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This paper extends studies of ion beam transport through a background plasma along a solenoidal
magnetic field by Kaganovich et al. �Phys. Plasmas 15, 103108 �2008�� to the important regime of
moderate magnetic field strength satisfying �ce�2�b�pe. Here, �ce and �pe are the electron
cyclotron frequency and electron plasma frequency, respectively, and �b=vb /c is the directed ion
beam velocity normalized to the speed of light. The electromagnetic field perturbations excited by
the ion beam pulse in this regime are calculated analytically and verified by comparison with the
numerical simulations. The degrees of beam charge neutralization and current neutralization are
estimated, and the transverse component of the Lorentz force associated with the excited
electromagnetic field is calculated. It is found that the plasma response to the ion beam pulse is
significantly different depending on whether the value of the solenoidal magnetic field is below or
above the threshold value specified by �ce

cr =2�b�pe, and corresponding to the resonant excitation of
large-amplitude whistler waves. The use of intense whistler wave excitations for diagnostic
purposes is also discussed. © 2010 American Institute of Physics. �doi:10.1063/1.3280013�

I. INTRODUCTION

Neutralization and focusing of a charged particle beam
by a background plasma form the basis for a variety of ap-
plications to high energy accelerators and colliders,1,2 ion-
beam-driven high energy density physics and fusion,3,4 and
astrophysics.5,6 For instance, one of the modern approaches
to ion beam compression for heavy ion fusion applications is
to use a dense background plasma which charge neutralizes
the ion charge bunch, and hence facilitates compression of
the bunch against strong space-charge forces.3,4,7,8 Additional
control and focusing of the beam pulse can be provided by
the application of a solenoidal magnetic field in the neutral-
izing region.9–13 It has recently been demonstrated that even
a weak magnetic field can significantly change the degrees of
charge neutralization and current neutralization of an ion
beam propagating through a background plasma.14,15 In Refs.
14 and 15 detailed analysis of an ion beam propagating
through a neutralizing plasma background along a solenoidal
magnetic field has been performed for the regime of a weak
applied magnetic field satisfying �ce�2�b�pe, where �ce

and �pe are the electron cyclotron and plasma frequencies,
respectively, and �b=vb /c is the directed ion beam velocity
normalized to the speed of light c. In this paper, we extend
earlier studies of nonrelativistic beam neutralization to the
case where �ce�2�b�pe. An important difference between
the two regimes appears to be due to excitation of electro-
magnetic wave-field perturbations, which propagate oblique
to the beam axis for the case where the applied magnetic
field exceeds the threshold value corresponding to
�ce

cr =2�b�pe. Therefore, the slice approximation previously
used for the analysis of the case where �ce�2�b�pe in
Refs. 14 and 15, and not taking into account the effects of
coupling between the longitudinal and transverse dynamics

cannot, in general, be applied in the present studies, and
a different approach has to be developed. Note that the
threshold value of the magnetic field can be expressed as
Bc=2�b�np�cm−3� /1011�1/2 kG. For instance, for an ion
beam with �b�0.05 propagating through a background
plasma with density np�1011 cm−3, this corresponds to a
relatively weak magnetic field of 100 G.

In the present analysis, we consider a fast ion beam
pulse with velocity much greater than the Alfven velocity,
and therefore the beam ions cannot interact effectively
with ion Alfven wave excitations. Furthermore, we assume
a smooth beam density profile with a characteristic axial
length scale for density variation, lb, much greater than
the wavelength of electron plasma wave excitations,
lb�vb /�pe. Therefore, electrostatic electron plasma wave
excitations are also significantly suppressed.16,17 However,
if a sufficiently strong ambient magnetic field with
�ce�2�b�pe is present inside the neutralizing region, the ion
beam pulse can effectively interact with the electromagnetic
electron whistler branch of the plasma dispersion
relation.18,19 Therefore, in the present paper we analyze ex-
citation of the whistler branch by an ion beam pulse propa-
gating through a neutralizing plasma along a solenoidal mag-
netic field and assess its influence on the degrees of beam
charge neutralization and current neutralization, and the
transverse beam dynamics.

The fundamental problem of whistler wave-field pertur-
bations excited by a charged particle beam propagating in a
magnetized plasma has been extensively studied for several
decades, and various methods have been developed.19–24 Re-
cent interest in this problem has been motivated by possible
use of charged particle beams for space communications.
Propagating in the magnetized ionosphere or the magneto-
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sphere plasma, charged particle beams can excite whistler
wave-field perturbations, and therefore can be used as com-
pact on-board emitters in the very-low-frequency range, re-
placing large-apertures electromagnetic antennas.19–21 Ana-
lytical and numerical studies of whistler branch excitations
by a density-modulated electron beam propagating through a
background plasma along a uniform magnetic field, includ-
ing both linear and nonlinear effects have been reported in
Refs. 22–24. However, in those calculations the case of a
thin beam with rb�k�

−1 has been considered, and the effects
of the transverse beam structure have not been taken into
account. Here, rb is the characteristic beam radius and k� is
the perpendicular component of the whistler wave vector.
Note that in contrast with space-physics phenomena, where
the wavelength of the whistler waves is large compared to
the beam radius, for the parameters typical of neutralized
intense ion beam transport applications, the beam radius can
be comparable to the perpendicular wavelength. Further-
more, an axially continuous, density-modulated beam with
modulation period lm has been considered in Refs. 22–24,
and therefore a monochromatic wave excitation with fre-
quency �=vb / lm was obtained. Note that a finite-length ion
beam pulse with a bell-shaped �not modulated� axial density
profile used in intense beam transport applications can excite
a broad frequency spectrum with a characteristic frequency
��vb / lb and bandwidth ����. Therefore, in the present
analysis we consider excitation of the electromagnetic whis-
tler branch by a finite-length ion beam pulse propagating
through a background plasma along a solenoidal magnetic
field, taking into account the effects of the longitudinal and
transverse beam structures.

In the present paper we demonstrate that the total elec-
tromagnetic field excited by the ion beam pulse can be con-
veniently represented as the sum of two components: a local
field component, corresponding to the local polarization of
the background plasma, and rapidly decaying to zero outside
the beam pulse, and a wave field component that can extend
far outside the beam. It is then shown that in the regime
where �ce�2�b�pe the local-field component has the domi-
nant influence on the transverse beam dynamics. Moreover,
in this limit, a positive charge of the ion beam pulse becomes
overcompensated by the plasma electrons, resulting in an
enhanced transverse focusing of the beam ions. Note that for
the case where �ce�2�b�pe considered in Refs. 14 and 15,
the beam charge is underneutralized, and the radial electric
field has a defocusing effect. Furthermore, it is shown
that the local plasma response is changing from paramag-
netic for the �ce�2�b�pe case,14,15 to diamagnetic for the
�ce�2�b�pe case. The threshold value of the magnetic field
�ce

cr =2�b�pe, which separates these qualitatively different re-
gimes of ion beam interaction with the background plasma,
corresponds to the resonant excitation of a large-amplitude
wave-field component.22

It is important to point out that the effects of resonant
wave excitation can be utilized for diagnostic purposes. In-
deed, placing a pick-up loop outside the beam pulse and
varying the amplitude of the applied magnetic field, a
large-amplitude signal will be detected when the applied
magnetic field approaches the threshold value specified by

�ce
cr =2�b�pe. Therefore, it is expected that this scheme can

be utilized as a passive diagnostic tool to measure the beam
velocity or plasma density.

This paper is organized as follows. The theoretical
model and assumptions in the present analysis are described
in Sec. II. In Sec. III we consider the regime of resonant
wave excitation, present the asymptotic time-dependent so-
lution in the linear approximation, and estimate the satura-
tion amplitude due to the nonlinear response of the plasma
electrons. The analytical solutions for the electromagnetic
field are compared with the results of numerical particle-in-
cell �PIC� simulations in Sec. IV. Finally, in Sec. V a detailed
analysis of the local field excitations, including the effects of
enhanced beam self-focusing, is presented.

II. THEORETICAL MODEL

In this section we calculate the electromagnetic field ex-
citation generated by an ion beam pulse propagating through
a cold background plasma with a constant velocity, vb, along
a uniform magnetic field Bext=Bextẑ. The beam carries a cur-
rent jb=Zbevbnb�z−vbt ,x�, where Zb is the beam ion charge
state, −e is the electron charge, nb is the beam number den-
sity, and x and z are the transverse and longitudinal coordi-
nates, respectively. For simplicity in the analytical studies,
we consider here two-dimensional �2D� slab �x ,z� geometry,
and the results of numerical simulations in cylindrical �r ,z�
geometry are presented in Sec. IV. Provided the beam den-
sity is small compared to the plasma density �nb�np�, we
assume a linear �small-signal� plasma response and obtain
the following equation for the Fourier transforms of the per-
turbed electromagnetic field components E=�dkd�E�,k
�exp�−i�t+ ikxx+ ikzz� and B=�dkd�B�,k exp�−i�t+ ikxx
+ ikzz�:25

k2E�,k − k�k · E�,k� −
�2

c2 	J · E�,k =
4
i�

c2 j�,k. �1�

Here, 	J is the dielectric tensor describing linear response of
the cold plasma electrons25 with 	xx=	yy =1−�pe

2 / ��2−�ce
2 �,

	zz=1−�pe
2 /�2, and 	xy =−	yx= i�pe

2 �ce / ����2−�ce
2 ��, where

�pe= �4
e2np /me�1/2 is the plasma frequency, �ce

=eBext /mec is the electron cyclotron frequency, and the
plasma ion response is neglected provided ����ce�ci.

26

Here, �ci=eBext /mic is the ion cyclotron frequency, and me

and mi are the electron mass and ion mass, respectively. Fi-
nally, we neglected perturbations in the ion beam motion,
assuming that the time duration of beam-plasma interaction
is smaller than the characteristic time for the ion beam re-
sponse. The space-time Fourier transform of the beam cur-
rent is specified by j�,k=Zbevbnk�kx ,kz����−kzvb�, where
nk=�d�dxnb�x ,��exp�−ikxx− ikz��.

It is straightforward to show for this model of the beam
current that Eq. �1� yields a steady-state solution, in which
all quantities depend on z and t solely through the combina-
tion �=z−vbt. In what follows, we assume that the beam
pulse is sufficiently long, with rb� lb and ��vb / lb��pe.
Note that the latter condition implies that electrostatic elec-
tron plasma wave excitations are significantly sup-
pressed.16,17 Finally, in this section, for simplicity we assume
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that �ce��pe, and a general analysis for the case of an arbi-
trary ratio of �ce /�pe can be found in Appendix A. For
present purposes, it is particularly important to analyze the
x-component of the electric field perturbations, Ex, and the
y-component of the magnetic field perturbations, By, which
determine the transverse dynamics of the beam particles. Af-
ter some straightforward algebra we obtain the following
Fourier transforms of the transverse electromagnetic field
components:

eE�,k
x

me�pec
= − i

c3Zbkxk
2�ce

2

np�pe��pe
2 + c2k2�2

kz
2vb

2nk��� − kzvb�
�2 − �wh

2 �kx,kz�
, �2�

eB�,k
y

me�pec
= − i

�bZb�peckx

np��pe
2 + c2k2�

kz
2vb

2nk��� − kzvb�
�2 − �wh

2 �kx,kz�
, �3�

where use has been made of Faraday’s equation, �� /c�B�,k
=k�E, to obtain the perturbed magnetic field component.
Here, �b=vb /c, k2=kx

2+kz
2, and

�wh
2 �kx,kz� =

�ce
2 k2kz

2

�k2 + �pe
2 /c2�2 , �4�

is the dispersion relation for the electron whistler branch.
The electromagnetic field perturbations, Ex and By, can now
be obtained by applying inverse space-time Fourier trans-
forms to Eqs. �2� and �3�. Integration over the frequency �
readily gives

eEk
x

me�pec
= − i

c3Zbkxk
2�ce

2

np�pe��pe
2 + c2k2�2

kz
2vb

2nk exp�− ikzvt�
kz

2vb
2 − �wh

2 �kx,kz�
, �5�

eBk
y

me�pec
= − i

�Zb�peckx

np��pe
2 + c2k2�

kz
2vb

2nk exp�− ikzvt�
kz

2vb
2 − �wh

2 �kx,kz�
. �6�

It is evident that the onset of wave-field generation by the
beam pulse corresponds to existence of real solutions to

�wh
2 �kx,kz� = kz

2vb
2. �7�

Note that the condition in Eq. �7� is equivalent to the reso-
nance condition for Cherenkov radiation, namely, Vz

ph=vb,
where Vz

ph is the z-component of the whistler wave phase
velocity.

A. Properties of the excited whistler waves

It is straightforward to show that real solutions to Eq. �7�
exist, provided

� = �ce/2�b�pe � 1, �8�

as illustrated in Fig. 1�a�. For this case, the solutions
k2=kem,qs

2 correspond to the long-wavelength electromagnetic
part of the whistler branch, k=kem��pe /c, and the short-
wavelength quasielectrostatic part, k=kqs��pe /c �Fig. 1�a��.
In the limit where ��1 the solutions are approximately
given by

kqs �
2��pe

c
, kem �

�pe

2�c
. �9�

Note that for a long beam pulse with kz
−1� lb�kqs,em

−1 the
transverse wave vectors of the excited wave field are ap-
proximately given by kx	 kqs,em �see Fig. 1�b��.

The directions of the x-component of the group velocity
Vgx for the excited wave field are illustrated in Fig. 1�b�.
Note that the quasielectrostatic and the long-wavelength
electromagnetic whistler waves with the same signs of phase
velocity have opposite signs of group velocity, Vgx. Further-
more, it can be shown that the z-component of the group
velocity for the short-wavelength quasielectrostatic wave
field is smaller than the beam velocity. In contrast, the long-
wavelength electromagnetic wave field propagates in the
z-direction faster than the beam. Therefore, the long-
wavelength electromagnetic perturbations excited by the
beam tail can propagate along the beam and influence the
dynamics of the beam head. A schematic of the whistler
wave excitations is shown in Fig. 2.

B. Wave-field and local-field components
of the excited electromagnetic perturbations

Wave-field excitations for the case where ��1 are as-
sociated with the poles in Eqs. �5� and �6�, which appear in
the real space of the wave vector components �kx ,kz�. Note,
for the case of a long beam pulse, kz

−1� lb�kqs,em
−1 , that the

pole locations on the real kx-axis depend weakly on the value
of kz, kx� kem,qs�1−kz

2 /2kem,qs
2 �. It is therefore convenient

to carry out the inverse Fourier integration, first along the
kx-axis, and then along the kz-axis. To properly account for
the pole contributions, the integration over kx-space should
be carried out along the Landau contour, CL, as illustrated in
Fig. 3. Note that integration along the contour CL shows that
sufficiently far outside the beam only wave fields with a
positive �negative� x-component of group velocity propagate
in the region x�0 �x�0�.

To demonstrate this fact, as an illustrative example, we
consider the simple case where the spectrum of the beam
density is an analytical function in the complex kx-plane,
which satisfies nk exp�−
kxx
�→0 for large values of 
kx
.
Considering x�0, and closing the Landau contour through a
semicircle of an infinitely large radius lying in the upper-
plane �Figs. 3�a� and 3�b��, we readily obtain that the
wave field excitations correspond to contributions from the
poles at kx=−kem and kx=kqs for kz�0, and at kx=kem and
kx=−kqs for kz�0. Note that the group velocity of these
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FIG. 1. �Color online� Plots of solutions to Eq. �7� corresponding to the
wave vectors of the excited whistler wave field. �a� The absolute value of the
normalized z-component of the whistler wave phase velocity �solid curve� is
intersected by different values of the normalized beam velocity �b �dashed
lines�. �b� The circles on the plane �kx ,kz� illustrate the solutions to Eq. �7�.
For the case of a long beam pulse with lb�kqs,w

−1 , the wave vectors primarily
excited are illustrated by the short vertical bold lines. Red �thin� and blue
�bold� colors illustrate positive and negative signs, respectively, of the
x-component of the group velocity for the excited waves.
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waves is indeed directed away from the beam, i.e., Vgx�0
�see Fig. 1�b��. Finally, it should be pointed out that the
integration contours CL are different for the cases where
kz�0 and kz�0. Therefore, even for a symmetric longitudi-
nal beam density profile, the electromagnetic field perturba-
tions are not, in general, symmetric around the beam center,
implying oblique wave propagation.

For present purposes, it is convenient to represent the
integration along the contour CL for x�0 �x�0� as an
integral along a slightly shifted upward �downward� contour
C+ �C−� lying below �above� the poles of nk, plus �minus� the
residues of the relevant on-axis poles �Figs. 3�c� and 3�d��.
For a beam with a smooth radial profile it can be shown that
the contribution from the on-axis poles corresponds to the
wave-field components of the electromagnetic field perturba-
tion �Ex

W ,By
W� extending far outside the beam, and the inte-

grals along the paths C+ and C− correspond to the local-field
components �Ex

loc ,By
loc� that rapidly decay to zero outside the

beam. Assuming kz�kem,qs for a sufficiently long beam
pulse, we obtain the following approximate expressions for
the wave-field components of the electromagnetic field per-
turbation for x�0,

eBy
W

me�pec
=

2
�pe�bZb

cnp�kqs
2 − kem

2 �
�bem + bqs� , �10�

eEx
W

me�pec
=

2
Zb�ce
2

cnp�pe�kqs
2 − kem

2 �
�eem + eqs� . �11�

Here,

bqs,em =  �kqs,em
2 + �pe

2 /c2��
0

�

dkznk�kqs,em,kz�

�cos�kz� � kqs,em�1 − kz
2/2kqs,em

2 �x� , �12�

eqs,em =  kqs,em
2 �

0

�

dkznk�kqs,em,kz�

�cos�kz� � kqs,em�1 − kz
2/2kqs,em

2 �x� , �13�

are the electric and magnetic components corresponding to
the quasielectrostatic �with subscript “qs”� and the long-
wavelength electromagnetic �with subscript “em”� waves, re-
spectively, and �=z−vbt. Note that the correction term,
��= �kz

2 /2kem,qs�x, which we only retained in the phase of the
wave-field component, yields a curvature in the phase fronts,
and a corresponding decrease in the wave-field amplitude for
x� lb

2kem,qs. The local fields are given for x�0 by

eBy
loc

me�pec
= − i�

−�

�

dkze
ikz��

C+

dkxe
ikxxnk

�
�pe�Zbkx�kx

2 + �pe
2 /c2�

cnp�kx
2 − kem

2 ��kx
2 − kqs

2 �
, �14�

eEx
loc

me�pec
= − i�

−�

�

dkze
ikz��

C+

dkxe
ikxxnk

�
Zbkx

3�ce
2

cnp�pe�kx
2 − kem

2 ��kx
2 − kqs

2 �
. �15�

It should be noted that for the case where the beam den-
sity profile is specified by nb�x ,z−vbt�=nx�x�nz�z−vbt�, the
integration over the kz-space can be carried out indepen-
dently from the kx-space integration. Therefore, the axial de-
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FIG. 3. �Color online� Integration contours used for evaluation of the inte-
grals in Eqs. �5� and �6�. Frames �a� and �b� show Landau contours CL

corresponding to kz�0 and kz�0, respectively. Frames �c� and �d� illustrate
contours of integration equivalent to the ones shown in frames �a� and �b�,
respectively. Red �gray� and blue �black� colors are used to illustrate the
integration contours for x�0 and x�0, respectively.
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FIG. 2. Schematic of the whistler waves excited by the ion beam pulse. In
the beam frame of reference, the long-wavelength electromagnetic wave-
field propagates ahead of the beam pulse, and the short-wavelength
quasielectrostatic wave-field propagates toward the beam tail.
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pendence of the local fields is determined solely by the beam
density axial profile, which is �Eloc ,Bloc�=nz�z−vbt��E,B�x�.
In contrast, it is readily seen from Eqs. �10�–�13� that the
wave field propagates obliquely to the beam. This implies a
coupling between the transverse and longitudinal dynamics
of the system, and therefore limits the validity of the slice
approximation.

Features of the steady-state whistler wave excitation are
shown in Fig. 4 for the following illustrative parameters:
nb=nb0 exp�−r2 /rb

2− �z−vbt�2 / lb
2�, lb=10c /�pe �beam pulse

duration �b= lb /vb=30.3 /�pe�, vb=0.33c, nb0=0.05np,
np=2.4�1011 cm−3, and Bext=1600 G. It is readily seen for
a wide-aperture beam, rb=2.5c /�pe, that the long-
wavelength electromagnetic part of the whistler branch is
primarily excited �Fig. 4�a��, and the amplitude of the
quasielectrostatic wave field is exponentially small �see
Eq. �12��. In contrast, for the case of a thinner beam,
rb=0.5c /�pe, the short-wavelength quasielectrostatic waves
are primarily represented in the excited spectrum �Fig. 4�b��
due to the large excitation factor, �kqs

2 +�pe
2 /c2�, in front of

the integral in Eq. �12�. Note that for the parameters in this
illustrative example, �ce��pe, and therefore to obtain the
plots in Fig. 4, we used Eqs. �A1�–�A7�, which include
�ce /�pe correction terms.

C. Time evolution of the wave-field perturbations

It should be noted that the denominators in Eqs. �10� and
�11� can be expressed as

kqs
2 − kem

2 = 4���2 − 1�pe
2 /c2, �16�

and it readily follows that there is strong resonant wave ex-
citation for the case where the poles are merging, corre-
sponding to �=�ce /2��pe=1 and kqs=kem=�pe /c �see Fig.
1�a��. Indeed, it can be shown in the limit �=1 that the group
velocity of an excited wave packet becomes equal to the
beam velocity, i.e., Vgx=0, Vgz=vb. That is the wave packet

is moving together with the beam pulse, and can therefore be
amplified to very large amplitude �during a very long time
interval�, assuming a linear plasma response. The wave-field
intensity, however, will be saturated either by nonlinear pro-
cesses or due to dissipation �collisions�. Note that the local
fields specified by Eqs. �14� and �15� do not have singulari-
ties at �=1.

For the case where ��1, the wave-field amplitude
reaches a finite quasisteady-state limit with a characteristic
time scale of �s�min�rb /Vgx , lb / 
Vgz−vb
. This time interval
is required for an initial transient wave packet to propagate
sufficiently outside the beam pulse. For the excited wave
vectors specified by Eq. �7�, it can be shown that Vgx / �Vgz

−vb�=kx /kz. Therefore, for a sufficiently long beam pulse
with lb�kqs,em

−1 , the wave perturbations propagate primarily
in the transverse direction and leave the beam in the time
period �s�rb /Vgx. For the case where ��1 and rb�c /�pe,
making use of Eqs. �4� and �7�, we obtain �s�rb /Vgx

� lb /vb. That is, the time scale for achieving a quasisteady
state is of order the beam pulse duration, and is therefore
much longer than the plasma period, i.e.,

�s � lb/vb � 1/�pe. �17�

Note that this result is significantly different from the case
Bext=0, where the characteristic time to reach a quasisteady
state is of order of the plasma period.

D. Influence of the excited wave field on beam charge
neutralization and current neutralization

It is of particular interest for neutralized beam transport
applications to estimate the degrees of beam charge neutral-
ization and current neutralization associated with the excited
wave field. Here, we consider the case where ��1, and the
limit where ��1 and the analysis of the local-field compo-
nent is addressed in Sec. V. It is convenient to introduce
E0=4
nb0Zberb and B0=4
nb0Zbe�brb that represent, re-
spectively, the characteristic transverse self-electric field and

FIG. 4. �Color online� Plots of the steady-state amplitude of the transverse magnetic field perturbations By. The beam-plasma parameters correspond to Zb

=1, lb=10c /�pe, �b=0.33, and np=2.4�1011 cm−3. The applied magnetic field, Bext=1600 G, corresponds to �=�ce / �2�b�pe�=1.54. The frames show �a�
primarily excitation of long-wavelength electromagnetic waves by a wide-aperture ion beam with rb=2.5c /�pe and �b� primarily excitation of short-
wavelength quasielectrostatic waves by a thin beam with rb=0.5c /�pe. The information used in obtaining the plots is obtained from Eqs. �A1�–�A7�. The
normalization factor in frames �a� and �b� is given by B0=4
nb0Zbe�brb. The arrows schematically illustrate the direction of the wave packet group velocity.
Dashed lines correspond to the contour of constant beam density corresponding to the effective beam radius rb.
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self-magnetic field generated by an ion beam propagating in
vacuum. Here, nb0 and rb are the characteristic values of the
beam density and radius. The degrees of beam charge
neutralization and current neutralization can now be
effectively measured by Ex /E0 and By /B0. Considering,
for simplicity, a Gaussian beam density profile with
nk= �rblb /4
�nb0 exp�−rb

2kx
2 /4− lb

2kz
2 /4�, it follows from Eqs.

�10�–�13� that the degrees of beam charge neutralization and
current neutralization associated with the wave field excita-
tions are given by

By
W

B0
� �


max�c2kqs
2 /�pe

2 exp�− rb
2kqs

2 /4�,exp�− rb
2kem

2 /4�

4���2 − 1
,

�18�

Ex
W

E0
� �


�ce
2

�pe
2

max��c2kqs
2 /�pe

2 �exp�− rb
2kqs

2 /4�,�c2kem
2 /�pe

2 �exp�− rb
2kem

2 /4�

4���2 − 1
. �19�

It readily follows from Eqs. �18� and �19�, for the case where
rbkem /2�1 and ��1, that the beam current is not neutral-
ized, i.e., By

W /B0�1. The beam charge is, however, well
neutralized, i.e., Ex

W /E0�1, provided �ce��pe �this is due
to the factor �ce

2 /�pe
2 in Eq. �19��. For the case where

�ce��pe, the degree of charge neutralization decreases, giv-
ing Ex

W /E0�1 �see Appendix A�, which is consistent with
the analysis in Ref. 15.

III. RESONANT WAVE EXCITATION:
THE ASYMPTOTIC TIME-DEPENDENT SOLUTION

In the previous section, it was demonstrated for the criti-
cal case where �=1 that very-large-amplitude wave-field ex-
citations are predicted by the linear theory for a quasisteady-
state solution. This effect of large-amplitude wave-field
excitations in the limit of merging poles corresponding to
�=�ce /2��pe=1 and kqs=kem=�pe /c �so-called double pole
case� has been previously reported in Refs. 22 and 23 for the
case of an axially continuous and thin �rbk��1� electron
beam with a periodically modulated axial density profile. In
those calculations, weak dissipation �due to collisions�,22 or
nonlinear interaction between the beam electrons and the ex-
cited whistler waves,23 was assumed in order to estimate the
saturated amplitude of the electromagnetic field perturba-
tions. In the present analysis we obtain the asymptotic time-
dependent solution for the wave amplitude in the linear ap-
proximation. Furthermore, we discuss a possible mechanism
for saturation of the wave field intensity associated with the
nonlinear response of the background plasma electrons,
which can drive the system off resonance. Provided the beam
ions are sufficiently massive, the saturation determined by
this mechanism can occur before the nonlinear interaction
between the beam ions and the excited whistler waves be-
comes important.

To describe the time-evolution of the electromagnetic
field perturbation excited by the ion beam pulse, we solve
here an initial-value problem, making use of Laplace
transforms with respect to time. Note that the temporal
Fourier transform used in Sec. II yields only the steady-state
solution. In this section, we assume that the initial electro-
magnetic field is zero everywhere, and the beam current

�source� is instantaneously turned on at t=0, i.e.,
jb=Zbenb�z−vbt ,x�H�t�, where H�t� is the Heaviside step
function defined by H�t�=0 for t�0, and H�t�=1 for t�0.
Similar to Eq. �3�, we obtain that the space �Fourier�-time
�Laplace� transform of the perturbed transverse magnetic
field is given by

eB�,k
y

me�pec
= −

1

2


�pe�b
3c3Zbkz

2kx

np��pe
2 + c2k2�

�
nk

��2 − �wh
2 �kx,kz���� − kzvb�

. �20�

The inverse Laplace time transform performed in the com-
plex �-plane readily gives

eBk
y

me�pec
= − i

�pe�b
3c3Zbkz

2kxnk

np��pe
2 + c2k2� � exp�− ikzvbt�

kz
2vb

2 − �wh
2

+
exp�− i�wht�

2�wh��wh − kzvb�
+

exp�i�wht�
2�wh��wh + kzvb�� .

�21�

Note that the first term inside the brackets in Eq. �21� corre-
sponds to the steady-state solution �compare with Eq. �6��, in
which all quantities depend on t and z exclusively through
the combination �=z−vbt. The other two terms describe the
time evolution of the transient excitations. Assuming a suffi-
ciently long beam pulse, kz

−1� lb�kqs,em
−1 , for the double-pole

case corresponding to �=�ce /2�b�pe=1, Eq. �21� takes the
form

eBk
y

me�pec
= − i

�pe�b
3cZbkz

2kxnk

2�whkzvbnp

��−
exp�− i�wht� − exp�− ikzvbt�

�kx − �pe/c�2

+
exp�i�wht� − exp�− ikzvbt�

�kx + �pe/c�2 � . �22�

The right-hand side of Eq. �22� has two critical points on
the real kx-axis corresponding to kx= �pe /c. However, for
the case where �=1, the dispersion relation yields
�wh��pe /c ,kz�= kzvb. Furthermore, the x-component of
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the group velocity is equal to zero at the critical points,
Vgx�kx= �pe /c ,kz�=0. Therefore, the time-dependent solu-
tion in Eq. �22� is regular at the critical points, kx= �pe /c,
and the inverse Fourier integration in kx-space can be carried
out along the real axis. Note that at large times, �wht�1, the
contribution to the integral comes mainly from the regions
near the points of stationary phase, where ��wh /�kx�Vgx

=0, which coincide with the critical points kx= �pe /c. The
asymptotic time-dependant solution is then given by

eBkz

y

me�pec
= −

�pe
2 �bZbe−ikzvbt

c2np
nk��pe

c
,kz�

�sin��pe

c
x��

−�

�

d�kx

�
exp�i sgn�kz��wh� �kx

2t/2� − 1

�kx
2 , �23�

where Bkz

y =�−�
� dkxBk

yeikxx, �wh� = 
��2�wh /�kx
2�kx=�pe/c
=c3
kz


��b /�pe
2 , and it has been assumed that nk��pe /c ,kz�

=nk�−�pe /c ,kz�. Noting that �−�
� dx�exp�ix2�−1� /x2=�2


��i−1�, we obtain

eBy

me�pec
= �t

2�
�pevb
3/2Zb

np
sin��pe

c
x�Nz�z� , �24�

where

Nz = �
0

�

dkz
�kznk��pe

c
,kz��cos�kz�� + sin�kz��� , �25�

and a symmetric beam profile with nk��pe /c ,kz�
=nk��pe /c ,−kz� has also been assumed. Equations �24� and
�25� describe the asymptotic evolution of the wave field for
the double pole case corresponding to �=�ce /2��pe=1. It is
readily seen from Eq. �24� that at sufficiently large times,
�wh� t /rb

2�1, the amplitude of the magnetic field is given by

By � �vbt/lbZbenb�brb, �26�

provided the beam radius is of the order of or smaller than
the electron skin depth.

As the amplitude of the resonantly excited electromag-
netic field perturbation increases, nonlinear processes can
provide saturation of the energy transfer from the beam to
the wave field. Here, we consider a plausible mechanism to
describe saturation of the wave field intensity, in which the
enhanced electromagnetic field perturbation generated by the
ion beam pulse modifies properties of the whistler waves
and drives the system off resonance. Indeed, as the longitu-
dinal component of the magnetic field perturbation Bz in-
creases, the resonance condition becomes less accurate,
�NL=�ce

NL /2�b�pe�1, where �ce
NL=e�B0+Bz� /mec. Recalling

that the form of the resonant denominator is given by
1 / ����2−1�, the normalized magnitude of the perturbed
longitudinal magnetic field ����eBz /mec� / �2�b�pe� can be
estimated by ���Zb�nb /np��rb�pe /c���1+��2�−1�−1/2 pro-
vided the beam radius is of the order of or smaller than the
electron skin depth �see Eq. �B5��. It now follows that the
wave-field intensity saturates at the approximate level

�� � Zb
2/3�nb/np�2/3�rb�pe/c�2/3. �27�

For the case of low beam density, nb�np, this amplitude of
the electromagnetic field perturbation is significantly higher
compared to the case of nonresonant excitation, ��1, where
the normalized steady-state amplitude is proportional to
nb /np. Finally, we emphasize that although the mechanism
considered for the wave-field intensity saturation seems plau-
sible, further detailed analytical and numerical studies are
required to validate it.

The resonant excitation of whistler waves has been ob-
served in numerical PIC simulations performed using the 2D
slab �x ,z� version of the LSP code27 taking into account
electromagnetic effects. As an illustrative example, we
consider a Gaussian ion beam pulse, nb=0.05np exp�−r2 /rb

2

− �z−vbt�2 / lb
2�, with effective beam radius rb=0.92c /�pe, and

beam pulse half length, lb=9.2c /�pe �beam pulse duration
�b= lb /vb=27.8 /�pe�, propagating with velocity vb=0.33c
through a background plasma with density, np=2.4
�1011 cm−3. In the numerical simulations, the ion beam is
injected through the lower boundary of the simulation do-
main into an unperturbed magnetized plasma, and it propa-
gates in the z-direction exciting electromagnetic field pertur-
bations. Figure 5 shows the results of the numerical
simulations for the time evolution of the maximum value of
the perturbed transverse magnetic field By. Note that for
the parameters in this illustrative example, �ce��pe and
�b=0.33, and therefore a generalized analysis for arbitrary
value of �ce /�pe should be carried out in order to estimate
corrections to the resonance condition. The analysis shows
�see Appendix A� that the resonant excitation of the wave
field should occur at �̃=�ce�1−�b

2� / �2�b�pe�=1.14 It is
readily seen from Fig. 5 that as the magnitude of the applied
uniform longitudinal magnetic field, Bext, approaches the
critical value corresponding to �̃=1, the saturation amplitude
of the perturbed magnetic field increases, as well as the time
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FIG. 5. Time evolution of the maximum value of the normalized perturbed
transverse magnetic field plotted for different vales of the applied magnetic
field. The beam-plasma parameters correspond to Zb=1, rb=0.92c /�pe,
lb=9.2c /�pe, �b=0.33, and np=2.4�1011 cm−3. The applied magnetic field
corresponds to �̃=1 �solid curve�, �̃=1.2 �dashed curve�, and �̃=1.37 �dot-
ted curve�. The results are obtained using the 2D �x ,z� version of the LSP

code.
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interval required to achieve a quasisteady state. Note that the
perturbed transverse magnetic field shown in Fig. 5 is nor-
malized to the magnetic self-field of an unneutralized beam,
B0=4
nb0Zbe�brb. It is evident, for the quasisteady-state re-
gime, that the beam current is unneutralized, By �B0, which
is consistent with the analytical analysis performed in Sec. II.

Finally, it should be noted that the effect of resonant
large-amplitude wave field excitations can be utilized for di-
agnostic purposes in experiments where an ion beam pulse
propagates through a background plasma along an applied
solenoidal magnetic field.3,7,8 Indeed, measuring the per-
turbed azimuthal magnetic field, for instance, in the vicinity
of the chamber wall, it can be expected to obtain the follow-
ing dependence on the value of the applied magnetic field.
First, at low values of the applied magnetic field,
�=�ce /2�b�pe�1, the wave-field component of the electro-
magnetic field perturbation is not excited, and the excited
signal is exponentially small. As the magnetic field increases,
and the threshold value of �=�ce /2�b�pe=1 is reached, a
large-amplitude signal corresponding to resonant wave exci-
tation will be detected. Finally, further increase in the mag-
nitude of the applied magnetic field, �=�ce /2�b�pe�1, will
lead to a decrease in the amplitude of the excited signal.
Provided the directed beam velocity is known, this diagnos-
tic can be used, for instance, for passive measurements of the
background plasma density. Indeed, determining the thresh-
old magnitude of the applied magnetic field, Bc, from the

experimental data, the plasma density can be readily ob-
tained from �pe=�ce�Bc� /2�b.

IV. COMPARISON OF ANALYTICAL THEORY
WITH NUMERICAL SIMULATIONS

In this section we present the results of the numerical
simulations performed with the PIC code LSP and compare it
with the analytical solutions described in Sec. II. Figure 6�a�
shows the results obtained with the 2D slab �x ,z� version of
the code for the amplitude of the y-component of the per-
turbed magnetic field, when a quasisteady state is reached.
The corresponding analytical solution �Eqs. �A1�–�A7�� is
shown in Fig. 6�b�. The following parameters have been
used for this illustrative example: nb=0.05np exp�−r2 /rb

2

− �z−vbt�2 / lb
2�, rb=0.92c /�pe, lb=10rb �beam pulse duration

�b= lb /vb=27.8 /�pe�, vb=0.33c, np=2.4�1011 cm−3, and
Bext=1600 G. It is readily seen from Figs. 6�a� and 6�b� that
the results of the numerical simulations and analytical theory
are found to be in very good agreement. Indeed, the charac-
teristic amplitude of the electromagnetic field perturbation,
wavelength, angle of the propagation, etc., are quite similar.

In addition, to verify the approximate analytical solution
specified by Eqs. �A1�–�A7�, we first solved Eq. �1� for ar-
bitrary values of � /�ce, � /�pe, and �pe /�ce, and then nu-
merically calculated the inverse fast Fourier transforms
�FFTs�. Note that in the regime where a wave field is excited,

FIG. 6. �Color online� Plots of the steady-state amplitude of the transverse magnetic field perturbation By. The beam-plasma parameters correspond to Zb

=1, rb=0.92c /�pe, lb=10rb, �b=0.33, and np=2.4�1011 cm−3. The applied magnetic field, Bext=1600 G, corresponds to �=�ce / �2�b�pe�=1.54. The frames
correspond to �a� results of numerical simulations obtained using the �x ,z� slab version of the LSP code, �b� the analytical solution given by Eqs. �A1�–�A7�,
�c� numerical calculation of FFTs, assuming weak collisions �=0.005 /�b, and �d� the results of numerical simulations obtained using the �r ,z� cylindrical
version of the LSP code. The dashed lines correspond to contours of constant beam density corresponding to the effective beam radius rb.
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the Fourier transforms of the perturbed electromagnetic
fields contain singularities in real �kx ,kz�-space. Therefore,
the numerical integration of the FFT performed along the
real kx- and kz-axes would diverge. To remove the singulari-
ties from the real axis, weak collisions have been assumed
for the plasma electron response. Correspondingly, the com-
ponents of the dielectric tensor, 	J, should be modified ac-
cording to25 	xx=	yy =1−�pe

2 ��+ i�� / �����+ i��2−�ce
2 �,

	zz=1−�pe
2 / ����+ i���, and 	xy =−	yx= i�pe

2 �ce / �����+ i��2

−�ce
2 �, where � is the effective collision frequency. In the

limit of zero collision frequency, the numerical FFT calcula-
tion should yield the analytical solutions given in Eqs.
�A1�–�A7�. The results obtained in the numerical FFT calcu-
lation for the case of weak dissipation, �=0.005 /�b, demon-
strate very good agreement with the analytical solution
�compare Fig. 6�b� with Fig. 6�c��.

It is of particular interest to compare the results obtained
for the case of �x ,z� slab geometry �Figs. 6�a�–6�c�� to the
case of cylindrical �r ,z� geometry. The results of the numeri-
cal simulation obtained using the 2D �r ,z� cylindrical ver-
sion of the LSP code for the same system parameters are
shown in Fig. 6�d�. Results of the �r ,z� LSP simulations dem-
onstrate similar wavelength and propagation angle for the
excited wave field. However, the amplitude of the perturbed
electromagnetic field is smaller. Furthermore, it decays more
rapidly outside the beam pulse, compared to the case of the
slab beam pulse �compare Fig. 6�a� with Fig. 6�d��. Note for
an infinitely long beam that the amplitude of an excited elec-
tromagnetic field decreases as 1 /r for the case of cylindrical
geometry, and does not decrease for the case of 2D slab
geometry. This can provide a plausible explanation of the
difference in the wave-field amplitude observed in cylindri-
cal and slab geometries.

V. SELF-FOCUSING OF AN INTENSE ION
BEAM PULSE

In this section, making use of Eqs. �10�–�15�, we calcu-
late the transverse component of the Lorentz force,
Fx=ZbeEx−Zbe�bBy, acting on the beam particles. In Sec. II
it has been shown that the excited wave field perturbations
propagate oblique to the beam with characteristic longitudi-
nal wave number kz� lb

−1. Therefore, the contribution of the
wave-field component to the total Lorentz force can have
opposite signs for the beam head and the beam tail. That is,
it produces a focusing effect in the beam head and a defo-
cusing effect in the beam tail, or vice versa. In contrast, the
longitudinal profile of the local-field amplitude is the same as
the longitudinal beam density profile �see Sec. II�. Therefore,
the local fields provide a focusing �or defocusing� effect over
the entire length of the ion beam pulse. It is therefore impor-
tant, in practical applications involving control over the
beam aperture, to identify the parameter regimes where the
local component of the electromagnetic field perturbation has
the dominant influence on the beam transverse dynamics.

A. Regimes of dominant influence of local fields
on the beam transverse dynamics

It has been demonstrated in Sec. II for the critical
case where �=1 that a large-amplitude wave field is
excited. Here, we consider the case where ��1
��ce�2�b�pe�. Furthermore, we assume rb�kqs

−1, or equiva-
lently, rb�c / �2��pe� in the limit where ��1. This implies
an exponentially small level of the short-wavelength,
quasielectrostatic wave excitations for the case of a smooth
radial beam density profile. Making use of Eqs. �10�–�13�, it
is straightforward to show for the case where rb�kqs

−1 that the
contribution of the wave-field component of the electromag-
netic field perturbation to the transverse Lorentz force is
given approximately by

Fx
W = Zbe�Ex

W − �bBy
W�

	 2
Zb
2meVb

2

R

1 − �4�2 − 1�kem
2 c2/�pe

2

4���2 − 1
, �28�

where

1

R
=

�pe
2

c2

1

np
�

0

�

dkznk�kem,kz� cos�kz� + kemx� . �29�

Recall, for ��1, that the characteristic wave vector for the
excited long-wavelength electromagnetic wave field is given
by kem=�pe /2�c, and therefore the wave field contribution
to the Lorentz force vanishes for ��1. To obtain the local
field contribution, it is convenient to represent the local fields
specified by Eqs. �14� and �15� in the following form:

e�bBy
loc = − iZbmevb

2� dk
kx�kx

2 + �pe
2 /c2�nkeikxx+ikz�

4���2 − 1np

�� 1

kx
2 − kqs

2 −
1

kx
2 − kem

2 � , �30�

eEx
loc = − iZbmevb

2� dk
�kx

3nkeikxx+ikz�

��2 − 1np

�� 1

kx
2 − kqs

2 −
1

kx
2 − kem

2 � . �31�

For the case where

� � 1 and rb � kqs
−1 =

c

2��pe
, �32�

we can neglect by the first terms inside the brackets in Eqs.
�30� and �31�, and after some straightforward algebra we
obtain that the local field contribution, which constitutes
most of the transverse Lorentz force, is given by

Fx 	 ZbeEx
loc − Zbe�bBy

loc = Zb
2mevb

2 1

np

dnb

dx
. �33�

The analysis in Appendix A, performed for an arbitrary
ratio of �ce /�pe, shows that for the case of a nonrelativistic
ion beam the Lorentz force is still given by Eq. �33�,
provided
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� � 1 and rb � k̃qs
−1 = �1 + �ce

2 /�pe
2 �1/2 c

2��pe
. �34�

Note that the transverse component of the Lorentz force �Eq.
�33�� is proportional to the gradient of the beam density.
Therefore, for the case of a bell-shaped beam density profile,
self-focusing of the beam occurs. Furthermore, it is interest-
ing to note that an annular beam will not pinch to the axis
provided the beam dynamics is governed by the force in Eq.
�33�. However, the outer beam radius will decrease and the
inner beam radius will increase, resulting in a decrease in the
thickness of the annulus and an increase in the beam density.

Although the total influence of the magnetic and electric
field components, By

W and Ex
W, of the wave field perturbation

results in a destructive interference in estimating the trans-
verse Lorentz force �see Eq. �28��, it is of particular interest
to estimate the separate contribution of the wave field com-
ponent to the Lorentz force, and compare it with the contri-
bution of the local field component. For illustrative purposes,
we consider here a Gaussian beam density profile with
nk= �rblb /4
�nb0 exp�−rb

2kx
2 /4− lb

2kz
2 /4�. Making use of Eqs.

�10�–�13�, it is straightforward to show that the contribution
of the wave field component can be estimated by

eEx
W � e�bBy

W � Zbmevb
2�pe

2 rb

�2c2

nb0

np
exp�−

rb
2kem

2

4
� , �35�

provided the conditions in Eq. �32� are satisfied. Similar ex-
pressions can be obtained for the local fields using Eqs. �30�
and �31�, i.e.,

eEx
loc � Zbmevb

2 nb0

rbnp

1

max�1,kem
2 rb

2�
, �36�

e�bBy
loc � Zbmevb

2 nb0

�2rbnp

max�1,�pe
2 rb

2/c2�
max�1,kem

2 rb
2�

. �37�

It readily follows from Eqs. �35�–�37�, for the case where the
beam radius is small compared to the wavelength of the
long-wavelength electromagnetic waves, rbkem�1, that the
local electric field has the dominant contribution to the trans-
verse component of the Lorentz force. As the beam radius
increases and becomes of order the electromagnetic wave-
field wavelength, rbkem�1, the separate contributions from
all components of the perturbed electromagnetic field be-
come of the same order, i.e., Ex

loc�Ex
W��bBx

loc��bBx
W. With

a further increase in the beam radius, rbkem�1, the local
magnetic field contribution becomes dominant, and both the
quasielectrostatic and long-wavelength electromagnetic
wave-field components are excited to exponentially small
levels for the case of a smooth beam density profile.

The time evolution of the electromagnetic field perturba-
tion for the case where ��1 and kqs

−1�rb�kem
−1, which cor-

responds to a dominant influence of the local self-electric
field, has been studied using the LSP simulation code. Figure
7 shows a plot of the perturbed transverse self-electric field
at the simulation time ts=54 ns. The beam-plasma param-
eters considered for this illustrative example correspond to
nb=0.13np exp�−r2 /rb

2− �z−vbt�2 / lb
2�, np=1010 cm−3, Zb=1,

rb=0.55c /�pe, �b=37.5 /�pe, �b=0.05, Bext=300 G, and

�=�ce /2�b�pe=9.35. The wave structure in front of the
beam pulse corresponds to a transient wave-field perturba-
tions associated with the initial beam penetration into the
plasma through the boundary at z=0. Note that these tran-
sient perturbations do not interact with the ion beam pulse
effectively, because they do not satisfy the Cherenkov crite-
ria in Eq. �7�. Therefore, the energy content in the corre-
sponding wave field is attributed only to the initial beam
penetration into the plasma, and is not related to the
beam energy later in time. As the transient wave-field pertur-
bations leave the beam on the characteristic time scale
�s�min�rb /Vgx , lb / 
Vgz−vb
 �see Sec. II�, the local compo-
nent of the self-electric field exhibits the dominant influence
on the ion beam transverse dynamics, as evident from Fig. 7.
The intensity of the excited wave field satisfying the condi-
tion in Eq. �7� is negligible, which is consistent with the
analytical calculations performed in this section.

B. Enhanced ion beam self-focusing

In Sec. V A, it was demonstrated for the case where
�=�ce /�b�pe�1 and rb�c / �2��pe� that the local fields
have the dominant influence on the transverse dynamics of
the ion beam particles. In this regime, focusing is provided
over the entire length of the beam pulse and the correspond-
ing self-focusing force acting on the beam ions is specified
by Eq. �33�. It is of particular interest to compare this self-
focusing force to the self-pinching force acting on the ion
beam particles for the case where the ion beam pulse propa-
gates through an unmagnetized plasma, i.e., Bext=0. Indeed,
even for this simple case, the beam charge is typically better
neutralized than the beam current, and the self-pinching
force is produced by the net self-magnetic field.28 This self-
pinching can be utilized for a variety of applications, includ-
ing self-pinched ion beam transport29 and heavy ion beam
focusing.30 Note that for the case where Bext=0, the beam

FIG. 7. �Color online� Plot of the perturbed transverse self-electric field
corresponding to ts=54 ns. The system parameters correspond to Zb=1, rb

=0.55c /�pe, �b=37.5 /�pe, �b=0.05, Bext=300 G, and �=�ce /2�b�pe

=9.35. The results are obtained using the 2D �x ,z� version of the LSP code.
The dashed curve corresponds to the contour of constant beam density cor-
responding to the effective beam radius rb.
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current is almost unneutralized in the limit where the beam
radius is small compared to the electron skin depth,
rb�c /�pe. Therefore, the self-pinching effect is a maximum
in this regime.

For the case where rb�c /�pe, the ratio of the collective
self-focusing force in the presence of an applied magnetic
field �Eq. �33�� to the self-pinching force, F0, in the limit
Bext=0 case, can be estimated as Fx /F0��c /rb�pe�2�1.31

That is, the self-focusing of an ion beam pulse propagating
through a neutralizing plasma can be significantly enhanced
by the application of a solenoidal magnetic field satisfying
�=�ce /2�b�pe�1. Here, we emphasize again that the
threshold value �cr=1 typically corresponds to a weak
magnetic field �see Introduction�. The condition rb�c /�pe

can be rewritten in terms of the beam current Ib as
Ib�4.25�b�nb /np� kA. Also, note that for a typical ion beam
injector aperture of the order of 1 cm, the beam radius
��1 cm� is small compared to the electron skin depth pro-
vided the beam and plasma density are in the range of
nb�np�2.8�1011 / �rb�cm��2 cm−3, which are typical pa-
rameters for several beam transport applications.3,7,8 There-
fore, this self-focusing enhancement can be of considerable
practical importance.

As a practical example, here we consider parameters
characteristic of the present Neutralized Drift Compression
Experiment �NDCX-I� �Ref. 7� and its future upgrade
NDCX-II,8 which are designed to study the energy deposi-
tion from the intense ion beam onto a target. The experi-
ments involve neutralized compression of an intense ion
beam pulse with radius rb�1 cm as it propagates through a
long drift section with length Ld�200 cm filled with a back-
ground plasma with density np�1011 cm−3. As it exits the
drift section, the beam passes through a strong magnetic lens
with magnetic field Bs=8 T, and length Ls�10 cm, which
provides additional transverse focusing. For the currently op-
erating NDCX-I experiment, typical beam parameters corre-
spond to �b

I =0.004, mi
I=39 a.u., and Zb

I =1. The proposed
NDCX-II experiment is aimed at operating at higher beam
energies: �b

II=0.032, mi
II=7 a.u., and Zb

II=1. The corre-
sponding values of the critical magnetic field are given by
Bc

I =65 G and Bc
II=8 G, for NDCX-I and NDCX-II param-

eters, respectively. The fringe magnetic field of the strong
magnetic lens can penetrate deeply into the drift section at a
magnitude much larger than Bc

I,II, thus providing conditions
for enhanced self-focusing for both NDCX-I and NDCX-II.
Moreover, the integrated effect of the beam self-focusing in-
side the drift section filled with the background plasma can
become comparable to the focusing effect of the strong
magnetic lens. Introducing the dimensionless parameters
�=FsfLd /FsLs, where Fs�mb�cb

2 rb /4 is the magnetic focus-
ing force acting on the beam ions inside the lens, and
Fsf �mevb

2 /rb is the self-focusing force �nb�ne is assumed�,
we readily obtain �I=0.04 and �II=0.5 for the parameters
characteristic of NDCX-I and NDCX-II respectively. Here,
mb and �cb are the ion beam mass and cyclotron frequency,
respectively. Therefore, the plasma-induced collective focus-
ing effect in a several hundred gauss magnetic field can be-

come comparable to the focusing effect of a strong 8 T final
focus solenoid for the design parameters characteristic of
NDCX-II.

It should be noted that Eq. �33�, along with the condi-
tions in Eq. �34�, has been obtained previously in Ref. 31.
The analysis in Ref. 31 was performed for the case of cylin-
drical geometry and assumed the slice approximation, which
describes very well the local fields, and is of limited validity
for the case where a strongly pronounced wave field pertur-
bation is excited �see Sec. II�. Note that in this work we
demonstrated the dominant influence of the local fields for
the case where ��1 and rbkqs

−1�1, thus validating the as-
sumptions used in the analysis in Ref. 31.

In addition, in the present work, the enhancement of the
self-focusing force in the presence of a weak applied mag-
netic field has been observed in electromagnetic PIC simula-
tions performed using the 2D �x ,z� slice version of the LSP

code. As an illustrative example, we consider a Gaussian ion
beam pulse, nb=0.13np exp�−r2 /rb

2− �z−vbt�2 / lb
2�, with effec-

tive beam radius, rb=0.55c /�pe, and beam pulse half-length,
lb=1.875c /�pe �beam pulse duration �b=37.5 /�pe�, propa-
gating with velocity vb=0.05c through a background plasma
with density np=1010 cm−3. The results of the numerical
simulations shown in Fig. 8 demonstrate the significant �ap-
proximately ten times� enhancement of the transverse com-
ponent of the Lorentz force due to an applied magnetic field
of Bext=300 G. Figure 8 shows the total transverse focusing
force �i.e., the sum of the magnetic and electric component
of the Lorentz force� acting on the beam ions in the presence
of an applied magnetic field �green triangles, blue circles,
and pink squares�, and for the case where an external mag-
netic field is not applied �purple stars�. The units of the elec-
tric field, V/cm, are chosen for practical representation of its
numerical value. Note that the results of the numerical simu-
lations are found to be in very good agreement with the

eZ
F

b

r (V/cm)
nb

-60

-40

-20

0
0 2 4 6r (cm)

FIG. 8. �Color online� Radial dependence of the normalized focusing force
at the beam center. The results of the numerical simulations correspond to
Bext=300 G and �=�ce /2�b�pe=9.35 �green triangles�, and �ce=0 �purple
stars�. The analytical results in Eq. �32�, are shown by the blue circles; the
pink squares demonstrate the analytical predictions obtained by performing
integration in Eqs. �A1�–�A7�. The beam-plasma parameters correspond to
Zb=1, rb=0.55c /�pe, �b=37.5 /�pe, �b=0.05, and np=1010 cm−3. The black
curve corresponds to the radial beam density profile.
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approximate analytical solution given by Eq. �33� �blue
circles�, and with the more accurate analytical solutions
given by Eqs. �A1�–�A7� �pink squares�.

C. Properties of the local plasma response

As demonstrated above, the local component of the self-
electric field provides the dominant contribution to the trans-
verse Lorentz force for the case where �=�ce /2�b�pe�1
and kqs

−1�rb�kem
−1 �or equivalently, c /2��pe�rb�2�c /�pe�.

From Eq. �33� it now readily follows that

ZbeEx 	 Zb
2mevb

2 1

np

dnb

dx
, �38�

and therefore, for the case of a bell-shaped beam density
profile, the transverse electric self-field produces a focusing
effect on the ion beam pulse. This implies that a positive
charge of the ion beam pulse becomes overcompensated by
the background plasma electrons.31 In the same parameter
regime, the z-component of the magnetic field perturbation is
specified by �see Appendix B�

eBz
loc

me�pec
	 −

Zb�b
2�pe

�cenp
nb�x,z� , �39�

indicating a diamagnetic plasma response.
It is interesting to note that a defocusing self-electric

field and a paramagnetic plasma response was found for the
case where ��1.14,15 This means that the qualitatively dif-
ferent local plasma responses for the cases where ��1 and
��1 are separated by the critical case, corresponding to
resonant excitation of a large-amplitude wave-field perturba-
tion.

The analytical calculation demonstrating the dramatic
change in the local plasma response with an increase
in an applied magnetic field has also been verified by
the results of 2D �x ,z� LSP simulations �Fig. 9�. The param-
eters chosen for the illustrative example in Fig. 9 correspond
to nb=0.13np exp�−r2 /rb

2− �z−vbt�2 / lb
2�, rb=0.55c /�pe, lb

=1.875c /�pe, vb=0.05c, and np=1010 cm−3. One can readily
see that the paramagnetic plasma response �Fig. 9�b�� and the
defocusing effect of the transverse self-electric field �Fig.
9�a�� for the case where �=0.78 change to a diamagnetic
plasma response �Fig. 9�d�� and a focusing effect of the self-
electric field �Fig. 9�c�� for �=9.35. Note that the longitudi-
nal oscillations in Fig. 9�a� are an artifact of the numerical
code, and a smooth longitudinal dependence can be obtained
by increasing the space-time resolution along with the num-
ber of macroparticles. Figures 9�e� and 9�f� show the ap-
proximate analytical solutions for the transverse component
of the electric field �Eq. �38��, and the longitudinal compo-
nent of the magnetic field �Eq. �B4��, respectively. Finally,
note that the magnitude of the transverse electric field per-
turbation is significantly increased by an increase in the ap-
plied magnetic field �compare Figs. 9�a� and 9�c��. This
strong transverse electric field provides the enhanced ion
beam focusing, as discussed above.

VI. CONCLUSIONS

In the present paper, the electromagnetic field perturba-
tion excited by a long ion beam pulse propagating through a
neutralizing background plasma along a solenoidal magnetic
field was studied analytically and by means of numerical
simulations using the electromagnetic PIC code LSP. It was
demonstrated that the total electromagnetic field perturbation
excited by an ion beam pulse with a smooth radial density
profile can be conveniently represented as the sum of a local-
field component, rapidly decaying to zero outside the beam
pulse, and a wave-field component that can extend far
outside the beam. The wave field is represented by a long-
wavelength electromagnetic component with 
kx
=kem

��pe /c, and a short-wavelength quasielectrostatic compo-
nent with 
kx
=kqs��pe /c. Note that the longitudinal com-
ponent of the electromagnetic wave group velocity is greater
than the beam velocity. Therefore, the long-wavelength elec-
tromagnetic perturbations excited by the tail of the beam
pulse can propagate along the beam and influence the dy-
namics of the beam head. The system reaches a quasisteady
state when the wave packet of the initial transient excitation
propagates sufficiently far outside the beam. It was found,
for a sufficiently long ion beam pulse, that the time scale for
achieving a quasisteady state can be of order of the beam
pulse duration, and is therefore much longer than the inverse
plasma frequency. This result is significantly different from
the case Bext=0, where the characteristic time to reach a
steady state is of the order of the plasma period.

It was also shown that the wave-field excitations propa-
gate obliquely to the beam with a characteristic wavelength
of kz�1 / lb. Therefore, their contributions to the transverse
component of the Lorentz force can have opposite signs for
the beam head and the beam tail. In contrast, the longitudinal
profile of the local-field amplitude is the same as the longi-
tudinal beam density profile. Therefore, the transverse local
fields have the same sign over the entire length of the ion
beam pulse. It is therefore important, in practical applica-
tions involving control over the beam aperture, to identify
the parameter regimes where the local component of the
electromagnetic field perturbation has the dominant influence
on the beam transverse dynamics.

In this paper, it was also demonstrated, in the regime
where �ce�2�b�pe and rbkqs�1, that the local-field compo-
nent primarily determines the transverse dynamics of the
beam particles, and the wave fields produce a negligible
transverse force. Moreover, a positive charge of the ion beam
pulse becomes overcompensated by the plasma electrons,
and the associated strong transverse-focusing self-electric
field has the dominant influence on the beam ions, compared
to the magnetic field, provided kqs

−1�rb�kem
−1. It was also

shown, for the case where the beam radius is small compared
to the electron skin depth, that the self-focusing force is sig-
nificantly enhanced compared to the self-focusing force act-
ing on the beam particles in the absence of an applied mag-
netic field. In addition, the local diamagnetic plasma
response is observed in the numerical simulations and is also
predicted analytically for �ce�2�b�pe. Note that these re-
sults differ significantly from the case �ce�2�b�pe, where
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the transverse electric field is defocusing, and the plasma
response is paramagnetic. The qualitatively different local
plasma responses are separated by the critical field case
where �ce

cr =2�b�pe, corresponding to the resonant excitation
of large-amplitude wave-field perturbations. In the present
analysis, the asymptotic time-dependent solution was ob-
tained for this critical case, and the saturation intensity of the
wave-field perturbations, determined from the nonlinear re-
sponse of the background plasma electrons, was estimated.
In addition, a plausible application of the resonant wave ex-
citation effect for diagnostic purposes was discussed.

Finally, we emphasize that the effects of an applied so-
lenoidal magnetic field on neutralized ion beam transport

described in this paper for the case of �ce�2�b�pe can be of
particular importance for the presently operating NDCX-I
�Ref. 7� and its future upgrade NDCX-II.8 The design of the
NDCX facilities first involves the neutralized drift compres-
sion of the ion beam pulse, and then additional transverse
focusing on the target plane by a strong �several tesla�
final-focus solenoid. The threshold magnetic field in the in-
equality �ce�2�b�pe corresponds to a relatively weak mag-
netic field of the order of 10 G �for NDCX-I� and 100 G �for
NDCX-II�. Therefore, the magnetic fringe fields of the final-
focus solenoid above this value can penetrate deep into the
drift section. In particular, these fringe fields provide condi-
tions for enhanced beam self-focusing, which can have a

FIG. 9. �Color online� Plots of the transverse self-electric field �left� and longitudinal self-magnetic field �right� of an ion beam pulse with Zb=1,
rb=0.55c /�pe, lb=1.875c /�pe, and vb=0.05c propagating through a background plasma with np=1010 cm−3 along a solenoidal magnetic field. Frames �a� and
�b� correspond to the results of 2D �x ,z� LSP simulations for Bext=25 G. Frames �c� and �d� correspond to the results of 2D �x ,z� LSP simulations for
Bext=300 G. Frames �e� and �f� correspond to the approximate analytical solutions given by Eqs. �38� and �B4�, respectively. Note the significantly different
local plasma responses between the cases where �=0.78 �frames �a� and �b�� and �=9.35 �frames �c� and �d��. Dashed lines correspond to contours of constant
beam density corresponding to the effective beam radius rb.
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significant influence on the transverse beam dynamics for the
parameters characteristic of NDCX-II.
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APPENDIX A: ELECTROMAGNETIC FIELD
PERTURBATIONS FOR THE CASE OF ARBITRARY
RATIO OF �ce /�pe

Equations �10�–�15� can be generalized to the case of an
arbitrary ratio of �ce /�pe. Assuming ��vb / lb��pe ,�ce and

lb�rb , k̃em,qs
−1 , after some straightforward algebra one can

show that the electromagnetic field perturbations for

0�x� lb
2k̃em,qs are given by

eBy
W

me�pec
=

2
�pe�bZb

cnp�k̃qs
2 − k̃em

2 �
�bem + bqs� , �A1�

eEx
W

me�pec
=

2
Zb�ce
2

cnp�pe�k̃qs
2 − k̃em

2 �
�eem + eqs� , �A2�

bqs,em =  �k̃qs,em
2 +

�pe
2

c2�1 + �ce
2 /�pe

2 �
�

��
0

�

dkznk�k̃qs,em,kz�cos�kz� � k̃qs,emx� , �A3�

eqs,em =  �k̃qs,em
2 /�1 + �ce

2 /�pe
2 ��

��
0

�

dkznk�k̃qs,em,kz�cos�kz� � k̃qs,emx� , �A4�

eBy
loc

me�pec
= − i�

−�

�

dkze
ikz��

C+

dkxe
ikxxnk

�
�pe�bZbkx

cnp�kx
2 − k̃em

2 ��kx
2 − k̃qs

2 �
�kx

2 +
�pe

2 /c2

1 + �ce
2 /�pe

2 � ,

�A5�

eEx
loc

me�pec
= − i�

−�

�

dkze
ikz��

C+

dkxe
ikxxnk

�
Zbkx

3�ce
2 /�1 + �ce

2 /�pe
2 �

cnp�pe�kx
2 − k̃em

2 ��kx
2 − k̃qs

2 �
. �A6�

Here, k̃em,qs are the solutions to the generalized dispersion
relation

c4kx
4�1 +

�pe
2

�ce
2 � + �2�pe

4

�ce
2 −

�1 − �b
2��pe

2

�b
2 �c2kx

2 +
�pe

6

�ce
2 = 0.

�A7�

Equations �A1�–�A7� describe the electromagnetic field per-
turbation excited by an ion beam pulse for an arbitrary ratio

of �ce /�pe, and furthermore for an arbitrary beam velocity,
including the case of a relativistic ion beam. The dynamics
of the background plasma electrons, however, are assumed to
be nonrelativistic, which requires that the beam density be
much smaller the plasma density �nb�np�.

The onset of wave generation, corresponding to the
existence of real solutions to Eq. �A7�, is now determined
by the condition �̃=�ce�1−�b

2� /2�b�pe�1. In the limit
where �̃�1 and �b�1, the solutions to Eq. �A7� can be

approximated by k̃qs=2��pe / �c�1+�ce
2 /�pe

2 �1/2� and k̃em

=�pe / �2�c�, where �=�ce /2�b�pe. Making use of Eqs.
�A1�–�A6�, we can then reproduce the main results obtained
earlier in the present paper. Repeating the analysis performed
in Sec. III, after some straightforward algebra, we find that
the asymptotic time-dependent solution for the critical case
corresponding to �̃=1 is given by

eBy

me�pec
= 4�
�t

�b
2k̃c�peZb sin�k̃cx�Nz�z�

np�k̃c
2 + �pe

2 /c2��
�2Ṽz
ph/�kx

2
kx=k̃c

, �A8�

Nz = �
0

�

dkz
�kznk�k̃c,kz��cos�kz�� + sin�kz��� , �A9�

where the critical value of the wave vector, k̃c, corresponding
to the solution of Eq. �A7� for �̃=1, is given by

k̃c = �1 + �b
2

1 − �b
2

�pe
2

c2

1

�1 + �ce
2 /�pe

2 �
�1/2

, �A10�

and the longitudinal component of the wave phase velocity is
defined by

Ṽph
z =

�̃wh

kz
=

kx�c

��kx
2 + �pe

2 /c2��kx
2�1 + �ce

2 /�pe
2 � + �pe

2 /c2�
.

�A11�

Similarly, repeating the analysis performed in Sec. V,
after some straightforward algebra one can demonstrate that

for a nonrelativistic beam, �b�1, with rbk̃qs�1 and ��1,
the total wave-field contribution to the transverse component
of the Lorentz force vanishes, and the transverse force pro-
duced by the local field perturbation is still determined by
Eq. �33�, i.e.,

Fx = Zb
2mevb

2 1

np

dnb

dx
. �A12�

APPENDIX B: AXIAL MAGNETIC FIELD
PERTURBATION AND LOCAL DIAMAGNETIC
PLASMA RESPONSE FOR �=�ce /2�b�peš1

Making use of Eq. �1� and the Faraday law, after some
straightforward algebra, we find for an arbitrary ratio of
�ce /�pe that the longitudinal component of the magnetic
field perturbation is given by Bz=Bz

W+Bz
loc, where the local

component, Bz
loc, and the wave component, Bz

W, are specified

for 0�x� lb
2k̃em,qs by
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eBz
W

me�pec
=

2
Zb�ce�pe

np�k̃qs
2 − k̃em

2 �
�bz

w + bz
qs� , �B1�

bz
em,qs = �k̃em,qs/�1 + �c

2/�p
2���

0

�

dkznk�k̃em,qs,kz�

�sin�kzz  k̃em,qsx� , �B2�

eBz
loc

me�pec
= �

−�

�

dkze
ikz��

C+

dkxe
ikxxnk

�
Zbkx

2�ce�pe/�1 + �ce
2 /�pe

2 �

c2np�kx
2 − k̃em

2 ��kx
2 − k̃qs

2 �
. �B3�

It follows for the case of a nonrelativistic beam, �b�1,
propagating through a background plasma with �
=�ce /2�b�pe�1, that the local z-component of the magnetic
field perturbation is much greater than the wave-field
z-component, and is given approximately by

eBz
loc

me�pec
	 −

Zb�b
2�pe

�cenp
nb�x,z� , �B4�

provided the beam radius rb satisfies k̃qs
−1�rb� k̃em

−1, or
equivalently, c�1+�c

2 /�p
2� / �2��pe��rb�2�c /�pe in the

limit ��1. Equation �B4� demonstrates the diamagnetic
plasma response, in accordance with the results obtained in
the numerical simulations.

For the critical case where �=�ce /2�b�pe	1, assuming
a nonrelativistic ion beam, �b�1, after some straight-
forward algebra it follows from Eqs. �B1� and �B2� that
����eBz /mec� / �2�b�pe� can be estimated by

�� � Zb�nb/np��rb�pe/c���1 + ��2� − 1�−1/2, �B5�

provided the beam radius is of the order of or smaller than
the electron skin depth. Note that in obtaining Eq. �B5�, we
used the fact that �ce��pe, which is required by the reso-
nance condition, �=�ce /2�b�pe=1, for the case of a nonrel-
ativistic ion beam pulse.
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