
Non-Commutative Courant-Snyder Theory for Coupled Transverse Dynamics
of Charged Particles in Electromagnetic Focusing Lattices∗

H. Qin and R. C. Davidson† , Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA

Abstract

Courant-Snyder (CS) theory is generalized to the case
of coupled transverse dynamics with two degree of free-
dom. The generalized theory has the same structure as the
original CS theory for one degree of freedom. The four
basic components of the original CS theory, i.e., the enve-
lope equation, phase advance, transfer matrix, and the CS
invariant, all have their counterparts, with remarkably sim-
ilar formal expressions, in the generalized theory presented
here. The unique feature of the generalized CS theory is
the non-commutative nature of the theory. In the gener-
alized theory, the envelope function is generalized into an
envelope matrix, and the envelope equation becomes a ma-
trix envelope equation with matrix operations that are not
commutative. The generalized theory gives a new parame-
terization of the 4D symplectic transfer matrix that has the
same structure as the parameterization of the 2D symplec-
tic transfer matrix in the original CS theory.

INTRODUCTION

The transverse dynamics of a charged particle in a linear
focusing lattice κq(t) is described by an oscillator equation
with time-dependent spring constant of the form

q̈ + κq(t)q = 0 , (1)

where q represents one of the transverse coordinates, either
x or y. For a quadrupole lattice, κx (t) = −κy (t) . The CS
theory [1] gives a complete description of the solution to
Eq. (1), and serves as the fundamental theory that underlies
the design of modern accelerators and storage rings. There
are four main components of the CS theory: the envelope
equation, the phase advance, the transfer matrix, and the CS
invariant. The CS theory can be summarized as follows.
Because Eq. (1) is linear, its solution can be expressed as
a time-dependent linear map from the initial conditions,
i.e., (q, q̇)† = M (t) (q0, q̇0)†,where q0 = q (t = 0) and
q̇0 = q̇ (t = 0) . The superscript “†” denotes the transpose
operation. The transfer matrixM (t) is symplectic and has
the following decomposition

M (t) = (2)
(

w 0

ẇ
1

w

)

(

cosφ sinφ
− sinφ cosφ

) (

w−1

0
0

−ẇ0 w0

)

.
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Here, the envelope functionw (t) satisfies the nonlinear en-
velope equation, and φ (t) is the phase advance, i.e.,

ẅ + κq (t)w = w−3 , (3)

φ (t) =

∫ t

0

dt

β (t)
, β (t) = w2 (t) . (4)

The well-known CS invariant [1, 2] is

I =
q2

w2
+ (wq̇ − ẇq)2 . (5)

We emphasize that the CS theory is very unique among
many possible mathematical schemes to parameterize the
symplectic transfer matrix. The parameters corresponding
to the envelope, phase advance, and CS invariant describe
the physical dimensions and the emittance of the beam, and
set the foundation for many important concepts in beam
physics, such as the Kapchinskij-Vladimirskij distribution
function for beams with strong space-charge field.
When applying the CS theory to accelerators, the dy-

namics in the two transverse directions are considered to
be decoupled. However, the coupling between the two
transverse directions can be of considerable practical im-
portance [3, 4]. The general form of the Hamiltonian for
the coupled transverse dynamics is given by

Hc = z†Acz , z = (x, y, ẋ, ẏ)† , (6)

Ac =

(

κ R

R† I

2

)

, κ =

(

κx κxy

κxy κy

)

. (7)

Here, the 2×2matrix κ(t) is time-dependent and symmet-
ric, R is an arbitrary, time-dependent 2× 2 matrix, and I is
the 2× 2 unit matrix. The transverse dynamics are coupled
through the κxy (t) terms and the matrix R. A solenoidal
lattice will induce non-vanishingR, and a skew quadrupole
field will induce non-vanishing κxy. For a combined lattice
with quadrupole, skew quadrupole, and solenoidal compo-
nents, we find

κ =







Ω2

2
+
κq

2
κsq

κsq
Ω2

2
−
κq

2






, R =







0 −
Ω

2
Ω

2
0






,

(8)
where κq is the quadrupole focusing coefficient, Ω(t) =
eBz(t)/γmc is the gyro-frequency associated with the
solenoidal lattice, and κsq is the skew quadrupole coeffi-
cient.
The solution of the linear coupled system corresponding

toHc is given by a transfer matrixMc (t) , which is a time-
dependent 4 × 4 symplectic matrix [1]. Because there are



10 free parameters for a 4×4 symplectic matrix, many dif-
ferent mathematical parameterization schemes for Mc (t)
exist. Teng and Edwards [5, 6, 7] first systematically stud-
ied the transfer matrix and derived various parameteriza-
tion schemes [5], among which the “symplectic rotation
form” [6] has been adopted in lattice design and particle
tracking codes, such as the MAD code [8]. Other possible
parameterizations have also been considered [9]. However,
these parameterizations lack connections with the physics
of the beam dynamics. They do not provide us with useful
physical insights regarding the coupled dynamics. For ex-
ample, these parameterization schemes do not give us ef-
fective tools to investigate the stability properties of the
coupled dynamics. They also do not describe the beam
envelopes for the coupled transverse dynamics, which are
obviously key physical parameters of the beams. Ripken
[10, 11] developed a method to describe beam envelopes
for coupled dynamics without using these parameterization
schemes, which attests to the ineffectiveness of the existing
parameterization schemes.
In this paper, we develop a new physical parameteriza-

tion of the transfer matrixMc (t) for coupled transverse dy-
namics by extending the CS theory for one degree of free-
dom to the case of coupled transverse dynamics described
by the HamiltonianHc in Eq. (6). The generalized CS the-
ory has the same structure as the original CS theory for one
degree of freedom. The four basic components of the origi-
nal CS theory that have physical importance, i.e., the enve-
lope equation, phase advance, transfer matrix, and the CS
invariant, all have their counterparts, with remarkably sim-
ilar expressions, in the generalized CS theory developed
here. The unique feature of the generalized CS theory pre-
sented here is the non-commutative nature of the theory.
In the generalized theory, the envelope function w is gen-
eralized to an envelope matrix, and the envelope equation
becomes a matrix envelope equation with matrix operations
that are not commutative. The generalized theory gives a
parameterization of the 4D symplectic transfer matrix Mc

[Eqs. (16)] that has the same structure as the parameteriza-
tion of the 2D symplectic transfer matrixM [Eq. (2)] in the
original CS theory.

NON-COMMUTATIVE CS THEORY
We use a time-dependent canonical transformation, first

proposed by Leach [12], to develop the generalized CS the-
ory. We consider a linear, time-dependentHamiltonian sys-
tem with n-degree of freedom given by H = z†A (t) z and
z = (x1, x2, ..., xn, ẋ1, ẋ2, ..., ẋn)† . Here, A (t) is a 2n ×
2n time-dependent, symmetric matrix. The Hamiltonian in
Eq. (6) has this form with n = 2. We introduce a time-
dependent linear canonical transformation z̄ = S (t) z,
such that in the new coordinate z̄, the transformed Hamil-
tonian has the form H̄ = z̄†Ā (t) z̄, where Ā (t) is a tar-
geted symmetric matrix. Because z̄ = S (t) z is required to
be canonical, the transformation matrix is symplectic, i.e.,
SJS† = J . In addition, the transformation S (t) that ren-

ders this canonical transformation needs to satisfy [12, 13]

Ṡ = 2
(

JĀS − SJA
)

, (9)

where J is the 2n× 2n unit symplectic matrix of order 2n.
Equation (9) will play an important role in determining the
structure of the generalized theory.
We are now ready to develop the generalized CS theory

for coupled transverse dynamics described by the Hamil-
tonian Hc, using this technique of time-dependent canoni-
cal transformation. For simplicity of presentation, we only
consider the case of Ω = 0 in this paper. Treatments for
more general cases can be found in Ref. [13]. Our objective
is to solve the coupled system by determining the transfer
matrix between the initial condition z0 = (x0, y0, ẋ0, ẏ0)

†

and z = (x, y, ẋ, ẏ)† at time t.We accomplish this goal by
two time-dependent canonical transformations. The first
step is to transformHc into

H̄c = z̄†Ācz̄ , Āc =







β−1

2
0

0
β−1

2






, (10)

and the second step is to transform H̄c into ¯̄Hc = 0. Here,
β is a time-dependent 2×2matrix to be determined. As im-
plied by its notation, the matrix β is the generalized β func-
tion for the coupled dynamics. The physics that appears in
the first step is the envelope matrix and the non-Abelian
matrix envelope equation. The physics that appears in the
second step is the phase advance. Let z̄ = Sz be the trans-
formation that transforms Hc into H̄c. From Eq. (9), the
differential equation for S is

Ṡ = 2
(

JĀcS − SJAc

)

. (11)

The solution of Eq. (11) is

S =

(
(

w−1
)†

0
−ẇ w

)

,

where β−1 =
(

w−1
)†

w−1 and w is the 2 × 2 envelope
matrix satisfying the envelope matrix equation

ẅ + wκ =
(

w−1
)†

w−1
(

w−1
)†

. (12)

The inverse transformation is

z = S−1z̄ , S−1 =

(

w† 0
w−1ẇw† w−1

)

. (13)

The matrix S−1 is the non-commutative generalization of
the first matrix in the expression of the transfer matrix M
for the original CS theory, i.e., the first term on the right-
hand side of Eq. (2).
The next step is to transform H̄c into ¯̄Hc = 0 with ¯̄Ac =

0 by a transformation specified by ¯̄z = P z̄. Following the
same procedure, the differential equation for P is

Ṗ = P φ̇ , φ̇ ≡

(

0 −
(

w−1
)†

w−1

(

w−1
)†

w−1 0

)

,

(14)



which admits solution of the form P =
(

P1 P2

−P2 P1

)

. From
the fact that P belongs to Sp (4, R) , we can readily show
that PP † = I, and Det (P ) = 1. Therefore, P corre-
sponds to a rotation in the 4D phase space, P ∈ SO (4) .
In this sense, P † is the 4D non-commutative generalization
of the 2D rotation matrix in the expression for the transfer
matrixM in the original CS theory, i.e., the second term on
the right-hand side of Eq. (2). Because φ̇† = −φ̇, it follows
that φ̇ belongs to the Lie algebra so (4) , i.e., φ̇ is an in-
finitesimal generator of a 4D rotation. In another word, φ̇ is
an “angular velocity” in 4D space, which is equivalent to a
phase advance rate in 4D space. The 4D phase advance rate
φ̇ is determined from the 2×2matrix β−1 =

(

w−1
)†

w−1,
which is remarkably similar to the the phase advance rate
β−1 = 1/w2 in the original CS theory for one degree of
freedom [see Eq. (4)].
Because ¯̄Hc = 0, the dynamics of ¯̄z is trivial, i.e., ¯̄z =

¯̄z0, and we have solved the Hamiltonian system Hc in ¯̄z.
From ¯̄z = PSz and ¯̄z = ¯̄z0, we obtain the linear map
between z0 and z, i.e.,

z = S−1P−1 ¯̄z = S−1P−1 ¯̄z0 = S−1P−1P0S0z0 . (15)

Because P ∈ SO(4, R), without loss of generality we se-
lect the initial condition P0 = P (t = 0) = I , to obtain
z = Mcz0 ,

Mc = S−1P−1S0 =

(

w† 0
w−1ẇw† w−1

)

(

P1 −P2

P2 P1

) (

w−1†
0

0
−ẇ0 w0

)

. (16)

The transfer matrix Mc in Eq. (16) is the 4D non-
commutative generalization of the transfer matrix in Eq. (2)
for one degree of freedom. The similarities between Mc

and M is evident from Eqs. (16) and (2). We note that
Eq. (16) has the general format of Eq. (38) of Ref. [14]
using the normal form methods [15, 16, 17], which is valid
for any general linear or nonlinear lattice. The specific ex-
pressions of the matrix elements in Eq. (16) are of course
not valid for an arbitrary linear or nonlinear lattice. They
are only correct for the coupled linear lattice under investi-
gation here. The generalized CS invariant for 4D coupled
dynamics corresponding to the original CS invariant is

ICS = ¯̄z† ¯̄z = z†S†P †PSz = z†S†Sz , (17)

where the phase advance has been removed due to the fact
that P is a 4D rotation.
We now show that the generalized CS theory developed

for coupled transverse dynamics recovers the original CS
theory for dynamics with one degree of freedom as an spe-
cial case. For the uncoupled transverse dynamics given by
Hc with κxy = 0, κ is diagonal, and the matrix enve-
lope equation Eq. (12) admits solutions with diagonal en-
velope matrix w =

(

wx 0

0 wy

)

. Consequently, every matrix
in Eq. (12) is diagonal, and the matrix operation is com-
mutative. The matrix envelope equation reduces to two de-
coupled envelope equations of the conventional form for

wx andwy, i.e., ẅx+wxκx = w−3
x and ẅy+wyκy = w−3

y .
The 2×2matrix of phase advance rate β−1 reduces to a di-
agonal matrix as well, i.e., β−1 =

(

w−2

x
0

0 w−2

y

)

. The phase

advance is P =
(

P1 P2

−P2 P1

)

, P1 =
(

cos φx 0

0 cos φy

)

and

P2 =
(

sin φx 0

0 sin φy

)

, where φ̇x = w−2
x and φ̇y = w−2

y

are the phase advances in the x- and y-directions. Evi-
dently, the (x, ẋ) dynamics and the (y, ẏ) dynamics are
decoupled, and the transfer matrices for (x, ẋ) and (y, ẏ)
extracted from the transfer matrix M are identical to that
in Eq. (2) for one degree of freedom.
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