in Fig. 1.5. Note that there is a long uncompressed
part of the ion beam pulse (prepulse) that propagates ahead of the compressed portion of
the ion beam.

The results of the experiments on the NDCX-I facility demonstrating the
simultaneous longitudinal and transverse compression are shown in Fig. 1.6 [Seidl et al.,
2009]. The longitudinal compression decreases the duration of the compressing (~200 ns)
portion of the ion beam pulse to 7.~2.5 ns, and the peak bunch current is increased to
I,=1.5 A. Furthermore, at peak compression, 50% of the beam flux is located within a
radius of 1.5mm due to the transverse compression.

Finally, it should be noted that the induction bunching module (IBM) has been
recently upgraded, and the upgraded IBM has a nearly double volt-second capability.
Design studies [Seidl et al., 2009] demonstrated that it is advantageous to use the
increased capability for compression of a ~400ns portion of the beam pulse, with a
shallower slope of the tilt and a correspondingly longer drift section. Accordingly, in the
present configuration of the Neutralized Drift Compression Experiment — I (NDCX-I),
the drift compression section has been increased by 1.44 m by extending the length of the
ferroelectric plasma source. The experiments on ion beam compression including the
upgraded IBM and longer drift section are currently being carried out on the NDCX-I

facility.
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Neutralized Drift Compression Experiment — I (NDCX-II):

While a target temperature of only 0.2 eV - 0.5 eV is expected to be achieved on the
NDCX-I facility, its planned upgrade (NDCX-II) will operate at higher beam energies
(few MeV), and will allow for target heating up to 1-2 eV [HIFS White Paper, 2008;
Friedman et al., 2009]. Another important feature of the upgraded NDCX-II driver is that
it will allow for highly uniform heating of a few microns target, using Li" ions which
enter the target with kinetic energy of ~ 3 MeV, slightly above the Bragg peak for
deposition (the peak in dE/dx), and exit with energies slightly below that peak. A
schematic illustration of Lithium ion beam energy deposition in the aluminum foil is
shown in Fig. 1.7, and the NDCX-II target concept and ion driver requirements for

achieving a target temperature greater than 1 eV is shown in Fig. 1.8.

Lithium Ions on Aluminum

dE/dx in Aluminum Foil [Me!

Fig. 1.7: (Color) Schematic of the energy deposition of lithium ions into an aluminum
target, demonstrating the possibility of highly uniform heating of a few micron target by

using ~3 MeV Li" ions beams in the NDCX-II facility [Friedman, 2007].
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ALUMINUM TARGET FOIL

Thickness (for <5% AT):
~3.5 micron, solid density foil (range is 5 microns)
~ 35 micron, 10% solid density foam

A

LITHIUM ION BEAM BUNCH Exiting besm availabls
for dE/dx measurement

Final Beam Energy: 2.8 MeV

Final Spot Size : <1 mm diameter

Final Bunch Length: <lns (=<1cm)

Total Charge Delivered: 0.03 uC (~ 2x10!! particles or I, ~ 42 A)
Normalized Emittance: 0.4 pi-mm-mrad

Fig. 1.8: (Color) Figure shows the NDCX-II target concept, and driver requirements to
achieve target temperature higher then 1 eV [Friedman, 2007].

A schematic of the NDCX-II facility is shown in Fig. 1.9. Similar to the NDCX-I
device, the NDCX-II ion driver utilizes the concept of simultaneous neutralized (near-
ballistic) drift compression inside a few meters drift section, as well as final transverse
focusing by a several-centimeter-long high-field (several Tesla) final-focus solenoid.
However, the acceleration section of the NDCX-II facility is much more complex
compared to the four-solenoid transport section of the NDCX-I device, where only the
transverse beam envelope is controlled. The NDCX-II acceleration system accelerates the
ion beam, provides longitudinal compression (thus increasing the beam current), and

finally controls the transverse beam envelope. The acceleration and
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Fig. 1.9: (Color) NDCX-II layout for 23 induction cells [Friedman et al., 2010].

longitudinal compression of the ion beam pulse is provided by the induction cells from
the decommissioned Advanced Test Accelerator (ATA) facility at Lawrence Livermore
National Laboratory (hereafter, ATA cells). The operational principles of an ATA cell are
the same as those of the NDCX-I induction bunching module. That is, depending on the
voltage waveform applied in the acceleration gap of an ATA cell, each cell can accelerate
the ion beam pulse and impart a head-to-tail velocity tilt. The control of the beam
transverse envelope is provided by 2-3 T confining transport solenoids.

In recent design studies [Friedman et al., 2009; Friedman et al., 2010] it is

assumed that the NDCX-II injector produces Lithium (Li") ion beam pulse with duration
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of ~500 ns, directed beam energy of ~ 100 keV, and the current of ~70 mA. The ion
beam pulse then propagates through the acceleration section, where it is accelerated to
~3.5 MeV, and its current increases to ~2 A due to the nonneutral longitudinal drift
compression. Leaving the acceleration section, the radially convergent ion beam pulse
with an imparted head-to-tail velocity tilt propagates through a few-meter-long
neutralized drift section, then passes through a 10-15 Tesla final focus solenoid, and
finally deposits its energy into the thin target. The results of the numerical design studies
demonstrate that about 75% of the 30nC beam charge crosses the focal plane in a 1-ns
window, with a minimal pre-pulse. The current of the compressed beam (averaged over
that window) is 23 A, with a peak (averaged over a 0.1-ns window) of 32 A and a full-

width at half maximum of 1 ns [Friedman ef al., 2009].

Future facilities for ion-beam-driven high energy density physics and heavy ion fusion:

The future plans of the US heavy-ion-fusion program involve building of the Integrated
Beam — High Energy Density Physics Experiment (IB-HEDPX) based on the knowledge
base established by the NDCX-II device [HIFS White Paper, 2008]. The IB-HEDPX
device will be a flexible user facility, with greater flexibility in choice of ion for Bragg-
peak heating, higher kinetic energy (up to 25 MeV), advanced multiple-target handling
capabilities, and a much richer set of diagnostics than NDCX-II. Beyond IB-HEDPX, and
building on the anticipated achievement of ignition on the National Ignition Facility

(NIF), high coupling efficiency will allow heavy ion beams to explore the implosion of
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Table 1.1: Scientific objectives and key features of a sequence of heavy-ion-beam driven

facilities for high energy density physics and fusion [HIFS White Paper, 2008].

HEDP/Inertial Fusion E}'ser{gy Ion | Linac Ton Beam | Target | Range | Energy
Science Objective voltage | energy | energy | pulse | -microns | density
(Facility) -MV | -MeV | -1J -ns (in.) | 10"Jm’
Beam compression physics, K+ 0.35 0.35 | 0.001- 2-3 0.3/1.5 0.04
diagnostics. Sub-eV WDM. 0.003 (in solid/ to
(NDCX-]) (1 beam) 20% Al) 0.06
Beam acceleration and target | Li", | 3.5- 3.5- 0.1- 1-2 7-4 0.25
physics basis for IB-HEDPX. or 5 15 028 | (or5w | (insolid to
(NDCX-II) (1 beam) Na hydro) Al 1
User facility for heavy-ion Na™’ 25 25 - 3- 0.7 11-8 2.2
driven HEDP. or 75 54 | (or3w | (insolid To
(IB-HEDPX) (1 beam) K™ hydro) Al) 5.8
Heavy-ion direct drive Rb™ | 156 1000 | 2x7.5 | 2-4 1000 18
implosion physics. (kD) (in solid
(HIDDIX) (2 beams) Z=1)
Heavy ion fusion test facility - | Rb™ | 156 1000 | 300to | 12-24 1000 90
-high gain rarget physics. 1500 (in solid
(HIFTF) ( 40-200 beams) (kJ) Z=1)

mm-scale cryo-targets at moderate energy and cost in the Heavy lon Direct Drive

Implosion Experiment (HIDDIX) facility. This would provide the capability to drive low-

convergence-ratio (5-10) spherical implosions with ion beams for the first time, and to

explore issues of hydrodynamic stability to Rayleigh-Taylor modes under the stabilizing

influence of non-normal ion beam illumination. Encouraging results in those areas and

others would motivate development of a Heavy Ion Fusion Test Facility (HIFTF) [HIFS

White Paper, 2008].The Scientific objectives and key features of a sequence of heavy-

ion-beam-driven facilities for high energy density physics and heavy ion fusion are

summarized in Table 1.1.
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1.2 Motivation

An noted earlier, an ion beam driver is a complex transport system involving ion beam
pulse propagation through a vacuum acceleration system, propagation through a
neutralizing background plasma, and strong magnetic final focusing. Therefore, in order
to improve the performance of a heavy ion driver, it is of great importance to achieve a
better physics understanding of the beam transport properties. In particular, it is important
to realize nonlinear and collective effects that become increasingly important for high-
intensity ion beams. In what follows we outline several critical problems in intense ion
beam transport through the acceleration section, the neutralized drift compression section,

and the final focus section of an ion driver.

lon beam transport in the acceleration section:

Although, initial ion-beam-driven experiments (e.g. NDCX-I) can use several short
solenoidal or quadrupole magnetic lens to control the beam envelope from the injector to
the neutralized drift compression section, future ion-beam-driven facilities will operate at
much higher beam energies, and will require a long acceleration section. Accordingly, a
transport focusing system with a large number of focusing elements has to be employed
to maintain transverse beam confinement against strong self-field forces during the
acceleration. Typically, a periodic focusing lattice, which consists of ether solinodial or
quadrupole focusing elements, is used for these purposes [Davidson and Qin, 2001a].

Quiescent propagation of an intense ion beam through a periodic focusing lattice with
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minimal irreversible growth of the transverse beam phase-space area (emittance) is of
particular importance for the subsequent neutralized drift compression phase. Therefore,
analysis of intense beam quasi-equilibria (so-called matched distributions) in a periodic
focusing lattice is critical for optimizing the ion driver design. However, imperfections in
the focusing elements, as well as an initial mismatch between the injector and the
transport lattice can result in collective mismatch oscillations of the transverse beam
envelope. Also, the mismatch oscillations can be produced due to variations in the lattice
amplitude designed to control the transverse beam envelope inside the accelerator. The
relaxation of the beam mismatch can provide an increase in the statistical area of the
transverse beam phase-space, and can also be responsible for the production of high-
energy beam halo particles [Gluckstern, 1994]. The transverse excursion of these halo
particles can be significantly outside the beam core, which degrades the beam quality and
can lead to the activation of the chamber wall, or to an influx of particles released from
the wall. The problem of halo particles becomes most pronounced for an intense charged
particle beam with strong self-fields, and therefore it is of particular importance for an
ion driver development to asses the influence of a mismatch on the beam transport

properties.

Intense ion beam transport through a background neutralizing plasma:
Understanding the physical and technological limits of the neutralized drift compression
of an intense ion beam pulse is of great practical importance both for present and future

ion-beam-driven facilities. Even for the ideal case where a dense background plasma
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provides ballistic (field-free) transport, simultaneous longitudinal and transverse
compression can be limited by thermal effects of the ion beam, or due to the non-
chromatic nature of the transverse aberrations acquired inside a finite-length tilt gap,
where a head-to-tail velocity tilt is imparted to the beam pulse [Setkow, 2007]. The ion
beam compression can also be limited due to the development of various collective
streaming instabilities, which can occur even for a perfectly neutralized initial state, i.e.,
complete initial neutralization of the beam charge and the beam current [Davidson et al.,
2009; Startsev and Davidson, 2009]. Finally, it is of particular practical importance to
estimate the degree of beam charge and current neutralization depending on the
parameters of the background plasma, i.e., density, temperature, effects of ionization, etc.
Although the critical problem of ion beam neutralization by a background plasma has
been extensively studied in [Kaganovich et al., 2001, Kaganovich et al., 2010], a variety
of new and unexplored physical properties appear in the presence of an external
solenoidal magnetic field. A weak solenoidal magnetic field of order 100 G can be
present inside the neutralizing drift section of a heavy ion driver over distances of a few
meters from the strong final focus solenoid, which is located downstream of the beamline
nearly after the drift section. Although, the VxB force produced by such a weak magnetic
field typically do not have a pronounced influence on the ion beam dynamics, it can
significantly modify the plasma electron response, and therefore alter the degree of ion
beam charge and current neutralization [Kaganovich et al., 2008; Dorf et al., 2010]. It is
therefore of particular importance for an ion driver development to asses the influence of

a weak solenoidal magnetic field on the ion beam transport properties.
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Final beam focusing:

Typically, in order to provide final transverse beam focusing, a strong (several Tesla)
magnetic solenoid, placed downstream of the drift section, is involved in the design of an
ion driver. Due to the strong space-charge self-fields of an intense ion beam pulse, a
neutralizing plasma is also required inside the magnetic solenoid. Note that apart from the
challenge of using a several Tesla magnetic solenoid, filling it with a background plasma
provides additional technical challenges [Roy et al., 2009]. Furthermore, the fringe fields
of the strong magnetic solenoid can penetrate deeply into the drift section at a magnitude
of order 100 G, and can significantly influence the neutralized ion beam transport. In
particular, strong nonlinear radial electric fields can be generated due to a local
polarization of the magnetized plasma background by the moving ion beam [Dorf et al.,
2009c]. These nonlinear fields can produce aberrations, thus limiting the transverse focus
of the ion beam pulse. It is therefore of great practical interest to investigate alternative

possibilities of the final beam transverse focusing.

1.3 Thesis Overview

In this thesis research, detailed numerical and analytical studies have been performed to
improve theoretical understanding of the dynamics of intense beam propagation through
an ion driver. An overview of this thesis is provided below.

Chapter 2 provides a brief overview of the general and reduced analytical models

describing the nonlinear transverse dynamics of an intense charge particle beam
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propagating through a periodic focusing lattice, and discusses critical problems in intense
ion beam transport, including the production of halo particles and space-charge limits
defining the stable regimes of beam propagation. It is shown that the oscillating nature of
the focusing field, along with the nonlinear dynamics of the beam particles, provide a
significant challenge for analytical studies of a matched quasi-equilibrium beam
distribution. Therefore, to improve the theoretical understanding of beam quasi-equilibria
distributions, a numerical scheme allowing for the quiescent formation of a matched
beam distribution is developed. A quasi-equilibrium beam distribution matched to a
periodic focusing lattice is achieved in numerical particle-in-cell simulations by means of
the adiabatic turn-on of the oscillating focusing field. Quiescent beam propagation for
over a hundred of lattice periods is demonstrated for a broad range of beam intensities,
and the properties of the matched-beam distribution are investigated. In particular, self-
similar evolution of the beam density profile is observed over a wide range of system
parameters.

Chapter 3 addresses the problem of controlling the transverse beam envelope
during its propagation through the acceleration section by variations in the strength of the
periodic-focusing lattice. In particular, the transverse compression of an intense ion beam
propagating though an alternating-gradient quadrupole lattice is investigated. It is evident
that variations in a lattice amplitude can lead to a certain level of beam mismatch, which
can result in emittance growth and production of halo particles. Hence, it is a matter of
considerable practical interest to determine how smooth (adiabatic) the lattice transition

should be to assure that matching is maintained during the compression. This problem is
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investigated for a wide range of beam intensities, and it is concluded that ~10 lattice
periods are typically required in order to maintain beam matching for ~2X compression.
For the case of nonadiabatic compression, halo particle production by a beam mismatch
acquired during the compression stage is studied. In particular, in order to perform a
quantitative analysis of this effect, a novel spectral method for halo particle definition is
developed. In addition, it is shown that the analysis, based upon the spectral method, can
provide important insights into other critical problems in intense beam transport such as
mismatch relaxation and the space-charge transport limits.

Chapter 4 discusses the propagation of an intense ion beam through a dense
background neutralizing plasma along a weak (~ 100 G) solenoidal magnetic field. The
electromagnetic field perturbations excited by the ion beam pulse are calculated
analytically and verified by comparison with the numerical simulations. The degrees of
beam charge neutralization and current neutralization are estimated, and the transverse
component of the Lorentz force associated with the excited electromagnetic field is
calculated. It is found that the application of a weak solenoidal magnetic field along the
direction of ion beam propagation through a neutralizing background plasma can
significantly enhance the beam self-focusing for the case where the beam radius is small
compared to the collisionless electron skin depth. The enhanced focusing is provided by a
strong radial self-electric field that is generated due to a local polarization of the
magnetized plasma background by the moving ion beam. A positive charge of the ion
beam pulse becomes overcompensated by the plasma electrons, which results in the

radial focusing of the beam ions. The effect of the plasma-induced enhanced self-



1.3. Thesis Overview 22

focusing in the presence of weak fringe fields from a final focus solenoid is assessed for
the parameters characteristic of the Neutralized Drift Compression Experiment-I (NDCX-
I), and its planned upgrade NDCX-II. Finally, it is shown that the plasma response to the
ion beam pulse is significantly different depending on whether the value of the solenoidal
magnetic field is below or above the threshold value corresponding to the strong resonant
excitation of large-amplitude whistler waves. The use of intense whistler wave
excitations for diagnostic purposes is also discussed.

Chapter 5 investigates the feasibility of using a weak (~100 G) solenoidal
magnetic field for tight collective final focusing of intense ion beams for the Neutralizing
Drift Compression Experiment (NDCX-I). In the collective focusing scheme, a weak
magnetic lens provides strong focusing of an intense ion beam carrying an equal amount
of neutralizing electron background [Roberston, 1982]. For instance, a solenoidal
magnetic field of several hundred gauss can focus an intense neutralized ion beam within
a short distance of several centimeters. The enhanced focusing is provided by a strong
self-electric field, which is produced by the collective electron dynamics. The numerical
simulations are performed with the LSP particle-in-cell (PIC) code, and the results of the
simulations are found to be in very good agreement with analytical predictions.
Collective focusing limitations due to possible heating of the co-moving electrons during
the transverse compression are also discussed. Finally, the original analysis of the
collective lens operation, which assumes quasineutrality and small perturbations of the
applied solenoidal magnetic field, is extended to the more general cases of nonneutral

collective focusing and arbitrary perturbations of the applied solenoidal magnetic field
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due to the presence of the beam. The influence of nonneutral collective focusing on the
transverse dynamics of an ion beam pulse in the present configuration of NDCX-I, which
involves a strong (8 Tesla) magnetic solenoid for the final beam focusing, is also
discussed.

Finally, Chapter 6 summarizes the conclusions drawn from the earlier chapters,

and identifies possible areas of future research.



Chapter 2
Intense Charged Particle Beam

Propagation through a Periodic Focusing

Lattice

2.1 Introduction

Periodic focusing transport systems have a wide range of applications ranging from basic
scientific research in high energy and nuclear physics to applications such as spallation
neutron sources, nuclear waste treatment, ion-beam-driven high energy physics, and
heavy ion fusion. Of particular importance at the beam intensities of practical interest are
the effects of the intense self-fields produced by the beam space charge and current on
determining the detailed equilibrium and nonlinear dynamics of the system. However, the
nonlinear effects of the intense self-fields provide a significant challenge for detailed
analytical studies. It is therefore increasingly important to develop reduced analytical
models and advanced numerical techniques for an improved theoretical understanding of

intense beam transport.

24
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In Sec. 2.2 we present a brief overview of the general and reduced analytical
models describing the nonlinear transverse dynamics of a charge particle beam
propagating through a periodic focusing lattice, and discuss critical problems in intense
ion beam transport, including the production of halo particles and space-charge limits
defining the stable regimes of beam propagation. It is shown that the oscillating nature of
the focusing field along with the nonlinear dynamics of the beam particles provide a
significant challenge for analytical studies of a matched quasi-equilibrium beam
distribution. Therefore, it is important to develop a numerical scheme allowing for the
quiescent formation of a quasi-equilibrium beam distribution matched to a periodic
focusing lattice. Section 2.3 presents a numerical method for the formation of a quasi-
equilibrium beam distribution matched to a periodic focusing lattice by means of the
adiabatic turn-on of the oscillating focusing field. Quiescent beam propagation for over a
hundred of lattice periods is demonstrated for a broad range of beam intensities, and the

properties of the matched-beam distribution are investigated.

2.2 Theoretical Models and Background

In this section, we summarize the general theoretical models used to describe the
nonlinear transverse dynamics of a charged particle beam propagating through a periodic
focusing lattice, and discuss critical problems in intense ion beam transport, including the
production of halo particles and space-charge limits defining the stable regimes of beam

propagation. The detailed self-consistent description of intense charged particle beam
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transport based on the Vlasov-Maxwell equations is presented in Sec. 2.2.1. The
simplified beam dynamics model, including the smooth-focusing approximation and the
envelope equations are summarized in Sec. 2.2.2 and Sec. 2.2.3, respectively. In Sec.
2.2.4 the production of halo particles by a beam mismatch is described, and finally, Sec.

2.2.5 presents an overview of intense beam transport limits.

2.2.1 Vlasov-Maxwell Description

We consider an axially continuous intense charged particle beam propagating in the z-
direction with average axial velocity V} through a periodic focusing lattice with axial
periodicity length S=const (Fig. 2.1). The beam is assumed to be thin, with characteristic
transverse dimensions a and b in the x and y directions satisfying

a,b<<S. (2.1)
Consistent with Eq. (2.1) we assume that the beam particle have large axial momentum

p, =y,m,pB,c, and make use of the paraxial approximation [Davidson, 1990; Reiser,

1994]
pl.p(p.—p,) <<p; (2.2)
2
K=y, (2.3)
7bmbﬂbc

Here, py, p,, and p. are the components of a beam particle’s momentum, K, is the beam

self-field perveance [Lawson, 1958], N, = J‘dxdydx’dy’fb (x,y,x",),s) is the number of

: o S o
particles per unit axial length, y, = (1 - ,b’bz) "2 is the relativistic mass factor, e, and my, are
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the charge and rest mass of a beam particle, respectively, c is the speed of light in vacuo,

and f,=V/c. The beam dynamics in the transverse phase space (x,y,x’,»") is described
by the distribution function f, (x,y,x,)’,s), where s=s,+ f,ct is the effective axial

coordinate, and x'=dx/ds and )’ =dy/ds denote the dimensionless transverse

velocities.

The thin-beam approximation permits a Taylor expansion of the applied focusing
fields about the beam axis at (x,y)=(0,0). The applied magnetic field of the focusing
lattice can therefore be approximated as [Davidson, 1990]

B =8B (z)(yéx +xéy), 2.4

q

for the case of an alternating-gradient quadrupole lattice [Fig. 2.1 (a)], and

B, =B. (e~ Bl(:ae, )2, @5)
for the case of a periodic-focusing solenoidal lattice [Fig. 2.1 (b)]. Here,
B} (2)=(0B! [y) . = (0B; fox), ). and BL(z)=(0B:" /oz),,. 1t now follows that the
applied focusing force is given by [Davidson, 1990; Davidson and Qin, 2001a]

F,. =—y,m,plc |k (s)x&, +x,(s))8, ], (2.6)

where the corresponding lattice function « (s)and x(s) are specified by

2 (5)= -, (5)= 1, 5) =2 2
vy, Byc

for the case of a quadrupole lattice, and
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Fig. 2.1: Schematic of magnet sets producing (a) an alternating-gradient quadrupole field
with axial periodicity S; and (b) a periodic focusing solenoidal field with axial

periodicity S.
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n®=m®EmM=PﬂE§LT @.8)

2y,m, fyc ’
for the case of a solenoidal lattice. The condition of lattice periodicity implies

K (s)=r.(s+8),x,(s)=K,(s+5). (2.9

Finally, note that for the case of a quadrupole lattice <I(q (s)> =0, and for the case of a

s

So+S

solenoidal lattice (x(s)) =&, >0, where (...) =S~ j ds--- denotes the average of an s-

s

50
dependent function over one lattice period S.
For an intense beam, the self-generated electric E°(x,#) and magnetic B’(x,t)
fields have significant influence on the transverse dynamics of beam particles. In many
regimes of practical interest the self-generated electric and magnetic fields can be

approximated by [Davidson and Qin, 2001a]

E'=-Vg',

B’ =VxA’e_, (2.10)
where the self-field potentials, ¢*(x,¢) and A‘(x,t), are determined self-consistently
from

Vig -, a5y,

Vi = —%ebeIdx'dy'fb . (2.11)
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Equations (2.11) yield 4] = S,¢°, and it follows that the transverse component of the

Lorentz force associated with the beam self-fields is given approximately by

F =¢,(E' +B,e.xB' )=—2V ¢ (2.12)

b

The reduction factor 1/ 7. =1- B in Eq. (2.12) is associated with focusing effect of the

self-magnetic field created by the beam current. Therefore, the effects of the net beam
self-field are weak for the case of a highly relativistic beam. However, self-field effects

can become much more pronounced for weakly relativistic or nonrelativistic beams.

Introducing the normalized self-field potential v (x,y,s)= M it is readily

e b3 mbﬂbz ¢’
shown that the nonlinear Valsov-Maxwell equations describing the evolution of the beam
distribution function, f;, is given approximately by [Davidson, 1990; Davidson and Qin

2001a]

%er'%w'afb —[8—W+KX(S):|%—|:8—I//+Ky(S)j|afb =0, (2.13)

Os Ox 5 ox ox' | Oy oy’ -

where the normalized self-field potential 1,//(x, v, z) is determined self-consistently from

o 0 2rK
(§+§Jy/:— . b jdxdyfb. (2.14)
b

Assuming that a perfectly conducting cylindrical wall is located at radius

r= (x2 +y° )1/2 =r_, Eq.(2.14) is to be solved subject to the boundary condition

—Two

10
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where (r,6) corresponds to the cylindrical polar coordinates defined by x =rcosé and

y=rsing.

2.2.2 Smooth-Focusing Approximation

Solutions to Egs. (2.13)-(2.15) describe the self-consistent nonlinear evolution of an
intense beam propagating through a periodic focusing lattice. Of particular practical
importance are the “quasi-equilibrium” (matched) solutions in which the beam
distribution function is periodic with axial periodicity length equal to the lattice period,
ie, f,(x,p,x,y,s+8)=f,(x,y,x,),s). However, the oscillating nature of the
focusing field provides a significant challenge for a detailed determination of matched
quasi-equilibrium solutions. The problem can be significantly simplified if the so-called
smooth-focusing approximation [Channell, 1999; Davidson et al., 1999; Davidson and
Qin, 2001b], which describes the average focusing effect of the oscillating confining
field, is used for analysis of the average dynamics of the beam particles. Within this

approximation, the average external focusing force has the form
F) =—y,m,pBlc’, (x¢, +y8,), (2.16)

where the constant x, is defined by [Davidson and Qin, 2001b]

0

Ky = [jdsch(s)—<jds1cq(s)> } , (2.17)

for a quadrupole lattice, and
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Fig. 2.2: Step-function model of a periodic lattice. The figure shows plots of periodic-

focusing coupling coefficients corresponding to (a) a quadrupole lattice x,(s), and

(b) a solenoidal lattice, x,(s). For the case of a quadrupole lattice, such a configuration is

often called a FODO transport lattice (acronym for focusing-off-defocusing-off).
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K, =F. J{<([ ;ds5lcs)z> —< [ ;dS5KS>S2}, 2.18)

for a solenoidal lattice, where Jk,(s)=x,(s)-k,
If x,(s) [x,(s)] has the form of a step-function lattice with constant amplitude

K, (/25) and constant filling factor 7, (n,), as shown in Fig. 2.2, then it follows from

Egs. (2.17)-(2.18) that x, is given to leading order by [Davidson and Qin, 2001a]

Ky = 116775 K;8? (l—gn], (2.19)
for the case of a quadrupole lattice, and
—n. &, +(112)p2 (1-n? 28?2, (2.20)
for the case of a solenoidal lattice.
The smooth-focusing approximation significantly simplifies the analysis of the

beam transverse dynamics. Indeed, the transverse smooth-focusing Hamiltonian defined

by [Davidson and Qin, 2001a; Davidson and Qin, 2001b]
HO _ 1 12 2 1 2 2 21
L—E(x +y )+5K§fr +y(r) (2.21)

becomes an invariant of beam particles motion, and therefore the smooth-focusing
approximation supports azimuthally symmetric equilibrium solutions for distribution

functions of the form
£=rE) (2.22)

For future references, here we present several examples of beam equlibria:
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Thermal Equilibrium [Davidson, 1990; Brown and Reiser, 1995]:

2.2 2.2
jf(fzﬁ)=ﬁb{Zﬂﬁiif—jexp{—fififif—113}, (2.23)

27T, b

Waterbag Equilibrium [Davidson and Chen, 1998; Davidson and Qin, 2001a]:

2.2 2.2
Fo(b) =i R ) P |, (2.24)
24T, T,

Kapchinskij-Vladimirskij (KV) Equilibrium [Kapchinskij and Vladimirskij, 1959;
Davidson, 1990]

2 T
o(go)=to s g0t | 225
fb ( L) 272_ il ybmbﬁbzcz ( )

A

Here, T, is a positive constant with units of energy, and U(x) is the Heaviside step
function defined by U(x)=0 for x<0, and U(x)=1 for x>0. Assuming, without loss of
generality, y (r=0)=0, it readily follows from Egs. (2.23)-(2.25) and (2.21) that 7, is

the on-axis number density.
As evident from Eq. (2.16), within the smooth-focusing approximation, the beam

particles exhibit oscillatory motion with axial periodicity length (smooth-focusing period)

given by 27[/ \JK, 1n the absence of the self-fields. Therefore, it is intuitively appealing

to assume that the smooth-focusing approximation is valid if the lattice period is

sufficiently small compared to the period of a smooth-focusing oscillation, i.e.,

Jx, 8 /2m<1. (2.26)
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Figure 2.3: Illustrative example of the exact single-particle orbit x(s)/xy in a quadrupole

FODO lattice (solid line) with filling factor 7, = 0.5 and /xS =0.61. The dashed line

corresponds to the smooth-focusing particle trajectory. The initial conditions are

specified by x(s =0)=x, and x'(s =0)=0.

Indeed, if the condition in Eq. (2.26) is satisfied, averaging over the rapid motion with
length scale S, can provide an effective description of the average transverse dynamics of
a beam particle. Detailed analysis of the validity limits of the smooth-focusing
approximation is considered in References [Davidson et al., 1999; Dorf et al., 2009a;
Startsev et al., 2009], and also later in this chapter. Here, as an illustrative example, we
show the vacuum solution (obtained in the absence of self-fields) for the transverse
motion of a single particle, making use of the smooth-focusing approximation, and taking

into account the oscillating nature of the applied focusing force (Fig. 2.3).
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The advance in phase of the slow transverse oscillation that the particle undergoes

per oscillation period S (see Fig. 2.3) is called the phase advance. It is evident for the

smooth-focusing particle trajectory that ¢ =, |, S, and for the illustrative parameters

in Fig. 2.3 the smooth-focusing vacuum phase advance corresponds to o =35". If the
net defocusing effect of the self-field force is taken into account, the period of the particle
motion increases, and the particle phase advance o decreases compared to its vacuum
value, o,. Therefore, the ratio o/o, is often used as a normalized measure of the beam
self-field strength. Another convenient parameter describing normalized beam intensity,

which is often used in beam and nonneutral plasma physics is given by [Davidson and

Qin, 2001a]

- (2.27)

. . 2. o . .
where @, E(4fmbe§ / }/bmb)/ is the relativistic plasma frequency, n, is the on-axis

. A 12 . .
plasma number density, and @, = (st bzcz) is the average transverse focusing

frequency associated with the (smooth-focusing) lattice coefficient x, .

2.2.3 Envelope Equations for a Continuous Beam

Determining solutions to Egs. (2.13)-(2.15), which describe the detailed self-consistent
nonlinear evolution of an intense beam propagating through a periodic focusing field, can

often require significant computational effort. However, for the case where the beam
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distribution is close to a beam quasi-equilibrium, the evolution of the characteristic
transverse beam dimensions E(s):2<x2>l/2 and E(S):2<y2 >l/2 can be approximately

described by the simplified envelope equations [Reiser, 1994; Davidson and Qin, 2001a]

d2 _ 2K _ 52
- a+[KX(S)—EC_H_bE }a == (2.28)
d’ — 2K, |- &’
—b+| Kk (s S ==, 2.29
ds’ [ /) b(E+bJ b’ (2.29)

where we have assumed ¢_ = &, =€, and the transverse emittance, ¢_, is defined by

£, = 4\/<(x—<x>2 )> <(x' —{x')’ )>—<(x—<x>)(x'—<x’>)>2 : (2.30)
Here, (y)=N, ! I dxdydx'dy’ y f, denotes the statistical average of a phase function y

over the beam distribution function, f, . Note that the transverse beam emittance defined

in Eq. (2.30) corresponds to an average statistical area of the transverse beam phase-
space. For the special case of a Kapchinskij-Vladimirskij (KV) distribution [Eq.(2.25)],

the beam density is uniformly distributed within the elliptical cross-section

0<[x’/a’(s)+y’/b*(s)]<1, the transverse beam emittance is conserved,

£(s)=const, and Egs. (2.28)-(2.29) describe the exact evolution of the outer edge (5 ,b )

of the beam envelope [Davidson and Qin, 2001a].

The matched solutions to the envelope equations (2.28)-(2.29), satisfying

a(s+S)=a(s) and b (s+S)=b(s), can be used for calculation of the phase advances
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[Davidson and Qin, 2001a]. The vacuum phase advance,o, describing the normalized

lattice strength can be expressed as

So+S so+S
) 0 ) 0 ds
o, = lime j 2(5) AmE j b (s)’ 23D

and the depressed phase advance o including self-field effects is given by

So+S So+S

_ ds ds
o=¢ j- —Ez(s) =& I I (S), (2.32)

Within the smooth-focusing approximation the envelope equations (2.28)-(2.29)

have the following form

L adk, —tla=t, (2.33)
L a

[\S]

-
L PR T
ds* | ° a(a+b)_ b’

(2.34)

The matched smooth-focusing solutions are given by a(s)=b (s)=r,,, and it is

straightforward to show that in the smooth-focusing approximation the phase advances
are given by [Davidson and Qin, 2001a]

of =

v

K, S, (2.35)

and

1/2

(2.36)

2
O-_Sf =1+ Kb — Kb
rond N N .
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For the case of an azimuthally symmetric beam, the equilibrium beam radius 7,
determined from Eqgs. (2.33) and (2.34) and da/ds=0=db/ds, and a(s)=b(s)=7,,, is

given by the solution to the radial force balance equation

K, \_ &
(K‘Sf —_—;jl"bo =— - (237)

Tho Tho
Equation (2.37) represents the balance between the applied lattice focusing field, the
beam self-fields, and the effective “thermal pressure” associated with the transverse

velocity spread of the beam particles. It is readily seen from Eq. (2.37) that the

dimensionless parameter K, 7, / &” can be used as a normalized measure of the self-field
strength with K72 /e? <<l corresponding to an emittance-dominated beam with

negligible self-field force, and K, 7, / &*>>1 corresponding to an intense, space-charge-

dominated beam with very small transverse emittance.

2.2.4 Halo Particle Production by a Beam Mismatch

In order to maintain high beam quality and avoid activation of the chamber wall, it is
important to minimize the transverse excursion and number of halo particles ejected from
the beam core. Mechanisms that can cause the production of halo particles range from
beam mismatch and envelope instabilities [Gluckstern, 1994; Gluckstern et at., 1998;
Wangler et al., 1998; Allen et al., 2002], to collective excitations in the beam interior
[Strasburg and Davidson 2000; Strasburg and Davidson 2001]. Here, we present brief

overview of the beam mismatch mechanism developed by Gluckstern [Gluckstern, 1994],
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in which halo particles gain their energies by means of parametric resonant interaction
with the self-field perturbations produced by a beam mismatch.

For simplicity, we make use of the smooth-focusing approximation, and a more
detailed analysis taking into account the effects of the oscillating focusing field is
presented later in this chapter and also in Chapter 3. Assuming small-signal perturbations

&,0b <<7,,, we express a=r,,+oa and b =7, +0ob . It is straightforward to show that

the envelope equations (2.33)-(2.34) support mismatch oscillations around the

equilibrium beam radius 7,, with normal mode oscillation periods determined by

[Struckmeier and Reiser, 1984; Lund and Bukh, 2004]
278

V2o ) +20 )
278

Jor V3l Y

Here, LY corresponds to the symmetric (even) mode with &z =6b , and Lf]f corresponds

sf _
L =

(2.38)

= (2.39)

to the quadrupole (odd) mode with &w=-6b . The quadrupole and symmetric modes
represent collective transverse oscillations of the charged particle beam envelope. On the
other hand, due to the nonlinear transverse dependence of the beam self-fields near and
beyond the beam edge, individual beam particles can oscillate about and through the
beam core with energy-dependent betatron frequency. Collective self-field perturbations

produce modulation of the betatron frequency, and therefore parametric resonant
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Figure 2.4: A snapshot of the radial beam (r,7") phase space for the case of a space-
charge-dominated beam with s, =0.9999 (asf Jo¥ = 0.25). The halo is produced by a
mismatch oscillations with amplitude or, ~0.37,,. The results are obtained with WARP

simulations, using a smooth-focusing model. The dashed lines schematically illustrate
different phase-space trajectories, corresponding to the Poincare sections with strobe
time taken at the minimum of the beam radius. The “O-point” corresponds to a fixed

stable point of 2:1 (fundamental) parametric resonance.
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interaction between the edge beam particles and the collective modes may occur. In
particular, beam particles, which are close to fundamental resonance with the collective
mismatch oscillation, can gain transverse energy and populate the halo region
[Gluckstern, 1994].

A snapshot of the radial beam (r,7") phase space shown in Fig. 2.4. illustrates the
resonance halo structure, produced by an azimuthally symmetric mismatch oscillations

with amplitude or, ~0.37,,. The beam intensity corresponds to a space-charge-dominated

limit with s, =0.9999 (O'Sf / o’ = 0.25); and the numerical results for this illustrative

example are obtained using the WARP particle-in-cell (PIC) code [Friedman et al., 1992;
Grote et al., 1998]. The dashed lines schematically illustrate different phase-space
trajectories, corresponding to the Poincare sections with the strobe time taken to coincide
with the minimum of the beam radius. Note that most of the halo particles travel near the
separatrix, which separates stable core trajectories from trajectories around the “O-point”,

corresponding to the stable fixed point of the parametric resonance.

2.2.5 Intense Beam Transport Stability Limits

Understanding stability properties of an intense charged particle beam propagating in a
periodic focusing lattice is a critical problem in intense beam transport, especially in
heavy ion fusion, which relies on high-brightness and high-current heavy ion beams to
deliver high power to the target. An extensive scientific effort over the past several

decades has revealed a wide range of collective unstable processes degrading beam
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quality, ranging from higher-order kinetic instabilities internal to the beam to low-order
beam envelope instabilities. A well-known example of a kinetically unstable distribution
is the Kapchinskij-Vladimirskij (KV) distribution, where hypershell structure of the
energy distribution provides the source of free energy to drive higher-order collective
instabilities internal to the beam [Hofmann et al., 1983; Davidson and Qin, 2001a]. As a
result, the KV distribution becomes unstable at sufficiently high beam intensities. On the
other hand the low-order evolution of the beam edge envelope [Eqs (2.28)-(2.29)], can
also become unstable in the region of high values of vacuum phase advances due to the
parametric resonance coupling of mismatch oscillations to the periodic lattice structure
(Fig. 2.5) [Struckmeier and Reiser, 1984; Lund and Bukh, 2004].

Over two decades ago, another class of unstable higher-order resonance processes
attributed to beam space-charge effects was observed experimentally [Tiefenback et al.,
1985; Tiefenback, 1986]. It was demonstrated that the quality of space-charge-dominated

beam transport in alternating-gradient quadrupole focusing lattices is significantly
degraded in the region where o>~ >(27/3)’ / 2 (Fig. 2.5). Although, this criterion has

been extensively used in the practical design of focusing systems, the origin of this limit
had not been fully understood until recently, when a plausible theoretical model has been
proposed [Lund and Chawla, 2006]. For future reference, we briefly summarize the
properties of this space-charge transport limit.

Detailed numerical studies [Lund and Chawla, 2006] revealed the robustness of

this transport limit, demonstrating that various choices of initial beam distribution are
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Figure 2.5: (Color) Beam stability regions in a FODO quadrupole lattice. The blue
region illustrates band of strong parametric evelope instability. The red region

corresponds to the higer-order resonance instability [Lund and Chawla, 2006].

subject to strong growth in statistical phase-space area (emittance growth), when

2
O —

vac

o’ >(2x/3) / 2. Figure 2.6 shows a significant increase in the beam transverse

emittance for the cases where the initial beam distribution is specified by the thermal
equilibrium [Eq. (2.23)], waterbag [Eq. (2.24)], and semi-Gaussian (that is Gaussian in
velocity and has a uniform distribution in position) distribution functions.

In order to probe the beam microstate, the particle-core model using a KV core
was effectively utilized [Lund and Chawla, 2006]. The particle-core model is used to
study a single particle dynamics governed by the applied lattice focusing fields and the

self-fields produced by the oscillating beam core, whose evolution is described by the
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Figure 2.6: (Color) PIC simulations of the plane-averaged emittance growth for different

initial distributions in a FODO quadrupole channel (o, =100°,0/c,,. =0.2, n,=0.5).

[Lund and Chawla, 2006].
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Figure 2.7: (Color) Core-particle Poincare phase-spaces for 7, =0.5, o, =100°,

(ayo/o,,. =0.67, and (b)o/o,,. =0.2. Results are obtained using the particle-core

model with a KV core. The extent of the core is plotted in red, and 7, corresponds to the

outer edge of the beam envelope. [Lund and Chawla, 2006].
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envelope equations [Egs. (2.28)-(2.29)]. Typically, the density distribution within the
beam core is assumed to be uniform, which corresponds to a matched KV quasi-

equilibrium. Figure 2.7 illustrates Poincare phase space plots obtained with the particle-

core model for the cases of a moderate intensity beam with o/, =0.67 and o, =100°

[Fig. 2.7(a)], and a space-charge-dominated beam with o/c,=0.2 and o, =100"[Fig.
2.7(b)].

It is readily seen from Fig. 2.7 that for the unstable case [Fig. 2.7(b)], the core is
surrounded by a chaotic sea region connected to a large 4:1 resonance structure that
ultimately limits the particle oscillation amplitude. Therefore, near-edge particles can
diffuse outside the beam core sufficiently to partake in the higher-order resonances, thus
providing emittance growth. In contrast, for the case of a moderate intensity beam (stable
case) [Fig. 2.7(a)] the particles remain close to the matched envelope. Note the large
change in scale between the stable and unstable plots. Stability thresholds based on this
resonance picture were found to be in approximate agreement with experiment and
simulations [Lund and Chawla, 2006].

Finally, it should be noted that the effects of beam space-charge can also
significantly modify the stability properties of beam transport at moderately weak beam
intensities. In particular, it has recently been demonstrated that a similar 4:1 resonance
structure appears, and associated higher-order effects can dominate over the envelope

instability for the case of a lower intensity beam with /o, ~0.8 [Jeon et al., 2009;

Groening et al., 2009].
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2.3 Adiabatic Formation of a Matched-Beam
Distribution for an Alternating-Gradient Quadrupole

Lattice

This section develops a numerical method for the formation of a quasi-equilibrium beam
distribution matched to an alternating-gradient quadrupole focusing lattice by means of
the adiabatic turn-on of the oscillating focusing field. The motivation for this work and a
summary of previous studies are described in Sec. 2.3.1. In Sec. 2.3.2 the method is
investigated for a wide range of transport system parameters, making use of particle-in-
cell simulations, and quiescent beam propagation for over a hundred of lattice periods is
demonstrated. In Sec. 2.3.3, properties of the quasi-equilibrium matched-beam
distribution are investigated, and compared with the predictions of the analytical theory
developed by Davidson et al. [Davidson et al., 1999]. Finally, the analysis is extended to
the case of a periodic-focusing solenoidal lattice, and various choices of the initial beam

distribution in Sec. 2.3.4.

2.3.1 Motivation
As noted earlier, the equilibrium and stability properties of an intense charged particle
beam propagating through an alternating-gradient quadrupole focusing lattice are of

particular importance for a wide range of applications to high energy and nuclear physics,
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ion-beam-driven high energy density physics and heavy ion fusion, and nuclear waste
transmutation [Chao, 1993; Reiser, 1994; Davidson and Qin, 2001a]. It is therefore
important to develop an improved theoretical understanding of intense beam transport.
Although the nonlinear effects of the intense self-fields produced by the beam space-
charge provide a significant challenge for analytical studies, various analytical models
have been developed to describe an equilibrium beam distribution matched to an
alternating-gradient quadrupole focusing lattice [Channell, 1999; Davidson et al/, 1999;
Davidson and Qin, 2001a]. To validate prospective models it is particularly important to
develop numerical techniques allowing for the formation of a quasi-equilibrium beam
distribution. Furthermore, numerical schemes describing the quiescent loading of a beam
distribution into a transport lattice and minimizing the deleterious effects of beam
mismatch are of particular importance for detailed numerical studies of various collective
processes and instabilities. In this section, we present a numerical method for the
formation of a quasi-equilibrium beam distribution matched to an alternating-gradient
quadrupole focusing lattice by means of the adiabatic turn-on of the oscillating focusing
field [Dorf et al., 2009a; Dorf et al., 2009b].

The approach of adiabatic turn-on of the oscillating focusing field has been
previously investigated by means of nonlinear 6F simulations by Stoltz et al. for the case
of a periodic focusing solenoidal lattice [Stoltz et al., 1999]. In that work the total

distribution function F) of a beam propagating through a periodic focusing soleniodal

field with coupling coefficient x (s+S)=x,(s) is divided into a zero-order part (Fbo)
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that propagates through the average focusing field &, =const, plus a perturbation (5F,),

which evolves nonlinearly in the zero-order and perturbed field configurations. It was
demonstrated that for the case where the oscillatory component of the coupling

coefficient, dx, (s)=x,(s)-k,, turns on adiabatically over many periods of the focusing

lattice, the amplitude of the mismatch oscillations reduces by more than an order-of-
magnitude compared to the case where the field oscillation is turned on suddenly. The
technique reported in [Stoltz et al., 1999], however, can not be applied to the case of an
alternating-gradient quadrupole lattice, because the average component of the focusing
field vanishes.

Here we generalize the method of adiabatic formation of a matched beam
distribution to the case of an alternating-gradient quadripole lattice [Dorf ef al., 2009a].
In this generalized approach, an equilibrium beam distribution is initially loaded into a
uniform focusing channel with the focusing field given by the smooth-focusing
approximation, which describes the average effects of the alternating-gradient lattice
[Channell, 1999; Davidson et al., 2001b; Startsev et al., 2009]. The oscillating
quadrupole focusing field is then adiabatically turned on as the amplitude of the uniform
field component is adjusted to maintain the average (smooth-focusing) effects of the total
focusing field fixed. It is demonstrated that the generalized method allows for quiescent
formation of a quasi-equilibrium beam distribution matched to a quadrupole lattice for a
broad range of beam intensities and vacuum phase advances describing the strength of

the oscillating focusing field. For the case of sufficiently large values of the vacuum
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phase advance, the deviations of the beam distribution function from the initial state can
be significant. Therefore, in the present analysis we use the full particle-in-cell code
WARP [Friedman et al., 1992; Grote et al., 1998] to perform the numerical simulations.
However, we note that the formalism presented here will also provide a useful approach

for initializing the choice of self-consistent quasi-equilibrium distributions f, in

nonlinear F simulations for intense beam propagation in periodic-focusing lattices [Qin
et al., 2007; Startsev et al., 2007; Qin et al., 2008].

Properties of the quasi-equilibrium matched beam distribution are investigated in the
present analysis. In particular, self-similar evolution of the transverse beam density
profile is observed. Furthermore, the density profile of the beam distribution matched to
the quadrupole lattice is found to be self-similar to the initial density profile
corresponding to the smooth-focusing equilibrium distribution. These observations are
consistent with predictions of the Hamiltonian averaging theory developed by Davidson
et al. [Davidson et al., 1999]. The range of validity of the self-similarity feature is also
investigated.

As noted earlier in this chapter, a mismatch between the beam and the transport
lattice can produce halo particles, which may cause degradation of the beam quality and
activation of the chamber wall [Gluckstern, 1994; Allen et al., 2002]. For intense beam
accelerators and transport systems it is increasingly important to suppress beam halo
production; therefore, quiescent beam matching from the source region into the transport

lattice is of particular practical importance [Batygin, 1996; Prost ef al., 2005; Chung et al,
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2007]. Note that the method presented in this section for adiabatic formation of a
matched beam distribution may possibly be utilized in the design of next-generation
transport systems. Indeed, an intense beam produced by an emitting source typically has
an azimuthally symmetric envelope with a negligible convergence (divergence) angle and
can be easily matched to a uniform focusing channel. Then, a matching section where the
oscillating quadrupole field is turned on adiabatically can be used to provide quiescent
beam matching to the transport lattice. Conditions on the length of the adiabatic turn-on

section required to assure that matching is maintained are discussed.

2.3.2 Quiescent Loading of a Matched-Beam Distribution for a

Quadrupole Lattice

In this section we describe the numerical scheme that allows for the quiescent formation
of a quasi-equilibrium beam distribution matched to an alternating-gradient quadrupole
lattice [Dorf et al., 2009a]. The scheme is then examined for a range of values of beam
intensity and lattice vacuum phase advance, making use of particle-in-cell numerical
simulations performed with the 2D slice version of the WARP code. The scheme works
as follows. First, the oscillating focusing field of the quadrupole lattice is replaced with
the smooth-focusing force given by Eqgs. (2.16) and (2.17), and the thermal equilibrium

beam distribution [Eq. (2.23)]

2.2 2.2
S(H) =4, [—7 LA jexp{——y LA HE}, (2.40)

27T, 1b
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is loaded into the uniform focusing channel. Then, the oscillating quadrupole focusing
force in Eq. (2.6) is adiabatically turned on, and the uniform focusing component is
correspondingly adjusted to maintain the smooth-focusing effect of the total focusing

field fixed. That is, the fotal focusing force acting on the beam particles is specified by
Fi ()= (s)=1)e, (xe, + e, )=V (s)e, (s, - e, ), (2.41)

where V(s) is a function describing the smooth transition of the focusing field in the

matching section that satisfies /(s =0)=0 and ¥V (s=o0)=1. Here, we adopt a simple

model in which V(s) varies according to

V(s)= {1+exp (?ﬂ —[l+exp (%ﬂ , (2.42)

where 2L, is the length of the matching section, and L, is the characteristic length scale

for variation of V(s) from zero to unity, and L;»>>L,>>S is assumed. We also assume a
step-function (FODO) model of a quadrupole lattice, for which the corresponding
smooth-focusing lattice coefficient, x, in Eq. (2.41) is given approximately by Eq.
(2.19).

A plot of the transition function V(s) along with the corresponding evolution of
the normalized rms envelope beam dimension X, E<x2 >1/2 is shown in Fig 2.8. For

future reference, here we define X as the beam x-envelope local maximum value

calculated at the end of each focusing cell. Detailed results of the numerical simulations
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Figure 2.8: (Color) Evolution of a space-charge-dominated beam with 2K,R? /s* =15.3.
Phase advances are given by o, =65.9" and o/c, =0.260. The corresponding smooth-
focusing parameters are o =61.8°, 0¥ /o =0.247 , 5, =0.9999; and 2L,, /S =40. The

figures show plots of (a) the evolution of the rms beam envelope, X;ns, versus number of
lattice periods, N, (b) the lattice transition function V(s), and (c) the evolution of the
rms beam envelope in the final state (blue), and a schematic of the corresponding FODO

lattice coefficient kq(s) (pink).
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for the illustrative parameters corresponding to the cases of a space-charge-dominated
beam with 2K,R; /e* =153 (o/o,~0.26), and an emittance-dominated beam with
2K,R;,/e* =02 (o/c, ~0.91), are shown in Figs. 2.9-2.14 [Dorf et al., 2009a]. Here,
R, = <(x2 +y° )>0 , is the mean-square beam radius, where (y), =N, _[ dxdydx'dy’ y 1,
denotes the statistical average of a phase function y over the initial smooth-focusing
beam distribution function f,’ in Eq. (2.40). Note that for the case of a KV distribution

R, =7 / 2, where 7, is the outer edge of the beam equilibrium envelope [Eq. (2.37)].

For each value of the beam intensity, the following values of the lattice vacuum phase

advance have been considered: o,=44.8°, o ,=659"and o, =87.5". The

corresponding values of the phase advances (o ,o” ), and normalized beam intensity sj,

calculated for the initial beam equilibrium in the smooth-focusing channel are indicated
in the captions to Figs. 2.9-2.14. Other important parameters of the numerical simulations

correspond to filling factor 7 . =0.3 and wall radius r,=4R;¢; the total number of
macroparticles used in the simulation is N, =4x 10°, and the total number of grid cells
in the x and y directions is N, =N =128. To assure that matching is approximately
maintained in the matching section, we choose L, /L” =5 and take L, =5LY , where

LY is the smooth-focusing period of the linear mismatched oscillations defined in Eq.
(2.38). The ratio of the length of the matching section to the lattice period, 2L,, / S, is

indicated in the captions to Figs. 2.9-2.14. It value depends on the value of the phase
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advances, and for the considered illustrative parameters it varies from 2L, / S=24 for
o,=87.5" and o/c,, =091 to 2L,, /S~51 for o, =44.8" and 6/c, = 0.26 .
In each of Figs. 2.9-2.14, the frames in (a) illustrate the discrete evolution of the

- . . 1/2
normalized rms envelope x-dimension, X E<x2 >/ , calculated at the end of each

focusing cell where the beam x-envelope has a local maximum value. Such a graphical
representation for a matched beam would be a horizontal straight line; therefore (a)
provides a convenient representation of beam mismatch. The frames in (b) show fast-
Fourier transform (FFT) plots of Xus(s), where the continuous evolution of Xns(is) is used
for the FFT calculations. Finally, the frames in (¢) show the evolution of the x-component
of  the normalized perturbations in transverse beam emittance,
¢ (s)/e, =], (s)—€,(s=0)]/e,(s=0). Along with the evolution of the beam
parameters for the case of adiabatic turn-on of V(s) shown by the solid curves, Figs. 2.9-
2.14 also show the evolution of beam parameters (dashed curves) for the case where the
initial distribution is loaded instantaneously into an alternating-gradient quadrupole

lattice with 7 (s) =1 [Lund et al., 2009].

To load the particles for this case, first the matched solutions to the envelope
equations (2.28)-(2.29) are found. Then, the smooth-focusing thermal equilibrium

distribution that satisfies 2R}, =a@’(s')=5b"(s") is calculated. Here s' denotes the

location inside the focusing cell where a@(s’)=b(s’). Finally, the positions and velocities
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Figure 2.9: Evolution of a space-charge-dominated beam with 2K,R? /> =15.3. Phase
advances are given by o, =44.8° and o/c, =0.255. The corresponding smooth-focusing
parameters are ¢ =43.3°, o¥ /oY =0.247, 5, =0.9999; and 2L,, /S =57.1. The figures
show plots of: (a) X, /X,, versus number of lattice periods, Np,, where x,, =( x2>Z2, and

Xmax corresponds to the value of X, calculated at the end of the focusing cell; (b) FFT
of Xims(s) versus kS/2x; and (c) normalized perturbed emittance dex(s)/€p versus s/S. The
solid curves correspond to an adiabatic turn-on of the lattice, and the dashed curves

correspond to the case of an instantaneous beam loading.
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Figure 2.10: Evolution of an emittance-dominated beam with 2K,R} /¢* =0.2. Phase
advances are given by o, =44.8" and o/c, =0.913. The corresponding smooth-focusing
parameters are ¢ =43.3°, 67/ =091, 5,=032; and 2L,, /S =43.5. The figures show
plots of: (a) X, /X,, versus number of lattice periods, N;, where x, =( x2>:)/2, and Xiax
corresponds to the value of X,y calculated at the end of the focusing cell; (b) FFT of
Xms(s) versus kS/2m; and (c) normalized perturbed emittance dex(s)/p versus s/S. The
solid curves correspond to an adiabatic turn-on of the lattice, and the dashed curves

correspond to the case of an instantaneous beam loading.
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Figure 2.11: Evolution of a space-charge-dominated beam with 2K,R? /¢* =15.3. Phase

advances are given by o, =65.9° and o/, =0.260. The corresponding smooth-focusing

parameters are ¢¥ =61.8°, o¥ /o =0.247 , 5, =0.9999; and 2L /S =40. The figures

12

show plots of: (a) X, /X,, versus number of lattice periods, N;, where x, = x2>1]/2 , and

Xmax corresponds to the value of X,y calculated at the end of the focusing cell; (b) FFT
of Xms(s) versus kS/2m; and (c) normalized perturbed emittance dex(s)/gg versus s/S. The
solid curves correspond to an adiabatic turn-on of the lattice, and the dashed curves

correspond to the case of an instantaneous beam loading.
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Figure 2.12: Evolution of an emittance-dominated beam with 2K,R} /¢* =0.2. Phase
advances are given by o, =65.9" and o/c, =0.915. The corresponding smooth-focusing
parameters are ¢/ =61.8°, 07/ =091, 5,=032; and 2L,, /S =30.5. The figures show
plots of: (a) X, /X,, versus number of lattice periods, N;, where x, =( x2>:)/2, and Xiax
corresponds to the value of X,y calculated at the end of the focusing cell; (b) FFT of
Xms(s) versus kS/2m; and (c) normalized perturbed emittance dex(s)/p versus s/S. The
solid curves correspond to an adiabatic turn-on of the lattice, and the dashed curves

correspond to the case of an instantaneous beam loading.
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Fig. 2.13: Evolution of a space-charge-dominated beam with 2K, R’ /¢* =15.3. Phase
advances are given by o, =87.5° and o/c, =0.265. The corresponding smooth-focusing
parameters are ¢ =78.7°, 67 /oY =0.247 , 5, =0.9999; and 2L, /S =31.4. The figures
show plots of: (a) X, /X,, versus number of lattice periods, Np,, where x,, =( x2>:)/2, and

Xmax corresponds to the value of X, calculated at the end of the focusing cell; (b) FFT
of Xims(s) versus kS/2x; and (c) normalized perturbed emittance dex(s)/€g versus s/S. The
solid curves correspond to an adiabatic turn-on of the lattice, and the dashed curves

correspond to the case of an instantaneous beam loading.
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Figure 2.14: Evolution of an emittance-dominated beam with 2K,R} /¢* =0.2. Phase

advances are given by o, =87.5" and o/c, =0.918. The corresponding smooth-focusing

parameters are ¢ =78.7°, o/ /c¥ =091, 5, =0.32; and 2L

1/2

/8 =23.9. The figures show

plots of: (a) X, /X,, versus number of lattice periods, N;, where x, =( x2>:)/2, and Xmax

corresponds to the value of X,y calculated at the end of the focusing cell; (b) FFT of

Xms(s) versus kS/2m; and (c) normalized perturbed emittance dex(s)/p versus s/S. The

solid curves correspond to an adiabatic turn-on of the lattice, and the dashed curves

correspond to the case of an instantaneous beam loading.
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of the beam particles are linearly scaled, providing the size and the slope of the beam
envelope to be consistent with the matched solution to the envelope equations (2.28)-
(2.29). Note that the frames in (a) in Figs. 2.9-2.14 illustrate the initial evolution of the
beam mismatch for the case of instantaneous loading, and the evolution near the exit of

the matching section, s>2L,,, for the case of adiabatic formation of a beam quasi-

equilibrium. Correspondingly, the averages for the FFT calculations are from s=0 to

s =100S for the case of instantaneous loading, and from s=2L,, to s =2L,, +100S for

the case of adiabatic turn-on of V{(s). Note that the 100-lattice-period window for the FFT
averages is found to be sufficient for present purposes. It allows us to resolve the
difference between the even (symmetric) and the odd (quadrupole) mismatch envelope
mode frequencies as evident in Figs. 2.9, 2.11, and 2.13. Furthermore, for the case of an
emittance-dominated beam the mismatch oscillations are significantly damped after ~100
lattice periods. Therefore an increase in the FFT-average window would result in noise
integration.

It is evident from Figs. 2.9-2.14, for the case of adiabatic formation of the beam
quasi-equilibrium, that the amplitude of the mismatch oscillations is reduced compared to
the case of instantaneous loading of the beam distribution. Furthermore, for the case of
adiabatic formation, note that the beam mismatch is attributed primarily to the numerical
imprecision in loading the initial smooth-focusing equilibrium distribution, and therefore
can be further suppressed if a finer grid structure, and larger number of macroparticles

are used in the simulations. In contrast, the numerical scheme for instantaneous loading
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cannot provide the detailed quasi-equilibrium intrinsically. Note that mismatch relaxation
is more pronounced for the case of an emittance-dominated beam compared to the case of
a space-charge-dominated beam, which is consistent with the studies in [Variale, 2001;

Dortf et al., 2006; Dorf et al., 2007]. Of particular interest is the case of intense beam

propagation with 2K,R;, /&> =15.3 (s,=0.9999) through the quadrupole lattice with

moderately high vacuum phase advance (o, =87.5°). In this case, appreciable emittance

growth is evident even for adiabatic formation of the beam distribution [Fig. 2.13(c)].
The simulations demonstrate that the beam is well-matched to the lattice for over 450
lattice periods, and therefore the increase in the beam emittance cannot be attributed to
mismatch relaxation. A plausible explanation of this phenomena can be attributed to

“higher-order resonance” effects, which limit intense beam transport in the region where

ol —o’>(2x/3) / 2 [Tiefenback et al., 1985; Tiefenback, 1986] as proposed in [Lund

and Chawla, 2006]. As the system parameters approach this stability limit, higher-order
resonances appear near the beam core in the transverse phase-space (Sec. 2.2.5);
therefore, near-edge particles can diffuse outside the beam core sufficiently to participate
in the resonances, thus providing emittance growth [Lund and Chawla, 2006].

As noted earlier, the matching section that provides adiabatic lattice transition
from a uniform channel to an alternating-gradient quadrupole lattice could in principle be
utilized to provide beam matching from the source into the quadrupole lattice for next-
generation accelerators and transport systems. It is therefore of particular practical

importance to estimate how smooth (adiabatic) the lattice transition should be to assure
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Figure 2.15: (Color) Degree of beam mismatch at the end of the matching section plotted

versus the length of the matching section. Here, the vacuum phase advance is o, = 65.9°,

and the two cases correspond to normalized intensity 2K,R? /e* =15.3 and s, =0.9999

(blue curve), and 2K, R’ /e* =0.2 and 5, =0.32 (pink curve).
b7 b0 b

that matching is maintained during the transition [Dorf et al., 2009a]. Figure 2.15

illustrates the degree of beam mismatch, J, , calculated at the end of the matching section
(s>2L,,) for different values of the matching section length, 2L, , , for the case where

the vacuum phase advance of the lattice o, is 65.9°. Here, we measure the beam

mismatch, O

m?

. . .. 1/2
by the ratio of the maximum to minimum values of X E<x2>/

calculated at the end of each focusing cell within the first two periods of the smooth-

focusing mismatch oscillationsafter the beam leaves the matching section, i.e., within the

range 2L, <s<2L,, + 2L , - Recall that the beam rms envelope x-dimension, Xims, has a

local maximum at the end of a focusing cell. It is readily seen from Fig. 2.15 that a
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moderate length of the matching section, ~10 lattice periods, is sufficient to assure that
the beam is well-matched to the lattice. Furthermore, a longer matching section is
required for higher beam intensities. It should be noted that these observations are
consistent with the results of detailed numerical and experimental studies in [Dorf et al.,
2006; Gilson et al., 2007] of the beam response to the smooth variations of the lattice

amplitude.

2.3.3 Self-Similar Evolution of the Beam Density Profile

In the previous section we demonstrated that the formation of a quasi-equilibrium beam
distribution matched to an alternating-gradient quadrupole focusing lattice can be
achieved in the numerical simulations by means of the adiabatic turn-on of the oscillating
focusing field. In this section we investigate properties of the matched beam distribution
in order to compare results of the numerical simulations with predictions of the analytical
theory developed by Davidson et al. [Davidson et al., 1999]. Furthermore, we make use
of the numerical simulations to investigate the validity limits of the theory. The analytical
model developed in Refs. [Davidson et al., 1999; Startsev et al., 2009] applies
Hamiltonian averaging techniques to the nonlinear Vlasov-Maxwell equations (2.13)-
(2.14), assuming sufficiently small vacuum phase advance, o, . It has been demonstrated
that the evolution of the beam density profile for the case of intense beam propagation

through an alternating gradient-quadroupole lattice is given by [Davidson et al, 1999;

Davidson and Qin, 2001a]
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_ szo 0 ﬁ(x,y,s)
nb(x,y,s)—a(s)b(s)n{ X, }, (2.43)

correct to order &°, where £ =0,/27 is the expansion parameter of the theory. Here,

n, (r) is the beam density profile corresponding to an arbitrary smooth-focusing

equilibrium, and R(x,y,s)/R,, is defined by

~ 2 2 V2
R, )

where a(s)= J2x o(s) and b(s)= \/EY,M (s). Note that the theory assumes that the
conducting wall is sufficiently far removed from the beam (r, — o).

We now investigate properties of the quasi-equilibrium beam density profiles
obtained in the numerical simulations for the illustrative parameters considered in Sec.
2.3.2, and compare it with predictions of the analytical theory given by Egs. (2.43) and
(2.45) [Dorf et al., 2009a]. Recall, that for all of the simulations we take r,=4Rpp, which
corresponds to a sufficiently large radius of the conducting wall. Results of the numerical
simulations are presented in Figs. 2.16-2.21, and the density profiles shown in the figures
are calculated within the first lattice period after the beam leaves the matching section,
ie, 2L, <s<2L,, +S. Figures 2.16 and 2.17 show contour plots of the beam density

2

for the cases of a space-charge-dominated beam with 2K, R}, /&* =15.3 [Fig. 2.16], and
an emittance-dominated beam with 2K, R’ /&* =0.2 [Fig. 2.17]. It is readily seen from

the figures, plotted in the scaled coordinates {x/a(s), y/b(s)}, that the contours of
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Figure 2.16: (Color) Contour plots of the beam density calculated at the end of the
focusing cell and plotted in (a) scaled, and (b) regularly normalized coordinates. The

vacuum phase advance is o, =44.8", and the normalized beam intensity corresponds to

2K, R /&* =153 (s, =0.9999).

Beam density (arb. units) (a) Beam density (arb. units) (b)

y/[b(s)

x/a(s) X/ Ry

Figure 2.17: (Color) Contour plots of the beam density calculated at the end of the
focusing cell and plotted in (a) scaled, and (b) regularly normalized coordinates. The

vacuum phase advance is o, =44.8", and the normalized beam intensity corresponds to

2K, R /& =02 (s,=0.32).
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Figure 2.18: (Color) Plots of the beam density profile for a space-charge-dominated
beam with 2K, R} /e* =153 (s, =0.9999). Phase advances are given by o, =44.8" and

0

o/o, =0.255. Shown are (a) the normalized density profile,
i, (x,s)=[a(s)b(s)/ Ry, |[n; (x,5)/n; (r=0)], plotted versus the scaled transverse
coordinate x/a(s); and (b) n(x,s)/n)(r=0) plotted versus x/R, . Density profiles
correspond to: the initial smooth-focusing thermal equilibrium (blue curve); the
maximum value of X (pink curve); the minimum value of X (green curve); and the

location inside the focusing cell where X,,,=Y s (Cyan curve). The flutter on top of the

beam density profiles in Frame (a) is reduced in simulations with a larger number of

macroparticles (N, =6x10°) and coarser grid (N,=N,=64) as shown in Frame (c).
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Figure 2.19: (Color) Plots of the beam density profile for an emittance-dominated beam
with 2K,R’ /e =02 (s,=032). Phase advances are given by o, =44.8" and

o/o,=0.913. Shown are (a) the normalized density profile,
i, (x,5)=[a(s)b(s)/R}, [ n; (x,5)/n) (r=0)], plotted versus the scaled transverse
coordinate x/a(s); and (b) n;(x,s)/n) (r=0) plotted versus x/R,,. Density profiles

correspond to: the initial smooth-focusing thermal equilibrium (blue curve); the
maximum value of X (pink curve); the minimum value of Xy (green curve); and the

location inside the focusing cell where X.,,,=Y ..s (Cyan curve).
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constant beam density are approximately circular, which is consistent with Eqgs. (2.43)-
(2.44). Therefore, without loss of generality, in the following analysis we present results
of the numerical simulations for the evolution of the beam density projected along the x-

direction, n, (x,s)=n, (x,y=0,s). Figures 2.18 and 2.19 show the evolution of the beam

density plotted in scaled coordinates [Fig. 2.18 (a) and Fig. 2.19 (a)], and regularly

normalized coordinates [Fig. 2.18 (b) and Fig. 2.19 (b)] for the cases where

2K,R:,/e* =15.3 and 2K,R} /e* =0.2, respectively. For these simulations, a relatively

modest value of the vacuum phase advance of o, =44.8° is considered. It is readily seen
that the evolution of the quasi-equilibrium beam density is self-similar, i.e.,
n,(x,y=0,5)=n(x,s)=n; [x/ a(s)] to very good approximation. Note that the flutter on
top of the beam density profiles in Figs. 2.18(a) and 2.18 (b) is due to numerical noise,
and a much lower noise level is observed in the numerical simulations with a larger

number of macroparticles (N, = 6 x 10°) and coarser grid (N, = N, =64) [compare Fig.

2.18(a) and Fig. 2.18(c)]. To good visual accuracy, it is evident that the beam density
evolution in the quadrupole lattice is also self-similar to the initial beam density profile
[plotted in Figs. 2.18-2.19 by the blue curves] corresponding to the initial smooth-
focusing thermal equilibrium with the distribution function in Eq. (2.40). Note that the
analytical theory [Davidson ef al., 1999; Davidson and Qin, 2001a] predicts that the beam
density profile is self-similar to the density profile determined from the choice of smooth-
focusing equilibrium distribution function. Therefore, it is not expected a priori that the

smooth-focusing equilibrium corresponding to the beam distribution matched to the
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normalized beam density profile,

i, (x,s)=[a(s)b(s)/ Ry, |[m; (x.5)/n; (r=0)], for a space-charge-dominated beam with

2K,R% /e* =153 (s, =0.9999). Phase advances are given by (a) o,=659° |,

c/c,=0260; and (b) o,=87.5", o/c,=0.265. Density profiles correspond to: the

maximum value of Xyy,s (pink curve), and the minimum value of X (green curve). The

flutter on top of the beam density profiles in Frame (b) is suppressed in simulations with

a larger number of macroparticles (N, =6x10°) and coarser grid (N,=N,=64), as shown

in Frame (c).
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Figure 2.21: (Color) Plots of the normalized beam density profile,
i, (x,s)=[a(s)b(s)/ Ry, |[m; (x.5)/n; (r=0)], for an emittance-dominated beam with
2K,R% /& =02 (s, =0.32). Phase advances are given by (a) o, =659° , o/c, =0915;
and (b) o, =87.5", o/o, =0.918. Density profiles correspond to: the maximum value of

Xims (pink curve), and the minimum value of Xy, (green curve).
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quadrupole lattice should remain the same during the adiabatic transition phase in the

matching section. Finally, Figs. 2.20 and 2.21 show the beam density evolution plotted in

scaled coordinates for larger values of the vacuum phase-advance o, =65.9" and
o, =87.5". It is readily seen that the beam density evolution is still self-similar to good
visual accuracy for o, =65.9°. However, the self-similar feature becomes less accurate

for o, =87.5" for both space-charge-dominated and emittance-dominated beams. This

illustrates the range of validity of the analytical predictions given by Eqgs. (2.43)-(2.44).
Again, we note that the flutter on top of the beam density profiles in Figs. 2.20(a) and
2.20(b) can be substantially suppressed if a larger number of macroparticles is used in the
simulations. However, in the density-fall-off region, the difference in the beam density
profiles remains very similar [compare Figs. 2.20(b) and 2.20(c)]. It is particularly
interesting to note, for the case of an emittance-dominated beam with o/o, =0.918 and

o, = 87.5°, that the beam transport is stable, the effects of higher-order resonances are

weak, however the analytical theory predictions is still of limited validity.

2.3.4 Extension of the Adiabatic Formation Scheme to the Case of a
Periodic-Focusing Solenoidal Lattice and Various Choices of Initial

Beam Distribution

The approach used in Sec. 2.3.2 for adiabatic formation of a beam quasi-equilibrium

matched to a quadrupole lattice, can be generalized in a straightforward manner to the
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case of a periodic solenodial lattice [Dorf et al., 2009b]. For the case of a solenoidal
lattice, to maintain the average (smooth-focusing) effects of the average focusing field

fixed, the transition of the applied lattice force is specified by

e = —{K‘éf [1 - (1 - r?s/lgf )V2 (s)]+ V(S)§KS (S)}(xéx + e, ), (2.45)
where V(s) is defined in Eq. (2.42). Here, we assume a step-function model of a periodic-
focusing solenoidal lattice (Fig. 2.2), for which the corresponding smooth-focusing lattice

coefficient, x ., in Eq. (2.45) is specified by Eq. (2.20).

sf 2
As noted earlier, a similar approach for formation of a quasi-equilibrium beam
distribution matched to a periodic focusing solenoidal lattice by means of adiabatic turn-

on of the oscillating focusing field has been previously reported by [Stoltz, ef al., 1999].

However, the choice of the applied lattice force transition, F, (s), considered in [Stoltz

et al., 1999] did not provide a constant average (smooth-focusing) value of the focusing
force. Furthermore, small oscillations of the beam envelope with variations in the rms
beam radius of the order of 1% were considered, which allowed for the effective use of
oF simulations, rather than full PIC simulations [Stoltz ef al., 1999].

The results of the numerical simulations for illustrative parameters corresponding
to a moderate intensity beam with /o, =0.5, propagating through quadrupole and
solenoidal lattices, are presented in Figs. 2.22-2.24 [Dorf et al., 2009b]. For the case of

beam propagation through a quadrupole lattice, note that thermal equilibrium [Eq. (2.23)]

and waterbag equilibrium [Eq. (2.24)] distributions have been used for the initial beam
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Figure 2.22: Plots of Xpa./Xvo versus number of lattice periods, N, for the case of a
moderate beam intensity with o/o, =0.5. Frames (a) and (b) correspond to a quadrupole
lattice with 7,=0.3, o0,=57" (o) =54"), 2L, /S=42.4,and the initial smooth-
focusing beam equilibrium correspond to the thermal equilibrium and waterbag
distributions, respectively. Frames (c) and (d) correspond to a solenoidal lattice with
o,=84°(0) =83"), 2L,,/S=555, and 0,=99°(c) =97"), 2L,/S=475,
respectively; here 7, =03 and the initial smooth-focusing beam equilibrium
corresponds to a thermal equilibrium distribution. The solid curves correspond to

adiabatic turn-on of the lattice, and the dashed curves correspond to the case of

instantaneous beam loading.
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Figure 2.23: (Color) Plots of the beam density profile for the case of a quasi-equilibrium

beam distribution matched to a quadrupole lattice with 7, =0.3 and o,=57". The

normalized beam intensity corresponds to o/o, =0.5. Frames (a) and (b), and Frames

(c) and (d) correspond to initial thermal equilibrium and waterbag distributions,
respectively. The density profiles correspond to: the initial smooth-focusing thermal
equilibrium (blue curve); the maximum value of Xy (pink curve); and the minimum

value of Xy (green curve).
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Figure 2.24: (Color) Plots of the beam density profile for the case of a quasi-equilibrium

beam distribution matched to a solenoidal lattice with 7 =0.3. The normalized beam
intensity corresponds to /o, =0.5. Frames (a) and (b), and Frames (c) and (d)
correspond to o, =84 and o, =99°, respectively. The initial smooth-focusing beam

equilibrium corresponds to a thermal equilibrium distribution. The density profiles
correspond to: the initial smooth-focusing thermal equilibrium (blue curve); the

maximum value of X;ns (pink curve); and the minimum value of X, (green curve).



2.4. Summary and Discussions 78

loading. To assure that matching is approximately maintained in the transition section, we

choose L, /L, =5 and take L, =517 for the quadrupole lattice case, and L, =10L7

for the solenoidal lattice case. The ratio of the length of the matching section to the lattice

period, 2L, / S, 1s indicated in the captions to Fig. 2.22.

It is readily seen that the evolution of the beam density profile is self-similar for
any choice of periodic lattice structure and initial beam distribution. In addition, it is

interesting to note, for the case of a solenoidal lattice, that the self-similarity feature is
preserved to good accuracy even for o, =99, whereas for the case of a quadrupole

lattice the self-similarity feature becomes less accurate for smaller values of vacuum

phase advance (o, =87.5") [Dorf et al., 2009b].

2.4 Summary and Discussions

It is increasingly important to develop an improved theoretical understanding of the
equilibrium, stability, and transport properties of intense non-neutral beams propagating
in periodic focusing accelerators and transport systems. A detailed self-consistent
description of intense charged particle beam transport involves analysis of the Vlasov-
Maxwell equations (Sec. 2.2.1), which offers a significant challenge for analytical studies
due to the oscillatory nature of the applied focusing force, and the nonlinear effects of the
intense self-fields produced by the beam space-charge. Therefore, various simplified

beam dynamics models, including the smooth-focusing approximation (Sec. 2.2.2),
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envelope equations (Sec. 2.2.3), Hamiltonian averaging techniques, etc., have been
presented to provide insights on intense beam propagation. To validate prospective
models it is particularly important to develop numerical techniques allowing for the
formation of a quasi-equilibrium beam distribution. Furthermore, numerical schemes
describing the quiescent loading of a beam distribution into a transport lattice, and
minimizing the deleterious effects of beam mismatch (Sec. 2.2.4), are of particular
importance for detailed numerical studies of various collective processes and instabilities
(Sec. 2.2.5).

In this chapter we have described a numerical scheme allowing for the formation
of a quasi-equilibrium beam distribution matched to an alternating-gradient quadrupole
focusing lattice by means of adiabatic turn-on of the oscillating focusing field (Sec.
2.3.2). The scheme demonstrates the ability to load a matched-beam distribution into a

quadrupole lattice for a broad range of beam intensity and vacuum phase advance

0,<66". Furthermore, for higher values of vacuum phase advance (for
instance, o, =87.5°), even in a regime where the parameters of the transport system

approach the unstable transport criterion given by ¢’ —o”>(27/ 3)2 / 2, and the transport

of the intense beam is accompanied by beam emittance growth, it is found that the
method of adiabatic formation described here still provides adequate beam matching.
Therefore, the scheme described here can be effectively used for detailed studies of
intense beam transport and stability properties, since it is able to suppress the effects of

the initial beam mismatch. Finally, it is found that a relatively modest length of the
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matching section (~10 lattice periods) is sufficient to assure that the beam is well-
matched to the lattice, thus making the scheme attractive for practical applications.
Properties of the matched beam quasi-equlibrium obtained in numerical
simulations have been investigated and compared with the predictions of the analytical
theory developed by Davidson ef al. in [Davidson et al., 1999] (Sec. 2.3.3). The theory

shows that for sufficiently small values of £ =0, /27, the evolution of the beam density

is self-similar correct to &°. In accordance with the theory, the numerical simulations

demonstrate self-similar evolution of the beam density profile for o, <66°. However, for

higher values of vacuum phase advance (for instance, o, =87.5°) the self-similarity

feature becomes less accurate over a wide range of beam intensities, which demonstrates
the validity limits of the theory.

The numerical scheme for describing formation of a quasi-equilibrium beam
distribution matched to an alternating-gradient quadrupole focusing lattice, has been
generalized to the case of a periodic-focusing solenoidal lattice (Sec. 2.3.4). Furthermore,
various distributions have been considered for the initial beam equilibrium (Sec. 2.3.4).
The self-similar evolution of the matched-beam density profile is observed for arbitrary
choice of initial distribution function and lattice type.

It should be noted that the formalism developed here can provide a useful

approach for initializing the choice of self-consistent quasi-equilibrium distributions f

in nonlinear 0F simulations [Qin et al., 2007; Startsev et al., 2007; Qin et al., 2008] for

intense beam propagation in periodic-focusing lattices.



Chapter 3
Transverse Compression of an Intense
Ion Beam Propagating through a

Quadrupole Lattice

3.1 Introduction

Alternating-gradient accelerators and transport systems have a wide range of applications
ranging from basic scientific research to industrial applications [Davidson and Qin,
2001a; Reiser, 1994; Chao, 1993]. Of considerable practical importance for heavy ion
beam applications to high energy density physics and fusion is the axial compression and
transverse focusing of the (initially long) charge bunch to a small spot size at the target
location. As noted earlier, one of the modern approaches to the compression process is to
use dense background plasma which charge neutralizes the ion charge bunch, and hence
facilitates compression of the bunch against strong space-charge forces [Henestroza et
al., 2004; Roy et al., 2005; Davidson and Qin, 2005]. On the other hand, the transverse
focusing can also be achieved by means of increasing the focusing strength of the

alternating-gradient lattice along the beam propagation direction [Qin ef al., 2004; Dorf et

81



3.1. Introduction 82

al., 2006]. Although lattice compression significantly facilitates the technical realization
of the process, uncompensated, high-intensity charge bunch propagation through the
lattice transition region inevitably leads to a certain level of beam mismatch and
emittance growth. Furthermore, a beam mismatch can produce halo particles [Gluckstern,
1994; Wangler et al., 1998; Allen et al., 2002; Qiang et al., 2002] that have much higher
transverse energy than the core particles and may cause a degradation of beam quality
(see Sec. 2.2.4).

It is evident that the beam mismatch will decrease as the length of the transition
region is increased, assuming that the lattice amplitude is constant outside the transition
region. Hence, it is a matter of considerable practical interest to determine how smooth
(adiabatic) the lattice transition should be to assure that matching is maintained during
the compression. In Sec. 3.2, a detailed investigation of this problem is performed for a
long, coasting beam using the envelope equations and full particle-in-cell numerical
simulations with the WARP code [Friedman et al., 1992; Grote et al., 1998] in the
smooth focusing approximation, which describe the average effects of a periodic lattice.
In Sec. 3.3 the effects of the alternating-gradient quadrupole field are taken into account.

It is found that even a strong mismatch, produced during the compression process,
can be consistent with moderate emittance growth. Nonetheless a certain fraction of the
beam particles experience resonant interaction with the mismatch oscillations and
populates the halo region. In Sec. 3.4, a qualitative analysis describing the details of halo
formation during the compression process is performed. Finally, Sec. 3.5 develops a

novel spectral technique for quantitative analysis of halo production by a beam mismatch



3.2. Smooth-Focusing Analysis 83

[Dorf et al., 2007]. The method is then applied to quantitative studies of the halo
production during the transverse beam compression. In addition, it is shown that the
analysis, based upon the spectral method, can provide important insights into other
critical problems in intense beam transport such as mismatch relaxation and the space-
charge transport limits (see Sec. 2.2.5).

The transverse compression of a long axially-stationary charge bunch has been
extensively investigated in the Paul Trap Simulator Experiment (PTSX) [Chung et al.,
2007; Gilson et al., 2007] that simulates the nonlinear transverse dynamics of intense
beam propagation over large distances through an alternating-gradient transport lattice
[Gilson et al., 2004; Gilson et al., 2006]. Therefore, the numerical studies presented here
can provide important insights for interpretation of the experiments carried out on PTSX.
Furthermore, since we study only transverse beam dynamics in the present chapter, it is
convenient to perform the analysis in the axial rest frame of the charge bunch. In this

frame axial 1on velocity is equal to zero, V, =0, and the relativistic mass factor is equal
to unity (7, =1). Note that the axial rest frame of the charge bunch, described above, is

the laboratory frame for the experiments carried out on PTSX.

3.2 Smooth-Focusing Analysis

In this section we make use of the smooth-focusing approximation (Sec. 2.2.2) to study

the nonlinear response of long charge bunches to alternating-gradient waveforms with
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time-varying amplitude [Dorf et al., 2006]. This model is used to describe the average
effects of a quadrupole focusing field. Within this approximation, in the axial rest frame

of the charge bunch the external focusing potential has the form

0y F) =5 0200, 3.1)

€
where @, (¢) is the smooth focusing frequency, r is the radial distance from the beam

axis, ande, and m, are the particle mass and charge, respectively. The normalized

intensity parameter specified in the laboratory frame by Eq. (2.27), has the following

form in the beam frame of references

s, =0 [20] (3.2)

where @, :(47moef /mb )1/2 is the plasma frequency, and n, En(r:O) 1s the on-axis

number density.
The initial quasi-stationary distribution, which is used in the simulations later in
this section, is assumed to correspond to a thermal equilibrium distribution [Eq. (2.23)],

and the corresponding density profile n(r) is given by [Davidson and Qin, 2001a]

€, D e (r,0)+e,0" ()
T )

n(r) =n, exp| — (3.3)

Here, T=const is the transverse temperature, and the space-charge potential ¢@°(r) is
determined self-consistently from Poisson’s equation V?¢*(r)=—-47me,n(r). Except for

space-charge-dominated beams (s, — 1), numerical solutions of Poisson’s equation



3.2. Smooth-Focusing Analysis 85

show that the radial density profile is bell-shaped, and is nearly Gaussian even for

moderate values of s, [compare Figs. 2.18(a) and 2.19(a)]. Regardless of the detailed

shape of the density profile, the mean-square radius R; of the charge bunch is determined

from the global radial force balance constraint [Davidson and Qin, 2001a]

mba)qub2 =2T+N,e;, (3.4)
where N, =27 |drrn(r) is the line density, and R, =27N,' |drr’n(r) is the mean-
b b b
0 0

square beam radius.

This section is organized as follows. In Sec. 3.2.1 the transverse beam
compression is investigated using the envelope equations; and the full self-consistent
analysis is performed in Sec. 3.2.2, making use of particle-in-cell numerical simulations

with the WARP code.

3.2.1 Rate Equation for the Beam Radius

From the fully nonlinear Vlasov-Maxwell equations describing a long charge bunch
when the external focusing force has cylindrical symmetry [Eq. (3.1)], one can derive the
following rate equation that describes the evolution of the rms radius of the charge bunch

[Davidson et al., 1998; Davidson and Qin, 2001a]

4 K £2(1)
FR}) +(a); (f)— 2Rb2 ij = 4RZ . (35)
b
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Here, K, =2N,e} /m, is  the  effective  self-field  perveance, and

. . a2 . . . .
&= <4le [<x2 + y2>— R;]) is the unnormalized transverse emittance defined in the beam

frame. The super-dot () denotes time derivative and <> denotes the statistical average

over the particle distribution function f,(x,y,x,y,t) in the transverse phase space
(x,v,x,y). Although the emittance will vary due to nonuniformities in charge density, for
present purposes we assume that £(¢) is approximately constant if the focusing frequency
o, (f)changes adiabatically. More detailed studies of the emittance behavior are

presented in Sec. 3.2.2. Assuming that &(¢) = const, we can use Eq. (3.5) to analyze the
evolution of the rms beam radius during the compression process. Following the analysis

in [Gilson ez al., 2005; Chung et al., 2007], we adopt a simple model in which o, ()

varies according to

7

-1
0,0 =@, + (0, —o,) exp| 2270 |41 (3.6)
g\ T g o qi p ’ :
where 27, is the characteristic transition time, and 7z, is the characteristic time scale for

variation of @, (¢) from the constant value @, to the constant valuew,, .

Here, we consider long charge bunches, which are initially matched. This readily

gives for the smooth-focusing model that [Rb LO =0 and [jéb ],:0 =0. Using the
simplified Eq. (3.5), we now estimate the transition time 27, that is consistent with

adiabatic compression. For a quantitative description of the adiabaticity of the
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compression process we introduce the beam mismatch parameter 7 = AR/R,, , where AR
is the amplitude of the mismatch oscillations, and R,(¢) is the quasi-equilibrium radius,
which is determined from the instantaneous value of «, (7). Here, note that
AR+ R, =R, . Assuming that 77 <<1during the adiabatic compression, we linearize Eq.
(3.5) around the quasi-equilibrium radius R, (¢) , which gives

AR+@”(t)AR =—R,, (3.7)
where o= (K ,/R:+&°/R; )1/2 is the frequency of small-amplitude linear oscillations.

It is evident from Eq. (3.7) that for adiabatic compression the inverse transition time

(211/2)_1 has to be much smaller than @ . Note, that the frequency @ depends on R, and
hence the inverse transition time needs to be much smaller than its minimum value, i.e.,
(27, /2)_1 <<@(R,;), where R, is the initial quasi-equilibrium beam radius.

For more detailed studies of the adiabaticity of the process we make use of the

Van Der Pol method and introduce the following variables: z=AR+i®(/)AR and

t
a =L_zexp(—i j Edtj [Fraiman, 2001]. Note that |z|2 /2 = (AR* +@*AR*)[2=E is
0

N

the energy of the oscillator, and |0¢|2 = |z|2 / o 1s a well-known adiabatic invariant for the

pendulum equation (3.7). The physical interpretation of this adiabatic invariant

corresponds to the area of the ellipse in the phase space (AR,AR). After some

straightforward algebra, we obtain the following equation for the slow evolution of a,
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—_- t 9] t
a=-2 a*exp(-2i [wdr) - ol exp(~i[ @d), (3.8)
w " 0

Jo
where star (*) denotes complex conjugate. Recall that before compression the beam is
matched, with @(0)=0. Furthermore, the transition time should be large enough to
assure 77 <<1. Hence we can neglect the first term on the right-hand side of Eq. (3.8). As

a result, we obtain

B
—exp(—i | wdt")dt . (3.9)
7ot

a(t)= —j.

0

It is evident from Eq. (3.9) that the inverse transition time 27,, must be much smaller
than the frequency of linear oscillations @ to assure that matching is maintained during
compression. In this case |a|2 oc exp(— <5>r q), where <5> is a certain value of @

between @(R,,) and w(R,,), and R ,R,, are the initial and final quasi-equilibrium

beam radii, respectively.
Ilustrative numerical solutions to Eq. (3.5) are presented in Fig. 3.1 [Dorf et al.,
2006]. To model a warm beam with moderate space-charge strength, and a space-charge-

dominated beam, we consider the cases s, =0.7 and s, =0.9999, respectively. For the
compression, we take rl/z/rq =5 and a)qf/a)qi =2.3 in Eq. (3.6). Figure 3.1 shows that a
relatively fast compression, 7,@(R,,)=0.87 for 5,=0.9999, and 7 @ (R,)=0.64 for

s, =0.7, leads to a significant mismatch in the final state, whereas a more adiabatic
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Figure 3.1: Numerical solutions to envelope equation (4) for e=const. Plots of
normalized rms beam radius Ry/R; versus t/tq. The cases shown correspond to: (a) Space-

charge dominated beam with s, =0.9999; Broken line: adiabatic compression with
7,0(R,)=1.74; Solid line: non-adiabatic compression with 7 @(R,)=0.87. (b)
Moderate space-charge strength with s, =0.7 ; Broken line: adiabatic compression with

7,0(R,)=1.28; Solid line: non-adiabatic compression with 7, @(R,,) =0.64.
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Figure 3.2: Plot of r,@(R,;) versus R¢/R; for adiabatic compression with #7=2% . The two

cases correspond to normalized intensity 5,=0.9999 (solid curve) and 5,=0.7 (broken

curve).
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Figure 3.3: Plots of /o, versus R¢/R; for adiabatic compression with #7=2%. The two
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cases correspond to normalized intensity s5,=0.9999 (broken curve) and s,=0.7 (solid

curve).
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compression, 7,@(R))=1.74 for 5,=0.9999, and 7 ,0(R,)=128 for s,=0.7,

provides a nearly matched beam envelope in the final stage. Figure 3.2 shows how the

characteristic time scale for variation of @, (¢) depends on the ratio of the final to initial

beam radius, for adiabatic compression, and for several values of s, [Dorf et al., 2006].

To estimate the transition time, we use the condition that the final mismatch parameter,

n; :AR/RO_I,, is equal to or less than 2%. To describe the change of the intensity
parameter during the compression process, the ratio of the phase advances

o /o :[1+(Kb 2w, )z]vz —(Kb /25a)q), calculated in the smooth focusing

vac

approximation [Eq. (2.36)] for different values of the final beam radius, is plotted in Fig.
3.3 [Dorf et al., 2006].

It should be noted from Fig. 3.3 that the relative space-charge strength as

sf

vac

measured by o / o . decreases during the adiabatic compression process. This result

can be explained by recalling that &(¢) = const has been assumed during the adiabatic
compression process. Since <X Y 2> >> sz for slow (adiabatic) compression, we obtain
the following relation between the beam radius and effective transverse temperature,
R,T"* ~ const . Therefore, decreasing the beam radius results in an increase in the

effective transverse beam temperature, and hence a decrease in the relative space-charge

strength, which can also be measured in the beam frame by the dimensionless parameter

S=N,e; / 2T in Eq. (3.4) [Davidson and Qin, 1999; Davidson and Qin, 2001a].
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3.2.2 Numerical Simulations of Beam Compression

The analysis of beam compression presented in Sec. 3.2.1 was made under the
assumption that the transverse emittance remains approximately constant during the
adiabatic compression process. To elucidate the details of the emittance behavior, the
fully nonlinear Vlasov-Maxwell equations should be solved. In this section, we employ a
two-dimensional transverse slice model using the WARP electrostatic particle-in-cell
(PIC) code for this purpose [Dorf et al., 2006]. Results of the numerical simulations for
the illustrative parameters used in Sec. 3.2.1 are shown in Fig. 3.4. Evidently, there is no
significant emittance change during the adiabatic compression process. For a space-

charge-dominated beam with s, =0.9999 , the emittance decreases by 4% from its initial
value, and for moderate space-charge strength withs, =0.7, the emittance variations are

less than 1%. Such a small emittance change during the adiabatic compression process
validates the assumptions made in Sec. 3.2.1. For the case of non-adiabatic compression,
when the transition time is small compared to the inverse frequency of beam radius
oscillations, @ ', the emittance variations are nearly 6% in both cases.

Despite such a moderate emittance change, an important qualitative difference is
evident for the time evolution of the beam radius, when comparing results from the PIC
code simulations and from the constant emittance model. To describe this phenomenon,
it is convenient to introduce two stages of the compression process. The transition stage

takes place during the transition phase of the smooth-focusing frequency, o, (7), i.e.,
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Figure 3.4: Evolution of the normalized beam radius Ry/R; (solid line) and normalized
transverse emittance €/g; (broken line) during the compression process. Figures (a) and

(b) correspond to an adiabatic compression for 5,=0.9999, 7 @(R,)=1.74, and for
5,=0.7,7,@0(R,,) =128, respectively. Figures (c) and (d) correspond to a non-adiabatic
compression for s,=0.9999, 7 @(R,)=0.87, and for s,=0.7, 7,&(R,)=0.64,

respectively . Results are obtained using the WARP code for a smooth-focusing field.
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0<¢<2z,, and the relaxation stage for t>2r,, represents the mismatched beam
behavior in the final focusing field with constant smooth-focusing frequency @, . The

largest difference in behavior is observed in the relaxation stage, during the non-adiabatic
process when the beam is strongly mismatched after the transition. Figure 3.1 shows that
the constant emittance model exhibits oscillations in beam radius with a constant
amplitude, whereas the fully nonlinear Vlasov-Maxwell description gives a slight

damping of the oscillations for a space-charge-dominated beam with s, =0.9999 [Fig.

3.4(¢c)], and an almost complete mixing of the oscillations for the moderate space-charge
strength with s, =0.7 [Fig. 3.4(d)].

A plausible description of the damping mechanism of the mismatched oscillations
is the following. Nonuniformities in the density profile produce nonlinear self fields.
Therefore, particles move with energy-dependant betatron frequency and affect the
oscillations of moments of the distribution function due to phase-mixing. References
[Clauser et al., 1999; Variale, 2001] give a detailed explanation of these phenomena by
means of Landau-like damping. In [Clauser et al., 1999] the particles are considered as an
ensemble of betatron oscillators coupled to the collective mismatch oscillations
(mismatch mode). The damping of the mismatch mode occurs due to the energy transfer
from collective oscillations to the oscillators (beam particles) which are close to
parametric 2:1 resonance with the mismatch mode. The relaxation time is determined by
the phase-mixing of the trapped particles (resonant betatron oscillators). In the same work

[Clauser ef al., 1999] it is shown that for the case of a space-charge-dominated beam
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Figure 3.5: Relaxation of the large mismatch in a space-charge-dominated beam with
§5=0.9999 during the compression process using the smooth-focusing approximation. (a)
Plot of Ry/R; verses normalized time t/Ty,is, where Ty 1s the period of the mismatched
oscillations in the final state. (b) Time dependence of Ry/R; in the final state (solid line)
can be fitted with a cosine function (broken line) with high accuracy. The ratio of the
first and second harmonic amplitudes in the spectrum of the Ry(t) dependence (obtained
by applying FFT techniques) is equal to 2.5x10*. Results are obtained using the WARP
code [Dorf et al., 2006].
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most of the betatron oscillators are far from resonance, providing a slight damping of the
collective oscillations. As the beam space-charge intensity decreases, the mismatch
frequency approaches the frequency distribution of the betatron oscillators, providing an
increased mixing of the collective oscillations. This coincides well with the results
presented here. We also emphasize that the present simulations show (Fig. 3.5) that a
large mismatch for a space-charge-dominated beam tends to relax to a state with a non-
uniform density profile, and to a distribution function which is periodic in time. This state
corresponds qualitatively to the nonlinear saturation of Landau damping and has a
significant number of trapped particles (see Sec. 3.3 for details). Future studies of this
state may provide important insights for the construction of ‘equilibrium’ states for
intense beam propagation in a periodic lattice.

The relaxation process described above transfers energy from the collective
oscillations to the transverse motion of the resonant particles, thereby increasing the
transverse phase space area (emittance growth). Figure 3.4(d) (for the beam radius)
indicates that the phase-mixing time is about thirty times larger than the transition time.
Hence, it is expected that there will be negligible emittance variations during the
transition stage even during non-adiabatic compression. Indeed, Fig. 3.4(d) (for the
emittance) shows that the emittance decrease during the initial transition of the smooth-
focusing frequency is less than 0.5%, whereas the overall emittance growth is 6%. A
theoretical model providing the estimate of the emittance growth due to the mismatch
relaxation can be found in [Reiser, 1994]. The detailed behavior of the emittance

validates the use of Eq. (3.5) with the & = const assumption to model the transition stage,
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even for non-adiabatic compression. Comparing Figs. 3.1 and 3.4 indicates that the
constant-emittance model and the PIC simulations give approximately the same initial
amplitude of the mismatched oscillations.

Another interesting feature of the compression process is the emittance decrease
during the initial transition stage. Examining Fig. 3.4 shows that the emittance decrease
depends weakly on the transition time, and it is much larger for a space-charge-
dominated beam than for a moderate intensity beam. To explain this phenomenon, we
make use of the rate equation for the transverse emittance [Davidson et al., 1998;

Davidson and Qin, 2001a],

d
— =&’ =-R—(E,—E,,). (3.10)
dt
Here, EF:(ZKb)‘lf drrlV y|" is the normalized self-field energy, w solves
0

Vzl//:—(27er/Nb)”dXdyfb, and E,, :(1/2)Kb(1/4+ln[rw/(2l/2Rb)]), where 7, is the

radius of the conducting wall, is the self-field energy of the equivalent cold (7 =0)
beam, having the same rms radius R, and line density N, . It can be shown that the self-
field energy of the thermal equilibrium beam [Eq. (3.3)] with fixed rms radius and line
density decreases with decreasing temperature and reaches its minimum value for a cold
distribution (7 =0) with the flat-top density profile. During the transition stage, the
effective beam temperature increases (see Sec. 3.2.2 for details), thereby increasing the

difference between FE, and E,, and leading to a decrease in the emittance.
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3.3 Effects of Alternating-Gradient Quadrupole Field

In this section, we present numerical studies using the WARP code describing the beam
response to an alternating-gradient quadrupole focusing field with time-varying
amplitude [Dorf et al., 2006]. For present purposes, the instantaneous scheme (see Sec.
2.3.2) is used to load the initial distribution function. That is, first, for a specified
intensity parameter s,, effective temperature 7', and on-axis number density n,, we
apply the smooth-focusing model to construct the initial equilibrium. Then, using the
corresponding values for the emittance & and perveance K,, we determine the matched
solutions of the envelope equations (2.28)-(2.29), which have the following form in the
beam frame of reference

a+x,(a-2K,/(@+b)=¢’/a’,
. 10
b-x,(t)b-2K,[/@+b)=¢][b". (1o

Here a(t)and b(f)are the characteristic transverse beam dimensions in the x and y

directions, respectively, ¢, =&, =& are the transverse emittances defined in the beam

frame as ¢, =4(<x2><x2>—<xx>2)1/2 and ¢, :4(<y2><y2>—<yy>2 )1/2, and «, (1) is the
alternating-gradient lattice function defined in the beam frame. To approximate the beam
distribution coming out of the source (say, in PTSX), during the final stage of forming
the initial quasi-equilibrium we load the particles with a semi-Gaussian distribution,

which is Gaussian distribution in x and y and has a uniform (step-function) density

profile, into the matched envelope. Similarly to the experiments on beam compression on
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PTSX [Gilson et al., 2007; Chung et al., 2007], in the present simulations the beam is
allowed to relax during 100 periods of the focusing lattice before compressing the lattice
amplitude. The time dependence of the rms beam radius and the transverse emittance
during the adiabatic and non-adiabatic processes including the first 100 lattice periods are

shown in Fig. 3.6 [Dorf et al., 2006]. For a non-axysimmetric beam, which is studied in

. . . — ~,\l/2 - 1/2
this section, we define the average beam radius as R, = (a2 +b 2) , where a =<x2>

~ /2 . . . .
and b = < y2> are the rms envelope dimensions. The average transverse emittance & is

defined as ¢ = (¢,£,)""”.

Consistent with the experiments carried out on PTSX [Gilson et al., 2007], to

3/2

model the lattice we take «, (7) =2 ﬁwqrgl sin(27z1/ rL), where 7, is the lattice period.

All other parameters are the same as in Sec. 3.2. It should be noted that even for non-
adiabatic compression the transition time is sufficiently large so that the smooth-focusing
approximation is valid during the transition phase. Comparing Figs. 3.4 and 3.6, we note
that the smooth-focusing approximation and the full alternating-gradient quadrupole field
model give remarkably similar results. The differences are evident in the emittance
behavior during the initial stage (before beam propagation through the lattice transition
region) which is due to the initial beam mismatch in the quadrupole field model.
Furthermore, the smooth-focusing model shows a complete mixing of the oscillations in

beam radius for a beam with moderate space-charge strength, s, =0.7, during non-

adiabatic compression, whereas in the quadrupole field model the amplitude of the
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Figure 3.6: Evolution of the normalized beam radius Ry/R; (solid line) and normalized
transverse emittance ¢/g; (broken line) during the compression process. Figures (a) and

(b) correspond to an adiabatic compression for s,=0.9999, 7, /rL:2O
[corresponding to 7, @(R,)=1.74], and s,=0.7, 7,,/7, =10 [corresponding to
7,0(R;)=1.28], respectively. Figures (c) and (d) correspond to a non-adiabatic
compression for s,=0.9999 , 7, /r, =10 [corresponding to 7,@(R,,)=0.87], and
5,=0.7, 7, /z-L:S [corresponding tor @(R,,)=0.64], respectively . Results are

obtained using the WARP code for an alternating-gradient quadrupole lattice.
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oscillations only decreases to 30% of its initial value. However, contrary to the smooth-
focusing approximation, the oscillations in average beam radius cannot be considered as
a measure of the final-state mismatch. In fact, even for a perfectly matched beam (KV

distribution), the sum of the rms envelope dimensions is nearly constant,
G()+b(t)=const, but R, =[a*(t)+b*(t)]"* #const. Therefore, to estimate the
mismatch of the final state, it is important to analyze the behavior of the rms envelope
dimensions & and b , which are illustrated in Figs. 3.7 and 3.8 [Dorf et al., 2006]. 1t is
evident from Fig. 3.7(b), which shows the time dependence of & and b for the non-
adiabatic compression of a beam with s, =0.7, that the beam is only slightly mismatched

in the final  state. The  particle  phase  advances, defined as

ang dt/a’ ()= S[Tdt/l;z(t) ,and o, :gTogtT:ﬁ/az (¢) (see Sec. 2.2.3) , are shown

‘ i ‘
for the initial and final stages of compression process in Figs. 3.7 and 3.8.

As mentioned earlier, for the parameters used in the simulations, the smooth-
focusing approximation is valid during the transition phase even for a non-adiabatic
process. This means that the perturbations introduced to the beam in the transition region
of the quadrupole lattice can be averaged and the averaged perturbation has azymuthal
symmetry. Therefore, as shown in Figs. 3.7 and 3.8, only the symmetric mode (x and y
envelope dimensions oscillate with zero relative phase shift) is excited during the

COH’lpI‘GSSiOl’l process.
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Figure 3.7: WARP simulations of the beam compression in an alternating-gradient

quadrupole lattice. Evolution of the rms envelope dimensions @/a, (solid line) and
b / 50 (broken line) are plotted during (a) adiabatic compression withz,, / 7, =10, and
during (b) non-adiabatic compression withz, /z, =5, for a beam with moderate space-

charge intensity, s, =0.7.
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Figure 3.8: WARP simulations of the beam compression in an alternating-gradient

quadrupole lattice. Evolution of the rms envelope dimensions a@/a, (solid line) and
b / bNO (broken line) are plotted during (a) adiabatic compression withz, /7, =20, and
during (b) non-adiabatic compression withz,, /Z'L =10, for a space-charge-dominated

beam with s, =0.9999 .



3.4. Halo Formation During the Compression Process 104

3.4 Halo Formation During the Compression Process

In previous sections, the evolution of low-order moments of the distribution function
(such as the rms envelope dimensions and transverse emittance) was studied. The results
show that even non-adiabatic compression, which leads to significant beam mismatch by
the end of the transition stage, does not result in large emittance growth (Ae <6%).
Nevertheless, it is well known that a beam mismatch produces halo particles that have
much higher transverse energies than the core particles and may cause a deterioration in
beam quality during the subsequent beam transport (Sec. 2.2.4). In this section, we
present a detailed analysis of halo formation during the compression process using the
WARP code for an alternating-gradient quadrupole lattice [Dorf et al., 2006].

Figures 3.9(a), 3.9(b) and Figs. 3.10(a), 3.10(b), respectively, illustrate the initial

and final (x,x) phase-spaces for both moderate and high values of the space-charge

intensity parameters. The scaled coordinates X =x/(2@) and X :2(5“7 —xd )/ g, are

plotted to remove the envelope oscillations [Lund and Chawla, 2006]. For a space-
charge-dominated beam with the almost flat-top density profile shown in Fig. 3.11(a), the
two-lobe shape of the final phase-space plot [Fig. 3.10(b)] clearly indicates 2:1
(fundamental) resonance interaction between the beam particles and the collective
mismatch oscillations (Sec. 2.2.4). Note that the resonance structure of the X —X phase-
space projection is filled with particles, as opposed to the r—r' phase-space projection

shown in Fig. 2.4, where the halo particles travel mostly near a separatrix. This difference
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Figure 3.9: Plots of the instantaneous (X,X) phase space for a beam with moderate
space-charge intensity,s, =0.7: (a) Initial state at #/z, =100; (b) Final state at
t/t, =357.3 for non-adiabatic compression with 7,,/7, =5; (c) Final phase of the
transition stage at #/7, =110 for non-adiabatic compression with 7, /7, =5; (d) Final

state at #/z, =309.95 for adiabatic compression with 7,, /7, =10 [Dorf et al., 2006].
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Figure 3.10: Plots of the instantaneous (X, X)) phase space for a space-charge-dominated
beam, 5,=0.9999: (a) Initial state at z/z, =100; (b) Final state at t/z, =175.25

(corresponds to the maximum beam radius) for non-adiabatic compression with

Ty /z'L =10; (c) Final phase of the transition stage at #/7, =120 for non-adiabatic
compression with 7,, /7, =10; (d) Final state at t/t, =199 for adiabatic compression
withz,, /7, =20; (e) Final state at t/t, =178.05 (corresponds to the minimum beam

radius) for non-adiabatic compression with 7, / 7, =10 [Dorf et al., 2006].
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is due to the following factors. First, the azimuthal symmetry of an applied focusing force
for the case shown in Fig. 2.4 provides conservation of a beam particle angular canonical
momentum, in contrast to the case of the quadrupole lattice considered here. Second, is
the proper choice of the projection plane, namely the »—r' projection, since the equations
governing the evolution of the » and @ particle coordinates are decoupled due to the
conservation of a particle canonical momentum. Finally, note that the appearance of just
one fixed point for the 2:1 parametric resonance structure in Fig. 2.4 (O-point in Fig. 2.4),
in contrast to the two resonance points in Fig. 3.10(b), is simply due to the positive
definition of the radial coordinate r [that is, for y=0, r(-x)=r(x)].

Of particular interest is the evolution of the beam halo. The halo evolution after
one-half of the period of the mismatch oscillations period is illustrated in Fig. 3.10(e).
The time instants for the phase-space plots are indicated by arrows in Fig. 3.8(b) for the
rms envelope dimensions in the final state. Note that the 2:1 resonance points are located
on the X axis when the core radius is a minimum, and on the X axis when the core
radius is a maximum. This coincides well with the results obtained by lkegami in
[Ikegami, 1999], where the Poincare section for the particle-core model with the strobe
time, taken at the minimum (maximum) of the beam size, gave the same location of the
resonance islands. In the same work [Ikegami, 1999], the maximum halo extent (the
width of the separatrix of the 2:1 resonance island) was found to be about twice as large
as the maximal core radius, when the halo was driven by the symmetric mode. Fig.

3.10(d) illustrates approximately the same halo width.
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Figure 3.11: WARP simulation for an alternating-gradient quadrupole lattice.

Normalized beam density profile n(x,y=0)/ny in the final state for non-adiabatic

compression. The two cases correspond to (a) s,=0.9999, z/r, =175.25, and (b)

5,=0.7, 7/r, =375.3. The small graphical inserts correspond to the density profile at the
core edge [Dorf et al., 2006].
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Figure 3.12: WARP simulation results using a smooth-focusing model. Plots of the

radial (r,7) phase space at the final state of the non-adiabatic compression process for

(a) 5,=0.9999 , t/7, =437.5, and (b) s,=0.7, t/7, =725.5 [Dorfet al., 2006].
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The analogous studies were also performed for a beam with moderate space-

charge strength, s,=0.7, and the results are illustrated in Fig. 3.9. The strong

nonuniformities in the density profile [compare Figs. 3.11(a) and 3.11(b)] lead to a
complete mixing of the mismatch oscillations, and therefore particles do not experience
resonance interaction in the final state [Fig. 3.9(b)].

To assure that the simulation parameters do demonstrate halo formation, and that
the above analysis is not a collateral effect due to the core tails, we use a smooth-focusing
model with the same parameters and plot the radial » —7 phase-space, (see Fig. 3.12).
Note that in the smooth-focusing approximation there is no core flutter and we don’t use
the scaled coordinates. Figure 3.12(a) for a space-charge dominated beam with

s, =0.9999 clearly illustrates the resonance structure, and the resonance structure is not
observed in Fig. 3.12(b) for moderate space-charge intensity with s, =0.7. In Sec. 3.2.2

it was indicated that the relaxation of a large mismatch for a space-charge-dominated
beam corresponds qualitatively to the nonlinear stage of Landau-like damping. Indeed,
the halo particles illustrated in Fig. 3.12(a) are the trapped particles in the nonlinear
interaction between the collective mismatch oscillations and the single particle motion.
We emphasize here some interesting features of the halo formation. The
simulations show that during the transition stage only a small number of particles leave
the core [compare Figs. 3.9 (a) and (c) and Figs. 3.10 (a) and (c¢)], whereas most particles
populate the halo region during the relaxation stage [compare Figs. 3.9 (a) and (b) and

Figs. 3.10 (a) and (b)]. Furthermore, it is found that the halo formation process saturates
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along with the Landau-like damping of the mismatch mode. These details are evidence
that the main mechanism for halo formation is indeed an energy transfer from the
collective modes to the resonant particles (halo particles). When the transition stage is
much shorter than the characteristic damping time, there is negligible collective energy
transfer to the particles, and the particles stay trapped inside the beam core.

Of considerable practical interest are the halo particle contributions to the low-
order moments of the beam distribution function. To investigate these phenomena
qualitatively, we have also arbitrarily removed the halo particles from the simulation. No
rigorous mathematical criteria were applied for the removal procedure. We simply
removed particles from the X — X and Y —Y projections of the 4D phase-space using
“visual criteria” to obtain approximate quantitative information about interesting
phenomena. The contours which were used to divide the X — X phase space into the core

and halo regions are illustrated in Figs. 3.9(b) and 3.10(b), and analogous contours were

applied to the Y —Y phase space projection. The ratios of the values of rms envelope

dimensions calculated with and without halo particles are @™ " / gt e = 0.95 for

s, =0.9999 , and """ " / g""e " =091 for s, =0.7 . For the transverse emittance

. vith hal vithout  hal
we obtained g™ m”/gx‘“t =09 for s, =0.9999 , and

with halo without halo
gx gx

=0.85 for s, =0.7. It should be emphasized here that, after halo

removal, the emittance drops somewhat below its initial value. Consequently, for the

parameters used here, the core size variations in phase space during the relaxation stage
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are smaller than the increase in the beam phase space area and related emittance growth
attributed to the halo formation. The halo fraction of all simulation particles is about 2%

for a space-charge-dominated beam with s, =0.9999 , and about 4% for a moderate
intensity beam with s, = 0.7 . This difference can be explained by recalling (Sec. 3.2.2)

that more energy transfers from the collective oscillations to the transverse particle

motion for s, =0.7 than fors, =0.9999 . Another interesting feature is that a negligible

number of new halo particles (less than 0.05% of all simulation particles) are observed

for both values of s, if we continue the simulations after the halo particle removal

procedure (in these simulations, to conserve the line-charge, we placed the removed halo
particles on the beam axis). This indicates that, despite charge density non-uniformities at
the beam edge and mismatch oscillations, the phase space of the beam core is surrounded
by a KAM surface, providing the core particles stay inside the core region and do not
penetrate the halo region.

The results for adiabatic compression for different values of the space-charge
intensity parameter are illustrated in Figs. 3.7(a) and 3.8(a) (rms envelope dimensions
behavior) and Figs. 3.9(d) and 3.10(d) (X —X phase space). These figures show that a
certain level of the final beam mismatch still persists. However, it should be noted that
the final population of halo particles is similar to the initial one, which is produced by
initial beam mismatch. Hence, a further increase in the transition time does not lead to an

improved quality of the final beam state.
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3.5 Spectral Method for Quantitative Analysis of Halo

Production by a Beam Mismatch

In the previous section an extensive qualitative description of halo production by a beam
mismatch has been presented. In this section, more emphasis is placed on providing
quantitative treatment of the halo formation phenomena. Although, the presence of a
beam halo is typically evident by visual inspection of a beam distribution [Sec. 3.4], it is
of particular interest to obtain a more quantitative measure of this phenomena [Wangler
and Crandall, 2000; Allen and Wangler, 2002; Dorf et al., 2007]. In [Wangler and
Crandall, 2000], the beam profile parameter constructed from the second and forth

spatial moments of the beam distribution,

has been proposed as a characterization of the halo in a 1D spatial projection. This
formalism for calculating dimensionless halo parameters, based upon moments of the
beam distribution function, has been then extended to quantify halo formation in 2D
phase-space [Allen and Wangler, 2002]. The phase-space halo parameter [Allen and

Wangler, 2002],

B ) olea) —12(r Y
2(x* ) x" ) = 2(xx')’

H =

-2,
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generalized the spatial-profile parameter, 4, using kinematic invariants of the particle
distribution in phase space. These halo parameters can be efficiently used for comparing
the ‘halo intensity’ for different beam distributions. For instance, it follows that ~=H=0
for the Kapchinskij-Vladimirskij distribution, and #=H=1 for a Gaussian distribution.

Although the evolution of the halo parameters (4, H) can provide insights into the
halo production process, no guidelines have been provided on how to quantitatively
distinguish halo particles from core particles. Therefore, the actual ‘halo fraction’ of all
beam particles for a given distribution cannot be estimated. Attempts to distinguish halo
particles from the beam core particles were made in [Okamoto and Ikegami, 1997; Dorf
et al., 2006]. However, those studies were based on a “visual analysis” (see Sec. 3.4) of
the transverse phase-spaces, and no rigorous mathematical criteria were applied.

A simple quantitative definition a halo particle based on an analysis of the beam
betatron frequency distribution has been proposed in [Dorf et al., 2007]. It has been
demonstrated that the betatron frequency distribution function of a mismatched space-
charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles.
In Sec. 3.5.1 we present the detailed analysis of the halo definition for a broad range of
beam intensity, making use of the smooth-focusing approximation, and also taking into
account the effects of an alternating-gradient quadrupole field. This formalism is then
applied to quantitative studies of the halo production during the transverse beam
compression in Sec. 3.5.2. Finally, in Sec. 3.5.3 it is shown that the spectral analysis can
also provide important insights into other critical problems in intense beam transport,

e.g., the mismatch relaxation process, and space-charge transport limits (see Sec. 2.2.5).
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3.5.1 Spectral Method for Halo Particle Definition

This section develops a framework for the quantitative analysis of halo production by a
beam mismatch. In Sec. 2.2.4, in order to describe the production of halo particles by a
beam mismatch it was convenient to consider a beam propagating through a periodic
focusing lattice as an ensemble of betatron oscillators coupled to the collective mismatch
oscillations. This approach has also been used in [Clauser et al., 1999; Variale, 2001] for
the analysis of beam mismatch relaxation. It has been noted that for the case of a space-
charge dominated beam most of the betatron oscillators in the initial beam equilibrium
distribution are far from the parametric (2:1) resonance with the collective mismatch
mode (Fig. 3.13). Therefore, only a slight damping of the collective oscillations occurs.
However, as the beam space-charge intensity decreases, the mismatch frequency
approaches the frequency distribution of the betatron oscillators, providing an increased
mixing of the collective oscillations (Fig. 3.13). It is also instructive to note that as the
beam intensity increases the beam frequency spectrum shifts toward lower frequency

values relative to the smooth-frequency, @, . This is consistent with the fact that the beam

self-fields depress the total-focusing force acting on a beam particle, and therefore
increase the period of particle transverse oscillations. Also, note that the frequency
spectrum width is attributed to the nonlinear effects of the beam self-fields. Therefore, for
the case of the smooth-focusing thermal equilibrium distributions shown in Fig. 3.13, the
spectrum width has a maximum for a moderate beam intensity. Indeed, as the beam

intensity increases the beam density profile approaches a flat-top distribution, and hence
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Figure 3.13: (Color) Plots of the normalized beam betatron frequency distribution for the
smooth-focusing thermal equilibrium distribution obtained for different values of the

=025, 5,=0.9999 (blue), o/c,, =0.6,

vac

beam intensity corresponding to o/oc

vac

s, =09 (pink), o/o, =095, s, =0.2 (green). Each frequency distribution is

vac

normalized to its maximum value. The vertical dashed lines show the corresponding

half-values of the mismatch oscillations frequency obtained within the smooth-focusing

approximation, / 2. Results are obtained using the WARP code for a smooth-

focusing field.

the self-electric fields become nearly linear. On the other hand, as the beam density
decreases the effects of the beam self-fields become less pronounced. Without loss of
generality, here and throughout the remainder of Sec. 3.5, for illustrative purposes we
show the betatron frequency distributions corresponding to the particle oscillatory motion
in the x-direction (Fig. 3.13). Also, each plotted betatron frequency distribution is

normalized to its maximum value.
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In previous studies [Clauser et al., 1999; Variale, 2001] the spectral analysis was
applied to the initial beam quasi-equilibrium. In this section, we extend the betatron
spectral analysis to the case of a mismatched beam distribution [Dorf et al., 2007]. This
allows us to develop a convenient framework for the quantitative analysis of halo
production by a beam mismatch. Note that the energy-dependent betatron frequency
increases with an increase in a particle energy. Therefore, the high-energy tail of an initial
beam equilibrium distribution corresponds to the high-frequency tail in the betatron
frequency distribution (Fig. 3.13). Inspecting the betatron frequency distribution of the
initial beam thermal equilibrium distribution for the case of a space-charge-dominated

beam, it is evident that only an exponentially small fraction of the beam particles has the
energy corresponding to the parametrically resonant frequency, o? / 2 . However, during

the relaxation of a large beam mismatch there is an energy transfer from the collective
mismatch modes to the resonant particles, which gain energy and populate the halo
region (Sec. 2.2.4 and Sec. 3.4). It is therefore intuitively appealing to expect that a
“bump-on-tail” structure attributed to the high-energy halo particle will appear near the
half-value of the mismatch oscillations frequency in the betatron frequency distribution
of a mismatched space-charge-dominated beam.

For simplicity, we start the analysis by making use of the smooth-focusing
approximation (Sec. 2.2.2), in which the oscillating focusing force is replaced with a

uniform focusing force. Figure 3.14(a) shows the beam betatron frequency distribution
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Figure 3.14: (Color) Relaxation of a beam mismatch for the case of a space-charge-

dominated beam with /o, =0.25, 5, =0.9999 . Shown are plots of (a) beam betatron

frequency distribution for the final ‘quasi-relaxed’ state (blue), and for the initial state

corresponding to the smooth-focusing thermal equilibrium distribution (black), (b) FFT
of Ry(t), (c) and (d) the instantaneous (R,R) phase space corresponding to the final beam
state, and the same state after halo removal, respectively. The amplitude of the mismatch

oscillations in the final state is JR,/R, =0.12. Results are obtained using the WARP

code for a smooth-focusing field.
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for the case of a mismatched space-charge-dominated beam. For this illustrative example,

a thermal equilibrium beam distribution with o/, =0.25 (s, =0.9999) was subjected

vac

to an instantaneous increase in the applied smooth-focusing force , w;"c / ®,=1.3. Then,

after a time period, T iep =7Z'/ 2(60“:-" )l. , corresponding to one-quarter of the linear mismatch
oscillation period calculated for the initial beam equilibrium, the applied force is returned
back to its initial value. Here, (0" ), =(K,/R?+&? R} )1/2, and the subscript “i” denotes
the initial beam state. Note that we assume an azimuthally symmetric initial beam
distribution, and therefore only the symmetric (even) mode of mismatch oscillations is
excited. After introducing the beam mismatch as described above, the beam is allowed to
relax until the mismatch amplitude remains nearly constant. In the final (‘quasi-relaxed’)
beam state, the x and y coordinates of each beam particle are tracked, and the FFT
averages of the particle oscillograms are calculated [Fig. 3.15(c)]. It should be noted that
the single-particle motion for the case of a mismatched intense beam is, in general, non-
integrable, and the corresponding frequency spectra may have a complex structure [Fig.
3.15(¢c)]. Indeed, in addition to the fundamental (2:1) “halo” resonance, nonuniformities
in the beam density profile along with the mismatch oscillations produce a higher-order
resonance structure inside the beam core, and therefore even the core particle motion can
become chaotic (Figs. 3.15). For the construction of the beam betatron frequency
distribution [Fig. 3.14(a)], the particle’s “betatron” frequency is assigned to the frequency
corresponding to the maximum value in the Fourier power spectrum of the particle

oscillogram. Shown in Fig. 3.15 the power frequency spectra and particle oscillograms
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Figure 3.15: (Color) Dynamics of core and halo particles in the final state of a

mismatched space-charge-dominated beam with o/o,,, =0.25 (5, =0.9999): (a) and (b)

Normalized x/Rs-oscillogram of the halo and core particles motion, respectively. Here, R,
corresponds to the RMS equilibrium radius calculated for the final beam state; (c) FFT
of the core particle (pink) and the halo particle (blue) x-oscillograms; (d) Poincare
section for the core (pink) and halo (blue) particles with the strobe time, taken at the
minimum of the beam radius. Results are obtained using the WARP code for a smooth-

focusing force. The parameters of the simulation are the same as in Fig. 3.14.



3.5. Spectral Method for Quantitative Analysis of Halo Production 121

for typical core and halo particles elucidate the relevance of this approach for the purpose

of distinguishing a halo particle from a core particle. The corresponding Poincare radial

phase-space plots (R,R) for these halo and core particles are shown in Fig. 3.15(d). Here,

R=+X*+Y*, R= (XX +YY )/R, X and X are the scaled coordinates defined in Sec.

3.4,and Y and Y are their analogs in the y-direction. Note that the “betatron” frequency
values for the core and halo beam particles lie inside the “core” and “bump-on-tail”
frequency ranges of the beam betatron frequency distribution, respectively [Fig. 3.14(a)].
Figure 3.14(a) shows that the betatron frequency distribution function of a
mismatched space-charge-dominated beam has a clear bump-on-tail structure attributed
to beam halo particles. Note that most of the bump is located to the right of the half-value

of the mismatch oscillation frequency calculated for the final beam distribution,
(a):f ) p =(K b / R} +¢7 / R; )1/2 - Here, ¢, corresponds to the average value of the transverse
beam emittance in the final state, and R, is the corresponding value of the equilibrium
beam radius determined from Eq. (3.5) where &=¢&,. This allows us to formulate the

following simple quantitative definition of a halo particle. If the particle betatron
frequency is greater than one-half of the mismatch oscillation frequency then it
designated as a halo particle. Figures 3.14(c) shows the beam radial phase space at the

final state, and Fig. 3.14(d) shows the same phase space after removing particles with

betatron frequency in the x or y direction higher than (a)jf ) P / 2. The remaining small

fraction of halo particles corresponds to the fraction of the bump-on-tail structure located
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to the left of (a)jf ) ; / 2. In addition, a few more halo particles appear during the FFT

averaging calculations, because the energy transfer process is not yet fully completed.

Note that the actual frequency spectrum of an envelope rms dimension [Fig. 3.15(b)] has

a finite band width with the central frequency ", which is slightly smaller than its
linear approximation, (a):f ) , due to nonlinear effects, and also due to the coupling to the

dynamics of the higher—order moments, e.g., beam emittance. Therefore, more halo
particles can be selected by the proposed criteria if an improved model for describing the
mismatch oscillations frequency spectrum is employed to determine the “cut-off”
frequency.

It should be noted that according to the proposed halo definition, even a matched
beam with a thermal equilibrium distribution function has a certain fraction of halo
particles. This fraction is exponentially small for a space-charge-dominated beam, but it
increases with decreasing beam intensity since the mismatch frequency approaches the
frequency distribution of the betatron oscillators. Nevertheless, the spectral framework
for a quantitative analysis of halo production developed above for a space-charge-
dominated beam can also be efficiently utilized for the case of a low-intensity beam. The
evolution of the beam betatron frequency distribution function due to beam mismatch

relaxation for the case of a low-intensity beam with o/o,,, =0.95 (s, =0.2) is shown in

vac

Fig. 3.16. For this illustrative example, the beam mismatch is introduced in the same way

as described above for the case of a space-charge dominated beam, i.e., by increasing the
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Figure 3.16: (Color) Relaxation of a beam mismatch for the case of an emittance-

dominated beam with /o, =0.95 (s,=0.2). Shown are plots of (a) beam betatron

vac

frequency distribution for the final ‘quasi-relaxed’ state (blue), and for the initial state
corresponding to the smooth-focusing thermal equilibrium distribution (black), and (b)
the evolution of the normalized RMS beam radius R;/R;. Frames (c), (d), and (e) show
the normalized (R,R) phase-space corresponding to the initial state, final state, and final
state after halo removal, respectively. Results are obtained using the WARP code for a

smooth-focusing field.
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focusing strength of the lattice to @/ /w,=1.3 for a time period of 7,,, =7/ 2w, .

Comparing the betatron frequency distributions for the initial and final states [Fig.

3.16(a)], it is natural to assign a pronounced difference in the tail region where

@5 > (a):’ ) E /2 to the generated beam halo. Note that for the case of an emittance-
dominated beam the mismatch oscillations are completely relaxed [Fig. 3.16(b)], and
therefore particles do not experience a resonance interaction in the final state [compare
Fig. 3.16(d) and Fig. 3.14(c)].

The quantitative analysis of halo production by a beam mismatch developed
above for a constant focusing field (smooth-focusing approximation) can be generalized
in a straightforward manner to the case of an oscillating quadrupole focusing field. Figure

3.17(a) shows the evolution of the beam betratron frequency distribution function due to

beam mismatch relaxation for the case of a space-charge-dominated beam with

o/o,,. =025 and o, =55". To save computational time, the initial beam distribution
was loaded into a quadrupole lattice making use of the “instantaneous loading” scheme
(Sec. 2.3.2), which provides an initial beam matching sufficient for present purposes. For

this simulation a sinusoidal lattice wave form is assumed,

x,(t)=2""nw,r;" sin(27t/7, ), and a beam mismatch is introduced by an instantaneous
increase in the lattice amplitude to coé”c / w,=1.15 at the zero phase of the sine function.
The lattice amplitude is maintained fixed at a);”“’ for one-half of the lattice period, and

then instantaneously decreased to its initial value, @, .
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Figure 3.17: (Color) Relaxation of a beam mismatch for the case of a space-charge-

dominated beam with o/c,,. =025 (s,=0.9999), o,=55". Shown are plots of (a)

vac

beam betatron frequency distribution at the final ‘quasi-relaxed’ state (blue), and the
initial state (black); (b) FFT of X;s(t); and (c) and (d) the instantaneous (X X ) phase

space corresponding to the final state, and the final state after halo removal, respectively.

Results are obtained using the WARP code for an alternating-gradient quadrupole field.
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Note that the non-monotonic tail structure in Fig. 3.17(a) is now represented by

the two bumps corresponding to half-values of the symmetric (even), o,, and the
quadrupole (odd), w,,, , mismatched envelope mode frequencies (Sec. 2.2.4). This is due

to the fact that both modes are exited by the abrupt mismatch, and they both produce
high-energy resonant halo particles. The quantitative criteria for a beam halo particle
should therefore be generalized for the case of a quadrupole oscillating lattice in the
following way: if the particle betatron frequency is greater than the quadrupole (odd)
envelope frequency half-value then it is a halo particle. To further investigate this criteria

we compare the normalized (X, X) beam phase space shown in Fig. 3.17(c) with the

same phase-space after removing particles with betatron frequency satisfying

ap >(a)j§d )f / 2 [Fig. 3.17(d)], where (a)j{;d ) = (a)q2 +3<9; / 4R; )1/2 is the corresponding

f
smooth-focusing value of the quadrupole (odd) mismatched envelope mode frequency in
the final beam state. The actual spectrum of the beam rms envelope x-dimension obtained
in the PIC simulations, taking into account the oscillating nature of the applied lattice and
nonlinear effects, is shown in Fig. 3.17(b). Again, as noted earlier for the case of a
constant focusing force (smooth-focusing approximation), a few more halo particles can
be selected if an improved model accounting for the width and shape of the mismatch
oscillations frequency spectrum is employed for determination of the “cut-off” frequency.

Finally, we present the evolution of the beam betatron frequency distribution due
to mismatch relaxation for the case of a low-intensity beam, taking into account the

effects of the oscillating applied lattice force (Fig. 3.18). For this illustrative example we
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Figure 3.18: (Color) Evolution of the beam betatron frequency due to mismatch

realxation for the case of an emittance-dominated beam with o/o,,. =0.95 (s,=0.2),

vac

o,,.=40". Shown are plots of the betatron frequency distribution at the final ‘quasi-

relaxed’ state (blue), and at the initial state (black). Results are obtained using the

WARP code for an alternating-gradient quadrupole field.

take o/o,,, =095, o, =40", and the beam mismatch is introduced by an instantaneous

vac

increase in the lattice amplitude to coé"c / o,=1.2 at the zero phase of the sine function.
The lattice amplitude is maintained fixed at a);”c for one lattice period, and then
instantaneously decrease to its initial value @, . Inspecting the beam frequency

distributions at the initial and final beam states, it again appears natural to assign a

pronounced difference in the tail region for @, > (a)jgd ) E / 2 to the generated beam halo.
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3.5.2 Quantitative studies of beam halo production during the

compression process

In this section we apply the formalism for a quantitative definition of a beam halo particle
(Sec. 3.5.1) to quantitative studies of halo production during the transverse compression
of a charged particle beam propagating through an alternating-gradient quadrupole

focusing lattice [Dorf et al., 2007]. As in previous sections of this chapter, here the lattice

function is specified by «,(¢)=2"" 7w, (t)r;" sin(27t/z, ). The transition of the lattice
strength, @, (¢), is given by Eq. (3.6), and for the illustrative examples presented in this
section we take 7, / r,=4and o, / ®,, =2 . The initial beam distribution is loaded into

a quadrupole lattice in the same way as described in Sec. 3.3, and the beam is allowed to
relax during 50 periods of the focusing lattice before compressing the lattice amplitude.
In this section we consider cases of a space-charge-dominated beam with

(6/0,.). =025, and a moderate intensity beam with (o/c,,. ) =0.43. During the

transition, the lattice strength measured by the vacuum phase advance is changing from

(0 ). =17.4° t0 (0,,. ), = 35.3". Here, the subscripts “” and “f” correspond to the initial

and final beam state, respectively.

The discrete evolution of the normalized rms envelope x-dimension calculated at
each focusing period at the zero phase of the lattice sine function, X, are shown in Fig.
3.19 for the illustrative cases of adiabatic and non-adiabatic transitions [Dorf et al.,

2007]. Note that such a graphical representation for a matched beam would be a
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Figure 3.19: Rms envelope x-dimension plotted versus number of lattice periods. (a)

Adiabatic compression with 7, / 7, =15 (bold line) and nonadiabatic compression with
Ty / 7, =6 (fine line) for a space-charge-dominated beam. (b) Adiabatic compression
with 7,, / 7, =10 (bold line) and nonadiabatic compression with 7, / 7, =4 (fine line)
for a beam with moderate intensity.

horizontal straight line; therefore Fig. 3.19 provides a convenient representation of beam

mismatch (see Sec. 2.3.2). The detailed dependence of the beam emittance increase on

the transition time, 27,,, is illustrated in Fig. 3.20 for different values of the beam

intensity. Finally, we use the quantitative definition of a beam halo particle (Sec. 3.5.1),
and calculate the corresponding number of halo particles produced by the beam
mismatch, which is acquired during the compression process. Figure 3.21 shows the halo

fraction of all the simulation particles at the final beam state as a function of the transition
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Figure 3.20: Ratio of the final to initial beam emittance versus characteristic transition

time, 7,,. Circles correspond to (O'/ am) = 0.43, and squares to (0'/ O'W,) =0.25 [Dorf
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Figure 3.21: Halo fraction of all simulation particles versus characteristic transition time,
7,,. Circles correspond to (0/o,, ), = 0.43, and squares to (0/c,, ), = 0.25 [Dorf et al.,
2007].
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time, Ty for different values of the beam intensity. Note that the small, non-vanishing

fraction of beam halo particles is present in the final state even for the case of an
adiabatic compression. This is due to the fact that the quantitative halo definition selects a
fraction of high-energy beam edge particles as halo particles. This fraction is
exponentially small for a space-charge-dominated beam, but it increases with decreasing
beam intensity since the mismatch frequency approaches the frequency distribution of the

betatron oscillators (see. Sec. 3.5.1).

3.5.3 Spectral Analysis of Strong Mismatch Relaxation and Intense

Beam Transport Limits

The spectral analysis of a mismatched beam distribution (Sec. 3.5.1) has been
demonstrated to be a powerful tool for studies of nonlinear transverse dynamics of an
intense beam propagating through a periods-focusing lattice. In particular, it can provide
the opportunity to carry out a quantitative analysis of halo production by a beam
mismatch (Secs. 3.5.1 and 3.5.2). In this section, we make use of this new formalism to

study other critical problems in intense beam transport.

The spectral evolution of a beam core during the relaxation of a beam mismatch:
In the previous sections the analysis was focused on beam halo production by a beam

mismatch. However, it is of particular interest to study the evolution of the beam core
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Figure 3.22 (Color): Strong mismatch relaxation for the case of a space-charge-

dominated beam with /o, =025 (s, =0.9999). Shown are plots of (a) the beam

vac

betatron density distribution function calculated at ¢ :810.35x27r/a)q,. (red), and
t, :4350.35x27r/ @, (blue); and (b) evolution of the beam transverse emittance. The

dots illustrate the values of the beam transverse emittance at the time instants t; and t,
when the halo particles are removed from the corresponding beam distributions. The
beam mismatch is introduce by an instantaneous increase in the lattice strength to

o, =140, Results are obtained using the WARP code for a smooth-focusing force.
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during the relaxation of a beam mismatch. Figure 3.22(a) shows the evolution of the
beam betatron frequency distribution obtained within the smooth-focusing approximation
for the case of a space-charge-dominated beam with (o/c,, ),- =0.25. For this

simulation, the mismatch was introduced by an instantaneous compression of the lattice

amplitude to the value o, / o, =1.4. Shown in Fig. 3.22(a) are the frequency
distributions calculated at the time instants corresponding to ¢, :810.35><27z/ o, and
t, :4350.35x27r/ o, . It is interesting to note that the “bump-on-tail” structure in Fig.

3.22(a) attributed to the beam halo remains nearly the same, whereas the difference is
clear in the core region. This means that most of the beam halo is generated on a time-
scale shorter than the time-scale of the beam core evolution. Finally, we note that the core
relaxation process also leads to an increase in the beam emittance. Figure 3.22(b)
illustrates the evolution of the beam transverse emittance during the mismatch relaxation
process. It is readily seen that the beam emittance continues to grow during the time
period between ¢, and #,, when most of the halo is generated. To further elucidate this, we
compare the values of the beam emittance calculated at #; and #, after removing halo
particles from the corresponding beam distributions. The corresponding values of the
beam emittance calculated for the beam distributions without halo particles, are shown by
the dots in Fig. 3.22(b), and clearly demonstrate an increase in the beam emittance due to

the beam core relaxation.
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Spectral analysis of intense beam transport limits:
As noted earlier in Sec. 2.2.5, intense beam transport stability limits is one of the critical
problems in intense beam transport. Of particular importance here are the higher-order

resonance effects that limit stable intense beam propagation in the region of high vacuum
phase advance, where o2, —o? > (27/3)’ / 2. In this section, we use the spectral analysis

of the beam distribution to provide insights into that problem. The betatron frequency

distributions for an intense beam with o/o,, =0.3 propagating through a quadrupole
lattice are shown in Fig. 3.23(a) for different values of the lattice vacuum phase advance.
For these simulations a semi-Gaussian beam distribution is loaded into a quadrupole
lattice as described in Sec. 3.3, and the corresponding evolution of the beam transverse
emittance is shown in Fig. 3.23(c). As evident from Figs. 3.23(a) and 3.23(b), as the
vacuum phase advance increases and the system parameters approach the instability
criteria, the core of the betatron frequency distribution remains the same. However, the
distribution tail function increases in extent. This observation can support the analysis
developed in [Lund and Chawla, 2006], which proposes that the emittance growth can be
attributed to high-energy beam edge particles that diffuse outside of the beam core

sufficiently to participate in the higher-order resonances, thereby increasing the statistical

beam area in the transverse phase space, i.e., the beam transverse emittance.
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Figure 3.23 (Color): Dynamics of a space-charge-dominated beam with o/c,, =0.3 in
a quadrupole lattice for the case where the system parameters are near the transport
stability limit o2 —o’ = (27/3) / 2. Shown are plots of (a) the beam betatron
distribution function for increasing values of the vacuum phase advance corresponding
to o, =58" (pink), o, =79" (blue), o, =86" (green), and o, =93° (brown); (b)
zoom-in on the tails of the distributions shown in Frame (a); and (c) evolution of the

beam transverse emittance. Results are obtained using the WARP code for an

alternating-gradient quadrupole field.
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3.6 Summary and Discussion

In this chapter, envelope equations and full particle-in-cell numerical simulations using
the WARP code have been used to investigate the evolution of the rms beam radius, the
emittance growth, and halo formation during the transverse compression of an intense
ion beam propagating through an alternating-gradient quadrupole lattice. It was shown
that when the lattice transition is smooth (adiabatic) the emittance variation is negligibly
small and therefore a constant-emittance approximation can be used as a closure
condition for the envelope equations to model the compression process. For the case of a
non-adiabatic transition, it was found that the characteristic time scale for the emittance
growth is much larger than the transition time required for adiabatic compression.
Therefore, even for non-adiabatic compression, the constant-emittance approximation can
be used to estimate the beam mismatch produced in the transition region.

The details of halo formation were investigated self-consistently using the WARP
code, both in the smooth-focusing approximation and for a quadrupole lattice. In the
smooth-focusing approximation, a 2:1 resonance structure was observed for space-
charge-dominated beams with almost uniform density profile. For a quadrupole lattice,
the beam particle motion in the 4D transverse phase space provides some smearing of the
2:1 resonance structure in the 2D phase-space projection. Nonetheless the width and
location of the resonance islands coincide well with the results, obtained in the particle-
core model for a quadrupole focusing field [Ikegami, 1999]. It was also found that during

halo formation the energy transfers from the collective mismatch oscillations to the



3.6. Summary and Discussion 137

transverse motion of the resonant particles (halo particles). The energy transfer time is of
order the phase-mixing (Landau-like damping) time. Therefore, only a few particles
populate the halo region during beam propagation through the lattice transition region.
Generation of most of the halo particles, and consequently growth of the transverse
emittance, occurs during the subsequent beam transport.

In addition, a new spectral technique for the analysis of a mismatched intense
beam propagating through an alternating-gradient lattice has been developed. It has been
shown that the beataron frequency distribution of a mismatched intense beam has a
“bump-on-tail” structure attributed to the beam halo particles. Based on this
phenomenon, a quantitative definition of halo particles produced by a beam mismatch has
been proposed, which provided an opportunity to carry out quantitative studies of the
halo production during the transverse beam compression. It has also been found that the
analysis, based upon the spectral method, can provide important physical insights into
other critical problems in intense beam transport, such as strong mismatch relaxation and
space-charge transport limits. In particular, it has been demonstrated that during strong
mismatch relaxation, most of the beam halo is generated on a time-scale shorter than the
time-scale for the beam core relaxation. Furthermore, it has been observed that the core
relaxation process also leads to an increase in the beam emittance. Finally, the spectral

analysis of a beam distribution loaded into a quadrupole lattice for the case where the
system parameters lie near the transport stability limit,o’_ —o’ = (272/ 3)2 / 2, has been

vac

performed. It has been shown that as the system parameters approach the stability limit,
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the core of the beam betatron distribution does not change significantly, whereas the tail
of the distribution increases. This observation supports the analysis developed in [Lund
and Chawla, 2006], which proposed that the emittance growth can be attributed to high-
energy beam edge particles that diffuse outside the beam core sufficiently to participate
in the higher-order resonances, thereby increasing the statistical beam area in transverse

phase space.



Chapter 4
Intense Ion Beam Transport through a
Background Plasma Along a Solenoidal

Magnetic Field

4.1 Introduction

Neutralization and focusing of a charged particle beam by a background plasma form the
basis for a variety of applications to high energy accelerators and colliders [Chen, 1985;
Joshi, 2007], ion-beam-driven high energy density physics and fusion [Roy et al., 2005,
Yu et al., 2005, Kaganovich et al., 2010], and astrophysics [Gruzinov, 2001; Medvedev
et al., 2005]. As noted earlier, one of the modern approaches to ion beam compression for
heavy ion fusion applications is to use a dense background plasma which charge
neutralizes the ion charge bunch, and hence facilitates compression of the bunch against
strong space-charge forces. In a typical design of a heavy ion driver, a radially
convergent ion beam with an imposed head-to-tail longitudinal velocity tilt propagates
through the drift section filled with a neutralizing background plasma, where nearly

ballistic compression occurs provided the beam charge and current are well-neutralized.

139
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Additional control and focusing of the beam pulse can be provided by the
application of a solenoidal magnetic field in the neutralizing region [Lee and Sudan,
1971; Chu and Rostoker, 1973; Rosinskii and Rukhlin, 1973; Berk and Pearlstein, 1976;
Johnson, et al., 1988]. It has recently been demonstrated that even a weak magnetic field
of order 100 G can significantly affect the transverse dynamics of an ion beam
propagating through a background plasma [Kaganovich et al., 2007; Dorf et al., 2009c].
Although, in many regimes of practical interest, the direct /'xB magnetic force exerted
by a 100 G field has a negligible influence on the massive beam and plasma ions, the
dynamics of the background plasma electrons can be significantly affected by the
presence of the magnetic field. As a result, strong collective electromagnetic self-fields
can be produced inside the dense plasma and can have a pronounced influence on the ion
beam dynamics. It should be noted that such weak values of magnetic field can be present
inside the neutralizing drift section of a heavy ion driver over distances of a few meters
from the strong final focus solenoid, which is placed downstream of the drift section in
order to provide additional transverse focusing of an ion beam (Chapter 1). It is therefore
of particular practical importance to asses the influence of a weak solenodial magnetic
field on the dynamics of an ion beam pulse propagating through a background plasma.

It has been found that the properties of the background plasma response are

significantly different depending on whether the value of the solenoidal magnetic field is

below or above the threshold value specified by o, =28,0,, . Here, @, and @, are the

electron cyclotron and plasma frequencies, respectively, and 3, =v, /¢ is the directed ion



4.1. Introduction 141

beam velocity normalized to the speed of light c¢. Note that the threshold value of the
. 3 11 1/2 .
magnetic field can be expressed as B, =2/, (np [cm ]/10 ) kG, where n, is the

background plasma density. For instance, for an ion beam with S, ~0.05 propagating

through a background plasma with density np~1011 cm™, this corresponds to a relatively
weak magnetic field of order 100 G. The paramagnetic plasma response and the
defocusing effect of a radial self-electric field, generated due to a local polarization of the

magnetized plasma background, have been demonstrated for the case where o, <2f,0,,

[Kaganovich et al., 2007; Kaganovich et al., 2008]. In contrast, for the case of

0.,>2p,0, , the plasma response is diamagnetic, and the radial self-electric field is

pe?
focusing [Dorf et al., 2009¢c; Dorf et al., 2010]. It is interesting to note that the

qualitatively different local plasma responses are separated by the critical value of

magnetic field o, =,

ce ?

which corresponds to the resonant excitation of large-amplitude

wave-field perturbations [Volokitin ef al., 1995; Dorf et al., 2010].

This introductory section is organized as follows. Section 4.1.1 briefly reviews
neutralization of the ion beam space-charge and current for the case where the ion beam
propagates through an unmagnetized plasma. The effects of a weak solenoidal magnetic

field, o, <2p,m,,, applied along the beam propagation direction are summarized in

pe?
Sec. 4.1.2. It is demonstrated for the case of a long 1on beam pulse that the so-called s/ice
approximation, which does not account for the effects of coupling between the

longitudinal and transverse dynamics, can adequately describe the background plasma
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response in the regime where o, <2f,0,, . Finally, Sec. 4.1.3 discusses a qualitative

difference between the regimes where o, <24,,, and o, >2p,®,,, which requires an

improved theoretical model to describe the background plasma response in the regime of

a moderately strong magnetic field, i.e. o, >28,0,, .

Detailed analytical and numerical studies of ion beam transport through a

neutralized background plasma in the regime where w,, 228, , are presented in the

pe
following sections of this chapter. In particular, the theoretical model and assumptions in
the present analysis are described Sec. 4.2. In Sec. 4.3 we consider the regime of resonant

wave excitation corresponding to w;, =280, , present the asymptotic time-dependent

solution in the linear approximation, and estimate the saturation amplitude due to the
nonlinear response of the plasma electrons. The analytical solutions for the
electromagnetic field are compared to the results of numerical particle-in-cell simulations
in Sec. 4.4. Finally, in Sec. 4.5 a detailed analysis of the local plasma response including

the effects of enhanced beam self-focusing is presented.

4.1.1 Ion Beam Transport through an Unmagnetized Plasma

In this section we discuss the conditions for ion beam charge and current neutralization
for the case where the ion beam pulse propagates through an unmagnetized neutralizing
cold plasma background [Kaganovich et al., 2001]. It has been demonstrated that the

beam space-charge is well-neutralized provided the beam is nonrelativistic and the beam
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pulse duration 7, is much longer than the electron plasma period, i.e., @,,7,>>27. In
the opposite limit, @, 7, <<27, electrostatic plasma waves are excited by the moving ion

beam that considerably reduces the degree of charge neutralization.
The key parameter for good current neutralization is the collisionless electron skin

depth &, =c/ ®,, . The beam current is well-neutralized by the electron return current
provided the beam radius is large compared to the electron skin depth, i.e., 7, >c/ o, .In
the opposite limit, i.e., 7, <c/ w,, , the total electron return current is still equal to the
beam current, however it is distributed over distances of order ¢/@,, , which is now much

broader than the ion beam current profile. Therefore, the electron return current density is

less than the ion beam current density by a factor of order @, /c. The condition for

current neutralization, i.e., 7, >c/a) can be conveniently expressed in terms of the

pe?
beam current as 1, >4.25(8,n, /n, kA, where n, and n, are the beam density and

electron density, respectively.

It is important to note that the ion beam charge is neutralized mostly by the action
of the electrostatic electric field, whereas the electron return current is driven by the
inductive electric field generated by the inhomogeneous magnetic flux of the ion beam
pulse in the reference frame of the background plasma. Electrons are accelerated in the
direction of beam propagation, and thus the electrons tend to neutralize the current as
well as the space charge [Kaganovich ef al., 2001; Kaganovich et al., 2010]. In order to

elucidate the dynamics of the plasma electrons, a reduced nonlinear analytical model has
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been developed [Kaganovich et al., 2001]. The model uses the fact that Maxwell’s
equations for the electromagnetic fields and the fluid equations for the electrons possess a

conservation law for the generalized vorticity [Buneman, 1952; Kaganovich et al., 2001],

defined by
Q=Vxp,- B, (4.1)
C

where p, is the electron fluid momentum, B is the self-magnetic field, and —e is the
electron charge. For a long ion beam pulse with /, >>7,, where [, is the characteristic

length of the beam pulse, it follows that

cOp
B,=—Le 42
7 e or 42)

where we have used the fact that the generalized vorticity is zero in front of the beam
pulse. The neutralizing return electron current can now be obtained from the Ampere’s
law, provided the displacement current can be neglected [Kaganovich ef al., 2001].
Substituting Eq. (4.2) into Ampere’s law, and assuming azimuthally symmetric ion beam

we obtain

2

a) e
——r—V,_ =="~(Z,n,V,-nJV,). (4.3)
c’n

Here, V. is the longitudinal component of the electron velocity, and @, =+J4me’n, / m, ,

where m, is the electron mass. A high degree of the beam current neutralization is now

evident for the case where the beam radius is greater than the electron skin depth,
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7, >c/w,, , since the left-hand-side of Eq. (4.3) is small compared to the electron current

term on the right-hand-side of the equation.

It is of particular importance to calculate the radial component of the Lorentz
force, F), acting on the beam ions. Neglecting by the inertia terms in the electron radial
momentum balance equation, the self-electric field can be estimated as [Kaganovich et
al., 2001]

Ly p =m0y

E,=~V.B, = :
r c ez @ 2e 6]/’ ez

(4.4)

where Eq. (4.2) for a long beam pulse has been used. In the nonrelativistic limit, for the

radial component of the Lorentz force we obtain [Kaganovich et al., 2001]

Vv, v,
F, =Zbe(E, —?bB(ﬂj:mee(Vb V)= (4.5)

It follows from Egs. (4.3) and (4.5) that the total force acting on beam ions is focusing
(F, <0). This phenomenon is known as self-magnetic pinching effect, and can be used in
many practical applications involving neutrazlied ion beam transport. For instance, this
self-focusing can compensate for the transverse spreading of the ion bunch, thus
providing self-pinched ion beam transport over long distances [Hahn and Lee, 1996;
Ottinger et al., 2000]. Note that for the case where the plasma is sufficiently dense

n, <<n, (linear regime), the electron velocity is small compared to the beam velocity,
V,_ <<V, , and the magnetic component of the Lorentz force has dominant influence on

the beam ions compared to weak nonlinear effects of the electric field component .
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4.1.2 Effects of a Weak Magnetic Field (0¢.<2B,mp.)

In this section we summarize the effects of a weak solenoidal magnetic field on the
degrees of beam charge neutralization and current neutralization [Kaganovich et al.,
2007; Kaganovich et al., 2008]. The significant difference from the “unmagnetized case”
with no applied magnetic field (Sec. 4.1.1) is that a small radial displacement, or, of a
background plasma electron is now accompanied by a strong azimuthal rotation of the
electrons around the beam axis. Indeed, due to the conservation of canonical angular
momentum for the case of an azimuthally symmetric ion beam, variations of magnetic
flux through the electron orbit set up a large kinetic component of the canonical angular
momentum, i.e., the electrons start to rotate about the beam axis (axis of symmetry of the

beam-plasma system) with a high angular velocity V., (Fig. 4.1). Because the V, xB,

force should be mostly balanced by a radial self-electric field, the electron rotation results
in a plasma polarization and produces a much larger self-electric field than in the limit
with no applied field [Kaganovich et al., 2007; Kaganovich et al., 2008]. Another
important consequence of the strong electron rotation is the generation of an azimuthal
self-magnetic field, which is much larger than in the limit with no applied solenoidal field
[Kaganovich et al., 2007; Kaganovich et al., 2008].

In order to calculate the electromagnetic self-field generated by an ion beam pulse

A

propagating through a neutralizing plasma along a uniform magnetic field B, =B,z

ext™

the following reduced linear (n,<<n,) analytical model has been developed

[Kaganovich et al., 2007]. We express the induced magnetic field as B=VxA and make
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Figure 4.1: (Color) Schematic illustration of large self-electric field production. The
radial displacement, Jr, of the electron position is accompanied by a fast azimuthal

rotation around the beam axis (blue curve). A strong radial electric force f, =—eE, is

produced in order to balance the radial component of the magnetic force

fu=—(e/c)V,,B,, . The double-dashed line illustrates the ion beam pulse outline.

use of the transverse Coulomb gauge, V, -A =0. Assuming a long beam pulse with
I, >>r, and w,7, >>1, the displacement current can be neglected compared to the

electron current [Kaganovich et al., 2001], and Ampere’s equations can be expressed as

L A A ) 4.6)
r or or c
olr4
o (10b4,) _A v, 4.7)
or\r or c

Here, V., and V,. are the azimuthal and longitudinal components of the electron flow
velocity, respectively. The electron flow velocity can be calculated making use of the

conservation of generalized vorticity [Buneman, 1952; Kaganovich et al., 2001]
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E A S
ot n, n,

where the generalized vorticity is defined as Q=Vx(m,V,—eA/c), and V. is the

electron flow velocity. Projecting out the longitudinal and azimuthal components of Eq.

(4.8), we obtain [Kaganovich et al., 2007]

po_ e g Ba 1004,) (4.9)
“ me T dmmV,on,r or
: B A

v |16 %e |2 @ g g B O (4.10)
w, ) mc 4mm V,n, or

In deriving Egs. (4.9)-(4.10) we have taken into account, for n,<<n,, that the radial

component of the electron force balance equation gives E, =—V, B, /c, where Poisson’s

equation can be used to determine the radial electric field. Equations (4.6)-(4.7) together
with Egs.(4.9)-(4.10) constitute the self-consistent s/ice model for describing the self-
electromagnetic field perturbation excited by a long ion beam pulse propagating through
a background plasma along a solenoidal magnetic field.

Figure 4.2 shows a comparison of analytical theory and the LSP [LSP, 1999]
particle-in-cell (PIC) simulation results for the self-magnetic field, the perturbation in the
solenoidal magnetic field, and the radial electric field in the ion-beam pulse [Kaganovich
et al., 2007]. The PIC simulations have performed in slab geometry, because the
numerical noise tends to be larger in cylindrical geometry due to the singularity on the
axis (r=0). Accordingly, the results of the analytical model in Fig. 4.2 have been obtained

from Eqgs. (4.6)-(4.10) in slab geometry. The parameters of this illustrative example
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Figure 4.2: (Color) Comparison of analytical theory and LSP simulation results for the
azimuthal self-magnetic field, the perturbation in the solenoidal magnetic field, and the
radial self-electric field in a perpendicular slice of the beam pulse. The ion beam moves

with velocity f,-0.33¢ along the z axis. The beam density profile is Gaussian with 7,=1

cm, =17 cm, and n,,=n, / 8=3x10"" cm’. The values of the applied magnetic field By

are the following: (a) B.,=300 G; and (b) B.,~=900 G [Kaganovich et al., 2007].

correspond to a  Gaussian ion beam pulse with density profile
n,=n,, exp[—r2 [r2=(z—vt)’ /I bz] with effective beam radius, 7,=1 cm, and beam pulse half-
length, /,=17 cm, propagating with velocity v,=0.33¢ through a background plasma with
density 7, =8n,,=2.4x10"cm™. For this choice of beam parameters, the electron skin
depth is approximately equal to the beam radius, r, ~J, :c/ @, . It is readily seen from

Fig. 4.2 that as the applied magnetic field increases from B=300 G

(0,/20,,=0.28) to B&x=900 G (w,, /20,3, =0.85) there is a sizeable increase in



4.1. Introduction 150

r/o

p

Figure 4.3: (Color) The normalized radial force F, / (Z}fnbomev,f /n ,0 p) acting on the

beam particles for different values of the parameter @, / a);e B; . The gray (green) line

shows the Gaussian density profile multiplied by 0.2 in order to fit the profile in the plot.
The beam radius is equal to the skin depth, r,=d,. [Kaganovich et al., 2007].

the azimuthal component of the self-magnetic field, and radial component of the self-
electric field. Furthermore, it is interesting to note that the plasma response is

paramagnetic, with 6B, =B_—-B, >0, for the main part of the beam aperture.

Finally, it is of particular practical importance to calculate the radial component

of the total Lorentz force, F, =Z be(Er -p,B (p), acting on the beam ions. Making use of
E =-V,B, /c, the force can be determined from the solutions to Egs. (4.6)-(4.10).

Figure 4.3 shows the radial profile of the normalized radial force calculated from Egs.

(4.6)-(4.10) in cylindrical geometry for various values of the parameter ., / ,Bbza);e



4.1. Introduction 151

[Kaganovich et al., 2007]. It is interesting to note that the force is changing from focusing

to defocusing for the main part of the beam pulse as the applied magnetic field increases.

The radial force is nearly zero when @’ / ﬁbza);e =1.5. This value can be optimal for

beam transport over long distances to avoid the pinching effect [Kaganovich et al., 2007].

4.1.3 Effects of a Moderately Strong Magnetic Field (0c>2Bpmpe)

An important difference between the two regimes, i.e., ®, <240, and 0,>2p,0,,,

appears to be due to excitation of electromagnetic wave-field perturbations, which

propagate oblique to the beam axis for the case where the applied magnetic field exceeds

the threshold value corresponding to @;, =2f,@,, [Kaganovich et al., 2008; Dorf et al,

2010]. Therefore, the slice approximation used for the analysis of the case where

o, <2p,0,, (Sec.4.1.2), and not taking into account the effects of coupling between the

longitudinal and transverse dynamics cannot, in general, be applied to the case where

0.,>2p 0, ,and a different approach has been developed [Dorf et al., 2010]. Here, we

e s
emphasize again that the threshold value of the magnetic field in many practical
applications corresponds to a relatively weak magnetic field. For instance, for an ion
beam with f, ~0.05 propagating through a background plasma with density

3

n, ~10"cm ™, the threshold magnetic field is of order 100 G. The magnetic fields above

such weak values can be present inside the neutralizing drift section of an ion driver over
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distances of a few meters (Chapter 1), and therefore theoretical studies of the case where

., >2p, 0, are of particular practical importance.

pe

In the present analysis, we consider a fast ion beam pulse with velocity much
greater than the Alfven velocity, and therefore the beam ions cannot interact effectively
with ion Alfven wave excitations. Furthermore, we assume a smooth beam density profile

with a characteristic axial length scale for density variation, /,, much greater than the
wavelength of electron plasma wave excitations, /, >>v, /@, . Therefore, electrostatic

electron plasma wave excitations are also significantly suppressed [Kaganovich et al.,
2001; Kaganovich et al., 2004]. However, if a sufficiently strong ambient magnetic field

with @, >2p,0, is present inside the neutralizing region, the ion beam pulse can

effectively interact with the electromagnetic electron whistler branch of the plasma
dispersion relation [Oliver ef al., 1994; Krafft and Starodubtsev, 2002]. Therefore, in the
present studies we analyze excitation of the whistler branch by an ion beam pulse
propagating through a neutralizing plasma along a solenoidal magnetic field, and assess
its influence on the degrees of beam charge neutralization and current neutralization, and
the transverse beam dynamics.

The fundamental problem of whistler wave-field perturbations excited by a
charged particle beam propagating in a magnetized plasma has been extensively studied
for several decades, and various methods have been developed [Ahiezer et al., 1974].
Recent interest in this problem has been motivated by possible use of charged particle

beams for space communications [Lavergnat and Pellat, 1979; Krafft et al., 1994; Kraftt
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and Starodubtsev, 2002]. Propagating in the magnetized ionosphere or the magnetosphere
plasma, charged particle beams can excite whistler wave-field perturbations, and
therefore can be used as compact on-board emitters in the very-low-frequency range,
replacing large-apertures electromagnetic antennas. Analytical and numerical studies of
whistler branch excitations by a density-modulated electron beam propagating through a
background plasma along a uniform magnetic field, including both linear and nonlinear

effects have been reported in [Volokitin et al., 1995; Volokitin et al., 1997; Krafft and

Volokitin, 1998]. However, in those calculations the case of a thin beam with 7, <<k’

has been considered, and the effects of the transverse beam structure have not been taken
into account. Here, 7, is the characteristic beam radius, and &, is the perpendicular
component of the whistler wave vector. Note that in contrast to space-physics
phenomena, where the wavelength of the whistler waves is large compared to the beam
radius, for the parameters typical of neutralized intense ion beam transport applications,
the beam radius can be comparable to the perpendicular wavelength. Furthermore, an
axially-continuous, density-modulated beam with modulation period / has been
considered in previous works [Volokitin et al., 1995; Volokitin et al., 1997; Krafft and
Volokitin, 1998], and therefore a monochromatic wave excitation with frequency

w=v, /I, was obtained. Note that a finite-length ion beam pulse with a bell-shaped (not

modulated) axial density profile used in intense beam transport applications can excite a

broad frequency spectrum with a characteristic frequency @ ~v,/l, and bandwidth

ow ~ @ . Therefore, in the present analysis we consider excitation of the electromagnetic
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whistler branch by a finite-length ion beam pulse propagating through a background
plasma along a solenidal magnetic field, taking into account the effects of the
longitudinal and transverse beam structures.

In the following sections we demonstrate that the total electromagnetic field
excited by the ion beam pulse can be conveniently represented as the sum of two
components: a local field component, corresponding to the local polarization of the
background plasma, and rapidly decaying to zero outside the beam pulse; and a wave
field component that can extend far outside the beam. It is then shown that in the regime

where @, >>2f,w,, the local-field component has the dominant influence on the

transverse beam dynamics. Moreover, in this limit, a positive charge of the ion beam
pulse becomes over-compensated by the plasma electrons, resulting in an enhanced
transverse focusing of the beam ions [Dorf ef al., 2009c; Dorf et al., 2010]. Note that for

the case where o, <2B,w, considered in Sec. 4.1.2, the beam charge is under-

neutralized, and the radial electric field has a defocusing effect. Furthermore, it is found

that the local plasma response is changing from paramagnetic for the @, <2f,0,, case

[Kaganovich ez al., 2007], to diamagnetic for the @, >2p,@,, case [Dorf et al., 2010].

A plausible heuristic description of qualitatively different regimes of ion beam
interaction with the background plasma can be given based on the analysis of the balance
between the electric and magnetic forces acting on a rotating background plasma electron
[Fig. 4.4]. Figure 4.4(a) shows the case of under-neutralized beam space-charge

corresponding to @,, <2/,®,,. In this regime the net positive charge of the ion



4.1. Introduction 155

Figure 4.4: (Color) Two different regimes of ion beam interaction with a background
plasma. (a) Corresponds to w..<2fywp.; the beam charge is under-neutralized, the radial
self-electric field is defocusing, E,>0, and the plasma response is paramagnetic, dB,>0.
(b) Corresponds to wc.>2fywpe; the beam charge is over-neutralized, the radial self-
electric field is dedefocusing, £,<0, and the plasma response is diamagnetic, 0B,<0. The
blue curves illustrate the trajectory of a background plasma electron; the double-dashed

lines illustrate the ion beam outline, f, =—eE, and f,, =—(e/c)V, B

ep " ext *

beam attracts a plasma electron, i.e., or<0. Due to conservation of canonical angular
momentum, a decrease in the magnetic flux through the electron orbit provides electron

angular rotation in the negative azimuthal direction, V,,<0. As a result, the radial

component of the magnetic force acting on the electron is positive, f,, =-eB,,V,, / c>0,

ext
and is balanced by the positive (defocusing) radial component of the electric field,

E >0. Note that the positive azimuthal component of the electron current,

Jep=—€n,V,,>0, produces a positive (paramagnetic) perturbation of the longitudinal

magnetic field, 6B, >0. In contrast, for the case where the beam space charge is over-
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neutralized [Fig. 4.4(b)] a plasma electron moves radially outward as the ion beam
approaches, i.e., or>0, and an increase in the magnetic flux is associated with the

positive azimuthal component of the electron velocity, V,,>0. This leads to a

diamagnetic effect, 0B, <0, and also a focusing electric field, E, <0, is generated to
provide force balance on the plasma electrons.

It is interesting to note that the threshold value of the magnetic field,
o, =2p,w, , which separates these qualitatively different regimes of ion beam
interaction with the background plasma, corresponds to the resonant excitation of a large-
amplitude wave-field component [Volokitin et al., 1995, Dorf et al., 2010]. This effect of
resonant wave excitation can be utilized for diagnostic purposes. Indeed, placing a pick-
up loop outside the beam pulse and varying the amplitude of the applied magnetic field, a

large-amplitude signal will be detected when the applied magnetic field approaches the

threshold value specified by w;, =28,®,, . Therefore, it is expected that this scheme can

be utilized as a passive diagnostic tool to measure the beam velocity or plasma density

[Dorf et al., 2010].

4.2 Theoretical Model

In this section we calculate the electromagnetic field excitation generated by an ion beam
pulse propagating through a cold background plasma with a constant velocity, v,, along a

uniform magnetic field B, = B,,Z. The beam carries a current j, =Z,ev,n,(z—v,t,x),
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where Z; is the beam ion charge state, -e is the electron charge, n; is the beam number
density, and x and z are the transverse and longitudinal coordinates, respectively. For
simplicity in the analytical studies, we consider here 2D slab (x,z) geometry, and the
results of numerical simulations in cylindrical (7,z) geometry are presented in Sec. 4.3.
Provided the beam density is small compared to the plasma density (n,<<n,) , we assume
a linear (small-signal) plasma response and obtain the following equation for the Fourier

transforms of the perturbed electromagnetic field components
E= J‘alka’a)Ew,k exp(—iot +ik x+ik.z), and B= _[alkda)Bw’k exp(—iot +ik x+ik_z),

where

2

sza},k _k(k.E(u,k )_%é'E(u,k :4ﬂic£2j(u,k . (41 1)

Here, £ is the dielectric tensor describing linear response of the cold plasma electrons

[Ahiezer et al., 1974] with gxngyyzl—a);e/(a)z—a)i), e.=1-w /o’, and

£, =—¢€, =00,/ [o(0*~&? )], where a)pez(47ze2np /me)l/2 is the plasma frequency,

Xy pece

o, =eB,, /m,c is the electron cyclotron frequency, and the plasma ion response is

neglected provided w>>+/®,, @, [Lifshitz and Pitaevskii, 1981]. Here, @, =eB,,/m,c is
the ion cyclotron frequency, and m, and m; are the electron mass and ion mass,
respectively. Finally, we neglected perturbations in the ion beam motion, assuming that
the time duration of beam-plasma interaction is smaller than the characteristic time for

the ion beam response [Startsev et al., 2008]. The space-time Fourier transform of the
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beam  current is  specified by  j,.=Z,ev,n(k, .k, )5(w—k.v,), where

n, = [dédm, (x,&)exp(—ik x—ik ).
It is straightforward to show for this model of the beam current that Eq. (4.11)

yields a steady-state solution, in which all quantities depend on z and ¢ solely through the

combination & =z—v,t. In what follows, we assume that the beam pulse is sufficiently
long, with <</, and w~v, / l,<<®,, . Note that the latter condition implies that

electrostatic electron plasma wave excitations are significantly suppressed [Kaganovich

et al., 2001]. Finally, in this section, for simplicity we assume that @, <<®, , and a

general analysis for the case of an arbitrary ratio of @, /@,, can be found in Appendix

A. For present purposes, it is particularly important to analyze the x-component of the
electric field perturbations, E,, and the y-component of the magnetic field perturbations,
By, which determine the transverse dynamics of the beam particles. After some
straightforward algebra we obtain the following Fourier transforms of the transverse

electromagnetic field components [Dorf et al., 2010],

ek, . y cZk ko) kvins(w-k.v,) 412
mo ¢ 2 ek o -, (kk) (12
e pe I’lpa)pe(a)pe C ) wh \ x> ™z
eBy _ y BZ,o,ck, kvind(w—k.v,) 4.13)
mea)pec nl’ (0)1276’ + czkz) a)z - a)vzvh (kx’kz) ’ .

where use has been made of Faraday’s equation, (@/c)B,,=kxE, to obtain the

perturbed magnetic field component. Here, 8, =v, /c, k> =k} + k., and
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271272
a)cek kz

2’ kx’kz =T . ., 2>
@ (ko ) (K +ai. /)

(4.14)

is the dispersion relation for the electron whistler branch. The electromagnetic field
perturbations E, and B,, can now be obtained by applying inverse space-time Fourier

transforms to Egs. (4.12) and (4.13). Integration over the frequency w readily gives

By _ cZk ke, klvin, exp(—ik.vt) @.15)
mea)pe‘c l’lpa)pe (CO;E + Czkz )2 kz2 ? - a)vzvh (kx’kz) ’
eBy  _ L BZ,o,.ck,  kv;n, exp(-ik.vt) . 4.16)
m,m, ¢ n, (a);g + czkz) kN -, (k,.k.)

It is evident that the onset of wave-field generation by the beam pulse corresponds to

existence of real solutions to
oy, (ko k) =k2v; . (4.17)
Note that the condition in Eq. (4.17) is equivalent to the resonance condition for

Cherenkov radiation, namely V" =v,, where V" is the z-component of the whistler

wave phase velocity.

Excitation of the whistler wave field perturbations is associated with the poles
(singularities) in Egs. (4.15)-(4.16), which provides a challenge in calculating the inverse
Fourier integration. In what follows, first, based on the dispersion relation [Eq. (4.14)]
and the Cherenkov condition [Eq. (4.17)], properties of the excited whistler waves are
investigated (Sec. 4.2.1). Then, the singularities are properly treated by carrying out the

integration along corresponding Landau contours in the complex k-plane, and the steady-
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state solution for the excited electromagnetic field perturbations is obtained (Sec. 4.2.2).
Finally, the time evolution of the excited electromagnetic perturbations is discussed in
Sec. 4.2.3, and the influence of the excited wave field on the degrees of a beam charge

neutralization and current neutralization is assessed in Sec. 4.2.4.

4.2.1 Properties of the Excited Whistler Waves
It is straightforward to show that real solutions to Eq. (4.17) exist, provided

a=0,/2p0,>1, (4.18)

as illustrated in Fig. 4.5(a). For this case, the solutions k° =k’

em,qs

correspond to the long-
wavelength electromagnetic part of the whistler branch, k =k, <@, /c, and the short-
wavelength quasi-electrostatic part, k =k, >, /c [Fig. 4.5(a)]. In the limit where

a>>1 the solutions are approximately given by

2am,, w,
k, = ok = (4.19)
¢ c 2ac

Note that for a long beam pulse with k.' ~1, >> k' the transverse wave vectors of the

qs,em

excited wave field are approximately given by k=~ tk [see Fig. 4.5(b)].

gs,0m

The directions of the x-component of the group velocity V,, for the excited wave
field are illustrated in Fig. 4.5(b). Note that the quasi-electrostatic and the long-
wavelength electromagnetic whistler waves with the same signs of phase velocity have

opposite signs of group velocity, V.. Furthermore, it can be shown that the z-component
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Figure 4.5: (Color) Plots of solutions to Eq. (4.17) corresponding to the wave vectors of
the excited whistler wave-field. (a) The absolute value of the normalized z-component of
the whistler wave phase velocity (solid curve) is intersected by different values of the

normalized beam velocity S5 (dashed lines). (b) The circles on the plane (k,,k;) illustrate

the solutions to Eq. (4.17). For the case of a long beam pulse with /, >> k' | the wave

qs,w?
vectors primarily excited are illustrated by the short vertical bold lines. Red and blue
colors illustrate positive and negative signs, respectively, of the x-component of the

group velocity for the excited waves.
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Figure 4.6: Schematic illustration of whistler waves excited by the ion beam pulse. In the
beam frame of reference, the long-wavelength electromagnetic wave-field propagates
ahead of the beam pulse, and the short-wavelength quasi-electrostatic wave-field

propagates toward the beam tail.

of the group velocity for the short-wavelength quasi-electrostatic wave field is smaller
than the beam velocity. In contrast, the long-wavelength electromagnetic wave field
propagates in the z-direction faster than the beam. Therefore, the long-wavelength
electromagnetic perturbations excited by the beam tail can propagate along the beam
and influence the dynamics of the beam head. A schematic illustration of the whistler

wave excitations is shown in Fig. 4.6 [Dorf et al., 2010].
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4.2.2 Wave-Field and Local-Field Components of the Excited

Electromagnetic Perturbations

Wave-field excitations for the case where o >1 are associated with the poles in Egs.

(4.15)-(4.16), which appear in the real space of the wave vector components (k,,k;). Note,

for the case of a long beam pulse, k.' ~1, >>k '

qs.,em

that the pole locations on the real k,-

(l—kf/2k2 ) It is therefore

em,qs

axis depend weakly on the value of k., ie., k =*k

emgs
convenient to carry out the inverse Fourier integration, first along the k,-axis, and then
along the k.-axis. To properly account for the pole contributions, the integration over k,-
space should be carried out along the Landau contour, C;, as illustrated in Fig 4.7 [Dorf
et al., 2010]. Note that integration along the contour C; shows that sufficiently far outside
the beam only wave fields with a positive (negative) x-component of group velocity
propagate in the region x>0 (x<0).

To demonstrate this fact, as an illustrative example, we consider the simple case
where the spectrum of the beam density is an analytical function in the complex k,-plane,

which satisfies n, exp(—|k x|) — 0 for large values of |k,|. Considering x>0, and closing

the Landau contour through a semi-circle of an infinitely large radius lying in the upper-
plane [Figs. 4.7(a) and 4.7(b)], we readily obtain that the wave field excitations
correspond to contributions from the poles at k,=—k.,, and k,=k,, for k<0, and at k,=ke,
and k,=-k,, for k>0. Note that the group velocity of these waves is indeed directed away
from the beam, i.e., V>0 [see. Fig. 4.5(b)]. Finally, it should be pointed out that the

integration contours Cj, are different for the cases where k>0 and £.<0. Therefore, even



4.2. Theoretical Model 164

,,” Ar Im kx ) . tk <0
II \\\ Z
' C k<0 —0—0—
- A, K. -k | k& k. Rek
'\'—t‘a—(y——a—(g——li K C_- gs "em em "gs x
“Ngs -kem kem kqs © g

T . (b) C. 41m K (d)

/’ ‘r X

I/I \“ kZ>O

. C k>0 —5—0— |
T e R, Gl o] fn K P
MNgs  Mem| Mem qs TN Ky >

Figure 4.7: (Color) Integration contours used for evaluation of the integrals in Egs.
(4.15)-(4.16). Frames (a) and (b) show Landau contours C; corresponding to £,<0 and
k>0, respectively. Frames (c) and (d) illustrate contours of integration equivalent to the
ones shown in Frames (a) and (b), respectively. Red and blue colors are used to illustrate

the integration contours for x>0 and x<O0, respectively.

for a symmetric longitudinal beam density profile, the electromagnetic field perturbations
are not, in general, symmetric around the beam center, implying oblique wave
propagation.

For present purposes, it is convenient to represent the integration along the
contour C; for x>0 (x<0) as an integral along a slightly shifted upward (downward)
contour C; (C.) lying below (above) the poles of ny, plus (minus) the residues of the
relevant on-axis poles [Figs. 4.7(c) and 4.7(d)]. For a beam with a smooth radial profile,

it can be shown that the contribution from the on-axis poles corresponds to the wave-field
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w

components of the electromagnetic field perturbation (£’ ,B;V ) extending far outside the

beam, and the integrals along the paths C; and C. correspond to the local-field

components (E"’C,B;"”) that rapidly decay to zero outside the beam. Assuming

X

k <<k

em,qs

for a sufficiently long beam pulse, we obtain the following approximate

expressions for the wave-field components of the electromagnetic field perturbation for

x>0 [Dorf et al., 2010],

mea)pec B cn, (qus - kezm ) (bem " bqs ) ’ (420)
EEEV — 27Z-Zba)c2€
mone o, () ) (421)

Here,

byyon =tk2 , + 0%, [ )Tdkznk (kpyon ok, Jeoslk &5k, (1-K2 /2k2 , ], (4.22)
0

eqs,em = ik;s,em Tdkznk (kqs,em ’kz )Cos[kzgikqx,em (1_k22 /2k;s,em )X]’ (423)
0

are the electric and magnetic components corresponding to the quasi-electrostatic (with

subscript “gs”) and the long-wavelength electromagnetic (with subscript “em”) waves,

respectively, and & =z—-v,t. Note that the correction term, dp = (kz2 / 2k, qs)x , which

we only retained in the phase of the wave-field component, yields a curvature in the

phase fronts, and a corresponding decrease in the wave-field amplitude for x>/7k

em,qs *

The local fields are given for x>0 by [Dorf et al., 2010]
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B ] dke [ aoton, P v ) ) (424)
m,m,,c s e * K cn, (kf -k, )(k; —qus) ’ '
eE’l‘oc = —1']2 dk €™+ I dk e*n Z ki a)‘i (4.25)

m,m,.c B o c * k cn,m,, (kf —kfm)(kf —qus) ' )

It should be noted that for the case where the beam density profile is specified by
n,(x,z—wt)=n_(x)n_(z—wt), the integration over the k.-space can be carried out
independently from the k,-space integration. Therefore, the axial dependence of the local
fields is determined solely by the beam density axial profile, that is

(E™,B")=n(z=v,)®, ,(x). In contrast, it is readily seen from Eqs. (4.20)-(4.23) that

the wave field propagates obliquely to the beam. This implies a coupling between the
transverse and longitudinal dynamics of the system, and therefore limits the validity of
the slice approximation.

Features of the steady-state whistler wave excitation are shown in Fig. 4.8 for the
following illustrative parameters: n, = n,, exp [— P2 —(z=vp) /12 } , 1=10c/wp. (beam

pulse duration 7,=1yv,=30.3/@ye), v5=0.33c, np=0.05n,, n,~2.4-10"" cm” and B.,~1600
G [Dorf et al., 2010]. It is readily seen for a wide-aperture beam, r,=2.5¢/w,., that the
long-wavelength electromagnetic part of the whistler branch is primarily excited [Fig. 4.8
(a)], and the amplitude of the quasi-electrostatic wave field is exponentially small [see
Eq. (4.22)]. In contrast, for the case of a thinner beam, 7,=0.5c/w,., the short-wavelength

quasi-electrostatic waves are primarily represented in the excited spectrum [Fig. 4.8(b)]

due to the large excitation factor, (qus + a)f,e / cz) , in front of the integral in Eq. (4.22).
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Figure 4.8: (Color) Plots of the steady-state amplitude of the transverse magnetic field
perturbations B, The beam-plasma parameters correspond to Z,=1, [,=10c/w., $=0.33,
and np=2.4-1011 cm”. The applied magnetic field, B.,=1600 G, corresponds to
0=/ (2fpwpe)=1.54. The frames show (a) primarily excitation of long-wavelength
electromagnetic waves by a wide-aperture ion beam with 7,=2.5¢/w,.; and (b) primarily
excitation of short-wavelength quasi-electrostatic waves by a thin beam with
75=0.5¢/wp.. The information used in obtaining the plots is obtained from Egs. (Al)-
(A7). The normalization factor in Frames (a) and (b) is given by By=4znnyoZpefprs. The
arrows schematically illustrate the direction of the wave packet group velocity. The
dashed lines correspond to the contour of constant beam density corresponding to the

effective beam radius 7.

Note that for the parameters in this illustrative example, @, ~®,,, and therefore to

pe’

obtain the plots in Fig.4.8, we used Eqs. (A1)-(A7), which include o, / w,, correction

terms.
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4.2.3 Time Evolution of the Wave-Field Perturbations

It should be noted that the denominators in Egs. (4.20)-(4.21) can be expressed as

ki -k, =4aNa’ -1w, [, (4.26)
and it readily follows that there is strong resonant wave excitation for the case where the
poles are merging, corresponding to o = w,, / 2pw,, =1 and k, =k, =0, /c [see Fig.

4.5(a)]. Indeed, it can be shown in the limit & =1 that the group velocity of an excited

wave packet becomes equal to the beam velocity, i.e., V,, =0, V,. =v,. That is the wave

packet is moving together with the beam pulse, and can therefore be amplified to very
large amplitude (during a very long time interval), assuming a linear plasma response.
The wave-field intensity, however, will be saturated either by nonlinear processes or due
to dissipation (collisions). Note that the local fields specified by Egs. (4.24)-(4.25) do not
have singularities at a=1.

For the case where « > 1, the wave-field amplitude reaches a finite quasi-steady-

state limit with a characteristic time scale of 7 ~min{rb [V sl /

Ve —vb|} . This time
interval is required for an initial transient wave packet to propagate sufficiently outside
the beam pulse. For the excited wave vectors specified by Eq. (4.7), it can be shown that

Ve / (ng —vb) =k_/k. . Therefore, for a sufficiently long beam pulse with /, >> k!, the

qs.,em
wave perturbations propagate primarily in the transverse direction, and leave the beam in

the time period z, ~7, /V,, . For the case where a >1 and 7, ~ ¢/®,, , making use of Egs.

(4.14) and (4.17), we obtain 7, ~7, /V, ~1,/v,. That is, the time scale for achieving a
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quasi-steady-state is of order the beam pulse duration, and is therefore much longer than
the plasma period, i.e.,

7, ~1, /v, > 1w, (4.27)
Note that this result is significantly different from the case B.,=0, where the

characteristic time to reach a quasi-steady-state is of order of the plasma period [Dorf et

al., 2010].

4.2.4 Influence of the Excited Wave Field on Beam Charge

Neutralization and Current Neutralization

It is of particular interest for neutralized beam transport applications to estimate the
degrees of beam charge neutralization and current neutralization associated with the
excited wave field. Here, we consider the case where « >1, and the limit where o >>1
and the analysis of the local-field component is addressed in Sec. 4.5. It is convenient to

introduce E, =4zn,Z,er, and B,=4rn,,Zep,r, that represent, respectively, the

characteristic transverse self-electric field and self-magnetic field generated by an ion
beam propagating in vacuum. Here, nyy and r, are the characteristic values of the beam
density and radius. The degrees of beam charge neutralization and current neutralization

can now be effectively measured by E,/E, and B,/B,. Considering, for simplicity, a
Gaussian beam density profile with n, = ([, /47)n,, exp [—rbzkf [A-12k? ] 4] , it follows
from Eqgs. (4.20)-(4.23) that the degrees of beam charge neutralization and current

neutralization associated with the wave field excitations is given by [Dorf et al., 2010]
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B[V/V \/— maX{ 2k2 /a) o eXp(—l”bzk;/“)anp( em/4)}

~

B, 4aa’ -1

E" W’ max{(czkzs/a)ze)exp( rb 3/4) ( 2kz/ )exp( rb - 4)}
r = ol d . (429
E, i a)12)e 4o a® - ( )

It readily follows from Eqs. (4.28)-(4.29), for the case where r,k,, /2<1 and « 21, that

(4.28)

the beam current is not neutralized, i.e., B;V / B, ~1. The beam charge is, however, well-
neutralized, i.e., E” /E, <<1, provided o, << o, [this is due to the factor w, /
Eq. (4.29)]. For the case where @, ~ ®,,, the degree of charge neutralization decreases,

giving E’ /E0 ~1, (see Appendix A), which is consistent with the analysis in

[Kaganovich et al., 2008].

4.3 Resonant Wave Excitation: The Asymptotic Time-

Dependent Solution

In the previous section, it was demonstrated for the critical case where « =1, that very-
large-amplitude wave-field excitations are predicted by the linear theory for a quasi-
steady-state solution. This effect of large-amplitude wave-field excitations in the limit of
merging poles corresponding to @ =, /2pw, =1 and k, =k, =0, [c (so-called
double pole case) has been previously reported in [Volokitin et al., 1995; Volokitin et al.,

1997] for the case of an axially-continuous and thin (7k, <<1) electron beam with a
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periodically modulated axial density profile. In those calculations, weak dissipation (due
to collisions) [Volokitin ef al., 1995], or nonlinear interaction between the beam electrons
and the excited whistler waves [Volokitin et al., 1997] were assumed in order to estimate
the saturated amplitude of the electromagnetic field perturbations. In the present analysis
we obtain the asymptotic time-dependent solution for the wave amplitude in the linear
approximation. Furthermore, we discuss a possible mechanism for saturation of the wave
field intensity associated with the nonlinear response of the background plasma electrons,
which can drive the system off resonance [Dorf et al., 2010]. Provided the beam ions are
sufficiently massive, the saturation determined by this mechanism can occur before the
nonlinear interaction between the beam ions and the excited whistler waves becomes
important.

To describe the time evolution of the electromagnetic field perturbation excited
by the ion beam pulse, we solve here an initial-value problem, making use of Laplace
transforms with respect to time. Note that the temporal Fourier transform used in Sec. II
yields only the steady-state solution. In this section, we assume that the initial
electromagnetic field is zero everywhere, and the beam current (source) is
instantaneously turned on at =0, ie., j, =Z,en, (z—v,t,x)H(t), where H(f) is the
Heaviside step function defined by H(t)=0 for t<0, and H(t)=1 for t>0. Similar to Eq.
(4.3), we obtain that the space (Fourier) - time (Laplace) transform of the perturbed

transverse magnetic field is given by [Dorf et al., 2010]
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mao,c  2xn (o), +k) [0 -a, (k. k) |[(0—kv,)

v 33 2
eB), 1 087Kk, n,

(4.30)

The inverse Laplace time transform performed in the complex w-plane readily gives

eB, .0, 7,k k exp(—ikzvbt)+ exp(—iw,,t) . exp(im, 1)
kzzvbz_a)vzvh Za)wh (a)wh_kzvb) 2a)wh (a)wh+kzvb) .

mao,c  n (o, +k)
(4.31)
Note that the first term inside the brackets in Eq. (4.31) corresponds to the steady-state

solution [compare with Eq. (4.16)], in which all quantities depend on ¢ and z exclusively

through the combination & =z —v,¢t. The other two terms describe the time evolution of

the transient excitations. Assuming a sufficiently long beam pulse, k.' ~1, >> k' ., for

qs.em

the double-pole case corresponding to o =, / 2p,m, =1, Eq. (4.31) takes the form

eBl » wpeﬂ,fczbkkank _exp(—i,,t)—exp(=ikv,t) L oxp (i, ,t)—exp(—ik.v,t) '

mea)pec 2a)whkzvbnp (kx - a)pe /C)2 (kx + a)pe /C)2

(4.32)
The right-hand side of Eq. (4.32) has two critical points on the real k,-axis

corresponding to k =tw, /c. However, for the case where a =1, the dispersion
relation yields a)wh(i @, /c,kz):ikzvb. Furthermore, the x-component of the group
velocity is equal to zero at the critical points, V,, (kx =tw,/ c,kz) =0. Therefore, the

time-dependent solution in Eq. (4.32) is regular at the critical points, k£, =@, / ¢, and
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the inverse Fourier integration in k,-space can be carried out along the real axis. Note that
at large times, w,,t >>1, the contribution to the integral comes mainly from the regions
near the points of stationary phase, where dw,, /0k =V, =0, which coincide with the

critical points k, =t , / ¢ . The asymptotic time-dependant solution is then given by

2
m,m, ¢ c’n,

eB] __a);eﬂbee’ikzv”’n @,, v i &x ]EdAk exp[isgn(kz)a)‘;',hAkft/2]—1
le 7 c * Ak? ’

—00

(4.33)

kZ

where B} = J.dkalfeik*x , @, = ‘[82a)wh /8 k> ]k » /C‘ =c ﬂb/a);e , and it has been
assumed that n (@ e /€K )=n, (- e €5k ). Noting that

de [exp(ir i’ )— l]/x2 =27 (xi—1), we obtain [Dorf ez al., 2010]

C

B WNrw v*Z @
i pe’d "% sin[ e xsz(z), (4.34)

m,m, c n,

where
N. = Tdkqukz nk(wpe k. J[cos(kz§)+ sin(kzgf)], (4.35)
0 c

and a symmetric beam profile with n, (a)pe /c,kz) =n, (a)pe / c,—kz) has been assumed.

Equations (4.34)-(4.35) describe the asymptotic evolution of the wave field for the double
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pole case corresponding to o =@, / 2pw,, =1. It is readily seen from Eq. (4.34) that at

sufficiently large times, @], / 7; >>1, the amplitude of the magnetic field is given by

~ Wt/ Zenfr; (436)
provided the beam radius is of the order of or smaller than the electron skin depth.

As the amplitude of the resonantly-excited electromagnetic field perturbation
increases, nonlinear processes can provide saturation of the energy transfer from the
beam to the wave field. Here, we consider a plausible mechanism to describe saturation
of the wave field intensity, in which the enhanced electromagnetic field perturbation
generated by the 1on beam pulse modifies properties of the whistler waves, and drives the
system off resonance. Indeed, as the longitudinal component of the magnetic field

perturbation B, increases, the resonance condition becomes less accurate,

ol [2B,0, >1, where ol =e(B,+B.)/m,c. Recalling that the form of the

resonant denominator is given by 1/ (a«/az—l), the normalized magnitude of the
perturbed longitudinal magnetic field Aa =(eB, /mec)/ (2,Bba)pe) can be estimated by
Aa~Z,(n,/n,)(re,/c) |:(1+Aa )- 1] provided the beam radius is of the order of

or smaller than the electron skin depth [see Eq. (B5)]. It now follows that the wave-field

intensity saturates at the approximate level

Ao~} (n,/n, )2/3 (rba)pg/c)z/a. (4.37)
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For the case of low beam density, n, <<n,, this amplitude of the electromagnetic field

perturbation is significantly higher compared to the case of non-resonant excitation,

a > 1, where the normalized steady-state amplitude is proportional to n, / n, . Finally, we

emphasize that although the mechanism considered for the wave-field intensity saturation
seems plausible, further detailed analytical and numerical studies are required to validate
it.

The resonant excitation of whistler waves has been observed in numerical
particle-in-cell simulations performed using the two-dimensional slab (x,z) version of the
LSP code taking into account electromagnetic effects [Dorf et al., 2010]. As an

illustrative ~ example, @ we  consider a  Gaussian ion  beam  pulse,

n, =0.05n, exp[—rz/ r—(z=-vt) /l,f}, with effective beam radius 7,=0.92¢/®,., and

beam pulse half-length, /,=9.2¢/w,. (beam pulse duration 7,=/,/vs=27.8/wpe), propagating
with velocity v,=0.33¢ through a background plasma with density, », =2.4x10" em™. In

the numerical simulations, the ion beam is injected through the lower boundary of the
simulation domain into an unperturbed magnetized plasma, and it propagates in the z-
direction exciting electromagnetic field perturbations. Figure 4.9 shows the results of the
numerical simulations for the time-evolution of the maximum value of the perturbed
transverse magnetic field B,. Note that for the parameters in this illustrative example,

wc~wpe and f,=0.33, and therefore a generalized analysis for arbitrary value of w../w,.
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Figure 4.9: Time evolution of the maximum value of the normalized perturbed
transverse magnetic field plotted for different vales of the applied magnetic field. The

beam-plasma parameters correspond to Z,=1, r,=0.92c/wpe, [,=9.2¢/wpe, =0.33, and

np:2.4><10“cm'3. The applied magnetic field corresponds to a =1 (solid curve),

a =1.2 (dashed curve), and & =1.37 (dotted curve). Results are obtained using the

(x,2) slab model of the LSP code.

should be carried out in order to estimate corrections to the resonance condition. The

analysis shows (see Appendix A) that the resonant excitation of the wave field should

occur at a =@, (l—ﬁ’b2 )/(Zﬁba)pe) =1 [Kaganovich ef al., 2007]. It is readily seen from

Fig. 4.9 that as the magnitude of the applied uniform longitudinal magnetic field, By,
approaches the critical value corresponding to & =1, the saturation amplitude of the
perturbed magnetic field increases, as well as the time interval required to achieve a

quasi-steady-state. Note that the perturbed transverse magnetic field shown in Fig. 4.9 is
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normalized to the magnetic self-field of an unneutralized beam, B, =47zn, Z,ef,r, . It is

evident, for the quasi-steady-state regime, that the beam current is unneutralized,

B, ~ B, which is consistent with the analysis performed in Sec. 4.2.4.

Finally, it should be noted that the effect of resonant large-amplitude wave field
excitations can be utilized for diagnostic purposes in experiments where an ion beam
pulse propagates through a background plasma along an applied solenoidal magnetic
field [Dorf et al., 2010]. Indeed, measuring the perturbed azimuthal magnetic field, for
instance, in the vicinity of the chamber wall, it can be expected to obtain the following
dependence on the value of the applied magnetic field. First, at low values of the applied

magnetic field, a =w, /2f,0, <1, the wave-field component of the electromagnetic

field perturbation is not excited, and the excited signal is exponentially small. As the

magnetic field increases, and the threshold value of a=a, /Zﬂba)pe =1 1s reached, a

large-amplitude signal corresponding to resonant wave excitation will be detected.
Finally, further increase in the magnitude of the applied magnetic field,

a=ao,/2pw,>1, wil lead to a decrease in the amplitude of the excited signal.

Provided the directed beam velocity is known, this diagnostic can be used, for instance,
for passive measurements of the background plasma density. Indeed, determining the
threshold magnitude of the applied magnetic field, B., from the experimental data, the

plasma density can be readily obtained from w,, =, (B,)/2p, .
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4.4 Comparison of Analytical Theory with Numerical

Simulations

In this section we present the results of the numerical simulations performed with the
particle-in-cell (PIC) code LSP and compare it with the analytical solutions described in
Sec. 4.2 [Dorf et al., 2010]. Figure 4.10(a) shows the results obtained with the 2D slab
(x,z) version of the code for the amplitude of the y-component of the perturbed magnetic
field, when a quasi-steady-state is reached. The corresponding analytical solution [Egs.

(A1)-(A7)] is shown in Fig. 4.10(b). The following parameters have been used for this

illustrative example: n, =0.05n, exp[—rz/rb2 —(z=vt) /l;] , 1=0.92¢/wpe, [;=10r) (beam
pulse duration z,=ly/v,=27.8/®pc), v»=0.33c, n, =2.4x10“cm’3, and B.,~1600 G . It is

readily seen from Figs. 4.10(a) and 4.10(b) that the results of the numerical simulations
and analytical theory are found to be in very good agreement. Indeed, the characteristic
amplitude of the electromagnetic field perturbation, wavelength, angle of the
propagation, etc., are quite similar.

In addition, to verify the approximate analytical solution specified by Egs. (Al)-
(A7), we first solved Eq. (4.11) for arbitrary values of w/@,, , ®/®,, ,and ©, /o, ,and
then numerically calculated the inverse fast Fourier transforms (FFT). Note that in the
regime where a wave field is excited, the Fourier transforms of the perturbed

electromagnetic fields contain singularities in real (k,,k)-space. Therefore, the numerical

integration of the fast Fourier transforms performed along the real k.- and k.- axes would
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Figure 4.10: (Color) Plots of the steady-state amplitude of the transverse magnetic field

perturbation B, The beam-plasma parameters correspond to Z,=1, r,=0.92c/w,e, [=10r,

$=0.33, and n » =2.4x10" ¢cm™. The applied magnetic field, B..,~1600 G, corresponds

to a=wce/(2Pppwpe)=1.54. The Frames correspond to: (a) results of numerical simulations
obtained using the (x,z) slab version of the LSP code; (b) the analytical solution given by
Egs. (A1)-(A7); (c) numerical calculation of fast Fourier transforms, assuming weak
collisions v=0.005/t,; and (d) the results of numerical simulations obtained using the
(r,2z) cylindrical version of the LSP code. The dashed lines correspond to contours of

constant beam density corresponding to the effective beam radius 7.
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diverge. To remove the singularities from the real axis, weak collisions have been

assumed for the plasma electron response. Correspondingly, the components of the

dielectric tensor, g, should be modified according to
En =€, =1—a)ie(w+iv)/[w((a)+iv)2—a)fe)} & =1—a)f,€/[a)(a)+iv)], and
£, =€, =1 a)f,ea)(,e / [a)((a)+ iv)2 -, )} , where v is the effective collision frequency. In

the limit of zero collision frequency, the numerical fast Fourier transforms calculation
should yield the analytical solutions given in Eqgs. (A1)-(A7). The results obtained in the
numerical fast Fourier transforms calculation for the case of weak dissipation, v=0.005/ty,
demonstrate very good agreement with the analytical solution [compare Fig. 4.10(b) and
Fig 4.10(¢c)].

It is of particular interest to compare the results obtained for the case of (x,z) slab
geometry [Figs. 4.10(a) — 4.10(c)] to the case of cylindrical (7,z) geometry. The results of
the numerical simulation obtained using the 2D (r,z) cylindrical version of the LSP code
for the same system parameters are shown in Fig. 4.10(d). Results of the (r,z) LSP
simulations demonstrate similar wavelength and propagation angle for the excited wave
field. However, the amplitude of the perturbed electromagnetic field is smaller.
Furthermore, it decays more rapidly outside the beam pulse, compared to the case of the
slab beam pulse [compare Fig. 4.10(a) and 4.10(d)]. Note for an infinitely long beam that
the amplitude of an excited electromagnetic field decreases as 1/r for the case of

cylindrical geometry, and does not decrease for the case of 2D slab geometry. This can
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provide a plausible explanation of the difference in the wave-field amplitude observed in

cylindrical and slab geometries.

4.5 Self-Focusing of an Intense lon Beam Pulse

In this section, making use of Eqs. (4.20)-(4.25), we calculate the transverse component

of the Lorentz force, F, = Z,ek, —Z,ef3,B,, acting on the beam particles. In Sec. 4.2 it

has been shown that the excited wave field perturbations propagate oblique to the beam
with characteristic longitudinal wave number k_~/,'. Therefore, the contribution of the

wave-field component to the total Lorentz force can have opposite signs for the beam
head and the beam tail. That is, it produces a focusing effect in the beam head and a
defocusing effect in the beam tail, or vice versa. In contrast, the longitudinal profile of the
local-field amplitude is the same as the longitudinal beam density profile (see Sec. 4.2.2).
Therefore, the local fields provide a focusing (or defocusing) effect over the entire length
of the ion beam pulse. It is therefore important, in practical applications involving control
over the beam aperture, to identify the parameter regimes where the local component of
the electromagnetic field perturbation has the dominant influence on the beam transverse
dynamics.

This section is organized as follows. In Sec. 4.5.1 regimes of dominant influence
of local fields on the beam transverse dynamics are identified and the transverse

component of the self-focusing force is calculated. Properties of the self-focusing force
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are investigated in Sec. 4.5.2. In particular for the case where 7, <<c/w, , it is shown

that the collective self-focusing force acting on the beam particles in the presence of a
weak solenoidal magnetic field can be significantly stronger than the self-pinching force
in the limit B,,~0. Also, the influence of the self-focusing effects on the beam dynamics
in NDCX-I and NDCX-II is assessed. Properties of the local plasma response are
discussed in Sec. 4.5.3. Finally, the self-focusing force is obtained for the case of
cylindrical (r,z) geometry making use of the slice approximation in Sec. 4.5.4, and the
possibility of using an electrostatic model for describing plasma response and transverse

beam dynamics is discussed in Sec. 4.5.5.

4.5.1 Dominant Influence of Local Fields

It has been demonstrated in Secs. 4.2.3 and 4.3 for the critical case where a =1, that a

large-amplitude wave field is exited. Here, we consider the case where

a>>1(w,>>2pw,). Furthermore, we assume 7, >> k.., or equivalently,
1, >> c/ (2aa)pe) in the limit where o >>1. This implies an exponentially small level of

the short-wavelength, quasi-electrostatic wave excitations for the case of a smooth radial
beam density profile. Making use of Eqs. (4.20)-(4.23), it is straightforward to show for
the case where r, >> kq_sl, that the contribution of the wave-field component of the

electromagnetic field perturbation to the transverse Lorentz force is given approximately

by [Dorf et al., 2010]
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S L

F! =Z,e(E! -B,B) )~2xZ, il (4.38)
oNa —
where
2 ©
L= e Ll dem, (k,, k. )oos[k &+, x]. (4.39)
R ¢ n,s

Recall, for a>>1, that the characteristic wave vector for the excited long-wavelength
electromagnetic wave field is given by k,, =®, /2ac, and therefore the wave field
contribution to the Lorentz force vanishes for a>>1. To obtain the local field

contribution, it is convenient to represent the local fields specified by Eqs. (4.24)-(4.25)

in the following form

(k2+a) /c )nkelk ik

1 1
- . (440
sadar—in, {kﬁ—k; ki—kfm} 40

k,
efs, By = —ithevf_[dk

3 ikx+ik,E
eE" =—iZ,m,yv; [ dk ak,nee [ ! ! } (4.41)

2 2 12 2
NP —lnp k; —kqs k: —k;
For the case where

c

a>>1and r, >> k| = (4.42)

2am,,

we can neglect by the first terms inside the brackets in Egs. (4.40) and (4.41), and after
some straightforward algebra we obtain that the local field contribution, which constitutes

most of the transverse Lorentz force, is given by [Dorf et al., 2010]
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1 dn,

loc loc _ 72 2
F ~ZeE —ZbeﬂbBy =Z,my, e

(4.43)

p

The analysis in Appendix A, performed for an arbitrary ratio of @,, / @, , shows

that for the case of a nonrelativistic ion beam the Lorentz force is still given by Eq.
(4.43), provided

(4

a>>1 and 1, >> k) =(1+a [0?,)" (4.44)

Note that the transverse component of the Lorentz force [Eq. (4.43)] is proportional to the
gradient of the beam density. Therefore, for the case of a bell-shaped beam density
profile, self-focusing of the beam occurs. Furthermore, it is interesting to note that an
annular beam will not pinch to the axis provided the beam dynamics is governed by the
force in Eq. (4.43). However, the outer beam radius will decrease and the inner beam
radius will increase, resulting in a decrease in the thickness of the annulus and an increase
in the beam density. Also, note that the self-focusing in Eq. (4.43) can very effectively
balance the ion beam thermal pressure, which is also proportional to the gradient of the
beam density

Although the total influence of the magnetic and electric field components, B}V,V

and E” , of the wave field perturbation results in a destructive interference in estimating

the transverse Lorentz force [see Eq. (4.38)], it is of particular interest to estimate the
separate contribution of the wave field component to the Lorentz force, and compare it to

the contribution of the local field component. For illustrative purposes, we consider here
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a Gaussian beam density profile with n, = ([, /47)n,, exp [—rbzk)f [4- 1k’ /4} . Making

use of Egs. (4.20)—(4.23), it is straightforward to show that the contribution of the wave

field component can be estimated by [Dorf et al., 2010]

2 272

.1 k

¢E! ~ef3,B) ~Z,m,v;, —= i’nbo exp| —2len |, (4.45)
: ac n, 4

provided the conditions in Eq. (4.42) are satisfied. Similar expressions can be obtained

for the local fields using Egs. (4.40)-(4.41), i.e.,

1

eE" ~7 m v b0 ) 4.46
! " e, max (k2 17 ) (446)
max(l, 0> r? /c?
eB,B) ~Z,m,v, ke ( pe / ) (4.47)

2 2 2 ?
a‘nn, max(l,kemrb)

It readily follows from Egs. (4.45)-(4.47), for the case where the beam radius is small

compared to the wavelength of the long-wavelength electromagnetic waves, 1k, <<I,

that the local electric field has the dominant contribution to the transverse component of
the Lorentz force. As the beam radius increases and becomes of order the electromagnetic

wave-field wavelength, r,k, ~1, the separate contributions from all components of the
perturbed  electromagnetic  field become of the same  order, i.e.,

E" ~E" ~ B,B* ~ B B” . With a further increase in the beam radius, r,k, >>1, the

local magnetic field contribution becomes dominant, and both the quasi-electrostatic and
long-wavelength electromagnetic wave-field components are exited to exponentially

small levels for the case of a smooth beam density profile.
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Figure 4.11: (Color) Plot of the perturbed transverse self-electric field corresponding to
t~=8.17,=54 ns. The system parameters correspond to Z,=1, r,=0.55¢c/wpe, T5=75/0pe,
Sp=0.05, B.=300 G, and o=w./2fp0,.=9.35. The results are obtained using the 2D (x,z)
version of the LSP code. The dashed curve corresponds to the contour of constant beam

density corresponding to the effective beam radius 7.

The time evolution of the electromagnetic field perturbation for the case where

a>>1 and kq_sl <<r, <<k,! , which corresponds to a dominant influence of the local

self-electric field, has been studied using the LSP simulation code. Figure 4.11 shows a
plot of the perturbed transverse self-electric field at the simulation time #,=8.17, =54 ns.

The beam-plasma parameters considered for this illustrative example correspond to
_ 2/ 2 2 /92 _1nlo . -3 _ _ _
n,=0.13n, exp[—r /rb —(z—v,t) /lb], n,=10"cm™, Z,=1, r,=0.55¢/wpe, %=37.5/®pe,

Bp=0.05, B.,~=300 G, and a=w./2fp0,.=9.35. The wave structure in front of the beam

pulse corresponds to a transient wave-field perturbations associated with the initial beam
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penetration into the plasma through the boundary at z =0. Note that these transient
perturbations do not interact with the ion beam pulse effectively, because they do not
satisfy the Cherenkov criteria in Eq. (4.17). Therefore, the energy content in the
corresponding wave field is attributed only to the initial beam penetration into the
plasma, and is not related to the beam energy later in time. As the transient wave-field
perturbations leave the beam on the characteristic time scale te~min{ry/Vey, Ip/|Vg-ve|}
(see Sec. 4.2.3), the local component of the self-electric field exhibits the dominant
influence on the ion beam transverse dynamics, as evident from Fig. 4.11. The intensity
of the excited wave field satisfying the condition in Eq. (4.17) is negligible, which is

consistent with the analytical calculations performed in this section.

4.5.2 Enhanced Ion Beam Self-Focusing

In Sec. 4.3.1, it was demonstrated for the case where a:a)ce/Z,Bba)pe >>1 and
7, >>c/ (2aa)pe), that the local fields have the dominant influence on the transverse

dynamics of the ion beam particles. In this regime, focusing is provided over the entire
length of the beam pulse and the corresponding self-focusing force acting on the beam
ions is specified by Eq. (4.43). It is of particular interest to compare this self-focusing
force to the self-pinching force acting on the ion beam particles for the case where the ion
beam pulse propagates through an unmagnetized plasma, i.e., B.,=0 [Dorf et al., 2009c].
Indeed, even for this simple case the beam charge is typically better neutralized than the

beam current, and the self-pinching force is produced by the net self-magnetic field (see
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Sec. 4.1.1). This self-pinching can be utilized for a variety of applications, including self-
pinched ion beam transport [Ottinger et al., 2000], and heavy ion beam focusing [Hahn
and Lee, 1996]. Note that for the case where B.=0, the beam current is almost
unneutralized in the limit where the beam radius is small compared to the electron skin

depth, 7, << c/ ®,, . Therefore, the self-pinching effect is a maximum in this regime, and
the transverse component of the self-pinching force is given by

F,=-Z,ef3,B, :—i—foezvlfJ-nbdx (4.48)

0

For the case where 7, <<c/w,, , the ratio of the collective self-focusing force in

the presence of an applied magnetic field [Eq. (4.43)] to the self-pinching force, Fy, in the
limit B.,~0 case, can be estimated as F, / F ~ (c/ Ko, )2 >>1 [Dorf et al., 2009c]. That

is, the self-focusing of an ion beam pulse propagating through a neutralizing plasma can
be significantly enhanced by the application of a solenoidal magnetic field satisfying

o= a)w/2ﬂba)pe >>1. Here, we emphasize again that the threshold value «, =1

typically corresponds to a weak magnetic field (see Sec. 4.1). Also recall, that he

condition 7, <<c/w, ~can be rewritten in terms of the beam current I, as

1, <<4.258, (nb / np)kA. Note that for a typical ion beam injector aperture of the order
of 1 cm, the beam radius (~ 1 c¢cm) is small compared to the electron skin depth provided

the beam and plasma density are in the range of n, <n, <2.8x10" /(r,[em])* em™, which

are typical parameters for several beam transport applications [Roy et a/, 2005; Seidl et
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al., 2009; Friedman et al., 2009]. Therefore, this self-focusing enhancement can be of
considerable practical importance.

As a practical example, here we consider parameters characteristic of the present
Neutralized Drift Compression Experiment (NDCX-I) [Seidl et al., 2009] and its future
upgrade NDCX-II [Friedman et al., 2009], which are designed to study the energy
deposition from the intense ion beam onto a target. The experiments involve neutralized
compression of an intense ion beam pulse with radius 7,~1 cm as it propagates through a
long drift section with length L,~200 cm filled with a background plasma with density
np~1011 cm™. As it exits the drift section, the beam passes through a strong magnetic lens
with magnetic field B,=8 T, and length L~10cm, which provides additional transverse

focusing. For the currently operating NDCX-I experiment, typical beam parameters

correspond to S, =0.004, m/ =39au., Z/ =1. The planned NDCX-II experiment is
aimed at operating at higher beam energies: A, =0.032, m” =7au., Z, =1. The

corresponding values of the critical magnetic field are given by B/ =65 G and B” =8 G,

for NDCX-I and NDCX-II parameters, respectively. The fringe magnetic field of the

strong magnetic lens can penetrate deeply into the drift section at a magnitude much

1,10
c

larger than B, thus providing conditions for enhanced self-focusing for both NDCX-I

and NDCX-II. Moreover, the integrated effect of the beam self-focusing inside the drift
section filled with the background plasma can become comparable to the focusing effect

of the strong magnetic lens. Introducing the dimensionless parameters & = F,, L, / FL_,
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where F, ~ m,a’r, / 4 is the magnetic focusing force acting on the beam ions inside the
lens, and F, ~m,v} [r, is the self-focusing force (my~n, is assumed), we readily obtain

6" =0.04 and 5" =0.5 for the parameters characteristic of NDCX-I and NDCX-II
respectively. Here, m, and w. are the ion beam mass and cyclotron frequency,
respectively. Therefore, the plasma-induced collective focusing effect in a several
hundred gauss magnetic field can become comparable to the focusing effect of a strong 8
Tesla final focus solenoid for the design parameters characteristic of NDCX-II.

The enhancement of the self-focusing force in the presence of a weak applied
magnetic field has been observed in electromagnetic particle-in-cell simulations
performed using the 2D (x,z) slice version of the LSP code [Dorf et al., 2010]. As an

illustrative ~ example, @ we  consider a  Gaussian ion  beam  pulse,

n, =0.13n, exp[—rz/rb2 —(z —vbt)z/lbz] , with effective beam radius, 7,=0.55¢/wp., and

beam pulse half-length, /,=1.875c/w,. (beam pulse duration 1,=37.5/®,c), propagating
with velocity v,=0.05¢ through a background plasma with density np=1010 cm”. The
results of the numerical simulations shown in Fig. 4.12 demonstrate the significant (~10
times) enhancement of the transverse component of the Lorentz force due to an applied
magnetic field of B.,~=300 G. Figure 4.12 shows the fotal transverse focusing force (i.e.,
the sum of the magnetic and electric component of the Lorentz force) acting on the beam
ions in the presence of an applied magnetic field (green, blue, and pink curves), and for
the case where an external magnetic field is not applied (purple curve). The units of the

electric field, V/cm, are chosen for practical representation of its numerical value. Note
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Figure 4.12: (Color) Radial dependence of the normalized focusing force at the beam
center. The results of the numerical simulations correspond to B.,~300 G and
0=0co/2Pp0p.=9.35 (green curve), and w.~0 (purple curve). The analytical results in
Eq. (4.43), are shown by the blue curve, the pink curve demonstrates the analytical
predictions obtained by performing integration in Eqs. (A1)-(A7). The beam-plasma

3

parameters correspond to Z,=1, r,=0.55¢/wpe, 1=75/®pe, $=0.05, and np=1010 cm”.

The black curve corresponds to the radial beam density profile.

that the results of the numerical simulations are found to be in very good agreement with
the approximate analytical solution given by Eq. (4.43) (blue curve), and with the more

accurate analytical solutions given by Eqgs. (A1)-(A7) (pink curve).
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4.5.3 Properties of the Local Plasma Response

As demonstrated above, the local component of the self-electric field provides the

dominant contribution to the transverse Lorentz force for the case where
a=w,/2p,0, >>1 and k| <<r, <<k, (or equivalently, ¢/2aw,, <<r, <<2ac/®,,).

Form Eq. (4.43) it now readily follows that

Z,E. ~Zmy: -8 (4.49)
n, dx

and therefore, for the case of a bell-shaped beam density profile, the transverse electric
self-field produces a focusing effect on the ion beam pulse. This implies that a positive
charge of the ion beam pulse becomes over-compensated by the background plasma
electrons [Dorf et al., 2009c]. In the same parameter regime, the z-component of the

magnetic field perturbation is specified by (see Appendix B)

I 2
eB ch Zb ﬂ b a)pe

m,w,c ,.n,

n,(x,z), (4.50)

indicating a diamagnetic plasma response.

As noted earlier a defocusing self-electric field and a paramagnetic plasma
response were found for the case where a <1 (Sec. 4.1.2). This means that the
qualitatively different local plasma responses for the cases where o <1 and « >1 are
separated by the critical case where « =1, corresponding to resonant excitation of large-

amplitude wave-field perturbations.
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The analytical calculation demonstrating the dramatic change of the local plasma
response with an increase of an applied magnetic field has also been verified by the
results of 2D (x,z) LSP simulations (Fig. 4.13) [Dorf et al., 2010]. The parameters

chosen for the illustrative example in Fig. 4.13  correspond to
2 2 2 /92
n,=0.13n, exp[—r /rb —(z=wt) /Zb}, r5=0.55¢/wpe, 15=1.875¢/wpe, vp=0.05¢, and

np=1010 cm™. One can readily see that the paramagnetic plasma response [Fig. 4.13(b)],
and the defocusing effect of the transverse self-electric field [Fig. 4.13(a)] for the case
where a =0.78, change to a diamagnetic plasma response [Fig. 4.13(d)] and a focusing
effect of the self-electric field [Fig. 4.13(c)] for a =9.35. Note that the longitudinal
oscillations in Fig. 4.13(a) are an artifact of the numerical code, and a smooth
longitudinal dependence can be obtained by increasing the space-time resolution along
with the number of macro-particles. Figures 4.13(e) and 4.13(f) show the approximate
analytical solutions for the transverse component of the electric field [Eq. (4.49)], and the
longitudinal component of the magnetic field [Eq. (4.50)], respectively. Finally, note that
the magnitude of the transverse electric field perturbation is significantly increased by an
increase in the applied magnetic field [compare Figs. 4.13(a) and 4.13(c)]. This strong

transverse electric field provides the enhanced ion beam focusing, as discussed above.
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Figure 4.13: (Color) Plots of the transverse self-electric field (left) and longitudinal self-
magnetic field (right) of an ion beam pulse with Z,=1, r,=0.55¢c/w,., 15=1.875¢/w., and
v»=0.05¢ propagating through a background plasma with np=1010 cm™ along a solenoidal
magnetic field. Frames (a) and (b) correspond to the results of 2D (x,z) LSP simulations
for B.,=25 G. Frames (c) and (d) correspond to the results of 2D (x,z) LSP simulations
for B.=300 G. Frames (e) and (f) correspond to the approximate analytical solutions
given by Eq. (4.49) and Eq. (4.50), respectively. Note the significantly different local
plasma responses between the cases where 0=0.78 [Frames (a) and (b)] and 0=9.35
[Frames (c¢) and (d)]. Dashed lines correspond to contours of constant beam density

corresponding to the effective beam radius 7.
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4.5.4 Slice Model for Enhanced Self-Focusing

In the previous section (Sec. 4.5.1) we have demonstrated the dominant influence of the

local fields for the case where @ >>1 and rbk; >>1. Also, as noted earlier (Sec. 4.2.2)

the axial dependence of the local fields is determined solely by the beam density axial

profile, that is (E"’",B"’") =n,(z—vt)®, ,(x), and it is therefore appealing to make use

of the reduced slice model (Sec. 4.1.2) for description of local fields. A simplified
calculation of the collective focusing force based on the slice model has been performed
in [Dorf et al., 2009¢c] for the case of cylindrical (r,z) geometry. It is instructive to
reproduce that analysis here, since it is more intuitive and allows one to obtain the
expression for the self-focusing force [Eq. (4.43)] and the conditions for its validity [Eq.
(4.44)] avoiding the tedious calculations required for the general analysis of the excited
electromagnetic field perturbations (Sec. 4.2).

For the case of cylindrical geometry the radial component of the Lorentz force is

specified by

F,=Ze(E,—f3,B,) (4.51)
Here, B, and E, are the azimuthal component of the self-magnetic field, and the radial
component of the self-electric field, respectively. As before (Sec. 4.2), here we assume
immobile plasma ions, cold plasma electrons, and investigate the axisymmetric steady-
state solution, where all quantities depend on ¢ and z solely through the combination ¢=z-

vpt. Assuming that the beam density is small compared to the electron density (n;<<n,),



4.5. Self-Focusing of an Intense lon Beam Pulse 197

we solve for the collisionless linear plasma response, in which the nonrelativistic plasma
electron dynamics is governed to leading order by

v, Ve _€[v «B_ J+eE | (4.52)
b 65 c e ext

e

Here, V. is the electron flow velocity and we have made use of 6/t =—v, 6/0& for the

steady-state electron response. Applying the curl operator to the both sides of Eq. (4.52)

and making use of Faraday law, we readily obtain

m,v, i(vae —LB]=EVX[Ve <B,]. (4.53)
o¢

m,c c

In cylindrical coordinates the ¢p-component of Eq. (4.53) yields

oV e e oV
m,yv E=—B V. —B v +myv <, 4.54
e’b al" c ext” ep c o"b e’ b Gé: ( )
and the radial component of Eq. (4.52) is
oV
my, =SBV, +¢E,. (4.55)
o0& ¢

Using Egs. (4.54) and (4.55) to determine £, —f,B,, we find that the radial component

of the Lorentz force in Eq. (2) is given by

z ov.
F.=Z,eE,~22%, B =Z,m,v, = (4.56)
C r

For the case where the beam current is fully neutralized, i.e., n,V,_=Z,n,v,, Eq. (4.56)

e ez

takes on the simple form
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any

F =Z'm v} 4.57)
r b e b

1
n, dr
Note that Eq. (4.57) is equivalent to Eq. (4.43) obtained in Sec. 4.5.1, where the the radial
coordinate, r, is replaced with transverse coordinate, x.

In order to find the conditions for the beam current neutralization, here we make
use of the slice model (Sec. 4.1.2) specified by Egs. (4.6)-(4.10). Taking the radial

derivative of Eq. (4.6) and making use of equations (4.7), (4.9) and (4.10) we obtain

[Dorf et al., 2009c]

. a)2
0 (1 0 (raAz D:47z 0., _47[€Zbe dn, N 1 04, V@),
or\ror\_ or

2 ) 2
c or c dr r>. or co.r

ge ce’ ge

o (@,
| . AZ],(4.58)

where the effective electron gyroradius 7, is defined by

ro =2 (1+ @2 0?,)" (4.59)

ge a)_ce
It now follows for the case where the beam radius is large compared to the effective
electron gyroradius
Ty 22 Tges (4.60)
that the left-hand side of Eq. (4.58) is small compared to the term rg‘f (GAZ / 6r) on the
right-hand side, and therefore the beam current is neutralized. Note that the condition in
Eq. (4.60) is consistent with the second condition in Eq. (4.44), i.e., r, >> k q;l , obtained in

the generalized analysis (Sec. 4.5.1). The first condition in Eq. (4.44), i.e., a >>1, is

required however to validate the use of the slice approximation.
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Figure 4.14: (Color) Radial dependence of the normalized focusing force at the beam
center. The results of the numerical 2D (r,z) LSP simulations correspond to By=300 G
and w.o/ppwp.=18.7 (blue curve), and w.~0 (green curve). The analytical results in Eq.
(4.57), are shown by the pink curve. The beam-plasma parameters correspond to Z,=1,
15=0.55¢/pe, 15=37.5/wpe, $=0.05, and np=1010 cm. The black curve corresponds to

the radial beam density profile.

The analytical analysis for the case of a cylindrical ion beam has been compared
with the results of the numerical simulations performed using the 2D (r,z) cylindrical
version of the LSP code [Dorf et al., 2009c]. As an illustrative example, we consider a
Gaussian ion beam pulse with density profile n, =0.14n,, expl— r / rl—(z—wt)’ / [ sz with
effective beam radius, 7,=0.55¢/@,., and beam pulse half-length, /,=1.875¢/w,. (beam
pulse duration t,=37.5/w,.), propagating with velocity v,=0.05¢ through a background
plasma with density np=1010 cm™. Figure 4.14 shows the fotal normalized radial self-

focusing force (i.e., the sum of the electric and magnetic components of the Lorentz
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force), F, /Zbe, and the units of electric field, V/cm, are chosen for practical

representation of its numerical value. It is readily seen from Fig. 4.14 that the results of
the numerical simulations (blue dots) are found to be in good agreement with the
analytical predictions given in Eq. (4.57) (pink curve) for the case where B.=300 G,
corresponding to @ =9.35. The green curve in Fig. 4.14 corresponds to the results of the
numerical simulations in the limit B.x=0 G. A significant increase in the self-focusing
force in the presence of a weak magnetic field (B.x=300 G) is evident. Similarly to the
case of Cartesian (x,z) geometry considered in Sec. 4.5.3, the ratio of the collective self-

focusing force in the presence of an applied magnetic field [Eq. (4.57)] to the self-
pinching force, Fy, in the limit B,,,~0 case, can be estimated as F. / F, ~ (c/ HO,, )2 >>1
for the case of a cylindrical beam with 7, << c/ w,, [Dorfet al., 2009c¢].

We emphasize again that the nature of the self-focusing effect is different for the
cases where the external magnetic field is zero or not. In the absence of an applied
magnetic field, the self-focusing force is due to the self-magnetic field of the beam pulse.
In contrast, if an external solenoidal magnetic field is applied, the beam current becomes
well-neutralized and the self-magnetic field is significantly suppressed, provided the
conditions in Eq. (4.44) are satisfied. Nevertheless, the total self-focusing force is
increased for the case where r,<c/wp.. Since the magnetic component of the Lorentz force
is suppressed, the main focusing contribution comes from the strong radial electric field.

Figure 4.15(a) illustrates the radial component of the self-electric field generated by an
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Figure 4.15: (Color) Plots of the radial self-electric field corresponding to (a) By=300 G
(wce/Prwp.=18.7) and (b) By=25 G (wce/Prwp.=1.56). Other parameters are the same as in
Fig. 4.14. Zero value of the axial coordinate corresponds to the beam center. Dashed
lines correspond to the contour of constant beam density corresponding to the effective

beam radius. Results are obtained with the 2D (r,z) cylindrical version of the LSP code.

ion beam pulse propagating through a magnetized background plasma [Dorf et al.,
2009c]. The system parameters assumed in this simulation are the same as for Fig. 4.14,
and the 2D cylindrical version of the LSP code is used. The results of the numerical
simulations show that the contribution of the electric component to the total Lorentz force
(Fig. 4.14) constitutes more than 99%.

Finally, figure 4.15(b) illustrates the radial component of the self-electric field
obtained in the numerical (7,z) simulations for the case where a=0.78 corresponding to
Bexi=25 G [Dorf et al., 2009c]. Consistent with the analysis in Sec. 4.5.3, the self-electric
field is changing from defocusing to focusing with an increase of the applied magnetic

field above the threshold value [compare Figs. 4.15(a) and 4.15(b)].
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4.5.5 Electrostatic Model for Enhanced Self-Focusing

In the previous sections the electromagnetic effects have been taking into account for
describing the dynamics of background plasma electrons, and the self-focusing force
calculations. It is however interesting to note that the self-focusing force specified by Eq.
(4.57) can be obtained within an electrostatic model provided the condition in Eq. (4.60)
is satisfied. The electrostatic approximation is often used in numerical codes for
simulations of a heavy ion driver (e.g., the electrostatic version of the WARP code), and
therefore this result can be of particular practical importance.

As in previous sections, here we consider immobile plasma ions, cold background

plasma electrons, and assume linear electron response, provided n, <<n,. The

axisymmetric steady-state solution where all quantities depends solely on the

combination £ =z —v,t is described in the electrostatic approximation by the cold-fluid

equations for electrons

—vbié‘ne—i-n liVer-i-n iVez =0 (4.61)
o0& Pror P o&
oV
- mevb -2 = EI/erBext (462)
o, ¢
V
—m,v, Vo _ 00 ¢ wBeu (4.63)
o¢ o ¢
-m,v, e = ea—(p (4.64)
o0& Oz

and Poisson’s equation for the electrostatic field, E=-V¢
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2
O pell (,,iq,j = —4me(Z,n, —n,) (4.65)

Here, on, =n, —n,, where n, is the unperturbed plasma density away form the beam,
and we have made use of 9/0t = —v, 9/0& and 0/0z = 6/0& for the steady-state electron

response. Finally, note that in the linear approximation, the magnetic V, x B force

corresponding to the magnetic field perturbations is of the second order, and therefore
does not appear in Egs. (4.62)-(4.63).

From Eqgs. (4.62)-(4.63) it follows that

0’ o e
—my, —V, =e—p—-—V,B,,. 4.66
Cl)ce e’ b aé:z ep 81’(0 c ep " ext ( )
Assuming that the ion beam pulse is sufficiently long with /, >>v, /@ , we readily
obtain
1 0
= - —0, 4.67
“= "B Pt (4.67)
and
cv, 0 0
vV, =——2t———0¢p. 4.68
“  w,B,, 0z 0r 4 (4.68)
Combining Egs. (4.68), (4.64) and (4.61) yields
n n,e
Dy e Of v 00 ) M€ Oy (4.69)
o0& r or\ w,B,, 0&or m,v, 0&

Making use of Poisson’s equation (4.65) and assuming 6°/0&? ~1/lb2 <, v, we

obtain
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o, 1o o w?,
(1"}-&)—2 ;5[V§¢J+ vi 0] =—47Z'Zbenb . (470)
b

ce

It now follows from Eq. (4.70) for the case where  >>r,, = (v, /@, )(1 + ., o, )1/2 that
_ 2 Ny
ep=-2Z,m,v, —, (4.71)
n
p
which is consistent with the results obtained in the previous sections [e.g. Eq. (4.49)].
It should be noted, however, that the analysis presented in this section only

demonstrates that in the limit » >>r,, the electrostatic model predicts the same electric
field as that obtained in the generalized analysis for the case where & >>1 and r>>r,,

(Sec. 4.5.3). Additional analysis has to be performed in order to determine the regime of
validity of the electrostatic approximation. Recall that for the case where <1 the return
electron current is driven primarily by the inductive electric field (Sec. 4.1.1); and for the
case where « =1 large-amplitude electromagnetic wave fields can be excited (Sec. 4.3).
These effects are not described by the electrostatic model. We emphasize here that
electrostatic numerical codes are often used for simulations of an ion driver, and it is
therefore of particular practical importance to identify the conditions where the
electrostatic modeling can adequately describe the ion beam dynamics inside the

neutralized drift section. This should be a subject of future studies.
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4.6 Summary and Discussion

In the present chapter, the electromagnetic field perturbation excited by a long ion beam
pulse propagating through a neutralizing background plasma along a moderately strong

solenoidal magnetic field satisfying w,., >28,®,, was studied analytically, and by means

of numerical simulations using the electromagnetic particle-in-cell code LSP. It was
demonstrated that the total electromagnetic field perturbation excited by an ion beam
pulse with a smooth radial density profile can be conveniently represented as the sum of a
local-field component, rapidly decaying to zero outside the beam pulse, and a wave-field
component that can extend far outside the beam. The wave field is represented by a long-
wavelength electromagnetic component with |k|=k.n<w,./c, and a short-wavelength
quasi-electrostatic component with |k |=k,>w,./c. Note that the longitudinal component
of the electromagnetic wave group velocity is greater than the beam velocity. Therefore,
the long-wavelength electromagnetic perturbations excited by the tail of the beam pulse
can propagate along the beam and influence the dynamics of the beam head. The system
reaches a quasi-steady-state when the wave packet of the initial transient excitation
propagates sufficiently far outside the beam. It was found, for a sufficiently long ion
beam pulse, that the time-scale for achieving a quasi-steady-state can be of order the
beam pulse duration, and is therefore much longer than the inverse plasma frequency.
This result is significantly different from the case B..~0, where the characteristic time to

reach a steady-state is of the order of the plasma period.
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It was also shown that the wave-field excitations propagate obliquely to the beam
with a characteristic wavelength of k.~1//,. Therefore, their contributions to the transverse
component of the Lorentz force can have opposite signs for the beam head and the beam
tail. In contrast, the longitudinal profile of the local-field amplitude is the same as the
longitudinal beam density profile. Therefore, the transverse local fields have the same
sign over the entire length of the ion beam pulse. It is therefore important, in practical
applications involving control over the beam aperture, to identify the parameter regimes
where the local component of the electromagnetic field perturbation has the dominant
influence on the beam transverse dynamics.

It was demonstrated, in the regime where @, >>2f,0, and rk, >>1, that the

local-field component primarily determines the transverse dynamics of the beam
particles; and the wave fields produce a negligible transverse force. Moreover, a positive
charge of the ion beam pulse becomes over-compensated by the plasma electrons, and the
associated strong transverse-focusing self-electric field has the dominant influence on the
beam ions, compared with the magnetic field, provided kq_; <<r, <<k, . It was also
shown, for the case where the beam radius is small compared to the electron skin depth,
that the self-focusing force is significantly enhanced compared to the self-focusing force
acting on the beam particles in the absence of an applied magnetic field. In addition, the
local diamagnetic plasma response is observed in the numerical simulations, and is also

predicted analytically for @, >>28,®,,. Note that these results differ significantly from

the case w,, <2p,0,,, where the transverse electric field is defocusing, and the plasma
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response is paramagnetic. The qualitatively different local plasma responses are separated

corresponding to the resonant excitation of

by the critical field case where @, =2f,0,,,
large-amplitude wave-field perturbations. In the present analysis, the asymptotic time-
dependent solution was obtained for this critical case, and the saturation intensity of the
wave-field perturbations, determined from the nonlinear response of the background
plasma electrons, was estimated. In addition, a plausible application of the resonant wave
excitation effect for diagnostic purposes was discussed.

The effects of an applied solenoidal magnetic field on neutralized ion beam
transport described in this chapter has been assessed for the presently operating
Neutralized Drift Compression Experiment NDCX-I and its future upgrade NDCX-II
(Chapter 1). The design of the NDCX facilities first involves the neutralized drift

compression of the ion beam pulse, and then additional transverse focusing on the target

plane by a strong (several Tesla) final-focus solenoid. The critical magnetic field

w;, =2p,w, corresponds to a relatively weak magnetic field of the order of 10 G (for

NDCX-I) and 100 G (for NDCX-II). The magnetic fringe fields of the final-focus
solenoid larger than this value can penetrate deep into the drift section thus providing
conditions for enhanced beam self-focusing. It has been demonstrated for the parameters
characteristic of NDCX-II experiment that the integrated effect of the beam self-focusing
inside the drift section filled with the background plasma can be comparable to the

focusing effect of the strong magnetic lens. For the parameters characteristic of the
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NDCX-I experiment, the effects of the self-focusing are much smaller than the focusing

effect of the strong magnetic lens.



Chapter 5

Collective Focusing of Intense Ion Beam

Pulses

In the previous Chapter it was shown that even a weak solenoidal magnetic field of order
100 G can have a significant influence on the dynamics of an intense ion beam pulse
propagating through a neutralizing background plasma. In particular, recent analytical
calculations and numerical simulations demonstrated enhanced ion beam self-focusing
induced by the collective dynamics of the plasma electrons [Dorf et al., 2009c].
However, it should also be pointed out that the collective effects of a neutralizing
electron background in a weak solenoidal magnetic field were also utilized in a magnetic
focusing scheme proposed by S. Robertson a few decades ago [Robertson, 1982]. In this
Chapter we discuss this focusing scheme, significant extension of the theoretical model,
and the possibility of its implementation for final focusing of intense ion beams in the

Neutralizing Drift Compression Experiment-1 (NDCX-I)

209
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5.1 Introduction

In the collective focusing scheme proposed by S. Robertson (hereafter referred to as a
collective focusing lens), a weak magnetic lens provides strong focusing of an intense ion
beam pulse carrying an equal amount of neutralizing electron background [Robertson,
1982]. For instance, a solenoidal magnetic field of several hundred gauss can focus an
intense neutralized ion beam within a short distance of several centimeters. Note that for
a single-species nonneutral ion beam, a several Tesla magnetic field would be required to
achieve the same focal length. The enhanced focusing in a collective focusing lens is
provided by a strong self-electric field, which is produced by the collective dynamics of
the neutralizing electrons.

A detailed analysis of the collective focusing lens is performed in the following
sections. However, the main features of the collective focusing lens can be outlined as
follows. First, let us review principles of operation of a conventional magnetic lens for
the case of a single-species charged particle beam. Moving from a region of a zero
magnetic field into the magnetic lens, a beam particle acquires the azimuthal angular
momentum as the magnetic flux through its orbit increases. As a result, a radial focusing
V' x B force is acting on the beam particles inside the lens. For the case where the ion
beam drags a neutralizing co-moving electron background into the magnetic lens, the
neutralizing electrons entering the lens experience much stronger magnetic focusing than
the beam ions and tend to build up a negative charge around the lens axis. As a result, an

electrostatic ambipolar electric field develops that significantly increases the total
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magnetic lens
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Figure 5.1: (Color) Schematic illustration of collective focusing lens operation.
Traversing the fall-off region of the solenoidal magnetic field, the co-moving electrons
acquire a fast rotation around the lens axis due to conservation of the canonical angular
momentum. As a results, a strong radial electric force is produced in order to balance the
V' x B magnetic force. This electric force has a dominant influence on the radial

dynamics of the beam ions.

focusing force acting on the beam ions [Fig. 5.1]. Note that the neutralizing electrons
should enter the lens from a region of a zero magnetic field in order to acquire the
azimuthal angular momentum necessary for the radial V" x B magnetic focusing to occur
inside the lens. Therefore, the collective focusing will only occur if there is no
background plasma or secondary electrons inside the lens. Otherwise, the rotating
electrons co-moving with the ion beam will be rapidly replaced by the “non-rotating”
background plasma electrons inside the lens and the enhanced collective focusing will be
suppressed [Kraft et al., 1987]. However, it should be noted that in this case the
collective self-focusing associated with ion beam propagation through a background

plasma discussed in Chapter 4 can occur instead. Detailed comparison of the collective
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focusing of a neutralized beam inside a magnetic lens and the enhanced self-focusing of
an ion beam propagating through a background plasma along a solenoidal magnetic field
is described below in this chapter.

Many applications of ion-beam-driven high energy density physics including
heavy ion fusion and high-energy ion beam production from intense laser-matter
interaction require ion beam focusing and involve the presence of a neutralizing electron
background. It is therefore of particular practical importance to investigate the feasibility
of using a collective focusing lens for these applications. This would allow for the use of
weak (several hundred Gauss) magnetic fields instead of several Tesla conventional
magnetic lens, thus significantly facilitating the technical realization of ion beam
focusing.

For instance, in a current design of a typical heavy ion driver a strong (several
Tesla) magnetic solenoid is used to provide final transverse focusing of an ion beam as it
leaves the drift section filled with a neutralizing background plasma [Yu et al., 2005].
Due to the strong space-charge self-fields of an intense ion beam pulse, a neutralizing
plasma is also required inside the magnetic solenoid. Note that apart from the challenge
of using a several Tesla magnetic solenoid, filling it with a background plasma provides
additional technical challenges [Roy et al., 2009]. However, the use of the collective
focusing concept can significantly simplify the technical realization of the beam final
focus. Indeed, a neutralizing electron background can be dragged by the ion beam from
the plasma that fills the magnetic-field-free drift section. The required magnetic field of

the final focus solenoid can be lowered to the range of several hundred Gauss. Finally, a
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neutralizing plasma background is not required (should not be present) inside the final
focus solenoid. As a practical example, here we present results of advanced numerical
simulations demonstrating the feasibility of tight collective focusing of intense ion beams
for the Neutralizing Drift Compression Experiment-I (NDCX-I) [Seidl et al., 2009].

A collective focusing lens can also be utilized in laser generation of a high-energy
ion beam, where the energetic ions are produced and accelerated by the interaction of an
intense laser beam pulse with a thin foil [Snavely ef al., 2000]. In order to decrease the
divergence of the produced ion beam, a strong (several Tesla) focusing solenoidal
magnetic field is used in some experiments [Harres et al., 2010]. However, along with the
ions, a free-moving electron background is also produced, and therefore it is appealing to
utilize the collective focusing concept for these applications as well.

The original concept of a collective focusing lens involved two conditions for the
enhanced focusing to occur. First, a neutralized ion beam should be sufficiently dense,

®,, >> o, , to maintain quasi-neutrality inside the magnetic solenoid [Robertson, 1982].

ce?

Here, @, and ., are the electron plasma frequency and the electron cyclotron

frequency, respectively. Second, perturbations in the applied solenoidal magnetic field
due to the neutralized beam self-fields should be small. This condition can be expressed

as r,<<c/®,, , or equivalently, /,[kA]<<4.258, [Robertson, 1982; Robertson, 1983],

pe
where 7, is the beam radius, /, is the beam current, and p}, is the directed beam velocity

normalized to the speed of light ¢. However, in many practical applications to high

energy density physics involving ion beam transport, the beam parameters may not be
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consistent with the above conditions. In particular, laser-produced high energy short ion
beam pulses are very dense, with the beam radius typically larger than the collisionless

electron skin-depth, i.e., rb>c/a)pe [Snavely et al., 2000; Harres et al., 2010]. Also,

propagation of a neutralized (by co-moving electrons) ion beam along a strong solenoidal

magnetic field with @, >®,, can occur both in a heavy ion driver [Seidl ef al., 2009] and

in the laser production of collimated ion beams [Harres et al., 2010] when a conventional
several Tesla magnetic lens is used for ion beam focusing. Therefore, the extension of

previous theoretical models [Robertson, 1982] to the cases where @, >®,, or 1, >c/w,

is of particular practical importance. In the present work, we investigate the operation of
a collective focusing lens in these regimes, making use of advanced numerical
simulations and reduced analytical models.

The present chapter is organized as follows. The original analysis of a collective
focusing lens is summarized in Sec. 5.2. Section 5.3 presents results of advanced
numerical simulations demonstrating the feasibility of tight collective focusing of intense
ion beams for the Neutralizing Drift Compression Experiment-I (NDCX-I). The effects of

the nonneutral collective focusing in a strong magnetic field, ie., ®,>®,,, and its

influence on the ion beam dynamics in the NCDX-I are investigated in Sec. 5.4. Finally,
an analysis of collective focusing lens operation in the regime where the beam radius is
1s

comparable to or larger than the collisionless electron skin depth, i.e., 7, >c/ @,

performed in Sec. 5.5.
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5.2 A Collective Focusing Lens

In this section we summarize the concept of a collective focusing lens proposed and
experimentally verified by S. Robertson [Robertson, 1982; Krafft et al., 1985; Krafft,
1986; Kraft et al., 1987]. Consider a magnetic lens (magnetic solenoid) where a
solenoidal magnetic field is nearly uniform inside the lens, B=B,z, and decreases
rapidly to zero outside the lens. Note that the applied solenoidal magnetic field has a non-
zero radial component, B,, in the field fall-off region. When an ion beam carrying an
equal amount of neutralizing electrons enters the lens along the axis of the solenodial
field, both the electron and ion species acquire an angular momentum (Fig. 5.1). This

occurs due to the V_xB, force, but can be conveniently calculated from the conservation
of the canonical angular momentum, P, =m,r>d6, [dt—q,rd,. Here, (r,0)
corresponds to the cylindrical polar coordinates, 4, is the azimuthal component of the
magnetic field vector potential, Vx A =B, m_ and ¢, are the species mass and charge,

respectively, and the subscript o =e,i denotes electrons or ions, respectively. Provided a
neutralized beam enters the lens from a region of a zero magnetic field and does not
significantly perturb the applied magnetic field of the lens, it follows that inside the lens
w,=d0, /dt=Q,/2, where Q_ =g, B,/m,c, and initially non-rotating electrons and
ions are assumed. The evolution of the particles radial coordinate inside the lens is then

governed by
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2
d—zra L dep g (5.1)
dt 4 m

a

Note that the second term on the left-hand-side of Eq. (5.1) corresponds to the difference

between the centrifugal force, m Q r/4, and the V, x B magnetic force, —m Q> r/2.

In the original derivation for the case of a quasi-neutral ion beam, the identical

radial motion of the electrons and ions was assumed, i.e., r,(z,t)=r,(z,t) [S. Robertson,

1982]. From Eq. (5.1) it therefore follows for the case of a singly-charged ion beam that

d’ 1
d—zra"f-zl’aQeQi =0, (52)
!

and for the electric field we obtain eE, =—(m,—m,)Q.Q_r/4. Neglecting the electron

mass, we readily obtain that the strong ambipolar electric field that provides the enhanced

collective focusing is given by

E =—mQ>—. (5.3)
4e

Note that the electric field in Eq. (5.3) provides the balance between the magnetic V,xB
force, the centrifugal force, and the ambipolar electrostatic force acting on neutralizing
electrons inside the lens. Furthermore, as pointed out in [D. Boercker et al., 1991], the
same results for the electric field [Eq. (5.3)] was obtained by R. Davidson in [Davidson,
1976] where the possible equilibrium states for a plasma in a constant axial magnetic
field were considered. Finally, a comprehensive analysis of a collective focusing lens

including the thermal effects of the co-moving electrons can be found in [Robertson,

1986; Krafft, 1986].
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In the thin lens limit, where the radial displacement of beam particles within a
lens is small, and the neutralized beam drifts to a focus outside the lens, the focal length

of the collective focusing lens is given by [Robertson, 1982]
LY =—v,r, [Av, =4v; [(Q,Q,L,). (5.4
Here, v, is the axial beam velocity, L, is the length of the magnetic solenoid, r, is the

beam radius, and Av, is the radial velocity acquired within the lens. Note that the focal
length of a “conventional” magnetic lens is given in the thin-lens approximation for a
single-species ion beam by
Lr=4v? /(Q2L,). (5.5)
Equation (5.5) follows from Eq. (5.1), assuming that £ =0, provided the beam space-
charge is weak or well-neutralized by a background plasma. Comparing Egs. (5.4) and
(5.5) it follows that for a given focal length, the magnetic field required for a neutralized
beam is smaller by a factor of W . Note that the collective focusing effect was
originally observed by S Robertson in [Robertson, 1982] in the thin-lens limit, and the
following work by R. Kraft [Kraft et al., 1987] investigated collective focusing for the
case where the focal point lies within a focusing solenoid.
The quasi-neutrality condition, i.e., n,—n, <<n,, that has been assumed in the

above analysis can be expressed in terms of practical system parameters by making use of

Poisson’s equation and Eq. (5.3). Here, n, and n; are the electron and ion number



5.2. A Collective Focusing Lens 218

densities, respectively. After some straightforward algebra it follows that the quasi-

neutIallt, 1S IllallltalrlEd pIO ‘lded |I"OI: EItSOIl7 1£ 82'
Q . .

It has been also assumed that the axial magnetic field perturbations due to the beam are
small. The azimuthal current density is primarily attributed to the electron rotation and is

given inside the lens by j, =n,erQ, /2. Making use of Ampere’s law, it is

straightforward to show that the perturbations are small provided

1 c
—7, <<—, 5.7
7 (5.7)

@,

i.e., is the beam radius is smaller than the collisionless electron skin depth [Robertson,
1982].

In conclusion, it is of particular interest to compare the focusing effect of a
collective focusing lens to the enhanced self-focusing of an ion beam propagating
through a background neutralizing plasma along a solenoidal magnetic field (Secs. 4.5.2
and 4.5.4). For both cases, the enhanced focusing is provided by a strong radial electric
field, which is produced to balance the magnetic V'xB force acting on the rotating
neutralizing electrons. Note, however, that for the case of a collective focusing lens, the
rotation of the co-moving electron beam is acquired due to variations of the applied
solenoidal magnetic field from zero outside the lens to the maximum value inside the
lens. In contrast, for the case of plasma-induced self-focusing, the background plasma

electrons are initially immersed in an applied magnetic field, and variations of the
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magnetic flux that determines the electron rotation are associated with a small radial
displacement of the electron orbits in the presence of the ion beam self-fields. For this
reason the plasma-induced enhanced self-focusing can be observed even for the case of a
uniform applied magnetic field. In contrast, in order for the enhanced focusing to occur
inside a collective focusing lens, the neutralized beam has to traverse the fall-off region
of a solenoidal field. Moreover, here we emphasize again that the value of the plasma-
induced self-focusing force [Eq. (4.43)] does not depend on the local value of the applied
magnetic field. The value of the applied magnetic field however determines the
conditions for the enhanced self-focusing to occur [see Eq. (4.44)].

The ratio of the focusing force acting on beam ions inside a collective focusing
lens, F.u, to the plasma-induced self-focusing force in the presence of an applied

magnetic field, Fy, can be estimated as

212
Fcull Nlrb Qe

st' 4 VZ

(5.8)

In obtaining the estimate in Eq. (5.8), it has been assumed that 6/0r~1/r, and Z,n, ~n,

in the expression for the plasma-induced self-focusing force [Eq. (4.43)]. Furthermore,
the force in Eq. (5.2) governing the neutralized beam dynamics inside the collective
focusing lens has been generalized to the case of an arbitrary charge-state of the beam
ions. It is interesting to note that in the limit where the beam radius is of order the

effective gyroradius given by r,, =v,/Q, for Q, <<w,,, the effects become of the same
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order, i.e., F.u~Fy. Note, however, that the effective gyroradius corresponds to the
minimum threshold value of the beam radius in the condition in Eq. (4.44).

Finally, we comment on the significant suppression of the total focusing effect
that has been observed in the experiments in [Kraft et al., 1987] when a neutralizing
plasma was produced inside a collective focusing lens. Although the enhanced plasma-
induced self-focusing could still occur inside the magnetic lens with the presence of the
background plasma, its influence on the ion beam dynamics would be much less than the
original effects of the collective focusing lens. Indeed, a simple calculation shows that for
the parameters of the experiments in [Kraft et al., 1987] the ratio in Eq. (5.8) is much less

than unity.

5.3 Collective Focusing Lens for the NDCX-I Final

Focus

As noted earlier, it is appealing to make use of a collective focusing lens in a design of a
heavy ion driver final focus section. As a practical illustrative example, in this section we
consider the Neutralized Drift Compression Experiment-I (NDCX-I), which is a scaled
heavy-ion driver built in order to determine the physical and technological limits of
neutralized ion beam compression (Chapter 1). Figure 5.2 shows a schematic of the
NDCX-I final focus section. Leaving the long neutralized drift section, the radially and

longitudinally convergent ion beam pulse passes through a strong (8 Tesla) final focusing
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Figure 5.2: (Color) Schematic of the NDCX-I final focus section showing regions filled
with neutralizing plasma. The neutralizing plasma inside the drift section is created by a
ferroelectric plasma source (FEPS). The final focus solenoid is filled with a background

plasma injected by four cathodic-arc plasma sources (only two are shown in the figure).

solenoid (FFS), which provides additional transverse focusing. The target plane is located
downstream the final focus solenoid, and is not shown in the figure. In order to
compensate for the strong space-charge forces of the compressed ion beam pulse, the
final focus solenoid has to be filled with a neutralizing plasma. In the current design, four
cathodic-arc plasma sources (CAPS) are used to inject plasma into the final focus
solenoid. The sources are placed out of the line-of-sight of the beamline in order to avoid
interaction with the ion beam and angled toward the axis of the final focus solenoid (Fig.

5.2). Here, we emphasize again that filling the strong magnetic solenoid with a
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neutralizing plasma is itself a challenging problem [Roy et al., 2009], and providing
improved neutralizing plasma background inside the final focus solenoid is still one of
the critical problems in NDCX-I optimization.

The final beam focusing can be significantly facilitated by using the concept of a
collective focusing lens, which requires minimum modifications to the current NDCX-I
configuration. Indeed, in order to test the collective focusing, one needs to lower the
final focus solenoid magnetic field from 8 Tesla to several hundred Gauss and turn off
the cathodic-arc plasma sources. It is then expected that the beam will drag the required
neutralizing co-moving electrons from the background plasma that fills the drift section
[Humphries, 1978; Humphries et al., 1981; Kraft and Kusse, 1987; Callahan, 1996;
Welch et al., 2002; Sharp et al., 2004] and will experience strong collective focusing
inside the magnetic solenoid. In this section we present results of advanced numerical
simulations demonstrating the feasibility of tight collective focusing of an intense ion
beam for NDCX-I. In Sec. 5.3.1 an idealized model not taking into account the effects of
the beam simultaneous convergence is considered, and the physical limits of the
collective focusing are discussed. In Sec. 5.3.2 a practical design for NDCX-I collective

final focus is proposed.

5.3.1 Idealized Model: Numerical Studies

In this section we present results of the particle-in-cell numerical simulations of an

idealized model for the NDCX-I final beam focus (Fig. 5.3). The simulations are
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Figure 5.3: An idealized model of the NDCX-I final beam focus. (a) Schematic of the
numerical LSP simulation. (b) The longitudinal profile of the applied axial magnetic

field of the 700 G final focus solenoid.
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performed in cylindrical (r,z) geometry with the exact implicit electromagnetic version of
the LSP code [LSP, 1999]. In the idealized model, the Potassium (K") ion beam is
injected through the plane z=0 located inside the drift section near its downstream end.
To model the short downstream part of the neutralizing drift section, a plasma layer is
placed between z=-5 cm and z=15 cm. The plasma density is assumed to be uniform with
np=1011 cm'3, and the electron and ion temperatures are taken to be 7,)=7;,=3 eV. The
final focus solenoid (FFS) with radius R=2 cm and length L~=10 cm is centered at z,=25
cm, and the following initial beam parameters are considered for this idealized model: the
injected beam density is npo=10'" cm™ ; the directed energy of beam ions is £,=320 keV,
which corresponds to 3, =v, /¢~0.0042 ; the radial beam density profile is flat-top with
the outer beam radius r,;=1 cm; the duration of ion beam injection is 7, =40 ns, which
corresponds to the beam length /,=5 cm; and the transverse and longitudinal beam
temperatures are assumed to be 7;=0.2 eV. In the simulations, the injected ion beam
pulse is allowed to drag the electrons when leaving the plasma layer. Therefore, in order
to maintain charge-neutrality of the system, electron emission is established at the radial
plasma boundary, R,=3.8 cm, which coincides with the conducting radial boundary of the

simulation domain. The fine radial grid spacing with Ar, =0.01cm is used in the range of
r€[0,]]cm, and a coarse grid with Ar, =0.2 cm is used for the remainder of the radial

domain extension. The grid spacing in z-direction is Az=0.2 cm, and the time step is

At=0.016ns.
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Note that the present simulations do not resolve the plasma oscillation

wavelength, 4,=v, /a)p , which is an important parameter in the physics of beam

neutralization by a background plasma [Humphries, 1978; Kaganovich et al., 2001].
However, consistent with the more detailed numerical simulations in [Humphries et al.,
1981] and experimental observations in [Kraft and Kusse, 1987], in our simulations the
space-charge and current of the ion beam is well-neutralized as it leaves the plasma layer,
which is sufficient for present purposes. Furthermore, due to some uncertainty in the
background plasma parameters in the NDCX-I, e.g., the electron temperature, and the
plasma fall-off density profile, a computationally intensive improvement of the
neutralization analysis would not necessarily provide much better insight into the design
of the NDCX-I collective final focus section.

Figure 5.4 presents the results of the numerical simulations for the case where the
magnetic field inside the final focus solenoid is By=700 G. The ion beam comes to a

tight focus at z,~30cm, with ~700 times increase in the number density,

n,~7x10" cm” [Fig. 5.4(a)]. The radial electric field inside the lens is shown in Fig.

5.4(b), and agrees well with the analytical predictions in Eq. (5.3) for »<0.4 cm. Note
that for the parameters of this illustrative example, most of the beam compression occurs
within the lens; the focal plane is located slightly downstream the end of the solenoid.
Accordingly, the beam radius corresponding to the plot in Fig. 5.4(b) is about a half of its

initial value.
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Figure 5.4: (Color) Results of the numerical simulations performed with the LSP code
for the idealized model of the NDCX-I final beam focus. (a) Plot of the ion beam density
at the focal plane corresponding to /=250 ns. (b) Radial dependence of the radial electric
field inside the lens corresponding to z=25 cm and =220 ns (blue dots). The analytical

results in Eq. (5.3) are shown by the pink solid line in Frame (b).

It is of particular practical importance to discuss the physical limits of the
collective focusing. Figure 5.5 shows the system parameters slightly upstream of the
focal plane, including the ion beam density [Fig. 5.5(a)], the electron density [Fig.
5.5(b)], and the radial component of the electric field [Fig. 5.5(c)]. It is readily seen that
near the focal plane, the total space-charge density is positive, and the radial electric field
is defocusing. This means that the compression of the co-moving electron beam comes to
stagnation, whereas the ion beam still undergoes compression. This “final” ion beam
compression is inertial, i.e., it occurs against the ion beam space-charge forces due to the
ion beam radial convergence generated by the collective focusing. The plausible

explanation of the electron transverse stagnation can be given by means of thermal
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Figure 5.5: (Color) Effects of electron heating on collective beam focusing. Shown are
plots of (a) ion beam density, (b) electron density, (c) radial electric field, and (d)
electron phase-space (V,,/c,z). The results are obtained at time =240 ns. The horizontal
dashed lines in Frame (d) correspond to a characteristic initial electron thermal velocity
specified by m . Results are obtained using the LSP code for the idealized model
of the NDCX-I final beam focus.
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effects [Robertson, 1986]. Indeed, neglecting small electron inertia, the radial force

balance equation for the electron fluid includes the focusing magnetic force, —m, Q> r/2,
the defocusing centrifugal force m,Q>r/4, the defocusing electric force, eE,, and the

thermal pressure term, Vp,/n,. As the effective transverse electron temperature

increases during compression, the electric field required to balance the magnetic electron
focusing decreases. Finally, when the magnetic force is completely balanced by the
thermal pressure, the electron compression comes to stagnation. A small additional
compression of the co-moving electron beam, however, is still possible due to the
positive radial electric field generated during the “inertial” ion beam compression. The

parameters of the electron beam at the stagnation point can be estimated from

2

T, ~m,Q> % . (5.9)

Here, 7, and T, are the electron beam radius and the effective transverse temperature. At
the time corresponding to the plots in Fig. 5.5, the electron beam radius is 7,~0.1 cm, and

it follows from Eq. (5.9) that 7.~215 eV. The corresponding normalized value of the

effective radial thermal velocity, S, ~c™'\/T,/m, =0.02, is consistent with the results of

the numerical simulations shown in Fig. 5.5(d). It is interesting to note that the value of

the effective transverse temperature observed in the simulations is approximately

consistent with the adiabatic compression of the electron beam, where r’T, = const .

In the simulations presented here, the initial effective transverse temperature of

the co-moving neutralizing electrons can be attributed to the isotropic thermal
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distribution of the electrons inside the plasma layer. However, even for the case where
the background plasma electron are cold, it has been demonstrated both computationally
[Humphries et al., 1981] and in experiments [Kraft and Kusse, 1987] that the longitudinal
velocity distribution of the co-moving neutralizing electrons dragged from the
background plasma is bell-shaped with an approximate width of v, and a mean velocity
of v,. This longitudinal velocity can in turn provide the spreading in the transverse
electron velocity due to the coupling between the longitudinal and transverse electron
motion caused by finite transverse geometry effects and various collective effects.
Therefore, the electron-temperature-induced limit of the collective focusing scheme can
still occur even if a cold background plasma is used as a source of neutralizing electrons.

Note that the radial ion beam density profile shown in Fig. 5.5(a) is hollow. This
can be due to nonlinearities in radial profile of the focusing electric field near the axis
[Fig. 5.4(b)]. However, it is important to point out that the ion beam profile is bell-shaped
at the focus, as seen in Fig. 5.4(a). Furthermore, it has been observed in the numerical
simulations that the radial profile of the electric field becomes nearly linear, when the
magnetic solenoid is moved further downstream from the drift section in order to
decrease the value of the fringe magnetic fields inside the plasma layer (Sec. 5.4). It also
should be noted that nonlinear aberrations can be produced due to the thermal spreading
in the transverse velocity distribution of a co-moving electron beam [Krafft, 1986].

For the parameters of the illustrative example shown in Fig. 5.4, the focal plane

lies near the downstream end of the final focus solenoid (FFS). For practical purposes,
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Figure 5.6: (Color) Ion beam density at the focal plane for different values of the
magnetic solenoid strength, By. The plots correspond to (a) By=700 G, (b) By=700 G, and
(c) Bi=300 G. Results are obtained using the LSP code for the idealized model of the
NDCX-I final beam focus

however, it can be important to have a gap between the final focus solenoid and the target
plane (beam focal plane). Figure 5.6 illustrates the beam density at focus for different
values of the final focus solenoid magnetic strength. It is readily seen that the focal plane
can be moved downstream by lowering the magnetic strength of the solenoid. However,
the compressed beam density decreases with a decrease in the applied magnetic field. A
plausible explanation for this includes the following. First, electron stagnation can occur
earlier, in accordance with Eq. (5.9). Second, the “inertial” phase of the ion beam
compression is more pronounced for a stronger magnetic field, because a steeper
convergent angle is acquired during the collective compression inside the final focus

solenoid.
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5.3.2 Practical Design of the NDCX-I Final Focus

In the previous section an idealized model of the NDCX-I collective final focus section
was considered. The model did not take into account the effects of the beam’s
simultaneous, longitudinal and transverse, convergence. However, in the actual NDCX-I
configuration, the ion beam acquires a radial convergence angle and a head-to-tail
longitudinal velocity tilt before entering the neutralizing drift section (Chapter 1). The
beam distribution evolves inside the drift section, and it is of particular practical
importance to assess the feasibility of a tight collective final focus for the case of a more
realistic beam distribution at the exit of the drift section.

Figure 5.7 illustrate a schematic of the simulation configuration presented in this
section. The beam ions are injected through the upstream boundary of the simulation
domain at z;,;=0. The injected beam current is /=27 mA, the directed energy of K beam
ions is E,=300 keV, the radial beam density profile is flat-top, with outer beam radius

rp=1.6 cm; the duration of the ion beam injection is 7 » ~500 ns, and both the transverse

and longitudinal beam temperatures are 7,=0.094 eV. The initial radial convergence

corresponds to a ballistic focus at Len=80 cm, i.e., Av,/v,=r,/L., =0.02. After

injection, the beam propagates through the induction bunching module, where a time-
dependent voltage shown in Fig. 5.8 is applied in the tilt gap between z,;=8 cm and
z»p=11 cm. The beam then enters a long, L,/=231 cm, drift section filled with a
background neutralizing plasma. Most of the simultaneous compression occurs inside the

drift section. However, to provide the additional transverse collective focusing a short,
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Figure 5.7: Schematic of the numerical LSP simulation configuration for the NDCX-I

including the longitudinal velocity tilt and initial radial convergence of the ion beam.
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Figure 5.8: The tilt-gap voltage waveform used in the numerical simulations.
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L~=10 cm, final focus solenoid with radius R=2 cm is placed downstream of the beamline
after the drift section. It is centered at z;=276 cm, and the on-axis magnetic field inside
the solenoid is By=700 G. Leaving the drift section, the beam is allowed to drag the co-
moving electron background from the background plasma, and a tight collective final
focus is expected to be observed in the simulations.

The voltage ramp between the time instants #=130 ns and #=530 ns in Fig. 5.8

provides the longitudinal compression of only the 7, =400 ns portion of the entire ion

beam pulse; and the front part of the beam that propagates through the tilt gap during <t
corresponds to the longitudinally uncompressed beam prepulse. Here, the subscripts “A”
and “r’ denote the head and tail of the beam pulse, respectively. The head of the
compressing beam portion experiences a net decelerating electric force, and the tail
experiences a net accelerating force. Thus, this part of the ion beam acquires a head-to-
tail velocity tilt that causes the tail of the compressing beam portion to meet its head at
the longitudinal focal plane. Note that the voltage ramp between ¢, and ¢, assumed in the
simulations (Fig. 5.8) corresponds to the so-called idealized voltage waveform given by

[Welch et al., 2005; Sefkow, 2007]

_mb_cz 2 B ’
AV == [ﬁ’b (l—cﬂh(t—th)/ij ] (5.10)

Here, 3, =v,/c=0.004 is the normalized directed beam velocity upstream of the tilt gap,

B, =0.0037 is the normalized head-velocity of the compressing beam part, and L=273

cm corresponds to the drift length to the ideal longitudinal focal plane. It is
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straightforward to show for ballistic compression of a cold beam that different

longitudinal beam slices will come to the same focal plane at zjf.ic =z, +L, =284cm,

provided their velocity is determined according to m,v>,, (t)=2[m,v:—eAV,,(¢)] at the

tilt
tilt gap exit, 1.e. z=zg).

The ideal longitudinal compression is degraded by thermal effects, and the time-
dependent effects of the longitudinal beam dynamics associated with a finite length of the
tilt gap [Sefkow, 2007; Setkow and Davidson, 2007]. Furthermore, traversing the finite-
length tilt gap, the beam particles receive a time-dependent divergence angle [Sefkow,

2007; Sefkow et al., 2009]. Note that the steep initial convergence angle corresponding to

id

Leon=80 cm (instead of =z,

=284cm), 1s taken to partially compensate for this

divergence. However, due to the time-dependent nature of the effect, simultaneous
longitudinal and transverse beam compression is still degraded due to variations in the z-
location of the transverse focal plane for different beam slices [Sefkow et al., 2009,
Kaganovich et al., 2009]. The tilt gap is included in the simulations as a gap between two
long conducting cylinders with radii R,=3.8 cm aligned along the z-axis, which
corresponds to the induction bunching module configuration used in NDCX-I; and the

voltage difference AV,, () is applied to the cylinder surfaces. Therefore, the finite-size

tilt gap effects are adequately described by the present simulations. Note that among the
deleterious technological effects limiting simultaneous beam compression is a
discrepancy between the ideal voltage waveform in Eq. (5.10) and the waveform

generated by the induction bunching module in NDCX-I. This effect is considered in
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detail in [Setkow 2007; Kaganovich et al., 2009], and is outside the scope of the present
work.

It has been demonstrated that a background plasma with n,>n; can provide a high
degree of the beam charge and current neutralization [Kaganovich er al., 2010].
Furthermore, it can be shown that collective streaming processes do not have a significant
influence on ion beam dynamics due to the thermal effects of the background plasma
electrons. Therefore, it is appealing to use a fluid model for the background plasma,
instead of a full kinetic description to simulate the ion beam pulse shaping during its
simultaneous compression inside the long drift section. However, the kinetic effects of
the co-moving electrons are of particular importance for the collective focusing of the
beam pulse. Accordingly, the entire simulation domain is divided into two parts. The
simulation of the long upstream part, from z=0 to z;=251 cm, utilizes the conductivity
model for a background plasma, where a sufficiently high value of the conductivity is
chosen to provide complete beam neutralization. The downstream part, from z;=251 cm
to zend=301 cm, that includes a short downstream part of the drift section and the final
focus section, is simulated by making use of a fully kinetic model for the background
plasma electrons and ions. For this downstream simulation we take the plasma density to
be np=1011 cm™, the electron temperature 7,=3 eV, and the massive plasma ions are
assumed to be cold. As in the previous section, to maintain charge-neutrality of the
system, electron emission is established at the radial plasma boundary, R,=3.8 cm, which
coincides with the conducting radial boundary of the downstream simulation domain. The

beam ions are treated as a kinetic species throughout the entire simulation domain. We
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emphasize again that the use of the fluid model for most of the neutralizing plasma inside
the drift section allows for a great reduction of the total computational time.

Finally, the following space-time resolutions for the upstream and downstream
simulations are used. For most of the upstream simulation domain, except for a narrow
region near z=z;, we take Az’ =1cm, and the grid resolution in the radial direction

includes 10 grid points for the region » € [0;0.2] cm, 10 grid points for r€[0.2;1] cm, and
35 grid points for r€[l;5] ¢cm. For the short downstream simulation region, we take

Az" =0.2cm, and the grid resolution in the radial direction includes 40 grid points for
the region r e [0;0.2] cm, 100 grid points for r e [0.2;2] cm, and 19 grid points for
r€[2:3.8] cm. Here, Az’ and Az” denote the grid spacing in the z-direction for the
upstream and downstream simulations, respectively. To simulate the beam propagation
through the long drift section the time step A¢’ =0.0066 ns is used, and when the beam

propagates through the final focus section, we take At” =0.005 ns.

The results of the numerical simulations performed with the LSP code [LSP,
1999] are shown in Figs. 5.9 and 5.10. Figure 5.9(a) illustrates the pre-compressed ion
beam pulse density at the exit of the drift section. The beam density is zero downstream
of the plane z=274 cm, because the downstream simulation ignores most of the prepulse
part of the beam. Recall, that one of the conditions for the collective focusing to occur
requires the electron plasma density to be higher than the electron cyclotron frequency
inside a magnetic solenoid [Eq. (5.6)]. Due to the simultaneous neutralized pre-

compression providing 7;~10'" cm™ near the exit of the drift section this condition is
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Figure 5.9: (Color) Results of the numerical LSP simulations of the ion beam dynamics
in the NDCX-I including the initial head-to-tail velocity tilt and the radial convergence
angle. Shown are plots of (a) the ion beam density at the exit of the neutralized drift
section corresponding to =2450 ns, and (b) radial dependence of the radial electric field
inside the magnetic lens at the center of the final focus solenoid, z=276 cm,
corresponding to /=2535 ns (blue dots). The analytical results in Eq. (5.3) are shown by
the solid pink line in Frame (b).

nearly satisfied. Note that the idealized simulation in Sec. 5.3.2 assumes a similar initial
density of the ion beam pulse, and the tight collective focus is demonstrated. Figure
5.9(b) illustrates the radial electric field inside the solenoid, which agrees well with the
analytical predictions in Eq. (5.3). A plot of the beam density at the transverse focal plane
is shown in Fig. 5.10(a). It is readily seen that a tight transverse collective focus with the

3 .
occurs in the

on-axis (peak) value of the compressed beam pulse 1100,,1],25.5”‘1012 cm’
simulations. The time evolution of the ion beam current at z,=281.6 cm corresponding to

the transverse focal plane is shown in Fig. 5.10(b). Figure 5.10(b) demonstrates strong

~80X longitudinal compression, with the peak current /,=2.2 A, and a compressed ion
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Figure 5.10: (Color) The ion beam parameters at the transverse focal plane. Shown are
plots of (a) the ion beam density corresponding to =2580 ns, and (b) the time evolution
of the ion beam current at the transverse focal plane corresponding to z=281.6 cm. The
results are obtained in numerical LSP simulations of the ion beam dynamics in NDCX-I

including the initial head-to-tail velocity tilt and the radial convergence angle.

beam pulse duration of a few nanoseconds. Note that for the parameters of the present
simulations the longitudinal focal plane does not exactly coincide with the transverse
focal plane. It is slightly shifted downstream to z;=283.2 cm, with a peak current increase
of a few percent. Therefore, further optimization studies can provide insights into the
NDCX-I design with slightly improved simultaneous compression. However, even the
present illustrative simulations demonstrate the feasibility of a very tight collective
focusing of the ion beam pulse in NDCX-I, and the compressed beam parameters are
similar to the results of the simulations performed for the case where 8 T final focus
solenoid is used, and complete beam neutralization is assumed from the drift section

entrance to the target plane [Siedl et al., 2009].
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In conclusion, it is important to point out that the long prepulse part of the ion
beam in the NDCX-I can produce a significant amount of the background electrons by
preheating the target. Therefore, it may be important to remove those electrons from the
beam-line. Otherwise they can possibly leak into the final focus solenoid, thus reducing
the collective focusing of the compressing part of the beam pulse (Sec. 2.1). Note that the
entire ion beam pulse undergoes simultaneous compression in the new NDCX-II facility
[Friedman et al., 2009]. Therefore, the absence of the prepusle part of the ion beam
makes the concept of final collective focusing even more attractive for the planned

NDCX-II facility.

5.4 Nonneutral Collective Focusing

The original analysis of a collective focusing lens [Robertson, 1982] assumed quasi-
neutral compression, which is provided by the condition that the electron cyclotron

frequency corresponding to the magnetic field inside a solenoid, Q,, is greater than the
electron plasma frequency of an incident neutralized beam, a)Ee (Sec. 5.2). However, it is

of particular importance for several practical applications including the Neutralized Drift
Compression Experiment-I to investigate the collective focusing in a strong magnetic
field with Q, > a)ge. In this case, the quasi-neutrality condition inside the beam can break

down, and it is important to determine the distribution of the radial electric field inside

the beam, which is now supported by a pronounced charge separation. In this section we
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investigate general features of this nonneutral collective focusing (Sec. 5.4.1), and
discuss its influence on the beam dynamics in the Neutralized Drift Compression

Experiment-I (Sec. 5.4.2).

5.4.1 Collective Electron Dynamics during Nonneutral Compression

We start the analysis by determining the conditions for a pronounced charge separation to
occur inside an ion beam that carries an equal amount of the electron background into a
strong solenoidal magnetic field. Figure 5.11(a) illustrates a neutralized ion beam that
propagates through an increasing solenoidal magnetic field, B(z). For simplicity, we
assume a uniform radial beam density distribution for the initial beam state, with the flat-
top density 7,9 and the outer beam radius r49. The ion beam is moving from a region of
zero magnetic field, where its charge and current are completely neutralized by a co-
moving monoenergetic electron beam. We denote the electron cyclotron frequency

corresponding to the maximum value of the magnetic field By inside a magnetic solenoid
by Q, =eB,/m,, and assume that Q, > a);’e = \J47e’n,, /m, . Note that the condition

Q, > a)ge itself does not necessarily imply that the quasi-neutrality is not maintained

during the transverse compression. Indeed, for the case of light and low-energy beam
ions, and weak longitudinal gradients of the solenoidal magnetic field, the quasi-
neutrality will be maintained inside the beam, provided the increase in the electron
plasma frequency due to the ion beam compression occurs more rapidly than the increase

in the magnetic field, i.e.,
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Figure 5.11: (Color) (a) Schematic illustration of a neutralized ion beam propagating

along a strong solenoidal magnetic field with Qe>a)2€. Two possible regimes of

collective beam focusing correspond to: (a) quasi-neutral collective focusing where
quasi-neutrality is maintained inside the beam during compression, and (b) nonneutral
collective focusing associated with a pronounced build-up of negative charge around the

beam axis.
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o’ (z)>> o, (z). (5.11)

pe

Here, o', =+/47e’n,(z)/m, , o, =eB(z)/m,c, and n,(z) is the local value of the ion

beam density. For simplicity, we assume a short ion beam pulse with characteristic length
that is much smaller than the longitudinal length-scale for variations of the magnetic

field. The condition in Eq. (5.11) can be expressed as

Ri(z) << @ pe

rb 0 wce (Z) ’

(5.12)

and the evolution of the ion beam outer radius, R/(z), for the case of a quasi-neutral
compression is given by

d’R. R, w*
21 :_me _la)cz’e . (513)
dz m, 4 v,

In the limit of a high-energy heavy-ion beam and steep magnetic field gradients, Egs.
(5.12)-(5.13) may not have a self-consistent solution. In this case the quasi-neutrality
inside the beam is no longer maintained, and the nonneutral collective focusing occurs.

In order to determine the transverse beam dynamics for the case of nonneutral
collective focusing, one needs to investigate the distribution of the strong radial electric
field inside the beam. For this purpose we have performed advanced numerical
simulations with the particle-in-cell code LSP [LSP, 1999]. Note that the schematic of the
present simulations shown in Fig. 5.12 is similar to the one used in Sec. 5.3.1 (Fig. 5.3)
for the simulation of the idealized final beam focus in the NDCX-I. However, here the

distance between the plasma layer and the focusing solenoid is increased in order to
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Figure 5.12: Collective focusing in a strong solenoidal magnetic field with Q, :50)26.

(a) Schematic of the LSP simulations. (b) Longitudinal profile of the applied axial

magnetic field.
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Figure 5.13: (Color) Thermal spreading of the co-moving neutralizing electron beam.
Plots correspond to (a) longitudinal phase-space (V../c, z), and (b) the transverse velocity
spreading (V,/c, z). The velocity spreading of the initial cold background plasma
electrons located from z=-5 cm to z=15 cm is attributed to numerical heating. The time
instant corresponds to /=200 ns, and the results are obtained with numerical LSP

simulations.

decrease the value of the magnetic fringe fields inside the plasma. Furthermore, in an
attempt to provide quiescent neutralization of the ion beam as it leaves the background
plasma layer, cold plasma electrons are assumed, and a gradual decrease in the plasma
density is introduced near the downstream end of the layer, that is np=1011 cm™ for z<12
cm and then theplasma density is linearly decreased to zero over a distance of /o4,.=8 cm.
Note that the numerical simulations with axial grid spacing Az=0.2cm and time step
At=0.005 ns demonstrate that the velocity spread in the electron distribution is of order

3

the ion beam velocity (Fig. 5.13). To model the beam, we take rp=1 cm, n,=10'"" cm™,

Zi=1, p»=0.0042, [,=5 cm, and infinitely massive beam ions are assumed for simplicity.
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The maximum value of the magnetic field inside the focusing solenoid is B;=1600 G,

which corresponds to Q, :5(02 and the longitudinal profile of the on-axis magnetic

field is shown in Fig. 5.12(b).

The results of the numerical simulations for an illustrative time =500 ns, when
the beam is at the center of the magnetic solenoid, are shown in Fig. 5.14. As the co-
moving electrons enter the magnetic solenoid the electrons acquire a strong azimuthal
rotation due to conservation of canonical angular momentum [Fig. 5.14(a)]. The resulting
V'xB magnetic focusing force, along with the centrifugal force, are compensated by the
strong radial self-electric field [Fig. 5.14(b)]. However, for considered parameters

a)f,e :a)ﬁe =Q, /5, the condition in Eq. (5.11) is violated, and a strong charge separation

occurs in order to support the radial self-electric field [Fig. 5.14(c)]. Simulations show
[Fig. 5.14(b)] that inside the electron beam, i.e., ¥<R.(z), the electric field is nearly linear,
and is given by

E =—V,,B,/c+m V2 [(er)=—m, o> (z)r/4e. (5.14)

Here, R.(z) is the characteristic outer radius of the electron beam, and R.<R; [Fig.

5.14(c)]. The nonlinear electric field in the region R, <r<R, can be determined from

Poisson’s equation

li(}/@_{p} =—4nZ, en, (z), (5.15)
ror\_ or

which is to be solved subject to the boundary condition,
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Figure 5.14: (Color) Nonneutral collective focusing. Shown are plots of (a) the electron
phase-space (Veo/c,r), where the blue dots correspond to the results of the LSP
simulations, and the estimate V.~=w./2 is shown by the solid pink line; (b) radial
dependence of the radial electric field at the center of the magnetic solenoid, z=60 cm,
where the blue dots correspond to the results of the LSP simulations, and the analytical
estimate in Eq. (5.14) is shown by the solid pink line; and (c) electron density obtained
in the LSP simulations. The dashed black lines in Frame (c) outline the ion beam, and R,
corresponds to the characteristic electron beam radius. The time for the illustrated results

corresponds to =500 ns.
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|, OLERG)

5.16
or r=R,(z) ¢ 4e ( )

In Eq. (5.15), the longitudinal derivatives have been neglected provided the beam is

sufficiently long with /, >>r, . Note that the solution to Egs. (5.15)-(5.16) is, in general,

nonlinear even for a uniform ion beam density profile. As a result, the aberration effects
caused by nonlinearities in the focusing electric field can significantly degrade the
transverse focal spot.

In order to complete the description of the generated radial electric field, one
needs to determine the evolution of the electron beam radius. The electron beam is being
dragged into a strong solenoidal magnetic field by an intense heavy ion beam. The
rotational energy of the electrons and the electrostatic field energy arise from the directed
energy of the ion beam; and the magnetic pressure force is globally balanced by the
longitudinal variations of the electrostatic potential. However, the density profile of the
co-moving electron beam can still diffuse in the longitudinal direction as the beam
propagates in the increasing magnetic field [Fig. 5.14(c)]. Consistent with that fact, a
fraction of the electron beam particles with negative values of longitudinal velocity has
been observed in the simulations. In the present approximate analysis, we neglect the

longitudinal broadening of the electron beam density profile, and assume that

e

n,R? ~ ny,ryy . For the case of a sufficiently long beam with /, >> r,, it follows from Eq.

(5.14) that the electron beam density is uniform, and is specified by
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2
Z,n,
la)_;ezl_b_nl, (5.17)
2w, n

where a);e =47e’n,(z)/m,. For the case of strong nonneutral compression with

n, >>Z,n,, it readily follows from Eq. (5.17) that the condition @, / V2 s

maintained during the compression of the co-moving electron beam. Making use of
charge conservation of the co-moving electron beam, we obtain for the case of strong

nonneutral compression that

@, (z) '

Equations (5.14)-(5.16) together with Eq. (5.18) provide an approximate self-

R, (2) ~ N2, —2~ (5.18)

consistent estimate of the radial focusing electric field inside the ion beam. We now
discuss the wvalidity of Eq. (5.14) that demonstrates the balance between the
V' x B magnetic focusing force, the centrifugal force, and the self-electric radial force
acting on the background electrons. Equation (5.14) follows from the more general Eq.
(5.1), provided the electron inertial term, i.e., the first term on the left-hand-side of Eq.
(5.1), can be neglected. Making use of Eq. (5.18), it follows that the force-balance
equation (5.14) is valid provided

(5.19)

ce

25>y / 0]
where /  is the characteristic length-scale for variations of the applied magnetic field.

In conclusion, it is interesting to point out that the co-moving electron beam

compression does not follow the magnetic field lines. Indeed, the radius of a constant
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magnetic flux tube is given by R, o 1/ \J@®. , whereas the electron beam executes

steeper compression with R, oc 1/@,, . Note, however, that for this system the electron

gyro-radius is large, and comparable to the beam radius, and furthermore, the electric
field is strong. Therefore, the “drift approximation”, which implies conservation of a
particle’s magnetic moment (magnetic flux through a particle’s orbit), and is often used

for description of magnetic fusion plasma flows, is not valid for the present system.

5.4.2 Influence of Nonneutral Collective Focusing on the Beam

Dynamics in the NDCX-I

The design of the NDCX-I final focus section has included a relatively long, /,~12 cm,
gap between the downstream end of the neutralizing drift section and the upstream end of
the 8 T final focus solenoid (FFS). The presence of the gap has been primarily stipulated
by the gate valve included in the NDCX-I configuration, as shown in Fig. 5.2. Recent
experimental and numerical studies have demonstrated a lack of neutralizing plasma in
the gap region. Although moderate beam space charge (ny~10°-10'" cm™) can be
compensated by the plasma electrons dragged by the ion beam from the drift region,
collective phenomena occurring in the neutralized beam as it traverses the fringe
magnetic field at the upstream end of the final focus solenoid can significantly influence
transverse focusing of the ion beam. This field is of the order of several kG, and therefore

strong enough that the electron cyclotron frequency is small compared to the plasma
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frequency, i.e., ®, <o, where @, = \4m, e’ / m, and @, =eB/m,c are the electron

plasma and cyclotron frequencies, respectively. For parameters characteristic of NDCX-I
the condition in Eq. (5.11) is not satisfied, and collective nonneutral focusing occurs
inside the gap [Sec. 5.4.1]. An excess of beam ion charge develops at intermediate radii,
while an excess of negative charge develops in the gap region near the axis of the system,
providing a strong radial focusing field, which can affect the beam’s final focus.

To investigate the influence of collective effects inside the gap on transverse
focusing of the beam, we have performed idealized numerical simulations with the LSP
particle-in-cell code (Fig. 5.15). In the simulations, we take the densities of the
neutralizing plasma inside the drift section created by a ferroelectric plasma source, and
the neutralizing plasma inside the final focus solenoid created by cathodic-arc plasma
sources to be 10'°cm™ and 10'* cm™ respectively. The electron temperature for both
plasmas is assumed to be 3 eV. The plasmas are treated fully kinetically, allowing for the
background electrons to flow into the gap should the forces on them induce such motion.
Singly ionized Potassium (K") beam ions with an energy of 320 keV are injected into the
simulation through an aperture of r,y=1 cm located inside the drift section. To model the
effects of the beam prepulse, for the first 40 ns, of the total beam pulse the beam current
was set to be 0.028 A (prepulse), and for the second 40 ns, the beam current was set to be
0.12 A (compressed portion of the beam). Neither the initial convergence angle nor the

longitudinal velocity tilt were included in the simulations.
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Figure 5.15: (Color) Influence of collective focusing inside the gap between the
neutralizing drift region and the final focus solenoid on the ion beam dynamics in
NDCX-I. Schematic of the LSP numerical simulation configuration showing regions

filled with a neutralizing plasma.

The results of the numerical simulations are shown in Figs. 5.16-5.18. Figures
5.16(a) and 5.16(b) show the ion beam density and the density of the electron background
dragged from the drift section. The radial self-electric field at the same time instant is
shown in Fig. 5.16(c). To demonstrate the influence of the radial electric focusing inside
the gap we plot the beam density near the downstream end of the final focus solenoid
[Fig. 5.17(a)], and compare it to the beam density in the “ideal neutralization” case where
a dense background plasma initially fills the entire gap [Fig. 5.17(b)]. One can see that
collective effects in the gap between the neutralizing plasmas induce premature beam
focusing. As the beam propagates from the downstream end of the final focus solenoid to
the target, a slight decrease in the on-axis beam density is observed. Figure 5.18 (a)
shows the beam density at the target plane, and Figure 5.18(b) corresponds to the “ideal

neutralization” case. Note that due to the anharmonic field of the collective focusing
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Figure 5.16: (Color) LSP simulations of collective nonneutral focusing inside the gap
between the neutralizing plasmas at /=230 ns. Shown are plots of (a) number density of
the electrons dragged from the drift section, (b) ion beam density, and (c) radial self-

electric field. The double-arrowed line in Frame (a) illustrates the position of the final
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Figure 5.17: (Color) Ion beam density at the downstream end of the final focus solenoid
at =380 ns. (a) The background plasma is initially absent inside the gap between the
drift section and the final focus solenoid. (b) Ideal neutralization case corresponding to

3

the initial presence of a neutralizing plasma with density np=1010 cm™ across the entire

gap. Results are obtained with the LSP numerical simulations.
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Figure 5.18: (Color) Ion beam density at the target region at =490 ns. (a) The
background plasma is initially absent inside the gap between the drift section and the
final focus solenoid. (b) Ideal neutralization case corresponding to the initial presence of

3

a neutralizing plasma with density np=1010 cm” across the entire gap. Results are

obtained with the LSP numerical simulations.
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force, a large tail of halo ions develops around the focused beam core, and the peak beam
density is reduced by a factor of about four relative to the “ideal neutralization” case
[compare Figs. 5.18(a) and 5.18(b)].

The influence of collective focusing inside the gap on the transverse beam
focusing properties was studied for different values of the ion beam density. It was found
that the radial electric field is greater for higher beam densities. Therefore, the degrading
influence of collective effects is less pronounced for the beam prepulse than for the
compressed portion of the beam. This is consistent with the experimental observations
demonstrating better transverse focusing of the beam prepulse. In other studies, we found
that the collective focusing effect persists even for longer beam pulses, e.g., long enough
(410 ns) that the beam itself provides a conducting path across the gap. Finally, we note
that the effects of the collective focusing inside the gap were also investigated making
use of the numerical simulations performed with the WARP code. Both codes yielded
similar results.

In order to mitigate the deleterious effects induced by collective nonneutral
focusing inside the gap, the configuration of the NDCX-I has been optimized. The gate
valve has been relocated upstream of the beamline, allowing for a shorter gap of only 5
cm. The experiments on the ion beam simultaneous compression including final focusing
by the 8 T final focus solenoid and the shorter gap are currently being carried out on the
NDCX-I facility. Finally, note that the gap length of 5 cm have been used in the

simulations presented in previous sections.
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5.5 Collective Focusing of a High-Intensity Ion Beam

with r,>c/omp,

As noted earlier, to assure small perturbations in the applied solenoidal magnetic field
produced by the azimuthal component of the electron current, the beam radius has to be
smaller than the collisionless electron skin-depth, i.e., r, << c/ o, . In this section, we
present an analytical self-consistent calculation of the magnetic field perturbation, and
discuss the collective focusing lens operation for arbitrary values of r,@,, / c.

Conservation of the canonical angular momentum for co-moving electrons gives

(sec.5.1)
my,=—A4,, (5.20)
c

where Vg is the azimuthal component of the electron velocity, and initially non-rotating
electrons are considered. Assuming that the beam radius is smaller than the beam pulse
length, and smaller than the characteristic length-scale for variations of the applied

solenoidal magnetic field, i.e., r, <</,,/, , we obtain from Ampere’s equation

b>"m>

e’ ef"

E(li(rAg )] _Ar (5.21)
C

Assuming, for simplicity, a uniform radial beam density profile with n, =n, =n, for
r<r,and n,=n, =0 for r>r,, Eq. (5.21) is to be solved subject to the boundary

condition
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{——(mg )} =B,, (5.22)

where B, is the applied solenoidal magnetic field. Combining Egs. (5.20) and (5.21) gives

%G%(m )] =A,, (5.23)

where r=nw, /c. Solving Egs. (5.22)-(5.23), it follows that the longitudinal

component of the total magnetic field, i.e., B, =r""' 6(rA9 )/ or, 1s given by

5, - 5, @) (5.24)

V4 = N 2
Ioir,,a)pe/ci

where /j(x) is the modified Bessel function. Plots of the total magnetic field B.(r), i.e., the
sum of the beam-generated and the applied magnetic fields, for different values of

o /c are shown in Fig. 5.19. Note that attenuation of the applied magnetic field

results in a decrease in the focusing electric field since E, =-V,,B,_/2c. Furthermore,

nonlinearities in the magnetic field profile provide aberrations that can degrade the

transverse focus. However, it is interesting to note that even for large values of 7,0, /c,

the outer edge of the beam still experiences collective focusing (Fig. 5.19). It is therefore
of great interest to carry out detailed self-consistent studies including the effects of the
beam radial profile evolution, in order to estimate the applied magnetic field required to

collimate or focus the intense ion beam.
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Figure 5.19: (Color) Radial dependance of the of the total magnetic field, i.e., the sum of

the beam-induced and applied magnetic fields, for different values of 6=r,@,, / c.

5.6 Summary and Discussion

In the present chapter the collective focusing scheme in which a weak magnetic lens
provides strong focusing of an intense ion beam pulse carrying an equal amount of
neutralizing electron background has been reviewed. This collective focusing can allow
for the use of weak (several hundred Gauss) magnetic fields instead of the several Tesla
fields used for conventional magnetic lens, thus significantly facilitating the technical
realization of ion beam focusing for several applications of high energy density physics.
As a practical example, the feasibility of tight collective focusing of intense ion beams
for the Neutralizing Drift Compression Experiment-I (NDCX-I) has been demonstrated in

this Chapter with the advanced numerical simulations.
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The physical limits of collective ion beam focusing in NDCX-I have been
discussed. In particular, the influence of the electron heating during the compression on
the collective beam focusing has been investigated. It has been demonstrated that an
increase in the thermal electron pressure, results in a decrease in the collective-focusing
self-electric force. The analytical estimate of the effective electron temperature
corresponding to the loss of collective focusing has been found to be consistent with the
results of numerical simulations.

The original analysis of collective focusing, assuming quasi-neutral transverse

beam compression with @, <<®,,, has been extended to the case of nonneutral
collective focusing, that can occur when the beam propagates in a strong solenoidal
magnetic field with @), = \/47’n, /m, < @,,. This case can be of particular importance

for several practical applications, including laser-production of high-energy ions, where a
strong solenoidal magnetic field is used to collimate the divergent ion beam [Harres et
al., 2010]; and a heavy-ion fusion driver, where a strong magnetic solenoid is often used
for final beam focusing [Yu et al., 2005]. For the case of nonneutral collective focusing,
the electron background executes a steeper compression compared to that of the beam
ions, and as a result an excess of negative charge develops near the solenoidal axis. It has

been shown for the case of strong nonneutral compression, with n, >> n, near the beam
axis, that o, ~ @, / V2 is maintained inside the electron beam, and that the electron

beam radius decreases as R, oc 1/@,, . The focusing radial electric field inside the electron
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beam, 7 < R,, is found to be linear with E, = —m, ’,(z)r/4e . However nonlinearities in
the region R, <r < R, cause aberrations, and can degrade the quality of the transverse

ion beam focus. The influence of nonneutral collective focusing on the ion beam
dynamics in NDCX-I has been investigated. It has been demonstrated that premature
focusing and large halo development can occur due to intense collective nonneutral
focusing in the gap between the drift section and the final focus solenoid.

Finally, the original analysis of the collective focusing, which assumes small

perturbations of the applied solenoidal magnetic field implied by r, << c/ @, , has been

extended to the case of an arbitrary ratio of @7, / c¢ . The perturbation in the solenoidal

magnetic field produced by the azimuthal component of the electron beam current has
been calculated self-consistently, and strong nonlinearities in the total magnetic field

have been demonstrated for 7, > c/ w,, . However, it has been found that even for large
values of r,m,, /c, the outer edge of the ion beam pulse still experiences efficient

collective focusing.



Chapter 6

Conclusions and Future Research

Present design concepts for heavy ion drivers for ion-beam-driven high energy density
physics and warm dense matter applications, and for heavy ion fusion involve the
acceleration and compression of intense heavy ion beams to a small spot size on the
target. lon beam acceleration and transport in vacuum is provided by a periodic focusing
lattice. Then, a dense background plasma is used to neutralize the beam space-charge
during the compression process. Finally, additional transverse focusing is typically
provided by a strong (several Tesla) final focus solenoid. In this thesis, several critical
problems of intense ion beam transport in an ion driver have been investigated by means
of advanced numerical particle-in-cell simulations and reduced analytical models. In
particular, a numerical method for the formation of a quasi-equilibrium beam distribution
matched to a periodic focusing lattice by means of the adiabatic turn-on of the oscillating
focusing field has been developed. The production of halo particles due to beam
mismatch has been discussed, and a novel spectral method for the quantitative definition
of beam halo has been proposed. Also, the propagation of an intense ion beam through a
neutralizing plasma has been investigated with emphasis on the effects of a weak
solenoidal magnetic field applied along the beam propagation direction. It has been found
that ion beam self-focusing can be significantly enhanced by the application of a weak

magnetic field of order 100 G. Finally, the concept of collective focusing of intense ion

260
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beam pulses has been reviewed, and the feasibility of a tight collective focus of an ion
beam pulse in the Neutralized Drift Compression Experiment has been demonstrated in
numerical simulations.

The results presented in each chapter of this thesis are summarized in Sec. 6.1,

and Sec. 6.2 suggests several future research tasks.

6.1 Conclusions

In this section a summary of the main results of this thesis research is presented.

In Chapter 2 of this thesis, the formation of a quasi-equilibrium beam
distribution matched to an alternating-gradient quadrupole focusing lattice by means of
the adiabatic turn-on of the oscillating focusing field was studied using particle-in-cell
simulations. Quiescent beam propagation over several hundred lattice periods was
demonstrated for a broad range of beam intensities and vacuum phase advances
describing the strength of the oscillating focusing field. Properties of the matched beam
quasi-equlibrium obtained in numerical simulations were investigated and compared with
the predictions of the analytical theory developed by Davidson et al. in [Davidson et al.,

1999]. In accordance with the theory, the numerical simulations demonstrated self-similar

evolution of the beam density profile for o, <66°. However, for higher values of vacuum

phase advance (for instance, o, =87.5") the self-similarity feature became less accurate

over a wide range of beam intensities, which demonstrates the validity limits of the



6.1. Conclusions 262

theory. The numerical scheme for describing formation of a quasi-equilibrium beam
distribution, matched to an alternating-gradient quadrupole focusing lattice, was
generalized to the case of a periodic-focusing solenoidal lattice. Furthermore, various
distributions were considered for the initial beam equilibrium. The self-similar evolution
of the matched-beam density profile was observed for general choice of initial
distribution function and lattice type.

In Chapter 3 of this thesis, the transverse compression of an intense ion beam
propagating through an alternating-gradient quadrupole lattice was investigated. In
particular, the conditions on how smooth (adiabatic) the lattice transition should be to
assure that beam matching is maintained during the compression were determined. For
the case of nonadiabatic compression, halo particle production by a beam mismatch
acquired during the compression stage was studied. In order to perform a quantitative
analysis of this effect, a novel spectral method for halo particle definition was developed.
The method is based on the observation that the betataron frequency distribution of a
mismatched intense beam has a “bump-on-tail” structure attributed to the beam halo
particles. It was found that most of the bump is located to the right of the half-value of
the mismatch oscillation frequency, which allowed us to formulate the following simple
quantitative definition of a halo particle. If the particle betatron frequency is greater than
one-half of the mismatch oscillation frequency then it designated as a halo particle. The
method based upon the spectral analysis of a mismatched beam distribution was also
applied to other critical problems of intense beam transport. In particular, it was

demonstrated that during strong mismatch relaxation most of the beam halo is generated
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on a time-scale shorter than the time-scale for the beam core relaxation. Furthermore, it
was shown that the core relaxation process also leads to an increase in the beam
emittance. Finally, the spectral analysis of a beam distribution loaded into a quadrupole

lattice for the case where the system parameters lie near the transport stability

limit, o2, — o =~ (27/3)° / 2, was performed. It was found that as the system parameters

approach the stability limit, the core of the beam betatron distribution does not change
significantly, whereas the tail of the distribution increases.

In Chapter 4 of this thesis, the influence of weak solenoidal magnetic fields of
order 100 G on intense ion beam pulse transport through a dense background neutralizing
plasma was investigated. The weak fringe magnetic field (~100 G) of a strong (several
Tesla) final focus solenoid can penetrate deep into the long drift section filled with a
neutralizing plasma, making this problem to be of particular importance for the design of
an ion driver. The analysis presented in this thesis extended studies of ion beam transport
through a background plasma along a solenoidal magnetic field by Kaganovich et al.
[Kaganovich et al., 2008] to the important regime of moderate magnetic field strength
satisfying w..>2Bpyope. Here, w.. and w,. are the electron cyclotron frequency and electron
plasma frequency, respectively, and f, = V/c is the directed ion beam velocity
normalized to the speed of light. The electromagnetic field perturbations excited by the
ion beam pulse in this regime were calculated analytically and verified by comparison
with the numerical simulations. It was demonstrated that the total electromagnetic field

perturbation excited by an ion beam pulse with a smooth radial density profile can be
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conveniently represented as the sum of a local-field component, rapidly decaying to zero
outside the beam pulse, and a wave-field component that can extend far outside the beam.

It was found in the regime where @, =2/, ®,, that there is strong excitation of the wave-

field component corresponding to whistler waves, and the possible use of this effect for
diagnostic purposes has been discussed. However, the contribution of wave-field
excitations to the transverse component of the Lorentz force can have opposite signs for
the beam head and the beam tail. Therefore, for practical application involving control of
the beam aperture, it is important to identify a parameter regime where the local
component of the electromagnetic field perturbation, which provides focusing over the
entire length of the ion beam pulse, has the dominant influence on the beam transverse

dynamics. It was demonstrated, in the regime where «,>>2f0, and

r, >>V, (1+ w?, / o, )1/2 / o, , that the local-field component primarily determines the

transverse dynamics of the beam particles, and the wave fields produce a negligible
transverse force. Moreover, a positive charge of the ion beam pulse becomes over-
compensated by the plasma electrons, and the associated strong transverse-focusing self-

electric field has the dominant influence on the beam ions, compared to the self-magnetic
field, provided V, (1+a)fe @, )1/2 / w,, << 1, << (c/ o, wa / ,Bba)pe). It was also shown,

for the case where the beam radius is small compared to the electron skin depth, that the
self-focusing force is significantly enhanced compared to the self-focusing force acting

on the beam particles in the absence of an applied magnetic field. In addition, the local
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diamagnetic plasma response was observed in the numerical simulations, and was also

predicted analytically for @, >>2f,®,,. These results were found to differ significantly

from the case w,, <2f,w,,, where the transverse electric field is defocusing, and the

plasma response is paramagnetic. Finally, the effect of the plasma-induced enhanced self-
focusing of an intense ion beam pulse in the presence of weak fringe solenoidal magnetic
fields was shown to be important for the planned Neutralized Drift Compression
Experiment-1I (NDCX-II).

In the Chapter 5 of this thesis, the collective focusing scheme proposed by S.
Robertson [Robertson, 1982] in which a weak magnetic lens provides strong focusing of
an intense ion beam pulse carrying an equal amount of neutralizing electron background
was discussed. For instance, such a collective focusing lens with a magnetic field strength
of several hundred gauss can focus an intense neutralized ion beam within a short
distance of several centimeters. The enhanced focusing inside the lens is provided by a
strong self-electric field, which is produced by the collective electron dynamics. The
chapter then presented results of advanced numerical simulations demonstrating the
feasibility of tight final beam focus that can be achieved in the Neutralizing Drift
Compression Experiment (NDCX-I) by using a several hundred gauss collective focusing
lens instead of a several Tesla conventional magnetic solenoid. The numerical
simulations were performed with the LSP particle-in-cell (PIC) code, and the results of
the simulations were found to be in very good agreement with analytical predictions. The

collective focusing limitations due to possible heating of the co-moving electrons during
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transverse compression were discussed. In addition, the original analysis of the collective
lens operation, which assumes quasineutrality (provided by w..<<wp.), and small
perturbations of the applied solenoidal magnetic field (provided by r,<<c/w,.), was
extended to the cases of w..>w,. and r,>c/wp.. Here, ry, is the beam radius, w,, is the
electron plasma frequency inside the incident neutralized beam, and w,. is the electron
cyclotron frequency inside the lens. In particular, it was demonstrated for the case where
Wpe<w.. that nonneutral compression corresponding to an excess of negative charge near
the solenoidal axis can occur. The distribution of the radial self-electric focusing field for
the case of strong nonneutral compression was calculated. Strong nonlinearities in the
radial dependence of the electric field were found, and its influence on the ion beam

dynamics in NDCX-I was analyzed. Finally, for the case where 7, Zc/a)pe , the

perturbation in the solenoidal magnetic field produced by the azimuthal component of the
electron beam current was calculated self-consistently, and strong nonlinearities in the
total magnetic field were demonstrated. However, it was found that even for large values

of 7@, /c, the outer edge of the ion beam pulse still experiences efficient collective

focusing.



6.2. Future Research 267

6.2 Future Research

An improved theoretical understating of transport properties of an intense ion beam pulse
propagating in an ion driver is critical for applications to ion-beam-driven warm dense
matter, high energy physics, and heavy ion fusion. Based on the studies presented in this
thesis, several future research tasks can be suggested as follows.

The numerical simulations discussed in Chapter 2 of this thesis demonstrate self-
similar evolution of the beam density profile for a quasiequilibrium beam distribution
matched to a periodic focusing lattice. For this case, i.e., self-similar evolution of the
beam density with the density profile being approximately constant on elliptical contours
[Egs. (2.43)-(2.44)], analytical expressions for the beam self-fields can be derived for an
arbitrary beam density shape function [Sacherer, 1971; Davidson and Qin, 2001a].
Making use of this calculations for the beam self-fields, properties of a matched-beam
quasi-equilibrium can now be accurately described using a particle-core model (see Sec.
2.2.5), which requires much less computational effort compared to full particle-in-cell
simulations. In particular, the particle-core model with the beam self-field calculated
according to [Sacherer, 1971; Davidson and Qin, 2001a] can be used to investigated the
higher-order resonance structure, and provide insights into the problem of space-charge
transport limits. We would like to emphasize here that although the particle-core model
has been previously typically used for analysis of a Kapchinskij-Vladimirskij (KV)
matched beam distribution, the present numerical studies demonstrating the self-similar

beam density evolution for a wide range of initial (smooth-focusing) beam equilibria
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validate the use of the particle-core model for a wide range of beam quasiequlibria
matched to a periodic focusing lattice.

In Chapter 3 of this thesis a novel spectral method for quantitative definition of a
beam halo particle is proposed. The method is based on the observation of a bump-on-tail
structure, which appears in the betratron frequency distribution of an intense mismatched
beam. The bump is located near the half-value of the mismatch oscillations frequency,
and in the studies presented here, the linear approximation for the mismatch-oscillation
frequency has been used for the “cut-off” frequency when selecting beam halo particles.
However, it was pointed out that a few more halo particles can be selected if an improved
model including nonlinear effects and accounting for the width and shape of the
mismatch oscillations frequency spectrum is employed for determination of the “cut-off”
frequency. Improving the criteria for defining a beam halo particle is of particular
importance for a more quantitative analysis of beam halo production, and should be the
subject of future studies.

In Chapter 4 ion beam transport through a dense background neutralizing plasma
along a solenoidal magnetic field has been investigated. In particular, enhanced ion beam
self-focusing in the presence of a weak magnetic field has been found, and the self-
focusing force has been calculated for a steady-state regime, assuming infinitely massive
beam ions [Eq. 4.57]. It is of particular practical interest to extend the present studies to
the case of finite mass of the beam ions, and describe the ion beam pulse shaping self-
consistently, including the effects of enhanced ion beam self-focusing. The results of

these studies should then be analyzed for the parameters characteristic of the Neutralizing
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Drift Compression Experiment-II (NDCX-II), where the effects of enhanced plasma-
induced self-focusing can be important. Furthermore, the present studies assume cold
plasma electrons and a linear (small-signal) plasma response. It is of great interest to
consider nonlinear effects and the thermal effects of the background plasma electrons,
and asses their influence on ion beam self-focusing and whistler wave excitation.

In Chapter 5 the collective focusing of an intense neutralized ion beam pulse was
considered. The original analysis of the collective focusing, which assumes
quasineutrality provided by w..<<w,., was extended to the case of nonneutral
compression that can occur for the case where w..>w,., and a reduced analytical model
was developed to describe the distribution of the radial self-electric field. It is of
particular interest to apply this analytical model to the self-consistent analysis of the
transverse dynamics of an ion beam pulse. Furthermore, the original analysis of the
collective focusing, which also assumes small perturbations of the applied solenoidal
magnetic field provided by r,<<c/w,., was extended to the case where r,>c/w,., and an
analytical model was developed to describe the decrease in the total solenoidal magnetic
field due to the presence of the neutralized beam self-fields. It is of particular interest to
apply the analytical model developed in this thesis to the self-consistent analysis of the
collective lens operation in the regime where r,>c/w,.. Here, we emphasize again that the
regimes of collective focusing corresponding to the cases where r,>c/w,. and wc.>wpe,
are of particular importance for laser-production of high-energy ions and ion drivers for

high energy physics applications and heavy ion fusion.



Appendix A

Electromagnetic Field Perturbations for

the Case of Arbitrary Ratio of ®./m,

Equations (4.24)-(4.25) can be generalized to the case of an arbitrary ratio of @, / @,, -
Assuming @ ~v, /I, <<®,,,®,, and [, >> rly,lg;,i,qs, after some straightforward algebra one

can show that the electromagnetic field perturbations for 0 < x << szlgem,qs are given by
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Here, k,_are the solutions to the generalized dispersion relation

em,qs
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Equations (A1)-(A7) describe the electromagnetic field perturbation excited by an ion

beam pulse for an arbitrary ratio of w, / ,. » and furthermore for an arbitrary beam

velocity, including the case of a relativistic ion beam. The dynamics of the background
plasma electrons, however, are assumed to be nonrelativistic, which requires that the
beam density be much smaller the plasma density (1,<<n,).

The onset of wave generation, corresponding to the existence of real solutions to

Eq. (A7), is now determined by the condition & =, (1 ﬂb /2,Bba) >1. In the limit

where a>>1 and p, <<1, the solutions to Eq. (A7) can be approximated by
» =200 /[ (1+ ] /a)pe } and k,, =o, /(2ac), where a=a,/2p,0, . Making

use of Egs. (A1)-(A6), we can then reproduce the main results obtained earlier in the
present paper. Repeating the analysis performed in Sec. 4.3, after some straightforward
algebra, we find that the asymptotic time-dependent solution for the critical case

corresponding to & =1 is given by
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N, = Tdkz Jeon (k. Jeos(k.&)+ sin(k.£)]. (A9)

~

where the critical value of the wave vector, k,, corresponding to the solution of Eq. (A7)

for a =1, is given by

1+ 42 @] R
k.= SRRy = | (A10)
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and the longitudinal component of the wave phase velocity is defined by
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Similarly, repeating the analysis performed in Sec. 4.5.1, after some

(A11)

straightforward algebra one can demonstrate that for a non-relativistic beam, 3, <<1,

with rbl?qs >>1, the total wave-field contribution to the transverse component of the

Lorentz force vanishes, and the transverse force produced by the local field perturbation
is still determined by Eq. (4.43), i.e.,

Fo= 7m0 (A12)
} n, dx



Appendix B

Axial Magnetic Field Perturbation and
Local Diamagnetic Plasma Response for

0= e/ 2Ppmpe>>1

Making use of Eq. (4.11), after some straightforward algebra we find for an arbitrary

ratio of wc/mp. that the longitudinal component of the magnetic field perturbation is

given by B, = BZW + Bi"" , where the local component, le"“ , and the wave component, BZW ,

are specified for 0<x<<[}k,, . by
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It follows for the case of a nonrelativistic beam, f,<<l, propagating through a
background plasma with a =@, /28,0, >>1, that the local z-component of the
magnetic field perturbation is much greater than the wave-field z-component, and is
given approximately by

loc 2
eBZ ~ Zbﬂb a)pe
mea)pec cocenp

n, (x,z), (B4)

provided the beam radius 7, satisfies &, <<r, <<k, , or equivalently,
c(1+a)f /a)f,)/(2aa)pe)<< r, <<2ac/w, in the limit a>>1.  Equation (B4)

demonstrates the diamagnetic plasma response, in accordance with the results obtained in
the numerical simulations.

For the critical case where a =, /2f,,, ~1, assuming a nonrelativistic ion
beam, [, <<1, after some straightforward algebra it follows from Eqgs. (B1)-(B2) that

Aa =(eB,/m,c) / (28,@,,) can be estimated by

-12
Aa~Z,(n,/n,)(rn, /o) (1+Aaa®)-1] ", (BS)
provided the beam radius is of the order of or smaller than the electron skin depth. Note

that in obtaining Eq. (BS), we have used the fact that ®,, << ®,, , which is required by
the resonance condition, & =, /2f,,, =1, for the case of a nonrelativistic ion beam

pulse.
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