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The Courant-Snyder theory gives a complete description of the uncoupled transverse dynamics of

charged particles in electromagnetic focusing lattices. In this paper, the Courant-Snyder theory is

generalized to the case of coupled transverse dynamics with two degrees of freedom. The generalized

theory has the same structure as the original Courant-Snyder theory for one degree of freedom. The four

basic components of the original Courant-Snyder theory, i.e., the envelope equation, phase advance,

transfer matrix, and the Courant-Snyder invariant, all have their counterparts, with remarkably similar

expressions, in the generalized theory presented here. In the generalized theory, the envelope function is

generalized into an envelope matrix, and the envelope equation becomes a matrix envelope equation with

matrix operations that are noncommutative. The generalized theory gives a new parametrization of the 4D

symplectic transfer matrix that has the same structure as the parametrization of the 2D symplectic transfer

matrix in the original Courant-Snyder theory. All of the parameters used in the generalized Courant-

Snyder theory correspond to physical quantities of importance, and this parametrization can provide a

valuable framework for accelerator design and particle simulation studies. A time-dependent canonical

transformation is used to develop the generalized Courant-Snyder theory. Applications of the new theory

to strongly and weakly coupled dynamics are given. It is shown that the stability of coupled dynamics can

be determined by the generalized phase advance developed. Two stability criteria are given, which recover

the known results about sum and difference resonances in the weakly coupled limit.
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I. INTRODUCTION AND THEORETICAL MODEL

The transverse dynamics of a charged particle in a linear
focusing lattice �qðtÞ is described by an oscillator equation
with time-dependent spring constant

€qþ �qðtÞq ¼ 0; (1)

where q represents one of the transverse coordinates, either
x or y. For a quadrupole lattice, �xðtÞ ¼ ��yðtÞ. The

variable t appearing in Eq. (1) is not really time, but rather
the path length that plays the role of a timelike variable.
The Courant-Snyder theory [1] gives a complete descrip-
tion of the solution to Eq. (1), and serves as the fundamen-

tal theory that underlies the design of modern accelerators
and storage rings. There are four main components of the
Courant-Snyder theory: the envelope equation, the phase
advance, the transfer matrix, and the Courant-Snyder in-
variant. The Courant-Snyder theory can be summarized as
follows. Because Eq. (1) is linear, the solution to Eq. (1)
can be expressed as a time-dependent linear map from the
initial conditions, i.e.,

q
_q

� �
¼ MðtÞ q0

_q0

� �
; (2)
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ffiffiffiffiffi
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��0
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q
½cos�� � sin��

0
B@

1
CA; (3)

where q0 ¼ qðt ¼ 0Þ, _q0 ¼ _qðt ¼ 0Þ, �0 ¼ �ðt ¼ 0Þ, and
�0 ¼ �ðt ¼ 0Þ. The time-dependent functions �ðtÞ, �ðtÞ,
and �ðtÞ in the transfer matrix MðtÞ are directly related to
the envelope function wðtÞ by

�ðtÞ ¼ w2ðtÞ; (4)

�ðtÞ ¼ �w _w; (5)

�ðtÞ ¼
Z t

0

dt

�ðtÞ : (6)

The envelope functionwðtÞ satisfies the nonlinear envelope
equation

€wþ �qðtÞw ¼ w�3: (7)

The physical meanings of ��1 and � correspond to the
phase advance rate and the phase advance, respectively.
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The well-known Courant-Snyder invariant is

I ¼ q2

w2
þ ðw _q� _wqÞ2: (8)

The transfer matrix MðtÞ is symplectic and has the follow-
ing decomposition [2]:
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�

p
0

� �ffiffiffi
�

p 1ffiffiffi
�

p
0
@
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_w 1
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� sin� cos�

 !
w�1

0 0

� _w0 w0

 !
: (9)

The Courant-Snyder theory was developed originally by
Courant and Snyder for periodic systems with periodic
�qðtÞ, using the method of the Floquet transformation. It

is now realized that it is valid for general time-dependent
systems, and it has been discovered (or rediscovered) many
times during the past century in different disciplines [3–9].
A brief historical review can be found in Refs. [10,11].
When applying the Courant-Snyder theory to accelerators,
the dynamics in the two transverse directions are consid-
ered to be decoupled. However, the coupling between the
two transverse directions can be of considerable practical
importance [12–14]. This effect was actually discussed by
Courant and Snyder [1]. The general form of the
Hamiltonian for the coupled transverse dynamics is given
by

Hc ¼ 1
2zAcz

T; (10)

where

Ac ¼ � R
RT I

� �
; (11)

z ¼ ðx; y; px; pyÞ; (12)

� ¼ �x �xy

�xy �y

� �
: (13)

Here, the 2� 2 matrix �ðtÞ is time dependent and sym-
metric, R is an arbitrary, time-dependent 2� 2matrix, and
I is the 2� 2 unit matrix. The superscript T denotes the
transpose operation. The transverse dynamics are coupled
through the �xyðtÞ terms and the matrix R. A solenoidal

lattice will induce nonvanishing R, and a skew quadrupole
field will induce nonvanishing �xy. For a combined lattice

with quadrupole, skew quadrupole, and solenoidal compo-
nents,

� ¼ �2 þ �q �sq

�sq �2 � �q

 !
; (14)

R ¼ 0 ��
� 0

� �
; (15)

where �q is the quadrupole focusing coefficient, �ðtÞ ¼
eBzðtÞ=2�mc is one-half of the gyrofrequency associated
with the solenoidal lattice, and �sq is the skew quadrupole

coefficient.
Since the dynamics is linear, the solution of the coupled

system of equations obtained fromHc is given by a transfer
matrixMcðtÞ, which is a time-dependent, 4� 4 symplectic
matrix [1]. Teng and Edwards [15–17] first systematically
studied the transfer matrix McðtÞ, and derived a set of
parametrizations for McðtÞ, which has been adopted in
many lattice design and particle tracking codes, such as
the MAD code [18]. Other possible parametrizations have
also been considered [19–22]. However, these parametri-
zations lack connection to the original Courant-Snyder
theory, which consists of several important physical quan-
tities, such as the phase advance and the envelope
dynamics.
In this paper, we extend the Courant-Snyder theory to

the case of coupled transverse dynamics described by the
Hamiltonian Hc in Eq. (10) [23]. We show that the gener-
alized Courant-Snyder theory gives a complete description
of the coupled transverse dynamics, and has the same
structure as the original Courant-Snyder theory for one
degree of freedom. The four basic components of the
original Courant-Snyder theory, i.e., the envelope equation,
phase advance, transfer matrix, and the Courant-Snyder
invariant, all have their counterparts, with remarkably
similar expressions, in the generalized Courant-Snyder
theory developed here. In the generalized theory, the en-
velope functionw is generalized to an envelope matrix, and
the envelope equation becomes a matrix envelope equation
with matrix operations that are not commutative. The
generalized theory gives a parametrization of the 4D sym-
plectic transfer matrixMc [Eqs. (77) and (108)] that has the
same structure as the parametrization of the 2D symplectic
transfer matrix M [Eq. (9)] in the original Courant-Snyder
theory. We will make use of a time-dependent linear trans-
formation to develop the generalized Courant-Snyder the-
ory. The fact that the linear transformation can be specified
by a time-dependent symplectic matrix plays an important
role in determining the structure of the generalized theory.
This method was first proposed by Leach [24].
Because of the importance of the Courant-Snyder theory

in accelerator physics, the generalization of the Courant-
Snyder theory has been undertaken in the past. An impor-
tant generalization was constructed in 1992 by Dattoli
et al. [25–27], who posed the question: ‘‘Can we adapt
the coupled motion formalism to get a picture closer to the
Courant-Snyder formulation?’’ [27]. Dattoli et al. general-
ized the Courant-Snyder theory by generalizing the stan-
dard Twiss parameters �, �, and � into 2� 2 matrixes. In
this paper, we present a different solution to this funda-
mental question. We generalize the Courant-Snyder theory
by generalizing the most fundamental elements of the
Courant-Snyder theory, i.e., the envelope and the phase
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advance. The parameters of envelope and phase advance
furnished by the Courant-Snyder theory are of vital im-
portance for beam physics. These parameters describe the
physical dimensions and the emittance of the beam, and set
the foundation for many important concepts in beam phys-
ics, such as the Kapchinskij-Vladimirskij distribution func-
tion for intense beams with strong space-charge field.
Therefore, the generalization scheme reported in the
present paper makes a connection directly to the physics
of the coupled dynamics. For example, using our general-
ization method, it is shown that the stability of coupled
dynamics can be determined by the generalized phase
advance. Two stability criteria are given, which recover
the known results about sum and difference resonances in
the weakly coupled limit. It is not surprising that a funda-
mental theory can be generalized by different methods
from different angles, each of which may have its own
advantages and range of applicability.

The present paper investigates the generalized Courant-
Snyder theory for coupled linear transverse dynamics. In a
more general setting, it is necessary to parametrize the
most comprehensive transverse map for the beam system
with nonlinear effects in 6D phase space. Dragt has devel-
oped a normal form method to tackle this problem [28–34].
He showed that the one-turn map M for a ring can be
symplectically normalized to a normal form N by a
symplectic normalizing map A, i.e. N ¼ AMA�1.
This map N will be the same no matter what reference
point is used. Its matrix part and nonlinear generators give
full linear and nonlinear information about global ring
properties including tunes, chromaticities to any order (in
the static case), time-of-flight information to any order (in
the static case), such as momentum compaction and phase
slip factors, and anharmonicities to any order [32]. The
matrix part and nonlinear generators of A give complete
information about the lattice functions at the reference
point. These lattice functions are periodic as one goes
about the ring by choosing successive reference points.
The matrix part of A provides the usual linear lattice
functions, including dispersion, and the �, �, � of
Courant-Snyder theory, including their generalizations to
six phase-space dimensions with arbitrary coupling. Dragt
[32] pointed out that one advantage of the normal form
methods is that it does not require numerical solutions of
any linear and nonlinear differential equations. This was
first done in the code MARYLIE [32]. These methods were
subsequently incorporated into some versions of MAD. The
code COSY INFINITY also incorporates several of these
methods. Because the theoretical method in the present
paper is developed only for the coupled linear transverse
dynamics, we are able to achieve a generalized Courant-
Snyder theory having an exactly one-to-one correspon-
dence with the original Courant-Snyder theory, which pro-
vides us with a specialized tool to investigate the detailed
properties of the coupled transverse dynamics. For ex-

ample, it enables us to study the stability of coupled
dynamics from the generalized phase advance, and to
generalize the well-known results about sum and differ-
ence resonances in the weakly coupled limit into two
stability criteria for arbitrarily strong coupling.
This paper is organized as follows. In Sec. II, a method

of time-dependent canonical transformation is described.
In Sec. III, the generalized Courant-Snyder theory is de-
veloped. The concepts of envelope matrix, phase advance
matrix, generalized transfer matrix, and the generalized
Courant-Snyder invariant are introduced. In Sec. IV, we
show that the generalized Courant-Snyder theory readily
recovers, as special cases, the original Courant-Snyder
theory for the case where the dynamics is uncoupled, and
the well-known result for the coupled dynamics in a sole-
noidal lattice [35]. A numerical example of the generalized
Courant-Snyder theory is given in Sec. V for the case of a
focusing-off-defocusing-off (FODO) quadruple lattice
with misalignment. The generalized Courant-Snyder the-
ory is also applied to study the stability of the coupled
transverse dynamics in Sec. V.

II. TIME-DEPENDENT CANONICAL
TRANSFORMATION

We consider a linear, time-dependent Hamiltonian sys-
tem with n degree of freedom given by

H ¼ 1
2zAðtÞzT; z ¼ ðx1; x2; . . . ; xn; p1; p2; . . . ; pnÞ:

(16)

Here, AðtÞ is a 2n� 2n time-dependent, symmetric matrix.
The Hamiltonian in Eq. (10) has this form with n ¼ 2. We
introduce a time-dependent linear canonical transforma-
tion [24]

�z ¼ SðtÞz; (17)

such that in the new coordinate �z, the transformed
Hamiltonian has the form

�H ¼ 1
2�z

�AðtÞ�zT; (18)

where �AðtÞ is a targeted symmetric matrix. Because the
transformation between z and �z is required to be a canoni-
cal transformation, we have

@�zj
@zk

Jkl
@�zj
@zl

¼ Jij: (19)

From Eq. (17), Eq. (19) is equivalent to

SJST ¼ J;

i.e., the matrix S specifying the coordination transforma-
tion between z and �z needs to be a symplectic matrix. In
addition, the transformation SðtÞ that renders this canonical
transformation needs to satisfy another differential equa-
tion, which can be derived as follows. Hamilton’s equation
for z is
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_z ¼ JrH; (20)

J ¼ 0 I
�I 0

� �
; (21)

where I is the n� n unit matrix and J is the 2n� 2n unit
symplectic matrix of order 2n. Using index notation, we
obtain

_z j ¼ Jij
@H

@zj
¼ 1

2
Jijð�ljAlmzm þ zlAlk�kjÞ

¼ 1

2
JijðAjm þ AmjÞzm ¼ JijAjmzm: (22)

Switching back to matrix notation without index, Eq. (22)
can be expressed as

_z ¼ JAz: (23)

Since we require that in �z the transformed Hamiltonian is
given by Eq. (18), we also have

_�z ¼ J �A �z :

Using the fact that �z ¼ SðtÞz, this is
_�z ¼ J �A �z ¼ J �ASz: (24)

On the other hand, we can also calculate _�z directly from
Eq. (17), which is

_�z ¼ _Szþ S _z ¼ ð _Sþ SJAÞz: (25)

Combining Eqs. (24) and (25) gives the differential equa-
tion

_S ¼ J �AS� SJA; (26)

which S needs to satisfy if �z ¼ SðtÞz is a canonical
transformation.

This fact that the time-dependent symplectic matrix S
satisfying Eq. (26) gives the canonical transformation (17)
between H and �H can also be proven constructively as the
following. Suppose AðtÞ and �AðtÞ are any two (possibly)
time-dependent symmetric matrices, and let W be any
desired symplectic matrix. We prove that there is a sym-
plectic matrix SðtÞ such that

_S ¼ J �AS� SJA (27)

and

Sðt0Þ ¼ W; (28)

where t0 is any desired time. Define a matrix UðtÞ by the
differential equation

_U ¼ JAU (29)

with the initial condition Uðt0Þ ¼ I. Then, by the usual
arguments, U will be symplectic. Similarly, define �UðtÞ by
the differential equation

_�U ¼ J �A �U (30)

with the initial condition �Uðt0Þ ¼ I. Let VðtÞ ¼ U�1ðtÞ,
then

_V ¼ �V _UU�1 ¼ �VJAUU�1 ¼ �VJA: (31)

Define S to be

SðtÞ ¼ �UðtÞSðt0ÞVðtÞ (32)

with Sðt0Þ ¼ W. Direct calculation shows that

_S ¼ �UWV þ �UW _V ¼ J �A �UWV � �UWVJA

¼ J �AS� SJA: (33)

Now suppose that zðtÞ satisfies
_z ¼ JAz (34)

with the initial condition zðt0Þ ¼ z0, then for �z ¼ Sz, we
have

_�z ¼ _Szþ S _z ¼ ½J �AS� SJA�zþ SJA ¼ J �ASz ¼ J �A �z :

(35)

The initial condition for �z can be chosen to be

�zðt0Þ ¼ Sðt0Þzðt0Þ ¼ Wz0: (36)

If we specify �zðt0Þ and zðt0Þ instead, then we can always
find a symplectic matrix W as the initial condition for S
satisfying Eq. (36), because the symplectic group acts
transitively on phase space.
Using the transformation given by S, we can transform

the Hamiltonian given by AðtÞ into any Hamiltonian speci-
fied by �AðtÞ. In particular, if we select the target matrix �A ¼
0, then the Hamiltonian system given by AðtÞ is solved by
the transformation which transforms H ¼ zAzT into �H ¼
�z �A �zT ¼ 0.

III. GENERALIZED COURANT-SNYDER THEORY
FOR COUPLED TRANSVERSE DYNAMICS

We are now ready to develop the generalized Courant-
Snyder theory for coupled transverse dynamics described
by the Hamiltonian Hc in Eq. (10), using the technique of
time-dependent canonical transformation developed in
Sec. II. Our objective is to solve the coupled system by
finding the transfer matrix between the initial condition
z0 ¼ ðx0; y0; px0; py0Þ and z ¼ ðx; y; px; pyÞ at time t. We

accomplish this goal by a series of time-dependent canoni-
cal transformations. We start from the Hamiltonian given
by

Hc0 ¼ 1
2zAc0z

T; (37)

Ac0 ¼ � 0
0 I

� �
; (38)

� ¼ �x �xy

�xy �y

� �
: (39)
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The Hamiltonian Hc0 is the special case of Hc in Eq. (10)
with � ¼ 0, and corresponds to the case of coupling
induced by factors other than solenoidal field, for example,
by a skew quadrupole field. We first develop the general-
ized Courant-Snyder theory for Hc0 and determine the
transfer matrix Mc0ðtÞ. After this, we will determine the
transformation which transforms general Hc into Hc0, and
generate the transfer matrix McðtÞ for Hc.

A. Generalized Courant-Snyder theory for Hc0

There are two steps to solve the system given by Hc0.
The first step is to transform Hc0 into

�H c0 ¼ 1
2�z

�Ac0 �z
T; (40)

�A c0 ¼ �I 0
0 �I

� �
; (41)

and the second step is to transform �Hc0 into
��Hc0 ¼ 0. Here,

�I is a time-dependent 2� 2 matrix to be determined. We
will demonstrate shortly that �I is the inverse of the
generalized� function matrix, as suggested by its notation.
The physics that appears in the first step is the envelope
matrix and the noncommutative matrix envelope equation.
The physics that appears in the second step is the phase
advance. Let �z ¼ Sz be the transformation that transforms
Hc0 into �Hc0. From Eq. (26), the differential equation for S
is

_S ¼ J �Ac0S� SJAc0: (42)

To cast it into the 2� 2 block form, let

S ¼ S1 S2
S3 S4

� �
; (43)

where S1, S2, S3, and S4 are 2� 2 matrixes. Equation (42)
can then be expressed as

_S1 _S2
_S3 _S4

� �
¼ 0 I

�I 0

� �
�I 0
0 �I

� �
S1 S2
S3 S4

� �

� S1 S2
S3 S4

� �
0 I
�I 0

� �
� 0
0 I

� �
; (44)

which is equivalent to

_S 1 ¼ �IS3 þ S2�; (45)

_S 2 ¼ �IS4 � S1; (46)

_S 3 ¼ ��IS1 þ S4�; (47)

_S 4 ¼ ��IS2 � S3: (48)

Because �I is still undetermined, we let S2 ¼ 0, and
obtain

_S 1 ¼ �IS3; (49)

S1 ¼ �IS4; (50)

_S 3 ¼ ��IS1 þ S4�; (51)

_S 4 ¼ �S3: (52)

Setting S2 ¼ 0 in general does not violate the symplectic
condition. It can be shown that there are symplectic matri-
ces with S2 ¼ 0. Equations (49), (50), and (52) give

_� IS4 þ 2�I
_S4 ¼ 0: (53)

Furthermore, Eqs. (49), (51), and (52) give

€S 4 ¼ �2
I S4 � S4�: (54)

Now define � � ��1
I and w � S4. Here, we rename S4 to

be w, because it will be clear shortly that S4 corresponds to
the envelope matrix, and it is conventional to denote the
envelope function by w. In terms of � and w, Eq. (54) can
be expressed as

€w ¼ ��2w� w�: (55)

We now invoke the fact that S can always be chosen to be
symplectic with

S1S
T
4 � S2S

T
3 ¼ I; (56)

which gives

��1wwT ¼ I; (57)

or

� ¼ wwT: (58)

Combining Eqs. (55) and (58), we obtain the envelope
equation for the 2� 2 envelope matrix w, i.e.,

€wþ w� ¼ ðw�1ÞTw�1ðw�1ÞT: (59)

The similarity between the matrix envelope equation (59)
and the original envelope equation (7) is remarkable. The
unique feature of Eq. (59) is that it is noncommutative.
This is because Eq. (59) is written in terms of matrix
functions, and matrix operations are noncommutative in
general. For example, the second term in Eq. (59) cannot
be written as �w. It can be shown that Eq. (59) recovers
Eq. (7) as a special case, which will be discussed in Sec. IV.
The transformation for this step is

�z ¼ Sz; (60)

S ¼ ðw�1ÞT 0
� _w w

� �
; (61)

and the inverse transformation is

z ¼ S�1 �z; (62)
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S�1 ¼ wT 0
w�1 _wwT w�1

� �
: (63)

The matrix S�1 is the noncommutative generalization of
the first matrix in the expression of the transfer matrix M
for the original Courant-Snyder theory, i.e., the first term
on the right-hand side of Eq. (9). From Eq. (58), note that
��1 is symmetric, which ensures that �Ac0 is symmetric.

The next step is to transform �Hc0 into ��Hc0 ¼ 0 with
��Ac0 ¼ 0 by a transformation specified by P:

��z ¼ P�z: (64)

Following the same procedure described in Sec. II, the
differential equation for P is

_P 1 ¼ P2�
�1; (65)

_P 2 ¼ �P1�
�1; (66)

_P 3 ¼ P4�
�1; (67)

_P 4 ¼ �P3�
�1: (68)

Equations (65) and (66) are decoupled from Eqs. (67) and
(68), and Eqs. (65)–(68) admit solutions with

P4 ¼ P1; (69)

P3 ¼ �P2: (70)

The transformation matrix is

P ¼ P1 P2

�P2 P1

� �
; (71)

where P1 and P2 are determined from Eqs. (65) and (66).
From the fact that P belongs to Spð4; RÞ, we can readily
show that

PPT ¼ I; and DetðPÞ ¼ 1: (72)

Therefore, P corresponds to a rotation in the 4D phase
space, P 2 SOð4Þ. In this sense, PT is the 4D noncommu-
tative generalization of the 2D rotation matrix in the ex-
pression of the transfer matrix M for the original Courant-
Snyder theory, i.e., the second term on the right-hand side
of Eq. (9). The differential equation for P can be written as

_P ¼ P _�; (73)

_� � 0 ���1

��1 0

� �
¼ 0 �ðw�1ÞTw�1

ðw�1ÞTw�1 0

� �
:

(74)

Because _�T ¼ � _�, it follows that _� belongs to the Lie

algebra soð4Þ, i.e., _� is an infinitesimal generator of a 4D

rotation. In another word, _� is an ‘‘angular velocity’’ in 4D
space, which is equivalent to a phase advance rate in 4D

space. The 4D phase advance rate _� is determined from the
2� 2 matrix ��1 ¼ ðw�1ÞTw�1, which is remarkably
similar to the phase advance rate ��1 ¼ 1=w2 in the
original Courant-Snyder theory for one degree of freedom
[see Eqs. (4) and (6)]. In Sec. IV, we will show how P and
� recover the 2D rotation and phase advance for the
special case of uncoupled dynamics.

Because ��Hc0 ¼ 0, the dynamics of ��z is trivial, i.e., ��z ¼
��z0, and we have solved the Hamiltonian system Hc0 in ��z.
From ��z ¼ PSz and ��z ¼ ��z0, we obtain the linear map be-
tween z0 and z, i.e.,

z ¼ S�1P�1��z ¼ S�1P�1��z0 ¼ S�1P�1P0S0z0: (75)

Because P 2 SOð4; RÞ, without loss of generality we se-
lect the initial condition P0 ¼ Pðt ¼ 0Þ ¼ I, to obtain

z ¼ Mc0z0; (76)

Mc0 ¼ S�1P�1S0

¼ wT 0
w�1 _wwT w�1

� �
P1 �P2

P2 P1

� � ðw�1
0 ÞT 0

� _w0 w0

� �
:

(77)

The transfer matrix Mc0 in Eq. (77) is the 4D noncommu-
tative generalization of the transfer matrix in Eq. (9) for
one degree of freedom. The similarities between Mc0 and
M is evident from Eqs. (77) and (9).
We note that Eq. (77) has the general format of Eq. (38)

of Ref. [28], which is valid for any general linear or non-
linear lattice. The specific expressions of the matrix ele-
ments in Eq. (77) are of course not true for an arbitrary
linear or nonlinear lattice. They are only correct for the
coupled linear lattice under investigation here.
Because ��z ¼ PSz is a constant 1� 2 vector, any func-

tion of ��z ¼ PSz is also an invariant. Consequently, for
every constant 2� 2 matrix C,

IC ¼ ��zTC��z (78)

is an invariant of the dynamics. The original Courant-
Snyder (CS) invariant in Eq. (8) for one degree of freedom
is an invariant independent of the phase advance. The
generalized Courant-Snyder invariant for 4D coupled dy-
namics corresponding to the original Courant-Snyder in-
variant is

ICS ¼ ��zT ��z ¼ zTSTPTPSz ¼ zTSTSz; (79)

where the phase advance has been removed due to the fact
that P is a 4D rotation. Equation (79) is a special case of
Eq. (78) for C ¼ I. For a ring, we can also construct
invariants of dynamics using the one-turn map [1]

McTðtÞ ¼ wT 0
w�1 _wwT w�1

� �
PT

w�1T 0
� _w w

� �
; (80)

where PTðtÞ is the generalized one-turn phase advance
matrix. For every integer k, there is an invariant

HONG QIN AND RONALD C. DAVIDSON Phys. Rev. ST Accel. Beams 12, 064001 (2009)

064001-6



Ik � zTUkz ¼ const (81)

where Uk is given by

UkðtÞ ¼ JMk
cT �MTk

cTJ: (82)

If we use the normal form method [28–32] to decouple the
two transverse dynamics, each freedom will have its own
Courant-Snyder invariant. Of course, only two invariants
are functionally independent, and all other invariants can
be expressed in terms of these two functionally indepen-
dent invariants.

B. Generalized Courant-Snyder theory for Hc

Our strategy to solve for the Hc system is to transform
Hc into the form of Hc0, using the same transformation
technique. Let

~z ¼ Qz (83)

such that Hc ¼ zAcz
T is transformed into

Hc0 ¼ 1
2~z
~Ac0~z

T; (84)

~A c0 ¼ ~� 0
0 I

� �
; (85)

where ~� is to be determined from Ac. The differential
equation for Q is

_Q1
_Q2

_Q3
_Q4

� �
¼ 0 I

�I 0

� �
~� 0
0 I

� �
Q1 Q2

Q3 Q4

� �

� Q1 Q2

Q3 Q4

� �
0 I
�I 0

� �
� R
RT I

� �
: (86)

In element format, Eq. (86) can be expressed as

_Q 1 ¼ Q3 þQ2��Q1R
T; (87)

_Q 2 ¼ Q4 þQ2R�Q1; (88)

_Q 3 ¼ �~�Q1 þQ4��Q3R
T; (89)

_Q 4 ¼ �~�Q2 þQ4R�Q3: (90)

Since ~� is not specified, we can set Q2 ¼ 0 and the system
reduces to

Q1 ¼ Q4 (91)

_Q 4 ¼ Q4R�Q3; (92)

_Q 4 ¼ Q3 �Q4R
T; (93)

_Q 3 ¼ �~�Q4 þQ4��Q3R
T; (94)

which leads to

Q3 ¼ Q4

2
ðRþ RTÞ; (95)

_Q 4 ¼ Q4

2
ðR� RTÞ; (96)

~� ¼ Q4

�
�� ðRþ RTÞRT

2
� ðR� RTÞðRþ RTÞ

4

� _Rþ _RT

2

�
Q�1

4 : (97)

The transformation matrix is

Q ¼ Q4 0
Q4ðRþRT Þ

2 Q4

 !
: (98)

As before, Q is symplectic, which implies Q4Q
T
4 ¼ I, and

Q4 is a 2D rotation, i.e., Q4 2 Oð2Þ. These properties are
valid for any 2� 2 matrix R.
For R in Eq. (15) corresponding to solenoidal lattice,

Rþ RT ¼ 0, and the transformation is further simplified to
become

~� ¼ Q4�Q
�1
4 ; (99)

Q ¼ Q4 0
0 Q4

� �
; (100)

_Q 4 ¼ Q4R ¼ �Q4
0 �1
1 0

� �
: (101)

Equation (101) has the following solution:

Q4 ¼ cosc � sinc
sinc cosc

� �
; (102)

_c ¼ �; (103)

which can be easily verified by direct substitution.
Obviously, Q4 is a 2D rotation with angular velocity at
one-half of the gyrofrequency. The transformation Q is a
4D rotation with

Q�1 ¼ QT ¼ QT
4 0
0 QT

4

� �
¼ Q�1

4 0
0 Q�1

4

� �
: (104)

The 4D rotation represented by Q is a rotation of the same
amount in both the ðx; pxÞ plane and the ðy; pyÞ plane. Such
rotations in 4D geometry are called isocline double rota-
tions [36].
We can now use the procedure developed in Sec. III A to

transform Hc0 into ��Hc0 ¼ 0. Overall, the transformation

from Hc into
��Hc0 ¼ 0 is

��z ¼ PSQz; (105)

and the dynamics of ��z is trivial with ��z ¼ ��z0. The linear
mapping between z0 and z is
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z ¼ Q�1S�1P�1��z ¼ Q�1S�1P�1��z0

¼ Q�1S�1P�1P0S0Q0z0: (106)

Both P andQ are 4D rotations, and we can chose the initial
conditions such that P0 ¼ I and Q0 ¼ I.

Finally, we assemble all the calculations together into
the following final format. For the coupled transverse
dynamics given by the Hamiltonian Hc in Eqs. (10), (14),
and (15), we express

zðtÞ ¼ Mcz0; (107)

whereMc, the transfer matrix between the initial condition
z0 and zðtÞ, is given by

Mc ¼ Q�1S�1P�1S0; (108)

Q�1 ¼ QT
4 0
0 QT

4

� �
2 SOð4Þ; (109)

Q4 ¼ cosc � sinc
sinc cosc

� �
2 SOð2Þ; (110)

_c ¼ �; (111)

S�1 ¼ wT 0
w�1 _wwT w�1

� �
; (112)

S0 ¼ ðw�1
0 ÞT 0

� _w0 w0

� �
; (113)

P�1 ¼ P1 �P2

P2 P1

� �
2 SOð4Þ: (114)

Here, w is the 2� 2 envelope matrix satisfying the follow-
ing noncommutative matrix envelope equation:

€wþ w~� ¼ ðw�1ÞTw�1ðw�1ÞT; (115)

and ðw0; _w0Þ denotes the initial conditions for w. The
rotation matrix P�1 is determined from the generalized
phase advance equations

_P 1 ¼ P2�
�1; (116)

_P 2 ¼ �P1�
�1; (117)

where ��1 ¼ ðw�1ÞTw�1 is the matrix phase advance rate
determined from the envelope matrix w. Any function of
��z ¼ PSQz is an invariant of the dynamics. The generalized
Courant-Snyder invariant is

ICSc ¼ zTQTSTSQz; (118)

where the phase advance in the 4D rotation P is canceled
by the counter-rotation PT .

These results are the noncommutative generalization of
the Courant-Snyder theory for one degree of freedom to the
coupled transverse dynamics of 2 degrees of freedom.

IV. SPECIAL CASES

In this section we show that the generalized Courant-
Snyder theory developed for coupled transverse dynamics
recovers the original Courant-Snyder theory for dynamics
with one degree of freedom, and the well-known transfer
matrix for a solenoidal focusing lattice, as special cases.
First, we investigate the case of uncoupled transverse

dynamics given by Hc0 with �xy ¼ 0. Because � is diago-

nal, the matrix envelope equation (59) admits solutions
with diagonal envelope matrix

w ¼ wx 0
0 wy

� �
: (119)

Consequently, every matrix in Eq. (59) is diagonal, and the
matrix operation is commutative. The matrix envelope
equation reduces to two decoupled envelope equations of
the conventional form for wx and wy, i.e.,

€w x þ wx�x ¼ w�3
x ; (120)

€w y þ wy�y ¼ w�3
y : (121)

The 2� 2 matrix of phase advance rate ��1 reduces to a
diagonal matrix as well, i.e.,

��1 ¼ w�2
x 0
0 w�2

y

 !
: (122)

The differential equation for the 4D rotation P is simplified
to become

_P 1 ¼ P2
w�2

x 0
0 w�2

y

� �
; (123)

_P 2 ¼ �P1
w�2

x 0
0 w�2

y

� �
; (124)

which admits a diagonal solution

P1 ¼ P1x 0
0 P1y

� �
; (125)

P2 ¼ P2x 0
0 P2y

� �
: (126)

Note that the ðP1x; P2xÞ component is decoupled from
the ðP1y; P2yÞ component, and they satisfy two sets of

equations independently, i.e.,

_P 1x ¼ P2xw
�2
x ; (127)

_P 2x ¼ �P1xw
�2
x ; (128)

and

_P 1y ¼ P2yw
�2
y ; (129)
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_P 2y ¼ �P1yw
�2
y : (130)

The solutions are

P1x ¼ cos�x; (131)

P2x ¼ � sin�x; (132)

_� x ¼ 1

w2
x

; (133)

and

P1y ¼ cos�y; (134)

P2y ¼ � sin�y; (135)

_� y ¼ 1

w2
y

: (136)

Now, the transfer matrix can be expressed as

M ¼
wx 0 0 0
0 wy 0 0
_wx 0 w�1

x 0
0 _wy 0 w�1

y

0
BBB@

1
CCCA

�
cos�x 0 � sin�x 0
0 cos�y 0 � sin�y

sin�x 0 cos�x 0
0 sin�y 0 cos�y

0
BBB@

1
CCCA

�
w�1

x0 0 0 0
0 w�1

y0 0 0
� _wx0 0 wx0 0
0 � _wy0 0 wy0

0
BBB@

1
CCCA: (137)

Apparently, the ðx; pxÞ dynamics and the ðy; pyÞ dynamics

are decoupled, and the transfer matrices for ðx; pxÞ and
ðy; pyÞ extracted from Eq. (137) are identical to that in

Eq. (9) for one degree of freedom. In summary, for un-
coupled transverse dynamics, the general theory becomes
commutative, and the theory reduces to the original
Courant-Snyder theory independently for each transverse
direction.

The second special case we investigate corresponds to
the case of coupled transverse dynamics in a solenoidal
lattice. Note that the solenoidal lattice need not be periodic.
This is the special case where

� ¼ �2 0
0 �2

� �
; (138)

R ¼ 0 ��
� 0

� �
: (139)

The symplectic canonical transformation given by Q in
Eq. (100) shows that the isocline double rotation of the 4D

phase space in the ðx; pxÞ and ðy; pyÞ planes with instanta-

neous angular velocity _c ¼ � transforms the coupled
dynamics into two decoupled transverse dynamical equa-
tions with time-dependent focusing matrix

~� ¼ Q4
�2 0
0 �2

� �
Q�1

4 ¼ �2 0
0 �2

� �
: (140)

In the rotating frame, the two transverse dynamical equa-
tions are decoupled, and each is described by the original
Courant-Snyder theory. This is of course the well-known
result for a solenoidal lattice [35].

V. APPLICATIONS

In this section, we present two applications of the gen-
eralized Courant-Snyder theory developed in previous sec-
tions. The first application is the numerical calculation of
the transfer matrix for a periodic quadrupole FODO lattice
with the middle magnet being misaligned by a small angle
�. We consider a 10 MeV Liþ beam with A ¼ 7, typical of
the neutralized drift compression experiment II that is
being constructed [37,38]. The lattice length is chosen to
be L ¼ 2 m, magnetic gradient B0

q ¼ 1:172 T=m, and the

filling factor � ¼ 0:15. The misaligned magnet induces a
skew quadrupole component of the form [13]

�xy ¼ �yx ¼ �q sin2�: (141)

The strength of the quadrupole component of the mis-
aligned magnet is reduced to

�x ¼ ��y ¼ �q cos2�: (142)

For comparison, the �x and �xy coefficients of the FODO

lattice are plotted in Fig. 1 for the cases without misalign-
ment (� ¼ 0) and with misalignment of � ¼ 5:7�. The
calculation for the coupled dynamics is carried out in
dimensionless parameters. The length is normalized by
the lattice period L, and the velocity is normalized by the
beam velocity Vb. The normalized strength of the quadru-
pole focusing field is kq � ebB

0
q=�bmb�bc

2 ¼ 15 [39].

The envelope matrix equation (59) is numerically solved
for matched solutions using the standard shooting method.
The results are displayed in Fig. 2 for � ¼ 0 and � ¼ 5:7�,
where w1, w2, w3, and w4 are the four elements of w, i.e.,

w ¼ w1 w2

w3 w4

� �
: (143)

The numerical results show that for the case without
misalignment (� ¼ 0), the envelope matrix w is diagonal,
as expected from the discussion in Sec. IV. The w1 and w4

functions for � ¼ 0 are the familiar x and y envelopes for
the uncoupled case. For � ¼ 5:7�, it is evident that the
envelope matrix becomes nondiagonal due to the coupling
between the two transverse degree of freedoms induced by
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the skew quadrupole component. The amplitude of the
nondiagonal elements w2 and w3 are relatively small be-
cause the misalignment is weak. The elements of the
matrix P are determined by solving Eqs. (65) and (66),
and the results are plotted in Fig. 3, where P1x, P1xy, P1yx,

P1y, P2x, P2xy, P2yx, and P2y are the elements of P1 and P2,

respectively, i.e.,

P1 ¼ P1x P1xy

P1yx P1y

� �
; P2 ¼ P2x P2xy

P2yx P2y

� �
: (144)

For the case without misalignment (� ¼ 0), the matrices
P1 and P2 are diagonal as expected, and the solutions are
exactly those given by Eqs. (131)–(135). For � ¼ 5:7�, P1

and P2 become nondiagonal, and their structures are more

θ

θ

θ

θ

θ

θ

θ

θ

FIG. 2. (Color) The solutions for elements of the envelope matrix w for the cases without misalignment (� ¼ 0), and with a
misalignment of � ¼ 5:7�. The t coordinate is normalized by the periodicity of the lattice. The w1 and w4 functions for � ¼ 0 are the
familiar x and y envelopes for the uncoupled case. For � ¼ 5:7� the envelope matrix becomes nondiagonal due to the coupling
between the two transverse degrees of freedom induced by the skew quadrupole component.

θ

θ

θ

θ

FIG. 1. The �x and �xy coefficients of the FODO lattice for the cases without misalignment (� ¼ 0) and with a misalignment of
� ¼ 5:7� for the middle magnet. The t coordinate is normalized by the periodicity of the lattice. The misalignment introduces a skew
quadrupole component, and reduces the strength of the quadrupole component of the focusing field.
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θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

FIG. 3. The solutions for elements of the P1 and P2 matrices for the cases without misalignment (� ¼ 0) and with a misalignment of
� ¼ 5:7�. The t coordinate is normalized by the periodicity of the lattice. For the case without misalignment (� ¼ 0), the matrices P1

and P2 are diagonal as expected, and the solutions are exactly those given by Eqs. (131)–(135). For � ¼ 5:7�, P1 and P2 become
nondiagonal, and their structures are more complex, as evident from the figure.
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complex. Finally, the transfer matrices are given by w, P1,
and P2 according to Eq. (77).

As the second example of application of the generalized
Courant-Snyder theory, we investigate the stability prop-
erties of the coupled dynamics. The most important issue
of a strongly coupled system, such as a Möbius accelerator
[40] or a final focusing system using solenoidal field
[37,38], is the stability of the coupled dynamics, an area
where our theoretical understanding is very limited, owing
to the lacking of a physics-based parametrization of the
coupled dynamics. It is of course an elementary conclusion
that the stability is completely determined by the symplec-
tic transfer matrix M. Krein [41], Moser [42], and
Yakubovich and Starzhinskii [43] studied in detail the
stability properties of symplectic matrices. Using the theo-
retical formalism developed in this paper, we are able to
deduce additional valuable information about the stability
of the coupled dynamics. From Eq. (80), the one-turn map
McTðtÞ is similar to PTðtÞ, and we conclude that the stabil-
ity of the coupled dynamics can be determined by the
phase advance matrix PTðtÞ, without knowing the one-
turn map McTðtÞ. This result simplifies the stability analy-
sis, and underscores the physical importance of the phase
advance PTðtÞ. In addition, since PTðtÞ is a real 4D rotation,
we obtain the following stability criterion: a necessary and
sufficient condition for the coupled dynamics to be un-
stable is that the PTðtÞ matrix has an eigenvalue 	 with
j	j � 1. A second stability criterion for a strongly coupled
system can be deduced by examining the invariant I1 ¼
zTU1z ¼ const, where

U1ðtÞ ¼ JMcT �MT
cTJ ¼ STPT

TJ½PT
T � PT�PTS: (145)

If U1ðtÞ is positive (negative) definite, then the amplitude
of z is bounded and the dynamics is stable. Equation (145)
indicates that U1ðtÞ and J½PT

T � PT� are congruent. We
thus obtain the following stability criterion determined
from the antisymmetric component of the phase advance,
i.e., ½PT

T � PT�: a sufficient condition for the coupled
transverse dynamics to be stable is that J½PT

T � PT� is
positive or negative definite.

For the weakly coupled case, we show that the above
criteria reduce to the known results of the sum and differ-
ence resonances. When the coupling effect is weak, it can
be treated as a perturbation to the stable uncoupled dy-
namics. In order for the perturbed phase advance PT to
have an eigenvalue 	 with j	j � 1 for instability, the
unperturbed phase advance PT0 must have two pairs of
identical eigenvalues. Because

PT0 ¼
P1 P2

�P2 P1

 !
; P1 ¼

cos�x 0

0 cos�y

 !
;

P2 ¼
sin�x 0

0 sin�y

 !
; (146)

this means that cos�x ¼ cos�y, i.e., 
x � 
y ¼ n, where


x and 
y are tunes, and n is an integer. This is the familiar

sum and difference resonance condition. On the other
hand, the sufficient condition for stability determined
from ½PT

T � PT� in the weakly coupled case reveals that
the difference resonance, or 
x � 
y ¼ n, is stable. This is

because a small perturbation due to weak coupling effect
does not alter the positive (negative) definite character of
J½PT

T � PT�. If the unperturbed J½PT
T0 � PT0� is positive

(negative) definite, so is J½PT
T � PT�. We can easily see

that when sin�x ¼ sin�y, or 
x � 
y ¼ n, J½PT
T0 � PT0�

is positive definite. As a result, the difference resonance is
stable. This leads us to the known result that only the sum
resonance, i.e., 
x þ 
y ¼ n, can be unstable when there is

a weak coupling effect. In this sense, the two stability
criteria discovered by the theory developed here can be
viewed as a generalization of the well-known results about
sum and difference resonances for a weakly coupled sys-
tem to a coupled system with arbitrary coupling strength.

VI. CONCLUSIONS

Using a time-dependent canonical transformation tech-
nique, we have extended the Courant-Snyder theory for
dynamics with one degree of freedom to the case of
coupled transverse dynamics with 2 degrees of freedom.
All of the quantities of physical importance in the original
Courant-Snyder theory, including the envelope function,
envelope equation, phase advance, transfer matrix, and the
Courant-Snyder invariant, are elegantly generalized to the
case of coupled transverse dynamics. The envelope func-
tion is generalized to a 2� 2 envelope matrix, and the
envelope equation is generalized to a matrix envelope
equation. The envelope matrix determines a phase advance
matrix, similar to the fact that, in the original Courant-
Snyder theory, the envelope function w determines a phase
advance function. The transfer matrixMc which solves the
coupled transverse dynamics also has the same structure as
the transfer matrix M in the original Courant-Snyder the-
ory, even though Mc is a time-dependent 4D symplectic
matrix, whereas M is a time-dependent 2D symplectic
matrix.
This generalized Courant-Snyder theory provides a new

parametrization for the 4D symplectic transfer matrix Mc

[Eqs. (77) and (108)], which has a close connection to the
original Courant-Snyder parametrization of the 2D sym-
plectic matrixM [Eq. (9)]. All of the parameters used in the
generalized Courant-Snyder theory correspond to physical
quantities of importance, and this parametrization can
provide a valuable framework for accelerator design and
particle simulation studies.
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