
Approximate matched solution for an intense charged particle beam
propagating through a periodic focusing quadrupole lattice ∗

E. A. Startsev, R. C. Davidson and M. Dorf
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey, 08543 USA

Abstract
The transverse dynamics of an intense charged particle

beam propagating through a periodic quadrupole focusing
lattice is described by the nonlinear Vlasov-Maxwell sys-
tem of equations. To find matched-beam quasi-equilibrium
distribution functions one needs to determine a dynamical
invariant for the beam particles moving in the combined
external and self-fields. The standard approach, for
sufficiently small phase advance σv/2π < 1, is to use
the smooth-focusing approximation, where the particle
dynamics is determined iteratively using the small pa-
rameter ε = σv/2π < 1 accurate to order ε3. Here σv

is the vacuum phase advance. In this paper, we present
a perturbative Hamiltonian transformation method which
is used to transform away the fast particle oscillations,
and obtain the average Hamiltonian accurate to order ε5.
This average Hamiltonian, expressed in the original phase-
space variables, is an approximate invariant of the original
system, and can be used to determine self-consistent beam
equilibria that are matched to the focusing channel.

INTRODUCTION
There is growing interest in studying detailed properties

of intense charged particle beams for particle physics appli-
cations, high energy density physics research using intense
particle beams, and heavy ion beams for inertial fusion en-
ergy and warm dense matter applications, etc. In most of
the applications, intense charged particle beams have to be
transported over long distances through a focusing chan-
nel, which provides transverse particle confinement. In a
quadrupole focusing channel, the beam particles experi-
ence a transverse linear focusing-defocusing force, which
is a periodic function of time in the beam frame. This os-
cillating force provides the necessary focusing only in an
average sense [1]. For intense charged particle beams, this
average force must be strong enough to prevent both ther-
mal and space-charge expansion of the beam particles.
Identifying regimes for stable beam propagation has

been one of the main challenges of accelerator research. In
particular, the development of systematic approaches that
are able to treat self-consistently the applied periodic fo-
cusing force and the self-field force of the beam particles
simultaneously is very important. Several recent investiga-
tions [2, 3, 4] have used standard Hamiltonian perturbative
methods. With these methods, one searches for the gener-
ating function that relates the old set of canonical phase-
space variables to the new canonical set. The new canoni-
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cal variables are chosen to have a Hamiltonian that is inde-
pendent of time. In the standard approach, the generating
function is a function of the mixed set of variables (old and
new). This makes the perturbative analysis quite compli-
cated. In particular, the analysis in Refs. [2, 3] was car-
ried out only to third order in the small parameter ε. The
analysis in Ref. [4] was carried out to 5th order, but the
authors appeared to have made an error in the iterative pro-
cedure, which invalidates the results. An advantage of the
present approach is that instead of using a generating func-
tion which is a function of the mixed set of variables, we
work with functions that depend on the new non-oscillating
set of variables from the beginning. This significantly sim-
plifies the analysis and develops an iterative procedure that
makes no reference to the generating function in its final
form. The authors in Ref. [3, 4] worked with Poisson’s
equation, while the author of Ref. [2] worked directly with
the Green’s function of Poisson’s equation. We use the lat-
ter approach because it allows for a simpler treatment, and
allows us to take into account the boundary conditions quite
easily.
The transverse dynamics of the intense charged particle

beam can be described by the nonlinear Vlasov-Poisson
system of equations for the beam distribution function
f(x, p, s) and the normalized self-field potential Ψ(x, t).
Here s = vbt is the longitudinal coordinate, and vb is the
directed beam velocity. The function f(x, p, s) satisfies the
nonlinear Vlasov equation [1]
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+
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∂xα
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ds

∂f
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∂H
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are the particle equations of motion. The Hamiltonian H
for the particle motion is in a force field which is the sum
of a linear externally applied focusing field with the focus-
ing field strength κ(s) changing periodically as function of
axial coordinate s according to κ(s) = κ(s + S), and the
self-field potential calculated self-consistently using Pois-
son’s equation.
It is convenient to introduce the re-normalized variables

x̄ = x/a, s̄ = s/S, κ̄(s) = κ(s)/κ0, p̄ = p/(aκ1/2

0
),

f̄ = (f/N)a4κ0, and Ψ̄ = Ψ/(a2κ0), where S is the char-
acteristic period of the applied focusing force, a is the char-
acteristic transverse beam dimension, and κ0 is the charac-
teristic value of the lattice function κ(s). Equations (1)
maintain the same form in normalized variables, whereas
normalized Hamiltonian H̄ takes the form

H̄(x̄, p̄, s) = ε

[

p̄αp̄α

2
+ κ̄(s̄)

x̄αx̄α

2



+

∫

L(x̄ − x̄′)f̄(x̄′, p̄′, s′)Dx̄′Dp̄′
]

, (2)

For simplicity, we suppress variable indices inside func-
tions, and adopt the notation xαxα ≡

∑2

α=1
xαxα, unless

mentioned otherwise. Moreover, for multi-dimensional in-
tegrals, we adopt the notation

∫

dx1dx2Z =
∫

DxZ . In
Eq. (2), ε ≡ Sκ1/2

0
, and the Green’s function L(x̄ − x̄′)

satisfies the equation

∂

∂x̄α

∂

∂x̄α
L(x̄ − x̄′) = −K̄δ(x̄ − x̄′). (3)

Here, K̄ = 2πq2N/mbv2
bγ

3
bκ0a2 is the normalized beam

self-field perviance, which is a measure of the beam space-
charge intensity,mb and q are the particle mass and charge,
respectively, and γb = (1 − v2

b /c2)−1/2 is the relativis-
tic mass factor. In Eq. (2), the function f̄ is normalized
according to

∫

dx̄dp̄f̄ = 1. In what follows, we assume
that all terms inside the square bracket in Eq. (2) are of
the same order. In writing the solution to Poisson’s equa-
tion using the Green’s function, which is a function of the
differenceL(|x̄− x̄′|), we have also assumed that the trans-
verse boundaries are infinitely far away. This assumption
is not strictly necessary, but is made here for simplicity.

PERTURBATIVE HAMILTONIAN
TRANSFORMATIONMETHOD

In what follows, we drop the bar notations over the
normalized variables. To determine the matched solu-
tion of the Vlasov equation (1), we search for a time-
dependent canonical transformation of the form [1, 2, 3, 4]
(xα, pα, H, s) → (Qα, Pα, K, s)

xα = xα(Q, P, s), pα = pα(Q, P, s), (4)

with time-independent transformed HamiltonianK(Q, P ).
For every canonical transformation there is a function S
that satisfies the differential relation

pαdxα − Hds = dS + PαdQα − Kds. (5)

It is convenient to search for a function S of the form
S = U + Pα(x − Q)α, where U(Q, P, s) is a function of
the new phase-space variables. The relationships between
the old and new set of phase-space coordinates are obtained
from Eq. (5), and can be expressed as

(x − Q)β = (p − P )α ∂(x − Q)α

∂P β
−

∂U

∂P β
,

(p − P )β = −(p − P )α ∂(x − Q)α

∂Qβ
+

∂U

∂Qβ
,

K − H = −(p − P )α ∂(x − Q)α

∂t
+

∂U

∂t
. (6)

The distribution function in the new coordinatesF (Q, P, s)
is related to the distribution function in the old set of coor-
dinates f(x, p, s) by

F (Q, P, s) DQDP = f(x, p, s) DxDp. (7)

Equation (7) expresses particle conservation in the
phase-space volumeDxDp under the transformation given
by Eq. (4). For a canonical transformation, the phase-
space volume is conserved according toDxDp = DQDP ,
and therefore F (P, Q, s) = f [x(Q, P, s), p(Q, P, s), s].
The new distribution function satisfies the Vlasov equa-
tion dF/ds = 0. For a time-independent Hamilto-
nian, there exists a trivial solution to the Vlasov equa-
tion, F = G[K(Q, P )] for arbitrary function G. The
periodic solution to the original Vlasov equation (1) can
be found by inverting Eqs. (4) according to f(x, p, s) =
G{KG[QG(x, p, s), PG(x, p, s)]}. Here, the subscript G
denotes the implicit dependence of the solution on the
choice of the functionG. For solutions of this form, we can
use Eq. (7) to express the original Hamiltonian in Eq. (2)
as

H(x, p, s) = ε

{

pαpα

2
+

κα(s)xαxα

2
(8)

+

∫

L[x − x(Q̄, P̄ , s)]G[K(Q̄, P̄ )]DQ̄DP̄

}

.

Equations (4) and (6) can be solved iteratively in terms
of the small parameter ε % 1. Specifically, we assume that

p = P +
∑

n=1

εnpn, x = Q +
∑

n=1

εnxn,

U =
∑

n=1

εnUn, K =
∑

n=1

εnKn, (9)

where pn(Q, P, s), xn(Q, P, s), Un(Q, P, s) and
Kn(Q, P, s) (n = 1, 2, ...) are functions to be deter-
mined by the iterative procedure.
Using Eqs. (9), we expand the functionH in Eq. (8) ac-

cording to

H(x, p, s) =
∑

n=1

εnHn(Q, P, s). (10)

Substituting the expansions [Eqs. (9) and (10)] into
Eqs. (6), we obtain
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)
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l
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>,

where the average value p̄n satisfies the equation

∂p̄γ
n

∂P β
=<

n−1
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(

∂pα
n−l

∂Qγ

∂xα
l

∂P β
−

∂pα
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∂P β
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l

∂Qγ

)

> . (12)



Here, < a >≡
∫ T
0

a(s)ds/S and % a &≡ a− < a >.
For a prescribed Hamiltonian functionH(x, p, s) [Eq. (8)],
Eqs. (11) and (12) provide an iterative procedure which
can be used to determine the canonical transformation
in Eq. (4), and the new time-independent Hamiltonian
K(P, Q) as implicit functions of the equilibrium function
G.

ILLUSTRATIVE APPLICATION
As a specific application, in this section we examine the

canonical transformation in Eq. (4), valid up to fifth order
in the small parameter ε, for the intense beam system with
Hamiltonian given by Eq. (8), for the choice of the lattice
function κα(s) = κ̄ sin(ωs)ηα, with vector η = (1,−1).
Here, we omit the details and only present the final re-

sults. The new time-independent Hamiltonian is deter-
mined to be [5]

K = ε

{

PαPα

2

(

1 + ε4
3κ̄2

2ω4

)

+ ε2
κ̄2

2ω2

QαQα

2

+

∫

DQ̄DP̄G(K̄)

[

L(Q − Q̄) + (13)

ε4
κ̄2

4ω4
(Q − Q̄)α(Q − Q̄)βηαηβ ∂2L

∂Qα∂Qβ

]}

.

Furthermore, the detailed expressions for the canonical
transformation are given by

xα = Qα + ε2
κ̄

ω2
ηαQα sin(ωs) (14)

+2ε3
κ̄

ω3
ηαPα cos(ωs) + ε4

{

−
κ̄2

8ω4
Qα cos(2ωs)

+ sin(ωs)
κ̄

ω4

∫

DQ̄DP̄G

×

[

2δαβ +
∂

∂Qα
(Q − Q̄)β

]

ηβ ∂L

∂Qβ

}

+ ε5xα
5 .

and

pα = Pα + ε
κ̄

ω
ηαQα cos(ωs) − ε2

κ̄

ω2
ηαPα sin(ωs)

+ε3
{

κ̄2

4ω3
Qα sin(2ωs) +

κ̄

ω3
cos(ωs) (15)

×

∫

DQ̄DP̄G
∂

∂Qα

(

ηβ(Q − Q̄)β ∂L

∂Qβ

)

}

+ε4
{

κ̄2

8ω4
Pα[12 + 5 cos(2ωs)] − sin(ωs)

κ̄

ω4

×

∫

DQ̄DP̄G
∂

∂Qα

[

2(P − P̄ )β

+P γ ∂

∂Qγ
(Q − Q̄)β

]

ηβ ∂L

∂Qβ

}

+ ε5pα
5 .

Here, the expressions for x5 and p5 can be found in
Ref. [5].

DISCUSSION OF RESULTS
The results obtained by this method in Eq. (13)–(15)

are consistent with previous results obtained to third order
in the small parameter ε = Sκ1/2

0
in Refs. [2, 3]. Here,

we have been able to extend the perturbative treatment
to fifth order in the small parameter ε, by avoiding the
unnecessary calculation of the generating function as a
function of a mixed set of variables. For a specific choice
of distribution function G(K), Eq. (13) can be solved to
determine the new time-independent Hamiltonian K . The
fifth-order corrections to the new Hamiltonian are of two
kinds. The correction to the kinetic term gives a correction
to the average frequency of the particle motion in the
external oscillating field, whereas the last term gives the
correction to the average self-field potential. The final term
can be expressed as a self-field potential Ψm that satisfies
the modified Poisson’s equation

Ψm(Q) =

∫

Lm(Q − Q̄)G(K)DQ̄DP̄ , (16)

with the modified Green’s function Lm(Q) defined by

Lm(Q) = L(Q) + ε4
κ̄2

4ω4

[

(Q1)2
∂2L

∂(Q1)2

+(Q2)2
∂2L

∂(Q2)2
− 2Q1Q2

∂2L

∂Q1∂Q2

]

. (17)

Note that this new Green’s function does not have cylin-
drical symmetry. However, it still possess quadrupolar
symmetry.
Finally we note that the ordering assumed at the begin-

ning of this paper, with P ∼ 1, is not fully consistent with
the final result. This can be seen from the fact that the
average particle motion is on surfaces of constant average
energy K = const., and therefore, in general, we obtain
P ∼ εQ ∼ ε, while the initial assumption was that P ∼ 1.
The formulation of a more refined self-consistent ordering
is being developed in Ref. [5].
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