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Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require

specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the

transport channel—both in terms of low-order rms (envelope) properties as well as the higher-order phase-

space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial

Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge

fields including the following: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing

equilibria with specific detailed examples, and various nonequilibrium distributions, such as the semi-

Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder

invariants. Important practical details necessary to specify these distributions in terms of standard

accelerator inputs are presented in a unified format. Building on this presentation, a new class of

approximate initial kinetic distributions are constructed using transformations that preserve linear

focusing, single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium dis-

tributions to a form more appropriate for noncontinuous focusing channels. Self-consistent particle-in-cell

simulations are employed to show that the approximate initial distributions generated in this manner are

better adapted to the focusing channels for beams with high space-charge intensity. This improved

capability enables simulations that more precisely probe intrinsic stability properties and machine

performance.
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I. INTRODUCTION

Numerical simulations of charged particle beams using
the Vlasov-Maxwell equations have become an indispens-
able tool to analyze long-pulse accelerator systems with
high space-charge intensity [1–11]. Analytical theory can
become very cumbersome for realistic investigations of
systems with strong space-charge forces. Meanwhile, the
increasing power of digital computers and ever improving
numerical methods enable high-level modeling with lesser
degrees of idealization. Large-scale computer simulations
of Vlasov evolutions using particle-in-cell (PIC) methods
adapted from plasma physics [12,13] are routinely used to
identify physical mechanisms limiting transport [14–16],
to validate practical design concepts [17], and to support
interpretation of experiments where only limited diagnos-
tics are possible [9,18,19]. In the future, direct Vlasov
methods promise improved, low-noise simulations for im-

proved understanding of halo particle production and other
effects difficult to resolve with PIC methods [20–23]. It is
critical in many applications of Vlasov simulations of
intense beams to employ initial (‘‘load’’) distribution func-
tions that are well adapted to the transport lattice. If the
total beam propagation distance is not too long and the
injector is amenable to modeling, then the beam emission
from the source can be simulated and the subsequent
evolution through the transport and acceleration cycle of
the machine simulated for high-level ‘‘first-principles’’
modeling with limited assumptions [24–27]. Alter-
natively, the loaded distribution can be synthesized based
on reasonable extrapolations of limited experimental mea-
surements of the beam phase space at a diagnostic location
in the machine lattice [28,29]. Or finally, the initial beam
distribution can be assumed to be of a particular (ansatz)
form motivated by physical insight or generated by relaxa-
tion processes from a relatively simple initial ansatz dis-
tribution. The ansatz approach is especially useful when
analyzing intrinsic transport limits of beams with high
space-charge intensity—particularly if a smooth ‘‘equilib-
rium’’ beam distribution can be constructed which main-
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tains the functional form of the initial distribution. Then
well-established methods of plasma physics [30] can be
applied to understand the consequence of system perturba-
tions in a simplified manner.

In continuous-focusing channels the transverse applied-
focusing force is constant as the beam propagates in the
lattice. System energy is then conserved and an infinite
variety of stationary, stable equilibrium distributions with
appealing physical properties can be constructed from
distributions that are specified smooth functions of the
single-particle Hamiltonian [30–32]. At high space-charge
intensity, the self-consistent space-charge forces of the
continuous-focusing distributions lead to characteristic
Debye-screened density projections that one would expect
on physical grounds—with a flat core and a sharp edge
[30–32]. Unfortunately, the continuous-focusing model is
not in general directly applicable to laboratory systems.
Real applied-focusing lattices are typically periodic or
quasiperiodic structures where the applied forces vary
rapidly with the axial coordinate s. This variation of the
applied-focusing force vastly complicates the construction
of equilibrium or approximate equilibrium distributions
and also complicates beam stability [16,33–35]. The
s-varying applied-focusing fields can transfer energy into
and out of the beam, rendering the continuous-focusing
model only useful as an approximate, qualitative guide for
lattices with relatively weak applied focusing (i.e., low
undepressed particle phase advances).

In the presence of finite beam space charge, a well-
known self-consistent transverse equilibrium distribution
for a linear applied-focusing channel with arbitrary s var-
iations in the focusing forces is the Kapchinskij-
Vladimirskij (KV) distribution [30–32,36]. Although the
low-order properties of the KV distribution are appealing
physically, the full four-dimensional structure corresponds
to a singular, hyperellipsoidal shell in phase space. For
strong space charge, this singular structure drives unphys-
ical, higher-order instabilities [31,32,37–44] which limit
practical use of the KV distribution for initializing simu-
lations. The KV distribution is the only exact Vlasov
equilibrium known that is a function of linear-field
Courant-Snyder invariants [45]. Danilov et al. [46] inves-
tigate alternative classes of exact kinetic equilibrium dis-
tributions for linear forces. These distributions are highly
singular, and based on elementary plasma physics consid-
erations, can be expected to be unstable (similar to the KV
distribution) in regimes of high space-charge intensity.

Because of the limitations of the singular equilibrium
distributions (KV or otherwise) and the lack of known
smooth equilibria for focusing channels with s-varying
applied-focusing forces, approaches to generate initial ki-
netic distributions for simulations have been taken by
assuming specific nonequilibrium ansatz forms or by ap-
plying relaxation techniques. Such ansatz-type distribu-
tions in common use include the semi-Gaussian

distribution which retains the uniform charge-density of
the KV model within an elliptical envelope but modifies
the local temperature to be Gaussian-distributed and spa-
tially uniform [47]. This results in a beam edge that is not
locally in force balance and a spectrum of waves are
launched [16,48,49]. Depending on the application, such
waves may or may not pose a problem. Another ansatz
approach employed is to initialize beams that are functions
of Courant-Snyder invariants of single-particle orbits in the
applied-focusing fields [50,51]. Such distributions are
equilibria when space-charge forces are negligible but
can launch significant collective waves due to the lack of
consistent local force balance in the core of the beam when
space-charge forces are a significant fraction of the average
applied-focusing forces. Finally, several perturbative theo-
ries based on Hamiltonian averaging techniques [32,52–
58] and canonical transformations [59] have been devel-
oped to construct approximate, non-KV beam equilibria in
s-varying focusing channels. It is expected that the
Hamiltonian averaging techniques produce increasingly
reliable equilibrium representations at sufficiently weak
applied-focusing fields. The Hamiltonian averaging meth-
ods are beginning to be implemented and tested in self-
consistent Vlasov simulations [60]. Vlasov simulations of
the canonical transformation procedure of Ref. [59] have
been carried out and appear to verify near-equilibrium
structure for solenoidal periodic-focusing channels but
not for strong (quadrupole) periodic focusing.
Relaxation procedures have been developed to partially

circumvent the lack of a known smooth equilibrium distri-
bution with x-varying focusing forces. The intent behind
relaxation methods is to allow phase mixing, nonlinear
effects, and collective relaxation processes to effectively
relax the core of a nonequilibrium ansatz ‘‘initial’’ distri-
bution to a form better adapted to the applied-focusing
channel. These approaches presuppose the existence of a
stable underlying equilibrium, which particularly for
strong focusing strength may not be the case [16,33–35],
thereby limiting applicability. One approach tried is to
gradually increase the space-charge intensity by adjusting
species weights while evolving the beam [61,62], or simi-
larly by slowly removing nonlinear applied-field compo-
nents applied to better match the edge, while evolving the
beam [63]. Another approach has been to employ
‘‘Langevin’’ procedures where stochastic, scattering terms
and damping terms are added to the particle equations of
motion and the simulations are advanced until these terms
balance while driving the beam to a relaxed state [64]. In
these methods it can be difficult to parametrically deter-
mine sufficient propagation distances and criteria to spec-
ify adequate relaxation [15] and/or how rapidly the space-
charge intensity can be increased toward desired values.
Moreover, the desired beam parameters (emittances, etc.)
can be difficult to obtain. Recent work by Dorf et al.
[65,66] improves the relaxation approach by launching
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continuous-focusing distributions (equilibrium and other-
wise) and adiabatically modifying the focusing to periodic
form. Encouraging results are obtained by allowing the
beam to adapt to the channel while adiabatically reducing
the continuous-focusing fields simultaneously with in-
creasing periodic-focusing fields in a manner where nearly
constant net focusing strength is maintained.

In this study, conventional initial distributions employed
in beam simulations are first reviewed within a common
framework. Special attention is applied to generating
smooth, stationary equilibria in continuous-focusing chan-
nels. Continuous equilibria with ‘‘waterbag,’’ ‘‘parabolic,’’
and ‘‘thermal’’ forms are analyzed in detail. Procedures are
formulated for all types of distributions presented to initi-
alize macroparticles in PIC simulations. Results from these
standard distributions are then applied to develop a new
class of pseudoequilibrium distributions that are useful for
initializing Vlasov simulations of beams in transport chan-
nels with s-varying applied-focusing forces. The pseudoe-
quilibrium distributions are constructed by transforming
continuous-focusing equilibria to rms equivalency [31]
with a KV beam in a manner that preserves the linear
space-charge Courant-Snyder invariants. The pseudoequi-
librium distributions are not exact equilibria, but are rela-
tively easy to synthesize, and have appealing physical
properties that better reflect the relaxed, equilibriumlike
form expected in stable transport. The proximity to equi-
librium form reduces the initial transient waves associated
with the lack of full consistency, thereby simplifying in-
terpretation of the simulations. The procedure is formu-
lated using standard accelerator inputs. Results are
illustrated for transverse PIC simulations of four-
dimensional (4D) phase space describing an unbunched,
coasting beam. The results indicate that the loads will
prove superior to standard beam initializations—particu-
larly for high relative space-charge intensity. The method
used to generate the pseudoequilibrium distributions also
applies to 6D phase-space distributions if the axial particle
phase space is specified. Parametric simulation studies
carried out with initial pseudoequilibrium distributions
have already been applied to better understand the intrinsic
space-charge limits in the transport of matched beams in
periodic-focusing channels [16,33–35]. Parts of formula-
tions presented here have been developed through exten-
sions of cited material in a series of graduate level classes
on beam physics with high space-charge intensity taught
by Barnard and Lund at the U.S. Particle Accelerator
School [67] and the University of California at Berkeley
[68], and Lund at the French National Institute for
Research in Computer Science and Controls (INRIA)
school on modeling and computational methods for kinetic
equations [69].

The organization of this paper is the following.
Section II presents an overview of PIC simulation codes
employed in this study for testing loaded distributions

(Secs. II A and II B), and reviews system and numerical
parameters employed to characterize simulations
(Sec. II C). Classes of transverse distributions commonly
employed in simulations are summarized in Sec. III in-
cluding: equilibrium KV (Sec. III A) and continuous-
focusing distributions (Sec. III B), and nonequilibrium
semi-Gaussian (Sec. III C), and linear-field Courant-
Snyder invariant (Sec. III D) distributions. Important de-
tails are given in the Appendices to allow reasonably
abbreviated presentation in the main text without sacrific-
ing completeness. In Appendix A, acceleration effects are
analyzed in a manner to allow application of coasting-
beam results central to the paper to systems with slow
axial acceleration. Appendix B elucidates the important
connection between statistical rms emittances and single-
particle Courant-Snyder invariants for particles within a
KV distribution. Appendix C calculates the moments
and projections of distributions of linear-field Courant-
Snyder invariant distributions presented in Sec. III D.
Appendices D, E, and F provide extensive details on the
equilibrium structure of continuous-focusing waterbag,
parabolic, and thermal equilibrium distributions. This in-
cludes nonlinear equilibrium properties, solution of con-
straints to express the solutions in terms of standard
accelerator parameters, and simplifications to load the
distributions in PIC codes. These results are applied in
Sec. IV to construct classes of pseudoequilibrium distribu-
tions which improve on several aspects of the conventional
distributions reviewed. Straightforward procedures are for-
mulated to construct the distributions (Sec. IVA), and the
simulations presented (Sec. IVB) highlight key results.
Concluding comments in Sec. V outline the range of use-
fulness and limitations of the pseudoequilibrium
distributions.

II. SIMULATION DESCRIPTIONS

Here we briefly describe two electrostatic PIC simula-
tion codes employed and parameter choices made associ-
ated with example simulations carried out. This allows
succinct presentation of later examples while providing
complete details on numerical methods and parameters
employed so results can be reproduced. Methods described
are mostly standard and can be readily applied within a
variety of PIC codes used to simulate charged particle
beams with high space-charge intensity. The two codes
employed to evaluate the performance of initial distribu-
tions analyzed in this study are WARP (Sec. II A) and B-DYN

(Sec. II B). Example simulations are carried out on both
serial and parallel computer systems using both codes.
Code descriptions focus on specific numerical methods
employed. For simplicity, transverse simulations are car-
ried out of a coasting beam with a common set of system
parameters (Sec. II C). Parameter discussions are framed in
a general manner to highlight resolution and statistics
issues associated with PIC simulations.
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A. The WARP code

The WARP code is a versatile set of simulation tools
originally developed to model ion beams with intense
space charge for application to heavy ion fusion
[1,2,5,70,71]. Particle moving, fieldsolve, loading, and
diagnostic routines are linked to a Python interpreter to
enable a wide variety of simulations without modifying the
source code. The WARP code has both fully 3D, r-z, and
transverse 2D (xy) slice PIC packages in addition to a
moment package for centroid and envelope descriptions.
All PIC packages are multispecies. The transverse slice
package is applied for this study which leapfrog advances
macroparticles in time with time-advance steps iterated to
map macroparticles from slice to slice. Residence correc-
tions are applied when macroparticles enter and exit hard-
edge quadrupole focusing elements. The kinematics are
fully relativistic and leading-order self-magnetic field ef-
fects are included by gamma-factor corrections [32,72,73].
Various fieldsolvers can be applied to solve the discretized
Poisson equation with detailed conducting structures. Here
we employ a fast Fourier transform solver coupled with a
capacity matrix solver to implement boundary conditions
for a cylindrical, conducting beam pipe on a uniform,
square grid. Symmetry conditions can be exploited for
more efficient simulations (a"4# reduction in simulation
time with equivalent statistics and resolution for ideal
quadrupoles). A wide variety of initial distributions de-
scribed in this paper can be loaded as well as ‘‘first-
principles’’ simulations of ions emitted from space-charge
limited flow injectors, and various synthesized distribu-
tions based on extrapolations of a limited set of beam
properties (usually from measured experimental data).
Various ordered and pseudorandom number sequences
can be applied when generating particle loads.
Diagnostics include particle phase-space projections with
transforms to remove linear coherent flows (allowing better
visualization of small, nonlinear distribution distortions),
and various moment and binned quantities calculated from
the distribution (standard moments as well as fluid flows,
kinetic temperatures, etc.).

B. The B-DYN code

The B-DYN code was developed to study high space-
charge intensity beam dynamics during the final beam
bunching section in heavy ion fusion drivers [74–76].
The B-DYN code employs a 2D, transverse slice model.
When applied to longitudinally compressing beams, spe-
cies weights are adjusted to model increased transverse
space-charge forces resulting from the compression [77].
Macroparticles are advanced in the axial coordinate s using
the paraxial approximation, relativistic equations of mo-
tion, and the leapfrog method. Axial advance steps are
chosen so that macroparticles are not advanced through
element boundaries when entering and exiting hard-edge
quadrupoles. Leading-order self-magnetic field effects are

included using gamma-factor corrections [32,73]. The self-
field is calculated on a uniform, square grid by solving the
discretized Poisson equation using a multigrid, successive
over-relaxation method [78]. Conducting-pipe boundary
conditions are taken on the square grid boundary. System
symmetries are not exploited. A wide variety of distribu-
tions can be loaded. Sequences of pseudorandom numbers
are employed in generating particle loads.

C. Simulation parameters

In simulations carried out to illustrate distribution loads,
we assume a periodic focusing-off-defocusing-off (FODO)
quadrupole magnetic-focusing lattice or a continuous-
focusing lattice. The periodic FODO lattice has piecewise
constant lattice focusing functions !j in the j ¼ x; y planes
as illustrated in Fig. 1 with !x ¼ !!y. Quadrupole focus-
ing elements have fractional magnet occupancy " in the
lattice with period Lp ¼ 0:5 m. Equal axial-length and
equal-strength focusing and defocusing quadrupoles (‘ ¼
"Lp=2) are separated by equal axial-length drifts [d ¼
ð1! "ÞLp=2]. The scale of the !j are set by the unde-
pressed particle phase advance #0 (measured in degrees)
using a formula presented in Ref. [79] (#0x ¼ #0y ' #0)
for#0 ¼ 45( (for relatively weak focusing), and#0 ¼ 70(

(for relatively strong focusing near the stability limit of the
lattice [16,33–35]). A pure Kþ ion beam is assumed with
Eb ¼ 1 MeV axial particle kinetic energy (nonrelativistic).
No spread in axial velocity is taken for simplicity, and the
beam is unbunched and coasting (not accelerating) in
the periodic lattice. The rms-edge emittance of the beam
is set as "x ¼ "y ¼ 50 mmmrad [see Eq. (24)] for both
strengths of applied-focusing fields considered. The beam
line charge $ ¼ const is adjusted to obtain specified values
of the dimensionless perveance Q [see Eq. (22)]. The
initial beam envelope is taken to be rms matched in the
lattice according to the KV envelope equations [see
Eq. (21)], and the beam slice is launched at the axial
midpoint of a drift before a focusing-in-x quadrupole.
Depressed particle phase advances # (#x ¼ #y ' #) are
specified for the loaded beam with nonuniform charge

FIG. 1. Quadrupole FODO focusing lattice employed in illus-
trative simulations.
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density in terms of #=#0, calculated from an rms-
equivalent matched beam [31] [see Eq. (25)].

For continuous-focusing simulations, the same choices
described above for the FODO quadrupole lattice are
made, but the applied-focusing functions are set with !j ¼
k2%0 ¼ const. To further aid comparisons to FODO lattice

simulations, we take (arbitrarily) k%0 ¼ ð&=180(Þ#0=Lp

with Lp ¼ 0:5 m.
Numerical parameters of the simulations are set for both

high resolution and good statistics (low noise) to better
evaluate the subsequent evolution of the distribution loads.
Parameter choices are specified for loaded distributions
with nonuniform space charge in terms of rms-equivalent
beam [31] edge radii rx and ry [see Eq. (23)]. Uniform,
rectangular transverse spatial grids are employed with x-
and y-grid increments !x and !y (!x ¼ !y) chosen for

Nr ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
rxry
!x!y

s
(1)

zones (typical Nr 2 ½20; 200+) across the matched-beam
radius, with Nr sufficiently large to resolve the structure of
the beam edge. Round (WARP, with rp radius) or square
(B-DYN, with 2rp side length) conducting beam pipes are
placed on the grid far enough from the matched envelope
excursions with

Np ¼
rpffiffiffiffiffiffiffiffiffi
rxry

p ; (2)

chosen large enough (typical Np ’ 3 here) to render
image-charge effects small. For a given value of Np,
image-charge effects will be more strongly mitigated in
WARP than B-DYN, because the round beam pipe more
closely matches the equipotentials external to a roughly
elliptical charge symmetry beam than a square pipe. In
general, correct image-charge modeling requires imple-
menting boundary conditions associated with the structure
of the aperture under consideration in the field solver. The
number of macroparticles per grid cell,

Nppg ¼
N

&rxry=ð!x!yÞ
; (3)

whereN is the total number of macroparticles loaded, is set
large enough (typical Nppg 2 ½102; 104+ and even larger on
parallel machines) to reduce statistical noise on the grid
and to produce low noise in binned diagnostic quantities
such as densities and kinetic temperatures. Generally, we
find that the requirement of reducing noise for clear diag-
nostics to be more stringent than required for high-fidelity
simulations. Symmetry factors are included in measuring
Nppg in WARP simulations. The axial advance stepsize!s of
the macroparticles is set for

Ns ¼
Lp

!s
(4)

steps per period (typical Ns 2 ½100; 500+) to resolve both
rapidly varying in s applied-focusing forces of the lattice
(more restrictive), and evolving collective space-charge
waves (generally less restrictive). Total advance lengths
in s are carried out over relatively small numbers of lattice
periods because the purpose of the present analysis is to
evaluate initial transient deviations from the load to stress
nonequilibrium like characteristics rather than collective
relaxations over longer evolutions [15,48,49]. Diagnostic
plots of binned density are contrasted at successive lattice
periods to emphasize changes. Spatial binning grids can be
independently set from the fieldsolve grid to allow use of
coarser diagnostic meshes that reduce noise while resolv-
ing relevant features.
The simulation parameters Nr and Ns should also set

consistently with resolving the characteristic Debye

screening length $D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
'0 "T=ðq2 "nÞ

p
[see Secs. III and

Appendix F]. Here, "T and "n are characteristic spatially
averaged kinetic temperature and density measures over
the beam. One expects that the radial falloff distance of the
beam density will be related to the Debye length, and that
resolving the edge (i.e., Nr sufficiently large) will result in
the number of cells per Debye length,

ND ¼
$Dffiffiffiffiffiffiffiffiffiffiffiffi
!x!y

q ; (5)

being sufficiently large to resolve screening of interactions
for high space-charge intensity. Likewise, controlling sta-
tistical noise (i.e., Nppg sufficiently large) on a grid chosen
to resolve the Debye length will generally assure that the
number of macroparticles within a characteristic Debye
screening circle

NppD ¼ N
$2
D

rxry
(6)

is sufficiently large. For charged particle beams with non-
uniform temperature and density as well as an effective
edge radii rx and ry that evolve in the focusing lattice,
issues of adequate resolution of plasma parameters can
depend on the specific distribution and application.
Although some guidance exists in simple neutral plasma
systems [12,13], generally for intense beams these issues
must be explored carefully to establish confidence that
quantities examined are adequately represented and nu-
merically converged.

III. FORMULATION AND REVIEW OF INITIAL
TRANSVERSE KINETIC DISTRIBUTIONS

COMMONLY EMPLOYED IN SIMULATIONS OF
LINEAR-FOCUSING CHANNELS

We consider a beam of particles of charge q and rest
massm. The beam can be fully specified by the x-p phase-
space coordinates of the particles evolving in time. For
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present purposes, we model an axially thin, transverse slice
of beam evolving in the accelerator lattice as a function of
the axial coordinate s of the slice in the machine. The slice
moves axially with velocity %bc ¼ const and relativistic

gamma factor (b ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! %2

b

q
¼ const. Here, c is the

speed of light in vacuo. The transverse phase space of the
beam is described by the spatial coordinate x? ¼ xx̂þ yŷ
and the angle x0

? that the particle makes with the axis of the
machine. Primes henceforth denote derivatives with re-
spect to s, and in the paraxial approximation, x0

? ’
v?=ð%bcÞ, where v? is the transverse particle velocity.
In the Vlasov description, the slice is modeled by a
continuous, single-particle distribution function
f?ðx?;x

0
?; sÞ. In the paraxial limit, f? evolves as an

incompressible fluid in 4D transverse phase space accord-
ing to the nonlinear Vlasov equation [30–32,67–69]

"
@

@s
þ @H?

@x0
?
, @

@x?
! @H?

@x?
, @

@x0
?

#
f?ðx?;x

0
?; sÞ ¼ 0: (7)

Here,

H?ðx?;x
0
?Þ ¼

1

2
x02
? þ

1

2
!xx

2 þ 1

2
!yy

2 þ q

m(3
b%

2
bc

2 )

(8)

is the single-particle Hamiltonian, !jðsÞ (j ¼ x; y) are the
usual functions describing linear applied-focusing forces
of the lattice [31,79], and)ðx?; sÞ is the self-field potential
generated by the beam space charge. The potential )
satisfies the transverse Poisson equation,

r2
?) ¼ ! q

'0

Z
d2x0?f?; (9)

with ) subject to the appropriate boundary conditions on
the transverse machine aperture. Here, '0 is the permittiv-
ity of free space.

The Vlasov-Poisson system given by Eqs. (8) and (9)
models the transverse beam evolution in the continuum
approximation. The system is solved as an initial value
problem where f?ðx?;x

0
?; sÞ is specified at some initial

value of s ¼ si. Any positive-definite distribution function
formed from a set of single-particle constants of the motion
fCig will produce a valid, exact ‘‘equilibrium’’ solution to
the Vlasov equation. Here, the notion of equilibrium is that
the form of f? ¼ f?ðfCigÞ does not evolve in s. A special
case of this is a stationary equilibrium with @f?=@s ¼ 0.
Stationary beam equilibria occur in continuous-focusing
systems with !j ¼ const and are extensively analyzed in
Sec. III B. Self-consistency requires that the equilibrium
distribution f?ðfCigÞ generates the required self-field con-
figuration needed for validity of the constants of the mo-
tion. Exact self-consistency is highly nontrivial for
focusing channels with s-varying applied-focusing forces
described by !jðsÞ.

In direct Vlasov simulations, a specified initial (s ¼ si)
distribution f?ðx?;x

0
?; s ¼ siÞ need only be loaded on the

phase-space grid of the simulation. For distributions with-
out singularities or sharp edges the distribution loading for
direct Vlasov codes is straightforward. The spatial x? and
angle x0

? grid of the simulation should, of course, be
chosen accordingly to resolve distribution variations in
phase space. For beams with sharp edges or discontinuities,
there will generally be errors involved in discretizing the
distribution unless numerical methods that are specific to
the type of distribution are employed. For more customary
PIC simulations [12], a finite distribution of macroparticles
must be synthesized to represent the continuous initial
Vlasov distribution. Although the PIC method can simplify
the treatment of distributions with sharp edges or disconti-
nuities, sufficiently large numbers of macroparticles must
be employed to adequately sample the distribution and
limit statistical noise associated with the discretized rep-
resentation. Undesired correlations between macropar-
ticles must be prevented. Generally, procedures are
formulated to load phase-space coordinates exploiting dis-
tribution symmetries and using probability transforms of
pseudorandom uniform deviates typically available in
mathematical library functions. This is generally prefer-
able to Monte Carlo sampling of f? due to statistical noise
issues. Examples of explicit macroparticle initialization
methods for various distributions will be discussed in sub-
sequent sections.
Equations relating the focusing functions !j to magnetic

and/or electric fields of practical focusing elements are
presented in Refs. [31,79]. If the lattice has nonlinear
applied fields, appropriate terms can be added the Vlasov
equation (7) and the !j functions describe only the linear
component focusing terms (excluding skew couplings).
The !j can be periodic in s or not. For periodic lattices,
the scale of the !j can be regarded as fixed by the unde-
pressed phase advances #0j (measured in degrees per
lattice period) of a single particle evolving in the absence
of the beam in the linear applied fields of the lattice
[31,79]. For the FODO quadrupole lattice used in illustra-
tive simulations in this paper, #0x ¼ #0y ' #0.
The beam line-charge density,

$ ' q
Z

d2x?
Z

d2x0?f?; (10)

is constant ($ ¼ const) in slice models when particles are
not lost from the system. In later 3D generalizations $ will
be allowed to vary with s in a specified manner. Statistical
averages over the full transverse phase space of the beam
slice are denoted by

h, , ,i? '
R
d2x?

R
d2x0? , , , f?R

d2x?
R
d2x0?f?

; (11)

and restricted angle averages over x? by
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h, , ,ix0
?
'

R
d2x0? , , , f?R
d2x0?f?

: (12)

We will frequently employ distribution moments such as
the number density of beam particles

n '
Z

d2x0?f?; (13)

the x- and y-plane coherent flow angles hx0ix0
?
and hy0ix0

?
,

and the incoherent flows (i.e., effective kinetic tempera-
tures)

Tx ' hðx0 ! hx0ix0
?
Þ2ix0

?
¼ hx02ix0? ! hx0i2x0

?
; (14)

with an analogous equation for Ty. Moments that are
formed by integrating over degrees of freedom of the
distribution f? are sometimes called projections (e.g.,
the density n is the x-y distribution projection).
Generally, to account for centroid motion, transverse
phase-space coordinates are measured relative to the
charge center of mass of the beam using

~x? ¼ x? ! hx?i?; ~x0
? ¼ x0

? ! hx0
?i?: (15)

For notational simplicity, we henceforth assume an on-axis
centroid with hx?i? ¼ 0 ¼ hx0

?i?. It is straightforward to
modify results presented for nonzero centroid evolution by
replacing x? ! ~x?.

If the beam slice is accelerated axially by specified
longitudinal forces, then (b%b ! const is allowed to vary
as some prescribed function of s. It is shown in Appendix A
that, if the acceleration is slowly varying, then the formu-
lation presented above is applicable when interpreted in
terms of appropriately transformed variables. Con-
sequently, results presented for (b%b ¼ const here and in
subsequent sections can also be applied to accelerating
beams provided that variables are consistently interpreted.
This remains true even if the beam is axially long and (b%b

varies from the head to the tail of the pulse.

A. The Kapchinskij-Vladimirskij equilibrium
distribution

The so-called KV equilibrium distribution was con-
structed by Kapchinskij-Vladimirskij [36] and has been
extensively studied [30–32,37–45,67–69]. Here, we review
properties of the distribution for later use in formulating
alternative, smooth distributions to load. The KV distribu-
tion can be symmetrically expressed as

f?ðx?;x
0
?; sÞ ¼

$

q&2"x"y
*
$%

x

rx

&
2
þ

%
rxx

0 ! r0xx

"x

&
2

þ
%
y

ry

&
2
þ

%
ryy

0 ! r0yy

"y

&
2
! 1

'
: (16)

Here, *ðxÞ is the Dirac delta function [*ðxÞ ¼ 0 for x ! 0
and

R
dxfðxÞ*ðxÞ ¼ fð0Þ for any integrable function fðxÞ],

rj ¼ rjðsÞ (j ¼ x; y) are the edge (envelope) radii of the

uniform-density elliptical beam core, r0j ¼ r0jðsÞ are the

envelope angles, and "j ¼ const are the rms-edge emittan-
ces of the beam. The KV distribution is an exact equilib-
rium solution of the Vlasov equation (7) in the absence of
nonlinear image-charge forces (axisymmetric system with
@=@+ ¼ 0, or free-space approximation) [30,32,36]. This
follows because the KV distribution is a function of single-
particle Courant-Snyder invariants of the linear applied
focusing and linear space-charge defocusing forces gener-
ated by the distribution itself (see Appendix B), and there-
fore an initial distribution with the KV form given by
Eq. (16) maintains the KV form for all s. Using techniques
similar to those employed in the derivation of the density
inversion theorem in continuous-focusing channels (see
Sec. III B), it can be shown that the delta-function form
of Eq. (16) arises naturally to produce a uniform-density
elliptical beam consistent with Courant-Snyder invariant
forms [67,68]. Canonical transforms can also be applied to
equivalently express a wide variety of superficially differ-
ent appearing expressions of the KV distribution in sym-
metrical canonical form [i.e., fðq;pÞ / *ðq2 þ p2 ! 1Þ for
2D canonical variables q and p] [45]. Danilov et al. [46]
investigate alternative classes of exact kinetic equilibrium
distributions for linear forces using both Courant-Snyder
andWronskian-type invariants of the particle orbits. These
distributions are highly singular in an analogous sense to
the KV distribution, and in several cases represent theories
that are cold in one or more phase-space planes. The added
Wronskian invariant appears to allow construction of
linear-force distributions in 3D when one or more phase-
space planes are cold.
Projections and moments of the KV distribution are

most readily calculated using canonical transforms (see
Appendix C and Refs. [30,67,68]). All two-dimensional
(2D) phase-space projections of the KV distribution cor-
respond to uniformly filled ellipses. The orientation and
shape of the elliptical projections evolve in s as the beam
propagates in the lattice. The density n of the KV distri-
bution (i.e., the x-y projection) is uniform within an ellip-
tical beam envelope with

n ¼
Z

d2x0?f? ¼
" $
q&rxry

; if ð xrxÞ
2 þ ð yryÞ

2 < 1;

0; otherwise:
(17)

This uniform-density beam produces linear self-field
forces within the beam when nonlinear image-charge ef-
fects are absent (free-space or aperture sufficiently large).
Two-dimensional x-x0 and y-y0 phase-space projections can
be calculated as

Z
dy

Z
dy0f? ¼

(
$

q&"x
; if ð xrxÞ

2þðrxx0!r0xx"x
Þ2 < 1;

0; otherwise;

Z
dx

Z
dx0f? ¼

(
$

q&"y
; if ð yryÞ

2þðryy
0!r0yy
"y
Þ2 < 1;

0; otherwise:

(18)
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First- and second-order moments of the KV distribution are
summarized in Table I. From these moments, the j-plane
coherent flow angles are

hx0ix0
?
¼

"
r0x

x
rx
; if ð xrxÞ

2 þ ð yryÞ
2 < 1;

0; otherwise;

hy0ix0
?
¼

"
r0y

y
ry
; if ð xrxÞ

2 þ ð yryÞ
2 < 1;

0; otherwise;

(19)

and the kinetic temperatures [i.e., incoherent flows, see
Eq. (14)] are

Tj ¼
" "2j
2r2j
ð1! x2

r2x
! y2

r2y
Þ; if ð xrxÞ

2 þ ð yryÞ
2 < 1;

0; otherwise:
(20)

These parabolic temperature profiles drop to zero at the
beam edge, which is consistent with linear thermal pres-
sure and a sharp beam edge.

Although the full four-dimensional KV distribution (16)
is a manifest (hypershell) invariant, projections of the beam
evolve in s. In the absence of perturbations (applied field,
perturbed distribution, induced image charges, etc.), the
envelope radii rj evolve according to the so-called KV
envelope equations [31,36,79]:

r00j þ !jrj !
2Q

rx þ ry
!

"2j
r3j
¼ 0: (21)

Here,

Q ¼ q$

2&'0mc2(3
b%

2
b

¼ const (22)

is the dimensionless perveance. If the focusing functions
!j are periodic in s, and the initial beam parameters are
‘‘matched,’’ then the solution for rj will have the same
periodicity as the lattice. This, in general, requires specific
choices for the envelope functions rj and angles r0j at the
axial coordinate s where the distribution is specified
[31,79]. An efficient procedure for numerically calculating
the matched-beam envelope under various parameter
specifications is presented in Ref. [80].
For the KV distribution, the envelope radii rj, the enve-

lope angles r0j, and the emittances "j ¼ const are related to
second-order statistical moments of the distribution (see
also Table I) as

rx ¼ 2hx2i1=2? ; ry ¼ 2hy2i1=2? ;

r0x ¼ 2
hxx0i?
hx2i1=2?

; r0y ¼ 2
hyy0i?
hy2i1=2?

(23)

and

"x ¼ 4½hx2i?hx02i? ! hxx0i2?+1=2;
"y ¼ 4½hx2i?hx02i? ! hxx0i2?+1=2:

(24)

When the envelope rj is matched to a periodic-focusing
lattice, the depressed phase advance of particles oscillating
within the core of the beam under the action of linear
applied-focusing fields and linear space-charge defocusing
fields can be calculated from [30,31,79]

#j ¼ "j
Z Lp

0

ds

r2j
; (25)

where Lp is the lattice periodicity length. The ratio of
depressed to undepressed phase advance #j=#0j, also
called the tune depression, provides a convenient measure
of relative space-charge strength with #j=#0j ! 1 in the
limit of vanishingly small space-charge strength (Q ¼ 0),
and #j=#0j ! 0 in the limit of maximum space-charge
strength ("j ¼ 0). For systems with symmetry between the
x and y planes that result in #x ¼ #y, we denote #j ' #
for notational simplicity.
Although Eqs. (23)–(25) apply to a KV beam, they are

often used to characterize non-KV distributions in an
‘‘rms-equivalent’’ sense [31,81], where a non-KV distribu-
tion (with generally nonlinear beam self-fields internal to
the beam) is replaced by a KV distribution with the same
energy, line charge, and first- and second-order moments as
the actual beam. Sacherer’s study in Ref. [81] shows that an
unbunched beam with charge density constant on elliptical
surfaces (i.e., with x2=r2x þ y2=r2y ¼ const) obeys the KV
envelope equation (21) provided the envelope radii rj and
emittances "j are calculated with the generalized beam

TABLE I. Moments of the KV distribution. All second-order
moments not listed vanish (i.e.,

R
d2x0?xyf? ¼ 0, hxyi? ¼ 0).

Moment Value
R
d2x0?x

0f? r0x
x
rx
nR

d2x0?y
0f? r0y

y
ry
nR

d2x0?x
02f? ½r02x x2

r2x
þ "2x

2r2x
ð1! x2

r2x
! y2

r2y
Þ+n

R
d2x0?y

02f? ½r02y y2

r2y
þ "2y

2r2y
ð1! x2

r2x
! y2

r2y
Þ+n

R
d2x0?xx

0f?
r0x
rx
x2n

R
d2x0?yy

0f?
r0y
ry
y2nR

d2x0?ðxy0 ! yx0Þf? 0

hx2i? r2x
4

hy2i? r2y
4

hx02i? r02x
4 þ

"2x
4r2x

hy02i? r02y
4 þ

"2y
4r2y

hxx0i? rxr
0
x

4

hyy0i? ryr
0
y

4
hxy0 ! yx0i? 0

16½hx2i?hx02i? ! hxx0i2?+ "2x
16½hy2i?hy02i? ! hyy0i2?+ "2y
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using the averages defined in Eqs. (23) and (24). However,
for non-KV beams the rms-edge emittances "j defined by
Eq. (24) generally evolve in s [82,83].

The KV envelope equation (21) can be employed with
self-consistent s-varying emittances [defined by Eq. (24)]
as an average force-balance equation for statistical edge
radii rj [defined by Eq. (23)] that describe a wide variety of
distributions [31,79,81]. If the emittance variations have a
negligible effect on the evolution of the rj, then the KV
equation can be applied with "j ¼ const for low-order
system modeling. Bands of parametric instability de-
scribed by the KV envelope equations predict parameter
regions where machines cannot reliably operate
[31,79,84]. Unfortunately, the singular structure of the
KV distribution leads to unphysical, higher-order collec-
tive mode instabilities [31,32,37–44] that render the distri-
bution generally unsuitable to employ as an initial
distribution function in Vlasov simulations of beams with
high space-charge intensity. Further reducing the applica-
bility of the KV distribution, Neuman has shown that KV
distribution (16) in 4D phase space is not generalizable to
6D phase space (see Appendix A of Ref. [45]). This
follows from bounds established by Neuman which show
that the density projection of any distribution of linear-
force Courant-Snyder invariants in 6D phase space cannot
produce a uniform-density ellipsoidal bunch projection in
3D necessary for linear space-charge forces and self-
consistency. The authors of Ref. [46] investigate classes
of 6D phase-space distributions with linear forces by ex-
ploiting Courant-Snyder and Wronskian symmetries si-
multaneously. However, these distributions are highly
singular in a similar manner to the KV case. Elementary
plasma physics considerations suggest that they can be
expected to be unstable (similar to the KV distribution)
in regimes of high space-charge intensity.

Loading the initial KV distribution (16) in a direct
Vlasov code can be challenging due to the singular
(delta-function) structure of f?. Optimal loading proce-
dures generally center on how to best represent the singular
delta function defining the hypershell surface in 4D phase
space where f? ¼ const on the discrete phase-space grid
of the simulation. For PIC simulations, an initial KV
distribution can be loaded several ways. In one approach,
the fact that the Courant-Snyder invariant argument of the
delta function define a hyperellipsoidal shell in 4D x?-x

0
?

phase space with

%
x

rx

&
2
þ

%
rxx

0 ! r0xx

"x

&
2
þ

%
y

ry

&
2
þ

%
ryy

0 ! r0yy

"y

&
2
¼ 1

(26)

can be employed. A finite number of macroparticles can be
loaded with phase-space coordinates uniformly distributed
on the 4D hyperellipsoid (or to the extent possible with a
finite number of particles) defined by Eq. (26).

In another macroparticle loading approach, the KV dis-
tribution property that

R
dx1

R
dx2f? is a uniformly filled

ellipse when x1 and x2 are chosen to be any two of the
phase-space coordinates x, y, x0, and y0 can be exploited.
This approach has the virtue that techniques developed can
be generalized to apply to loading other classes of distri-
butions (see Secs. III B and IV). One procedure [85] based
on uniform elliptical projections is to first load macro-
particle coordinates x? consistent with uniform beam
density within the elliptical envelope radii rj [see
Eq. (17)]. This can be accomplished using two indepen-
dent, uniformly distributed random numbers ûr 2 ½0; 1Þ
and û+ 2 ½0; 1Þ for each macroparticle and taking

x ¼ rx
ffiffiffiffiffi
ûr

p
cosð2&û+Þ; y ¼ ry

ffiffiffiffiffi
ûr

p
sinð2&û+Þ: (27)

Equation (27) is readily derived by transforming a uni-
formly filled unit disk to a uniformly filled ellipse with
major radii rj. With spatial coordinates set according to
Eq. (27), macroparticle angles x0

? can be resolved into
coherent and incoherent components as

x 0
? ¼ x0

?jc þ x0
?jic; (28)

with the coherent (i.e., generally hx0
?jcix0

?
! 0) compo-

nents set consistently with Eq. (19) as

x0jc ¼ r0x
x

rx
; y0jc ¼ r0y

y

ry
; (29)

and the incoherent (i.e., hx0
?jicix0

?
¼ 0) components con-

strained [see Eq. (26)] to satisfy

%
rxx

0jic
"x

&
2
þ

%
ryy

0jic
"y

&
2
¼ 1! x2

r2x
! y2

r2y
: (30)

Incoherent angles can be generated consistent with this
constraint without introducing correlations by using an-
other independent, uniformly distributed random number
û’ 2 ½0; 1Þ for each macroparticle and taking

x0jic ¼
"x
rx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! x2

r2x
! y2

r2y

vuut cosð2&û’Þ;

y0jic ¼
"y
ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! x2

r2x
! y2

r2y

vuut cosð2&û’Þ:

(31)

The finite number of macroparticles loaded can never
exactly represent the distribution. There will always be
statistical errors resulting from finite statistics and the
shape of the macroparticles employed. Also, the discrete
spatial grid employed in the PIC method will generally
introduce errors in resolving the sharp edge of the KV
distribution. For cases where the KV distribution is un-
stable, these statistical and gridding errors will generally
project on unstable collective modes complicating appli-
cations of the KV distribution [31,38,39].

GENERATION OF INITIAL KINETIC DISTRIBUTIONS . . . Phys. Rev. ST Accel. Beams 12, 114801 (2009)

114801-9



Statistical noise associated with loads of a finite number
of macroparticles in PIC simulations can be substantially
reduced by replacing the pseudorandom numbers ûr, û+,
and û’ with ordered sets of numbers (based on digit-
reversed numbers, Fibonacci numbers, etc.) in the interval
½0; 1Þ to obtain more uniform macroparticle spacing in
phase space [12]. Such techniques are especially useful
for high-resolution tests of equilibrium loads. However, as
simulations are advanced in s, noise will eventually grow
to levels consistent with the underlying statistics and dis-
cretizations associated with the numerical methods em-
ployed. Considerable care should be taken when using
ordered numbers to load both macroparticle coordinates
x? and angles x0

? that unphysical phase-space correlations
are not introduced via the systematic orderings. The pos-
sibility of introducing unwanted correlations can be miti-
gated (at the expense of more load noise) by using ordered
numbers only in the particle coordinate or angle loads, but
not both. Comments given here on the application of
ordered sets of numbers in generating KV distribution
loads are also applicable to loads developed for other
distributions in subsequent sections.

Numerous examples of KV beam Vlasov simulations
can be found in the literature [31,38,39,43,59] and will not
be repeated here. Intrinsic instabilities of the distribution
are generally seeded by noise and errors specific to the
loading method and numerical approximations employed.
This renders results difficult to interpret, particularly for
strong relative space-charge strength.

B. Continuous-focusing equilibrium distributions

The continuous-focusing model has been extensively
studied by Davidson and Qin [30,32], Reiser [31], and a
comprehensive review can be found in courses taught on
intense beams by Barnard and Lund [67,68]. An early
treatment of the model within the context of self-consistent
beam equilibria with space charge was presented by
Sacherer [86]. Here we parallel the formulation presented
by Barnard and Lund to review general properties of the
continuous-focusing model for later application in formu-
lating approximate Vlasov loads for focusing channels
with s-varying applied-focusing forces that improve on
the KV model. Details of specific choices of continuous-
focusing beam equilibria are presented in Appendices D,
E, and F. In a continuous-focusing channel, !x ¼ !y ¼
k2%0 ¼ const and the transverse particle Hamiltonian H?
given by Eq. (8) is a single-particle constant of the motion
with H? ¼ const. Therefore, any function

f?ðx?;x
0
?; sÞ ¼ f?ðH?Þ (32)

satisfying f? - 0 at s ¼ si will form a valid stationary
(@=@s ¼ 0) equilibrium solution to the Vlasov equation (7)
with continuous focusing. Moreover, functional bounds
can be employed to show that the monotonicity condition
@f?ðH?Þ=@H? . 0 is a sufficient condition for stability of

the continuous-focusing equilibrium f? to both small- and
large-amplitude perturbations [30,32,87–89]. Conversely,
any continuous-focusing equilibrium not satisfying
@f?ðH?Þ=@H? . 0meets a necessary condition for insta-
bility and intuitively one expects that such nonmonotonic
profiles to have ‘‘free energy’’ to drive instabilities.
It can be shown [90] that any valid choice of function

f?ðH?Þ with @f?ðH?Þ=@H? . 0 necessarily produces an
axisymmetric (@=@+ ¼ 0) continuous-focusing equilib-
rium when the aperture is axisymmetric or sufficiently
large to have a negligible effect on the beam (as will be
assumed to hold in the remainder of this section). In this
case, the Poisson equation (9) can be expressed as

1

r

@

@r

%
r
@)

@r

&
¼ !qn

'0
¼ ! q

'0

Z
d2x0?f?ðH?Þ; (33)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the transverse radial coordinate. It

is convenient to define an effective potential [30–32,91]

c ðrÞ ' 1

2
k2%0r

2 þ q)ðrÞ
m(3

b%
2
bc

2 : (34)

Then,

H? ¼ 1
2x

02
? þ c (35)

and system axisymmetry can be exploited to calculate the
beam density as

nðrÞ ¼
Z

d2x0?f?ðH?Þ ¼ 2&
Z 1

c
dH?f?ðH?Þ; (36)

to recast the Poisson equation (33) as

1

r

@

@r

%
r
@c

@r

&
¼ 2k2%0 !

2&q2

m'0(
3
b%

2
bc

2

Z 1

c
dH?f?ðH?Þ:

(37)

An explicit solution of this equation for c [or equivalently
Eq. (33) for )] is necessary to calculate the continuous-
focusing equilibrium density profile n ¼ R

d2x0?f?ðH?Þ.
For most physically appealing, smooth choices of f?ðH?Þ
the equation is highly nonlinear and the solution must be
done numerically. Details on how the solution is best
carried out vary with the choice of f?ðH?Þ. In some cases
it can be advantageous to eliminate c in Eq. (37) in terms
of the density n using Eq. (36).
To better understand the continuous-focusing equilib-

rium structure, it can be useful to calculate the radial
kinetic temperature profile Tx ¼ hx02ix0

?
[see Eq. (14)] of

the axisymmetric equilibrium defined by f?ðH?Þ. By
symmetry, Tx ¼ Ty. Using Eq. (35), explicit calculation
of TxðrÞ can be simplified as
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TxðrÞnðrÞ ¼
1

2

Z
d2x0?x

02
?f?ðH?Þ

¼ 2&
Z 1

c
dH?ðH? ! c Þf?ðH?Þ: (38)

The axisymmetric continuous-focusing equilibrium
beam formed by f?ðH?Þ will be envelope matched to the

continuous-focusing channel with rj ' rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hr2i?

p
¼

const satisfying the rms-envelope equation

k2%0rb !
Q

rb
! "2b

r3b
¼ 0: (39)

Here, f?ðH?Þ can be employed to consistently calculate
the statistical beam envelope radius rb [see Eq. (23)] as

r2b ¼ 2hr2i? ¼
R1
0 drr3

R1
c dH?f?ðH?ÞR1

0 drr
R1
c dH?f?ðH?Þ

; (40)

the line-charge density $ ¼ const [see Eq. (10)], or per-
veance Q ¼ q$=ð2&'0mc2(3

b%
2
bÞ [see Eq. (22)] as

$ ¼ ð2&Þ2q
Z 1

0
drr

Z 1

c
dH?f?ðH?Þ; (41)

and the rms-edge emittance "j ' "b ¼ const [see Eq. (24)]
as

"2b ¼ 2r2bhx02
?i?

¼ 2r2b

R1
0 drr

R1
c dH?ðH? ! c Þf?ðH?ÞR1

0 drr
R1
c dH?f?ðH?Þ

: (42)

Comparing Eqs. (38) and (42) and employing previous
results, note that the beam emittance "b is related to the
spatially averaged radial temperature profile of the beam
by

"2b ¼ 2r2b

R1
0 drrTxðrÞnðrÞR1

0 drrnðrÞ : (43)

Although the self-field potential specified by Eq. (37) is
generally difficult to solve for physically appealing,
smooth choices of f?ðH?Þ, some general comments can
be made on the solution structure. For f?ðH?Þ without
singularities, one expects a radial density profile nðrÞ ¼R
d2x0?f?ðH?Þ that, for strong space charge, becomes very

flat in the core due to Debye screening [30] before falling
off near the beam edge with a radial shape characteristic of
the form of f?ðH?Þ. For weak space charge the character-
istic radial edge shape will reach more deeply into the core
of the beam. Screening effects associated with strong space
charge will also influence the kinetic temperature profile
TxðrÞ of the continuous-focusing distribution. For very
strong space charge, screening can cause the equilibrium
density profile to become flat enough where special nu-
merical methods prove necessary to solve the equilibrium
Poisson equation for ). Also, as a practical matter, pa-
rameters used in the definition of f?ðH?Þ [e.g., thermal

equilibrium: f?ðH?Þ ¼ C1 expð!C2H?Þ, where C1 ¼
const and C2 ¼ const are positive parameters; see
Appendix F] should be identified in terms of parameters
customarily employed in beam physics to facilitate appli-
cation of results. Parameters should be related to particle
properties (i.e., the charge q, mass m, and relativistic
factors %b and (b), the applied-focusing strength (k2%0),

the perveance (Q), and the rms-edge emittance ("b). This
typically requires analysis of highly nonlinear integral
constraint equations that must be solved consistently with
changes in the equilibrium potential ) as parameters used
in the definition of f?ðH?Þ vary. Concrete examples of
such procedures are given in Appendices D, E, and F for
unit-step (‘‘waterbag’’ distribution), linear (‘‘parabolic’’
distribution), and Gaussian (‘‘thermal’’ distribution)
choices of f?ðH?Þ. These three radically different choices
of f?ðH?Þ functions serve to illustrate the commonality
and differences involved with a wide range of choice in
equilibrium distributions. All three of these choices satisfy
@f?ðH?Þ=@H? . 0 and therefore correspond to stable
Vlasov equilibria.
It is instructive to examine the form of the KV equilib-

rium distribution presented in Sec. III A in the ideal,
continuous-focusing limit. In this case, rj ¼ rb ¼ const,
r0j ¼ 0, and "j ¼ "b ¼ const. Using the delta-function

property *ðCxÞ ¼ *ðxÞ=jCj with C ¼ const, the KV distri-
bution (16) can be expressed in the continuous limit as

f? ¼
$

q&2r2b
*
%
1

2
x02
? þ

"2b
2r4b

x2
? !

"2b
2r2b

&
: (44)

For the uniform-density, axisymmetric beam core of the
continuous focused KV beam, the Poisson equation (33)
can be integrated to show that the single-particle Hamil-
tonian [see Eq. (8)] is expressible as

H? ¼
1

2
x02
? þ

"2b
2r4b

x2
? þ const: (45)

At the beam edge (r ¼ rb), all particles must turn, x0
? ¼ 0,

and H?jr¼rb ¼ "2b=ð2r2bÞ þ const ' Hb. Using these re-
sults, the continuous-focusing KV distribution (44) can
be equivalently expressed as

f? ¼
$

2&2qr2b
*ðH? !HbÞ: (46)

Using $ ¼ qn̂&r2b with n̂ ¼ const the density within the
beam, Eq. (46) can be written as f? ¼ n̂

2& *ðH? !HbÞ.
This alternative expression for the KV distribution function
in a continuous-focusing channel is commonly employed
in the literature [30–32,67,68]. The equivalence of
Eqs. (16) and (46) shows that for continuous focusing,
the Courant-Snyder invariant form of the KV distribution
reduces to the expected Hamiltonian invariant form. This
should not be interpreted as implying that the Courant-
Snyder invariant is equivalent toH? ¼ const for other than
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continuous focusing. In periodic-focusing channels the
Hamiltonian H? has explicit s dependence from the
applied-focusing terms. Unfortunately, this s dependence
renders H? inappropriate for constructing single-particle
invariants and equilibrium distribution functions for focus-
ing channels with s-varying focusing forces. It is also
interesting to point out that @f?ðH?Þ=@H? changes sign
aboutH? ¼ Hb, showing that the KV distribution does not
satisfy the sufficient condition for stability and therefore
satisfies a necessary condition for instability. Well-known
kinetic analyses show that the continuous-focusing KV
distribution is unstable for all space-charge strengths sat-
isfying #=#0 < 0:3985 [38,42].

The KV model can be applied in an rms-equivalent
beam sense to characterize relative space-charge strength
of a continuous-focusing equilibrium with nonuniform
nðrÞ. Taking the equivalent axial ‘‘lattice period’’ length
of phase accumulation to be Lp, we first set k%0 ¼ #0=Lp,
where #0 is the undepressed particle phase advance over
Lp. Then the depressed phase-advance equation (25) for
#j ' # is applied over an axial length Lp with "j ¼ "b
and rj ¼ rb given by the matched-beam envelope equa-
tion (39). This yields

#

#0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! Q

k2%0r
2
b

s
¼ "b

k%0r
2
b

: (47)

In this context, #=#0 characterizes the relative space-
charge strength of an equilibrium with #=#0 ¼ 1 (Q ¼
0) corresponding to negligible space-charge strength, and
#=#0 ¼ 0 ("b ¼ 0) corresponding to an equilibrium with
maximum space-charge strength.

Some authors employ alternative dimensionless parame-
ters to #=#0 when characterizing relative space-charge
strength. One choice [32] is to define a normalized self-
field intensity parameter sb as the ratio of one-half of the
squared relativistic plasma frequency formed from the on-
axis (r ¼ 0) density n̂ ¼ nðr ¼ 0Þ of the distribution [i.e.,
!̂2

p=ð2(bÞwith !̂2
p ¼ q2n̂=ðm'0Þ] to the squared frequency

of single-particle oscillations in the applied-focusing field
[(2

b%
2
bc

2k2%0], i.e.,

sb '
!̂2

p

2(3
b%

2
bc

2k2%0
: (48)

For a KV continuously focused beam, sb and #=#0 are
simply related by

sb ¼ 1!
%
#

#0

&
2
: (49)

The dimensionless self-field parameter sb defined in terms
of the on-axis density of the beam can be algebraically
convenient when specifying continuous-focusing equilib-
ria with monotonic radial density profiles nðrÞ satisfying
@nðrÞ=@r . 0. However, monotonic equilibrium specifica-
tions of f?ðH?Þ with @f?ðH?Þ=@H? . 0 (see examples

in Appendices D, E, and F) generally result in sb ’ 1 over a
relatively large range of high space-charge intensity (with
rms equivalent #=#0 & 1=2), rendering sb a relatively
insensitive measure in regimes where sb ! 1.
The form of an continuous-focusing equilibrium distri-

bution f?ðH?Þ and the corresponding density nðrÞ are
strongly linked. For monotonic density profiles with
@nðrÞ=@r . 0, n̂ ¼ nðr ¼ 0Þ is maximum value of nðrÞ
and the density inversion theorem [30,32,67,68,92] can
be employed to calculate the equilibrium function
f?ðH?Þ from a specified density profile as

f?ðH?Þ ¼ !
1

2&

@n

@c

((((((((c¼H?

: (50)

If f?ðH?Þ satisfies @f?ðH?Þ=@H? . 0, then the equilib-
rium specified by nðrÞ will be stable.
Although the structure of the continuous-focusing equi-

libria satisfying @f?ðH?Þ=@H? . 0 is physically appeal-
ing and stable, unfortunately the continuous-focusing
model cannot provide a direct guide for properties of
beam transport in realistic s-varying applied-focusing
channels. The continuous-focusing function !j ¼ k2%0 ¼
const is equivalent to a partially neutralizing, immobile
(m ! 1) background species with charge density , ¼
!2m'0(b%

2
bc

2k2%0=q ¼ const and can only represent real-

istic, s-varying focusing forces in an average sense. While
this approximate continuous and s-varying focusing corre-
spondence can be useful in simplified estimates of trans-
port properties where the system is far from instability,
periodic-focusing channels have well-known instabilities
that are not present in the continuous-focusing limit
[16,33–35]. Continuous-focusing analogies to periodic-
focusing systems typically become progressively worse
as the strength of the applied-focusing field (as measured
by #0) increases—particularly for alternating-gradient
quadrupole focusing. The desire for radially compact
beams often requires applications with high focusing
strength, exacerbating this breakdown of approximate
analogies. Canonical transforms [30,45,67,68] and
Hamiltonian average theories [32,52–58] can improve ap-
plicability of the continuous-focusing model to systems
with nonconstant (especially periodic) focusing—particu-
larly as the focusing becomes weaker, e.g., for#0 & 60( in
periodic lattices.
To load the continuous-focusing distributions (32) in

direct Vlasov or PIC simulations, parameters used in defin-
ing the function f?ðH?Þ should be determined in terms of
standard beam parameters (i.e., k2%0, Q, "b, etc.). Such

procedures are generally nontrivial, as evident from the
examples in Appendices D, E, and F. With equilibrium
parameters specified, the effective potential c must then
be calculated (generally numerically) within the beam to
determine H? ¼ x02

?=2þ c and thereby fully specify
f?ðH?Þ. For direct Vlasov simulations f?ðx02

?=2þ c Þ
can then be loaded on the 4D (or 3D=2D if axisymmetry
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is partially/fully taken into account) phase-space grid of
the simulation.

For PIC simulations, macroparticles can be loaded to
approximate the continuous-focusing distributions by
building on techniques discussed in Sec. III A for initializ-
ing macroparticles to model the KV distribution. First, the
radial beam density profile nðrÞ can be calculated from
Eq. (36) using the calculated radial effective potential
c ðrÞ. Then macroparticle spatial coordinates x? can be
loaded consistent with this density profile using a proba-
bility transform to map a uniform distribution within a unit
circle to a distribution consistent with the radial density
profile nðrÞ. This can be accomplished using two indepen-
dent, uniformly distributed random numbers ûr 2 ½0; 1Þ
and û+ 2 ½0; 1Þ for each macroparticle, carrying out a
probability transformation [12]

R
r
0 d~r ~r nð~rÞR1
0 drrnðrÞ ¼ ûr; (51)

and taking

x ¼ rðûrÞ cosð2&û+Þ; y ¼ rðûrÞ sinð2&û+Þ: (52)

Here, rðûrÞ is the smallest positive solution of Eq. (51), and
û+ generates a uniform distribution of azimuthal coordi-
nate angles in the axisymmetric beam. If a lower-
dimensional simulation is used (with ‘‘ring’’ macropar-
ticles) to more efficiently model the axisymmetric beam,
then only macroparticle radii rðûrÞ need be calculated. The
solution rðûrÞ must, in general, be solved numerically for
smooth nðrÞ. When a large number of macroparticles must
be loaded, the transform in Eq. (51) can be calculated for
gridded values of ûr 2 ½0; 1+ and the corresponding
gridded values of rðûrÞ stored to allow efficient calculation
of rðûrÞ for arbitrary values of ûr 2 ½0; 1Þ by calculating
the nearest grid indices and interpolating. For cases where
nðrÞ does not have a sharp edge, the grid will generally
need to be cutoff at a radius beyond which the density is
negligible. If a uniform grid is employed the cutoff should
not be chosen too large or the resolution in the core of the
distribution will be degraded (see, for example, the thermal
equilibrium analysis in Appendices F and G). Some simple
classes of density profiles allow analytical solution. For
example, if the density is uniform within radius r ¼ re,
then Eq. (51) yields rðûrÞ ¼ re

ffiffiffiffiffi
ûr

p
[compare this to

Eq. (27) with rx ¼ ry ¼ re].
With the macroparticle coordinates loaded and the radial

dependence of c ðrÞ thereby specified, the macroparticle
angles x0

? can be generated consistently with f?ðH?Þ
using an analogous procedure to the one employed for
the coordinate loading. Taking H? ¼ Uþ c with U ¼
x02
?=2, the probability transform

R
U
0 d ~Uf?ð ~Uþ c ÞR1
0 dUf?ðUþ c Þ ¼ ûU (53)

is solved for UðûUÞ and then the angles are set consistent

with beam axisymmetry using

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2UðûUÞ

q
cosð2&û’Þ;

y0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2UðûUÞ

q
sinð2&û’Þ:

(54)

Here, ûU 2 ½0; 1Þ and û’ 2 ½0; 1Þ are two independent,
uniformly distributed random numbers generated for
each macroparticle. In general, UðûUÞ must be calculated
numerically. Analogous to the case for the macroparticle
coordinates discussed above, values of the transform in
Eq. (53) can be precalculated on a grid and interpolation
applied to efficiently load a large number of macropar-
ticles. In simulations where beam axisymmetry is fully
exploited, only r0 may be necessary to initialize macro-
particles. In this case, using r0 ¼ ðxx0 þ yy0Þ=r and
Eqs. (52) and (54), it follows that r0 can be loaded as

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2UðûUÞ

q
cosð2&ûr0Þ (55)

with ûr0 2 ½0; 1Þ a uniformly distributed random number
for each macroparticle.
Analogous to the situation discussed for the KV distri-

bution in Sec. III A, the random numbers employed to load
the continuous-focusing distribution fûr; û+g and/or
fûU; û’g can be replaced by ordered sets of numbers to
reduce initial statistical noise for simulations with a finite
number of macroparticles.
It is interesting to point out that the loading formalism

outlined above can be applied for a specified, stable mono-
tonic decreasing radial density profile nðrÞ without detailed
knowledge of the corresponding equilibrium function
f?ðH?Þ that specifies the continuous-focusing distribution.
First, macroparticle coordinates x? consistent with nðrÞ
can be calculated from Eqs. (51) and (54). The equilibrium
potential c can then be calculated from Eqs. (36) and (37),
and this result applied in the inversion theorem (50) to
implicitly specify fðH?Þ for use in Eqs. (53) and (54) to
load the macroparticle angles x?.
Because the continuous-focusing distributions are exact

Vlasov equilibria, any evolution in simulated distribution
from the loaded beam results from numerical approxima-
tions in the procedure used to load the distribution and/or
in the Vlasov simulations. This property, when employing
accurate loads, can render the continuous-focusing distri-
butions useful for checking the accuracy of simulations.
Two-dimensional PIC slice simulations illustrating this
point are shown in Fig. 2 for a waterbag (step-function)
choice of fðH?Þ. Properties of the waterbag equilibrium
are analyzed in detail in Appendix D. Codes and parameter
choices made in the simulations are described in Sec. II.
Simulations illustrated were carried out of strong relative
space-charge strength (#=#0 ¼ 0:2), so the equilibrium
radial density profile is flat in the core of the beam. The
waterbag equilibrium has a sharp edge in phase-space
projections, which can aid visualization of small evolutions

GENERATION OF INITIAL KINETIC DISTRIBUTIONS . . . Phys. Rev. ST Accel. Beams 12, 114801 (2009)

114801-13



induced by numerical approximations. Both an accurate
simulation and a less accurate simulation with poorer
resolution and statistics are shown. Details of the waterbag
equilibrium distribution are presented in Appendix D and
the simulations and parameter choices are described in
Sec. II. To precisely load the distribution in both the
accurate and less accurate cases, the radial density trans-
formation (51) is solved on a uniform mesh of 500 points
and the angle transform (53) is solved exactly (see discus-
sions in Appendix D). In the accurate simulation, ordered
digit-reversed numbers are used to generate a load with
reduced noise in phase space, whereas the less accurate
simulation uses pseudorandom numbers to generate the
load resulting enhanced initial statistical noise relative to
ordered numbers. Statistical beam envelope radii rj and
emittances "j are calculated using Eqs. (23) and (24) with
centroid measures subtracted [see Eq. (15) and the related
discussion]. Quantities associated with the x and y planes
are plotted in black and red, respectively. Profiles of the

beam density n are shown along the x and y axes (in black
and red, respectively) as calculated from the gridded
charge density in the simulation with no additional
smoothing. The density is normalized by the rms average
measure, $=ðq&rxryÞ, so values not equal to unity indicate
deviations from an rms-equivalent KV beam. Density pro-
file plots are superimposed with the density of an rms-
equivalent KV beam (in green, with unit density as nor-
malized). The x-x0 phase-space projections are generated
by plotting macroparticle markers that are color coded
based on the local phase-space density. All macroparticles
are shown in the projections of the less accurate simulation,
whereas a method is employed in the plots of the accurate
simulation that shows almost all particles in the low-
density regions and a sampling of macroparticles in the
high-density regions.
The accurate simulation shown in Fig. 2 shows very

small evolution in all distribution projections and mo-
ments, whereas the less accurate simulation shows a larger,
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FIG. 2. (Color) PIC simulations of an initial waterbag equilibrium distribution in a continuous-focusing channel with #0 ¼ 80( and
#=#0 ¼ 0:2 for a well-converged (two left columns; Nr ¼ 100, Nppg ¼ 500) and a less-converged simulation (two right columns:

Nr ¼ 20, Nppg ¼ 40). In row (a) the evolutions of rms-envelope radii [rj=rjðs ¼ 0Þ] and rms-edge emittances ["j="jðs ¼ 0Þ] are
shown as a function of lattice periods (s=Lp). In rows (b) and (c), the principal axis beam density profiles and x-x0 phase-space
projections are shown at zero (load) and 20 lattice periods. (WARP simulations with parameters: Np ¼ 3 and Ns ¼ 25.)
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but still relatively modest degree of evolution due primar-
ily to poor grid resolution and macroparticle statistics (note
the large change in scale between the plots). Fluctuations
and oscillations associated with the less accurate simula-
tion are still modest considering the coarse numerical
parameters employed. This surprisingly benign conse-
quence of errors likely results from both the stability of
the underlying steady equilibrium and that the numerical
errors seed a broad spectrum of oscillations that remain
bounded by initial conditions (system energy is conserved
in continuous focusing) and phase mix. Differences be-
tween the x- and y-plane envelope and emittance evolu-
tions as well as nonaxisymmetries in the distribution
projections that are clearly evident in the less accurate
simulation are related to finite statistics and discretizations
breaking ideal symmetries. The initial fluctuations in the
density profiles of the accurate simulation are suppressed
both by the use of large numbers of macroparticles and by
the use of ordered numbers in the load. By the end of the
evolution, the statistical noise of the accurate simulation
has increased to levels expected if pseudorandom numbers
had been employed in the load. It appears that the primary
error source in the accurate simulation is the discretization
associated with the radial mesh introducing a systematic
error in the location of the beam edge which primarily
translates into a small amplitude breathing mismatch as
evident from the regular, nearly in-phase oscillations of the
envelope radii rj.

C. Nonequilibrium semi-Gaussian distribution

The semi-Gaussian distribution [47,67,68] can be de-
fined by

f?ðx?;x
0Þ ¼ 2$

q&2"x"y
#
$
1!

%
x2

r2x
þ y2

r2y

&'

# exp
$
!2

%
rxx

0! r0xx

"x

&
2
! 2

%
ryy

0! r0yy

"y

&
2
'
:

(56)

Here,

#ðxÞ ¼
"
1; x > 0;
0; x < 0

(57)

is a Heaviside unit-step function, rj and r0j (j ¼ x; y) are
the initial (s ¼ si) beam envelope radii and angles, and "j
are the initial rms-edge emittances. As for the KV distri-
bution, the density n ¼ R

d2x0?f? of the initial distribution
is uniform within an ellipse of radii rj as given by Eq. (17).
Likewise, the coherent flows hx0ix0

?
and hy0ix0

?
are identical

to the KV expression in Eq. (19). In contrast to the KV
distribution, the incoherent angular spreads in x0 and y0 are
spatially uniform and Gaussian distributed. Direct calcu-
lation with Eqs. (14) and (56) shows that the kinetic
temperatures corresponding to the Gaussian-distributed

spreads are

Tj ¼
" "2j
4r2j

; if ðx=rxÞ2 þ ðy=ryÞ2 < 1;

0; otherwise:
(58)

The semi-Gaussian distribution is not an equilibrium of the
Vlasov equation (7) for a linear-focusing channel with
finite beam space charge. The distribution will evolve
from the initial condition, resulting in a change in form
associated with the launching of a transient, nonlinear
wave [48,91]. This wave evolution will result in rms-
edge emittances evolving from the initial conditions ("j !
const) and the subsequent envelope evolution rjðsÞ will
only approximately follow that of the KV envelope equa-
tion (21).
The strength of the transient evolution of the semi-

Gaussian distribution depends primarily on the relative
intensity of the applied-focusing and space-charge forces.
The initially uniform space charge within an elliptical
beam envelope gives linear electrostatic defocusing
space-charge forces when image-charge effects are negli-
gible. But the initially uniform temperature within the
beam results in an unbalanced thermal force inconsistent
with the sharp beam edge. The collective wave launched is
a manifestation of this inconsistency. Despite this nonequi-
librium structure, the semi-Gaussian distribution is com-
monly employed to model space-charge-dominated beams
where Debye screening is expected to lead to a flat density
profile for a relaxed distribution. The semi-Gaussian dis-
tribution has manifest rms equivalency with the KV distri-
bution which simplifies interpretation, and the distribution
structure corresponds roughly to a beam that would be
produced by an ideal injector (uniform current density
within the beam emitted from a diode with Child-
Langmuir emission [31,93] and spatially uniform tempera-
ture due to a heated source at local thermodynamic equi-
librium). Waves launched by the nonequilibrium form of
the semi-Gaussian distribution generally lead to small,
space-charge intensity dependent reductions in the rms-
edge emittance where the beam is stable [31,83,91].
Stability is considered in the sense of having limited
wave growth from the initial transient evolution. In the
case of stability, transient-wave perturbations launched
from the initial semi-Gaussian distribution rapidly wash
out due to phase mixing and nonlinear collective effects
present for finite space charge [15,48,49,91]. Semi-
Gaussian distributions with "x ! "y (i.e., Tx ! Ty) suffi-
ciently anisotropic can lead to evolutions with character-
istics of space-charge driven instabilities in situations
where the system drives to a more thermally isotropic state
[94].
Loading of the initial semi-Gaussian distribution (56)

can be carried out using similar steps to those described for
the KV distribution in Sec. III A. For direct Vlasov simu-
lations, loading f? on the phase-space grid is generally less
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challenging than for a KV distribution because the semi-
Gaussian distribution is not singular in 4D phase space.
The most significant issue is the need to adequately repre-
sent the sharp elliptical beam edge in x? on the phase-
space grid and to have sufficient resolution in the phase-
space mesh to model the nonlinear transient wave launched
from the lack of detailed equilibrium force balance
[22,48,49,94]. For PIC simulations, macroparticle spatial
coordinates x? can be loaded exactly as discussed for the
KV distribution [see Eq. (27)]. Macroparticle angles x0

?
can be loaded in terms of coherent and incoherent compo-
nents terms as x0

? ¼ x0
?jc þ x0

?jic [see Eq. (28)] with the
coherent term x0

?jc set exactly as for the KV distribution
using Eq. (29), and the incoherent term x0

?jic simply set
with

x0jic ¼
"x
2rx

ĝx; y0jic ¼
"y
2ry

ĝy; (59)

rather than Eq. (31). Here, ĝx and ĝy are two independent,
Gaussian-distributed random numbers with unit variance
generated for each macroparticle. If bounded particle
phase space is necessary, the ĝj can be replaced with
truncated, Gaussian-distributed values with minimal error
if the unit variance Gaussian is truncated for values beyond
a few units. Note the similarity of the incoherent load
angles specified by Eq. (59) with the formula used to
specify the macroparticle angles for the continuous-
focusing thermal equilibrium distribution [see
Appendix F, Eq. (F23)].

Analogously to the situation discussed for the KV dis-
tribution in Sec. III A, the random numbers employed to
load the semi-Gaussian distribution can be replaced by
ordered sets of numbers to reduce initial statistical noise
for a finite number of macroparticles. Appropriate sets of
ordered Gaussian numbers fĝjg can be generated employ-
ing the same transforms used to map a uniformly distrib-
uted random number û 2 ½0; 1Þ to a Gaussian-distributed
random number ĝ with unit variance [95] to ordered sets
of fûjg.

Examples of Vlasov simulations of initial semi-
Gaussian distributions can be found in the literature
[22,48,49] and will not be repeated here. The ease of
loading the semi-Gaussian distribution together with the
relative faithfulness of the distribution to the form expected
for a cold beam with strong relative space-charge forces
has resulted in the semi-Gaussian distribution being the
load of choice in many intense-beam simulation studies.
The main disadvantage of the semi-Gaussian load is that
the lack of approximate force balance near the edge of the
beam launches a strong transient wave that can complicate
interpretations of other effects of interest.

D. Nonequilibrium distributions of linear-field
Courant-Snyder invariants

An alternative nonequilibrium distribution that is a
specified function of linear-field single-particle Courant-
Snyder invariants of an rms-equivalent beam has been
formulated by Batygin [50,51] building on earlier work
[31,39]. Here we review results under a common notation
to aid comparisons to other classes of initial distribution
functions. As with the KV (see Sec. III A) and semi-
Gaussian (see Sec. III C) distributions, these distributions
have elliptical symmetry and consequently can employed
in a linear-focusing channel with s variation in the focusing
functions !j (j ¼ x; y).
The linear-field Courant-Snyder invariant (LCS) distri-

bution is specified as

f?ðx?;x
0
?; sÞ ¼

$

q
fðA2Þ; (60)

where fðA2Þ is any function of the single-particle ampli-
tude

A 2 '
%
x

rx

&
2
þ

%
rxx

0 ! r0xx

"x

&
2
þ

%
y

ry

&
2
þ

%
ryy

0 ! r0yy

"y

&
2
;

(61)

with f - 0 that satisfies the normalization constraint

Z
d2x?

Z
d2x0?fðA2Þ ¼ 1; (62)

and the moment constraint

R1
0 dUUGðUÞR1
0 dUGðUÞ ¼

1

2
; (63)

with

GðUÞ '
Z 1

U
d ~Ufð ~UÞ: (64)

The quantities rj and "j employed inA2 are the statistical
envelope radii and emittances of the distribution as defined
by Eqs. (23) and (24) in an rms-equivalent beam sense (see
Sec. III A). The form of A2 and the normalization and
moment constraints are sufficient to ensure that the LCS
distribution defined by Eqs. (60)–(64) satisfies rms equiv-
alency for arbitrary (physical) values of rj, r

0
j, and "j. This

rms equivalency is demonstrated in Appendix C through
the use of canonical transformations.
The amplitude A2 can be resolved as

A 2 ¼A2
x þA2

y; (65)

where
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A2
x '

%
x

rx

&
2
þ

%
rxx

0 ! r0xx

"x

&
2
;

A2
y '

%
y

ry

&
2
þ

%
ryy

0 ! r0yy

"y

&
2
:

(66)

The amplitudes A2
j are single-particle j-plane Courant-

Snyder invariants of a particle evolving within the linear
fields (including applied and space charge) of an rms-
equivalent beam (see Appendix B). Consequently, the
LCS distribution f? / fðA2Þ ¼ fðA2

x þA2
yÞ is con-

stant on two-dimensional elliptical surfaces in x-x0 and
y-y0 phase space where A2

j ¼ const as well as a four-

dimensional ellipsoidal hypersurfaces in x?-x
0
? phase

space where A2 ¼ const.
Characteristics of some simple choices of functions

fðA2Þ satisfying the normalization constraint (62) and
the moment constraint (63) are given in Table II. For the
KV case listed, the LCS distribution reduces to the KV
equilibrium discussed in Sec. III A and is an exact equilib-
rium distribution. For any choice of fðA2Þ other than the
delta-function KV form, the LCS distribution is not a
consistent equilibrium for finite space-charge intensity
because the argument A2 is a single-particle invariant
only for linear space-charge fields within the beam.
General choices of fðA2Þ result in density profiles n ¼
ð$=qÞR d2x0?f with nonuniform, elliptic-symmetry den-
sity profiles (see Table II). The nonuniform elliptic-
symmetry space charge will generate nonlinear self-field
forces within the beam and the A2

j will evolve, changing

the form of the LCS distribution. However, in the limit of
vanishing space-charge intensity (i.e., Q ! 0), the LCS
distributions are exact equilibria for general choices of
fðA2Þ satisfying Eqs. (62) and (63). In this warm-beam
limit the A2

j are invariants of a single particle evolving in

linear applied-focusing fields. The warm-beam limit of the
LCS distribution with a Gaussian choice of f listed in
Table II represents a standard initial particle distribution

in accelerator simulations of beams with weak space-
charge intensity. Original applications of the LCS distri-
butions appeared to be targeted for use in modeling beams
with weak relative space-charge forces by including
leading-order space-charge corrections by modeling
space-charge forces as linear as would arise in a uniform-
density rms-equivalent beam in spite of the actual density
distribution of the beam [50,51]. Discussions and tests
presented here cover this original context as well as strong
space-charge regimes.
Loading the LCS distribution specified by Eqs. (60)–

(64) in a direct Vlasov code is straightforward. The phase-
space grid should be chosen to adequately resolve the
distribution structure consistent with the choice of fðA2Þ
made and the ensuing evolution associated with the non-
equilibrium form. Distribution projections listed in Table II
provide a guide for characteristic resolutions needed for a
range of choices in fðA2Þ.
An elegant procedure to load the LCS distribution using

macroparticles in PIC simulations has been formulated by
Batygin [50,51]. This procedure can be summarized as
follows. First, canonical transformations analogous to
those employed in Appendix C can be applied to calculate
the distribution of A in terms of a probability transform.
The resulting equation

&2"x"y
Z A2

0
dUUfðUÞ ¼ ûA (67)

is solved for the smallest positive real solutionAðûAÞ for
a uniformly distributed random number ûA 2 ½0; 1Þ. The
transformation (67) must be solved numerically for general
choices of f. If a large number of macroparticles are
loaded, analogously to the cases discussed in Sec. III B,
the transform can be presolved on a grid of values for
ûA 2 ½0; 1+ and interpolation employed for increased nu-
merical efficiency. For the choices of functions f in
Table II the transformation (67) can be simplified, and in
some cases analytically solved, as indicated. WithAðûAÞ

TABLE II. Characteristics of linear-field Courant-Snyder distributions generated for choices of fðA2Þ. Here, -2 ' ðx=rxÞ2 þ
ðy=ryÞ2.

Distribution name
KV Waterbag Parabolic Gaussian

Definition fðA2Þ 1
&2"x"y

*ðA2 ! 1Þ 8
9&2"x"y

#ð1! 2
3A

2Þ 3
2&2"x"y

ð1! 1
2A

2Þ#ð1! 1
2A

2Þ 4
&2"x"y

e!2A
2

Projections:R
d2x0?f

1
&rxry

#ð1! -2Þ 4
3&rxry

ð1! 2
3-

2Þ#ð1! 2
3-

2Þ 3
2&rxry

ð1! 1
2-

2Þ2#ð1! 1
2-

2Þ 2
&rxry

e!2-
2

R
dy

R
dy0f 1

&"x
#ð1!A2

xÞ 4
3&"x
ð1! 2

3A
2
xÞ#ð1! 2

3A
2
xÞ 3

2&"x
ð1! 1

2A
2
xÞ2#ð1! 1

2A
2
xÞ 2

&"x
e!2A

2
x

R
dx

R
dx0f 1

&"y
#ð1!A2

yÞ 4
3&"y
ð1! 2

3A
2
yÞ#ð1! 2

3A
2
yÞ 3

2&"y
ð1! 1

2A
2
yÞ2#ð1! 1

2A
2
yÞ 2

&"y
e!2A

2
y

Probability #ðA2 ! 1Þ ¼ ûA A4 ¼ 9
4 ûA A6 ! 3A4 þ 4ûA ¼ 0 ð1þ 2A2Þe!2A2 ¼ 1! ûA

Transform ) A ¼ 1 ) A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

ffiffiffiffiffiffiffiffi
ûA

pq
) A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! 2 cosð.!2&3 Þ

q
Solve numerically

(for ûA ¼ 1) . ¼ cos!1ð1! 2ûAÞ
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specified, values of Ax - 0 and Ay - 0 consistent with
A2 ¼A2

x þA2
y are set by taking

A x ¼A
ffiffiffiffiffiffi
û’

q
; Ay ¼A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! û’

q
; (68)

with û’ 2 ½0; 1Þ an independent, uniformly distributed
random number. This form applies to all choices of f and
is taken to statistically represent the total oscillation am-
plitude A2 equally in the x and y planes [96]. Then,
macroparticle phase-space coordinates are set using a
phase-amplitude formulation [97] to uniformly populate
oscillations in the elliptical phase spaces represented by the
values of the Aj by taking

x ¼Axrx cos%x; x0 ¼Ax

%
r0x cos%x !

"x
rx

sin%x

&
;

y ¼Ayry cos%y; y0 ¼Ay

%
r0y cos%y !

"y
ry

sin%y

&
:

(69)

Here, the %j are betatron phases set as

%j ¼ 2&ûj; (70)

with independent, uniformly distributed random numbers
ûj 2 ½0; 1Þ to uniformly distribute the oscillations in phase
about the elliptical symmetry phase space.

It is worth pointing out that the Gaussian choice of f
indicated in Table II can be loaded using similar methods
to those presented in Sec. III C rather than solving the
probability transform in Eq. (67) (with the reduced form
in Table II). Employing the factorization properties of
Gaussian-distributed probability densities, it is straightfor-
ward to demonstrate that the Gaussian distribution can be
alternatively loaded as

x ¼ rx
2
ĝx; y ¼ ry

2
ĝy;

x0 ¼ r0x
rx
xþ "x

2rx
ĝx0 ; y0 ¼ r0y

ry
yþ "y

2ry
ĝy0 :

(71)

Here, ĝj and ĝj0 are Gaussian distributed (or truncated
Gaussian for bounded phase space as discussed in
Sec. III C) random numbers with unit variance.

Analogous to the cases discussed in Secs. III A, III B,
and III C, the random numbers employed above to load the
LCS distributions can be replaced by ordered sets of num-
bers to reduce initial statistical noise for a finite number of
macroparticles.

Transverse slice PIC simulations illustrating the initial
transient (few lattice period) evolution of the LCS distri-
butions in a periodic FODO quadrupole transport channel
are shown in Figs. 3–5. Evolutions associated with both
waterbag and Gaussian choices of the function f listed in
Table II are shown. The simulations and parameter choices
are described in Sec. II and the beam envelope is initially
rms-envelope matched to the FODO lattice [80]. Simu-

lations are shown for weaker (#0 ¼ 45() and stronger
(#0 ¼ 70() applied-focusing strengths, each case for
weak (#=#0 ¼ 0:9) and strong (#=#0 ¼ 0:2) relative
space-charge strength. These values are selected to be
parametrically removed from regions where beam trans-
port in periodic alternating-gradient focusing channels is
expected to become unstable due to the intrinsic structure
of orbits near the beam edge [16,35]. Loads are generated
for the waterbag f case using uniformly distributed pseu-
dorandom numbers [employing the analytic probability
transform in Table II and Eqs. (68)–(70)] and Gaussian-
distributed pseudorandom numbers in the Gaussian f case
[using Eq. (71)]. Initial distribution projections numeri-
cally calculated by binning macroparticles loaded were
checked against analytically calculated projections (see
Table II) to verify the validity of numerical procedures
employed. Also the Gaussian distribution loading method
based on Eq. (71) was carefully cross-checked against the
transform method using results in Table II and Eqs. (68)–
(70). High macroparticle statistics are employed so the
evolution of the beam density (shown every lattice period)
can be observed with minimal noise. Only modest statistics
are necessary for converged emittance evolutions.
The simulations clearly illustrate the expected result:

that for weak relative space-charge forces (#=#0 " 1)
the LCS distributions are fairly well adapted to the trans-
port channel and the subsequent evolutions of the distribu-
tions from the initial state are relatively small, whereas for
large relative space-charge forces (#=#0 small) the lack of
local force balance associated with the inconsistent use of
linear-field Courant-Snyder invariants to define the distri-
butions launches strong, transient-wave perturbations. This
effect is clearly seen in the density profile evolutions in
Fig. 3. In these plots, profiles of the beam density n along
the principal x and y axes are calculated from the gridded
charge density in the simulation with no additional
smoothing. The beam density is normalized by an rms
average measure, $=ðq&rxryÞ, so values not equal to unity
indicate deviations from an rms-equivalent KV beam.
Density profiles are shown at each lattice period of the
evolution (in separate colors) with variations indicating
deviations from periodic equilibrium conditions rather
than numerical errors. Profiles along the x and y axesare
shown separately, because the evolution introduces asym-
metries between the planes. Evolutions in the rms-edge
emittances "j corresponding to the density evolutions in
Fig. 3 are shown in Fig. 4. The emittances are calculated
from Eq. (24) with the x and y emittances shown in black
and red. Note that the x- and y-plane evolutions in both the
density profiles and emittances vary between the planes
due to both the phase of the launching condition of the load
within the lattice period (taken between quadrupoles) and
the lack of system axisymmetry (i.e., @=@+ ! 0). The x
and y emittances tend to evolve out of phase and plane
average emittances [i.e., ð"x þ "yÞ=2 or ffiffiffiffiffiffiffiffiffiffi

"x"y
p

) evolve less
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but are not conserved. System (beam kinetic plus total
field) energy need not be conserved because the applied-
focusing lattice can transfer energy into or out of the

system. However, if rms matching is maintained, system
energy is approximately conserved in an average sense
over multiple lattice periods. Phase-space projections at

h) Gaussian: σo=70º, σ/σo=0.2g) Gaussian: σo=70º, σ/σo=0.9

d) Waterbag: σo=70º, σ/σo=0.2c) Waterbag: σo=70º, σ/σo=0.9

a) Waterbag: σo=45º, σ/σo=0.9 b) Waterbag: σo=45º, σ/σo=0.2

e) Gaussian: σo=45º, σ/σo=0.9 f) Gaussian: σo=45º, σ/σo=0.2
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FIG. 3. (Color) Transient evolution of the beam density n of initial LCS distribution loads for: (a) waterbag f, #0 ¼ 45(, #=#0 ¼ 0:9;
(b) waterbag f, #0 ¼ 45(, #=#0 ¼ 0:2; (c) waterbag f, #0 ¼ 70(, #=#0 ¼ 0:9; (d) waterbag f, #0 ¼ 70(, #=#0 ¼ 0:2; (e) Gaussian
f, #0 ¼ 45(, #=#0 ¼ 0:9; (f) Gaussian f, #0 ¼ 45(, #=#0 ¼ 0:2; (g) Gaussian f, #0 ¼ 70(, #=#0 ¼ 0:9; and (h) Gaussian f,
#0 ¼ 70(, #=#0 ¼ 0:2. Density profiles are shown along the principal x and y axes at lattice period intervals. (B-DYN: Nr ¼ 50,
Nppg ¼ 4k, Ns ¼ 100, Np ’ 3.)
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h) Gaussian: σo=70º, σ/σo=0.2g) Gaussian: σo=70º, σ/σo=0.9

d) Waterbag: σo=70º, σ/σo=0.2c) Waterbag: σo=70º, σ/σo=0.9

a) Waterbag: σo=45º, σ/σo=0.9 b) Waterbag: σo=45º, σ/σo=0.2

e) Gaussian: σo=45º, σ/σo=0.9 f) Gaussian: σo=45º, σ/σo=0.2
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FIG. 4. (Color) Evolution of the beam rms-edge emittances "x and "y as a function of lattice periods (s=Lp) for the simulations shown
in Fig. 3.
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FIG. 5. (Color) Evolution of phase-space projections in x-y, x-x0, and y-y0 for the initial LCS waterbag distribution shown in Figs. 3
and 4 with #0 ¼ 70( and #=#0 ¼ 0:2. Projections (columns) are shown at lattice period intervals (rows).
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lattice period intervals for one evolution are shown in
Fig. 5. The x-y, x-x0, and y-y0 projections illustrate further
characteristics of the large waves launched due to the lack
of force balance in the beam distribution when space
charge is strong. In the x-x0 projections, x0 represents x0 !
r0xðx=rxÞ with rx and r0x calculated from Eq. (23) (i.e., in an
rms-equivalent beam sense). This transformation removes
the tilt angle of the ellipse associated with the coherent
flow while conserving local x-x0 phase-space area and
thereby better illustrate distribution distortions. An analo-
gous transformation is made in the y-y0 projections. A
random sampling of particles is plotted to represent the
distribution. Colors of the plotted particles represent rela-
tive densities of the projections as indicated (in arbitrary
units).

Despite the strength of the transient evolution for strong
space charge, the rms-envelope radii rj of the distributions
remain well matched to the focusing lattice and the emit-
tance evolutions are relatively modest. This is not surpris-
ing given that choices of initial distributions even further
out of local force balance are also observed to remain
relatively well matched with modest emittance growth
[15]. Waves launched by the lack of local consistency in
the initial distribution tend to drive the profile to a more
uniform-density beam through phase mixing, Landau
damping, and nonlinear interactions. Such relaxations
tend to result in increased beam emittance because the
more uniform profiles have lower field energy and the
energy difference between the initial and relaxed state (in
an approximate sense: x-varying focusing forces can also
transfer energy into and out of the beam during the period
and details of such processes can vary especially in the
initial transient evolution) is available to drive increases in
incoherent spreads [15,31,67,68]. Longer simulations sug-
gest that the distribution can relax to a state better adapted
to the transport channel with a significant, but reduced
spectrum of residual oscillations persisting. The relaxed
state tends to be more nearly plane equilibrated with "x "
"y. Propagation distances necessary for relaxation can be
significant and are difficult to determine because the re-
laxation distance varies with the strength of the applied
focusing (#0) and the relative space-charge strength
(#=#0). Numerical approximations can also induce effec-
tive, nonphysical relaxations that are difficult to separate
from other processes. This can further complicate the
relaxation issue: very large simulations can be necessary
for proper, physical convergence. Batygin has explored
alternative techniques where nonlinear terms can be added
to the applied-focusing forces so that the total applied plus
space-charge force acting on the particles is linear, and
then adiabatically decreasing the applied nonlinear force
[63]. In any event, for strong relative space-charge forces it
is desirable to generate improved, but still relatively simple
loads with smooth distributions that are more equilibrium-
like with lesser transient-wave evolution to simplify appli-

cations and interpretation of results. This issue is addressed
in Sec. IV.

IV. PSEUDOEQUILIBRIUM DISTRIBUTIONS

We improve on the classes of specified kinetic distribu-
tions reviewed in Sec. III for Vlasov simulations of un-
bunched or weakly bunched beams with high space-charge
intensity in nonconstant linear-focusing lattices by formu-
lating ansatz distributions which retain desirable features
of the reviewed distributions while mitigating problematic
ones. Desirable features include a smooth, nonsingular
distribution structure, density projections that reflect
Debye screening for high space-charge intensity, and pres-
ervation of the low-order (envelope model) structure con-
sistent with the KV distribution. Specifically, we formulate
a class of ‘‘pseudoequilibrium’’ distributions [67,68] that
are straightforward to specify, and can have both smooth
core structure and more nearly equilibriumlike properties
that would be expected for an initial beam better adapted to
a linear transport channel. The procedure (Sec. IVA) is
conceptually simple to formulate through a series of trans-
formations motivated by results in Sec. III. Beam slices are
specified by rms-equivalent parameters, which are then
mapped to a local rms matched continuous-focusing equi-
librium distribution with self-consistent Debye screening.
The distribution is then transformed back to a form more
appropriate for nonconstant linear-focusing forces.
Following the description of the method, example pseu-
doequilibrium loads are self-consistently simulated
(Sec. IVB) in a periodic FODO quadrupole transport
channel to illustrate results. The simulations verify im-
proved, closer to equilibriumlike properties of the pseu-
doequilibrium distributions relative to the standard
distributions reviewed in Sec. III.
The pseudoequilibrium procedure is formulated for a

beam in an applied-focusing lattice with linear-focusing
functions !jðsÞ that can vary arbitrarily in s (!j ! const;
j ¼ x; y). Nonlinear (or skew coupled) applied-field com-
ponents can exist but are ignored in the specification of the
!j (a proper inclusion would greatly complicate the for-
mulation since it would require the application of more
complicated Courant-Snyder forms; see Ref. [98]). The
beam need not be rms matched to the linear-focusing
lattice and the procedure can be applied to generate trans-
verse or full 3D beam distributions when axial variations
are sufficiently slow where self-fields can be approximated
as 2D transverse fields. For either the 4D or 6D phase-
space cases, axial phase-space coordinates of the particles
are regarded as specified (in the s slice for transverse
loads). The pseudoequilibrium distribution is assumed to
have the form

f ¼ f?ðx?;x
0
?; sÞfzðz; pzÞ; (72)

where z and pz are the longitudinal particle coordinate
and momentum and fz - 0 is the longitudinal distribution.
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The connection between s and z must be specified and the
total number of particles within the beam N ¼R
dz

R
dpz

R
d2x?

R
d2x0?f sets the normalization of fz.

A variety of longitudinal distributions fz, such as the
Neuffer distribution [99], can be applied to model the
beam ends.

A. Pseudoequilibrium procedure

In the pseudoequilibrium procedure, initial transverse
particle phase-space coordinates (x, y, x0, y0) are loaded as
follows.

Step 1.—For each particle at axial coordinate s, specify
the beam perveance

QðsÞ ¼ q$ðsÞ
2&'0mc2(3

b%
2
b

; (73)

statistical beam edge radii

rxðsÞ ¼ 2hx2i1=2? ; ryðsÞ ¼ 2hy2i1=2? ; (74)

envelope angles

r0xðsÞ ¼
2hxx0i?
hx2i1=2?

; r0yðsÞ ¼
2hyy0i?
hy2i1=2?

; (75)

and rms-edge emittances

"xðsÞ ¼ 4½hx2i?hx02i? ! hxx0i2?+1=2;
"yðsÞ ¼ 4½hy2i?hy02i? ! hyy0i2?+1=2:

(76)

For a given beam ion and slice energy, Eqs. (73)–(76) fix
the beam line charge $ and the 2nd-order moments hx2i?,
hx02i?, hxx0i? (and corresponding y-plane moments) in
terms of Q, rj, r

0
j, and "j. In this specification, we have

not assumed that the linear focusing functions !jðsÞ are
periodic. If the !j are periodic, the envelope radii rj need
not be matched to the focusing lattice. The mean axial

factors %b and (b ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! %2

b

q
are set consistently with

the longitudinal distribution of particles being loaded with

%b ¼
)
vz

c

*

vz

: (77)

Here, h, , ,ivz
denotes an average over the axial beam

velocity vz calculated at axial slice location s. The paraxial
approximation of small longitudinal velocity spread is
assumed to apply. In cases where a long beam is accelerat-
ing and/or longitudinally compressing/expanding, a pre-
scribed head-to-tail s variation in %b is permitted over the
axial length of the beam insofar as the fractional change is
small. j

Step 2.—Define an rms-matched, continuously focused
beam for each particle with perveanceQðsÞ, statistical edge
envelope radius

rbðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxðsÞryðsÞ

q
; (78)

rms-edge emittance

"bðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"xðsÞ"yðsÞ

q
; (79)

and focusing-field strength

k2%0ðsÞ ¼
QðsÞ
r2bðsÞ

þ "2bðsÞ
r4bðsÞ

: (80)

The choices in Eqs. (78)–(80) are consistent with approx-
imating the KV envelope equations (21) as an average
force-balance equation with: rj ¼ rb, !j ¼ k2%0, and "j ¼
"b, where we treat rb as slowly varying (i.e., r00b negligible
in the envelope equation). Alternatively, the geometric-
mean definitions made in Eqs. (78) and (79) can be re-
placed with arithmetic-mean measures [e.g., rb ¼ ðrx þ
ryÞ=2 rather than rb ¼ ffiffiffiffiffiffiffiffiffi

rxry
p

] resulting in only small dif-

ferences in typical applications where beams are not highly
elliptical (i.e., rx " ry) and are nearly plane equilibrated
(i.e., "x ’ "y). However, the geometric-mean definitions
apply more logically in the general cases since they reflect
an equivalence of beam cross-sectional area and four-
dimensional phase-space volume. j
Step 3.—For the rms-matched, continuously focused

transverse distribution defined in step 2, specify an axi-
symmetric (i.e., @=@+ ! 0) Vlasov equilibrium distribu-
tion

f?ðx; y; x0; y0; sÞ ¼ f?½H?ðsÞ+ (81)

with a particular functional form f?ðH?Þ (e.g., waterbag,
parabolic, thermal, . . .). Here,

H?ðsÞ ¼
1

2
x02
? þ

1

2
k2%0x

2
? þ

q

m(3
b%

2
bc

2 ) (82)

is the transverse Hamiltonian of a beam particle and pa-
rameters employed in the definition of f?ðH?Þ are con-
strained by

$ðsÞ ¼ q
Z

d2x?
Z

d2x0?f?ðH?Þ;

r2bðsÞ ¼
4
R
d2x?

R
d2x0?x

2f?ðH?ÞR
d2x?

R
d2x0?f?ðH?Þ

;

"2bðsÞ
r2bðsÞ

¼ 4
R
d2x?

R
d2x0?x

02f?ðH?ÞR
d2x?

R
d2x0?f?ðH?Þ

:

(83)

Generally, a function f?ðH?Þ satisfying the monotonic-
ity condition @f?ðH?Þ=@H? . 0 is preferable to corre-
spond to a stable core distribution in the continuous limit
[30,32]. The procedure for implementing the constraints in
Eq. (83) will generally be complex because ) occurring in
H? must be calculated self-consistently with the transverse
Poisson equation [see Eq. (33)]

1

r

@

@r
r
@

@r
) ¼ ! q

'0

Z
d2x0?f?ðH?Þ (84)

for each beam slice for 3D beams. Careful analysis and
scaling can reduce the number of free parameters and
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numerical work necessary to calculate ) and implement
the constraints associated with particular choices of equi-
librium functions f?ðH?Þ. Formulating efficient proce-
dures is especially important in 3D applications because
constraints may need to be applied to each particle inde-
pendently (each particle can be in a different transverse
slice of the beam). Gridded transforms can be generated
(see Sec. III B) for the needed range of equilibrium pa-
rameters to reduce numerical work. For the case of trans-
verse applications, the constraints need only be solved
once rendering efficiency issues much less important.
Special numerical methods can prove necessary in analyz-
ing the constraints for strong space charge. When space
charge becomes sufficiently strong, Debye screening re-
sults in the radial density profile interior to the beam
becoming very flat and the beam edge sharp (see
Appendices D, E, and F). j

Step 4.—Load the transverse particle phase-space coor-
dinates x, y, x0, y0 consistent with the continuous distribu-
tion calculated in step 3 (see discussions in Sec. III B). j

Step 5.—Transform the axisymmetric distribution parti-
cle coordinates loaded in step 4 to local rms equivalency in
the slice of the beam. This can be accomplished with a two-
step procedure by first transforming the particle coordi-
nates as

x ! x ¼ rx
rb

x; y ! y ¼ ry
rb

y; (85)

and then (with the first step carried out) transforming the
particle angles as

x0 ! x0 ¼ "x
rx

r2b
"2b

x0 þ r0x
rx
x; y0 ! y0 ¼ "y

ry

r2b
"2b

y0 þ r0y
ry
y:

(86)

Denoting initial/final particle coordinates with a subscript/
superscript i=f, this transform can be carried out in a single
step as (y-plane expressions analogous):

xf ¼
rx
rb

xi; x0f ¼
"x
"b

rb
rx

x0i þ
r0x
rb

xi: (87)

These transforms preserve linear-force Courant-Snyder
invariants of the particle distribution (see Appendix B). j

The transverse beam density n ¼ R
d2x0?f? of the ini-

tial pseudoequilibrium distribution generated by this pro-
cedure will have n ¼ const on elliptical surfaces with
ðx=rxÞ2 þ ðy=ryÞ2 ¼ const within the beam. However, in
contrast to the KV distribution, the density profile of the
pseudoequilibrium distribution will have radial structure in
ðx=rxÞ2 þ ðy=ryÞ2 with an edge profile that reflects the
choice of f?ðH?Þ made. For monotonic f?ðH?Þ and
strong space charge, Debye screening will lead to a flat
charge profile within the core of the beam that falls off in a
few characteristic Debye lengths near the edge where
ðx=rxÞ2 þ ðy=ryÞ2 " 1. The specific structure of the edge
(the rapidity of the falloff, whether it reduces to zero or

exponentially small values, etc.), will depend on the func-
tional form of f?ðH?Þ chosen. The pseudoequilibrium
distribution is exact for the case of an ideal, continuous-
focusing system (see Sec. III B). For s-varying focusing
lattices the initial pseudoequilibrium distribution will not
be an exact equilibrium [except when f?ðH?Þ is chosen to
correspond to a continuous-focusing KV distribution] and
some initial transient evolution is expected. For stronger
focusing (larger #0j), this transient is expected to become
more pronounced because stronger focusing will generally
be more poorly approximated by the continuous limit. For
sufficiently large #0j the beam is expected to become
destabilized for any choice of f?ðH?Þ [16]. It should again
be stressed that, although the underlying continuous
distribution f?ðH?Þ used in the construction of the
pseudoequilibrium distribution are rms matched, the re-
sulting pseudoequilibrium distribution applies to arbitrary
s-varying focusing lattices. If the lattice focusing functions
are periodic, the initial pseudoequilibrium distribution can
be envelope matched or envelope mismatched, depending
on the choice of rj made.

B. Illustrative simulations

The pseudoequilibrium loading procedure outlined in
Sec. IVA is implemented in the WARP and B-DYN PIC codes
for underlying continuous waterbag, and thermal equilib-
rium distributions. Example transverse slice PIC simula-
tions illustrating the initial transient evolution of the
pseudoequilibrium distributions in a periodic FODO quad-
rupole transport channel are presented in Figs. 6–9 for
distributions with underlying waterbag and thermal equi-
librium form. Codes and parameter choices are described
in Sec. II, and data are presented using analogous proce-
dures and formats as presented in Secs. III B and III D.
Exceptions to this correspondence are explicitly noted.
Simulations are shown for weaker (#0 ¼ 45() and stronger
(#0 ¼ 70() applied-focusing strengths, each for weak
(#=#0 ¼ 0:9) and strong (#=#0 ¼ 0:2) relative space-
charge strength. These values are selected to be parametri-
cally removed from regions where alternating-gradient
transport is expected to become unstable resulting from
the intrinsic structure of orbits near the beam edge in
periodic systems with strong space charge [16,35].
Beams are initially rms-envelope matched to the transport
channel [80]. In all simulations digit-reversed numbers are
used to generate macroparticle loads with lower statistical
noise to allow better visualization of collective wave evo-
lution. Also, large numbers of macroparticles are simulated
to allow clear visualization of density profile evolutions
with limited noise—only relatively modest numbers of
macroparticles are necessary for converged emittance evo-
lutions. The radial probability transform (see discussion in
Sec. III B) needed to load the macroparticle coordinates are
solved on a uniform mesh of 500 points with a cutoff set at
the beam edge in the waterbag case and where the density
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becomes exponentially small in the thermal case. Short
(few-lattice-period) evolutions are simulated to display
initial transient evolutions characteristic of nonequilibrium
behavior. We generally find that longer evolutions have
negligible emittance growth with particles remaining well
confined in the beam core without large changes in distri-

bution structure if parameters are chosen sufficiently far
from regions where the system is expected to be unstable
[16,35].
Comparing the results in Figs. 6–9 for the pseudoequili-

brium distributions to the results presented in Sec. III D for
analogous linear-field Courant-Snyder invariant distribu-

a) Waterbag: 

c) Waterbag: 

e) Thermal: 

g) Thermal: 

b) Waterbag: 

d) Waterbag: 

f) Thermal:

h) Thermal:

FIG. 6. (Color) Transient evolution of the beam density n of initial pseudoequilibrium distribution loads for: (a) waterbag form:
#0 ¼ 45(, #=#0 ¼ 0:9; (b) waterbag form: #0 ¼ 45(, #=#0 ¼ 0:2; (c) waterbag form: #0 ¼ 70(, #=#0 ¼ 0:9; (d) waterbag form:
#0 ¼ 70(, #=#0 ¼ 0:2; (e) thermal form: #0 ¼ 45(, #=#0 ¼ 0:9; (f) thermal form: #0 ¼ 45(, #=#0 ¼ 0:2; (g) thermal form: #0 ¼
70(, #=#0 ¼ 0:9; (h) thermal form: #0 ¼ 70(, #=#0 ¼ 0:2. Density profiles are shown along the principal x and y axes at lattice
period intervals. (WARP: Nr ¼ 50, Nppg ¼ 40 k, Ns ¼ 100, Np ’ 3.)
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a) Waterbag:

c) Waterbag:

b) Waterbag:

d) Waterbag:

e) Thermal: f) Thermal:

g) Thermal: h) Thermal:

,

,

,

,

,

,

,

,

FIG. 7. (Color) Evolution of the beam rms-edge emittances "x and "y as a function of lattice periods (s=Lp) for the simulations shown
in Fig. 6.
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FIG. 9. (Color) Evolution in phase-space projections in x-y, x-x0, and y-y0 for the initial pseudoequilibrium waterbag distribution
simulation shown in Figs. 6 and 7 with #0 ¼ 70( and #=#0 ¼ 0:2. Projections (columns) are shown at lattice period intervals (rows).
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tions, it is clear that the pseudoequilibrium distributions are
much better adapted to the applied-focusing channel—
particularly for stronger relative space-charge intensity.
Although collective wave perturbations are still launched
from the initial pseudoequilibrium distributions, the
strength of residual waves launched from the lack of de-
tailed equilibrium form is significantly reduced indicating
an initial beam that is better adapted to the transport
channel. This improved adaptation is particularly apparent
for cases of high space-charge intensity when contrasting
the density profile evolutions in Figs. 3 and 6. Simulations
of initial pseudoequilibrium distributions with weaker ap-
plied focusing (i.e., smaller #0) and weaker relative space-
charge intensity (i.e., higher #=#0) have evolutions closer
to equilibrium form with the distribution projections nearly
periodically repeating with each lattice period. Evolutions
in the rms-edge emittances "j are relatively small in all

cases of the pseudoequilibrium distributions because the
evolutions in the charge-density profile are modest.
Simulation cases in Figs. 6 and 7 that are not shown in
the phase-space projections in Figs. 8 and 9 have smaller
deviations. In these projection plots a numerical method is
employed which shows almost all macroparticles in the
low-density regions and a sampling of macroparticles in
the high-density regions. This enhances visualization of
perturbations near the edge of the beam relative to the
sampling method employed in the corresponding phase-
space projection plots in Sec. III D. Phase-space projec-
tions of the waterbag form pseudoequilibrium distribution
are shown rather than projections of the thermal form
pseudoequilibrium distribution because the sharp phase-
space boundary of the waterbag distribution (along with
plotting essentially all macroparticles near the edge) makes
it easier to visualize waves associated with the lack of
equilibrium form which manifest most strongly near the
beam edge. In all cases, waves are launched due to lack of
exact force balance near the radial edge of the beam
distribution as the beam evolves in the alternating-gradient
focusing structure. Note in Figs. 8 and 9 that wave pertur-
bations are primarily launched near the edge of the distri-
bution and only weakly perturb the core while distorting
the low-density region near the beam edge most. Emittance
evolutions shown in Fig. 7 are small in all cases exam-
ined—as should be expected because charge redistribu-
tions are modest and the beam envelope remains rms-
envelope matched to high accuracy [15,31].

Although the pseudoequilibrium distributions are not
exact equilibria, the underlying smooth continuous-
focusing distributions reflect self-consistent space-charge
screening and stable functional forms in the continuous
limit that are expected to have less free energy relative to
the KV distribution to drive wavelike instabilities. In terms
of waves launched from the lack of detailed equilibrium
form, the pseudoequilibrium distributions also exhibit im-
proved performance relative to other nonequilibrium

ansatz-type initial distributions such as the semi-
Gaussian (see Sec. III C) and linear-field Courant-Snyder
invariant (see Sec. III D) distributions that are commonly in
use. These properties render the pseudoequilibrium distri-
butions useful in probing intrinsic space-charge-related
transport limits of periodic-focusing channels. Parametric
simulation studies carried out with the pseudoequilibrium
loads have already been applied as part of a study to better
understand space-charge related transport limits in quad-
rupole focusing channels [16]. Finally, it should be stressed
that the pseudoequilibrium distribution loads are not only
applicable to periodic alternating-gradient focusing chan-
nels. The procedure applies to any lattice with s-varying or
constant applied-focusing forces described by the focusing
functions !jðsÞ. A simple periodic FODO lattice is em-

ployed here only for simplicity of illustration and for
demanding test cases. One might expect the procedure
for constructing the pseudoequilibrium distributions to
work even better in the sense of approximating equilibrium
properties because particle orbits in high-occupancy sole-
noidal transport systems are generally better approximated
by particle orbits in the continuous-focusing model relative
to orbits in strong (quadrupole) focusing systems. The
pseudoequilibrium distributions can also be applied to
simulate beam transition and matching sections, or other
aperiodic transport lattices. As with the case of periodic
systems, better performance can be expected for aperiodic
lattices with the pseudoequilibrium distributions relative to
other conventional choices of ansatz distributions when
space-charge intensity is high.

V. CONCLUSIONS

Standard classes of distributions commonly in use for
initializing transverse Vlasov simulations of charged par-
ticle beams with intense space-charge were reviewed in
this paper, including the following: the KV equilibrium
distribution; continuous-focusing equilibria, with detailed
examples for ‘‘waterbag,’’ ‘‘parabolic,’’ and ‘‘thermal’’
forms; the nonequilibrium semi-Gaussian distribution;
and nonequilibrium distributions of linear-field Courant-
Snyder invariants. All distributions were presented within a
common notation and prescriptions were given to generate
macroparticle distributions for loading PIC simulations.
Care was taken to formulate the presentation in terms of
standard accelerator variables (perveances, rms emittan-
ces, etc.) rather than special theoretical parameters not in
common use, to render methods directly applicable to
standard accelerator problems. Procedures were developed
to specify loads over the full range of space-charge
strength—even for continuous-focusing equilibria where
high space-charge intensity can present practical difficul-
ties. Deficiencies of the various distributions used in mod-
eling linear-focusing channels with noncontinuous
focusing forces were discussed and illustrative Vlasov
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PIC simulations were presented for initial distributions not
already detailed in the literature.

Following this review, a new class of pseudoequilibrium
distribution functions was derived, building on the standard
classes of distributions reviewed. The pseudoequilibrium
distributions were formulated to satisfy the need for a more
equilibriumlike, yet simple, smooth distribution to apply in
simulations of intense beams in focusing channels with
linear applied forces that vary arbitrarily (other than ex-
cluding skew couplings) in the axial coordinate s. The
pseudoequilibrium distributions are not exact equilibria
of a linear-focusing channel with nonconstant applied-
focusing forces, but they are relatively simple to formulate,
and have appealing physical properties expected for a
relaxed beam evolving in a linear-focusing channel with
space-charge driven Debye screening. The cores of the
pseudoequilibrium distributions are specified by any,
stable continuous-focusing equilibrium beam. Trans-
formations that preserve linear-field Courant-Snyder invar-
iants are then applied to map these continuous distributions
to a form more appropriate for focusing channels with
s-varying applied-focusing forces. Details are presented
to generate pseudoequilibrium distributions with underly-
ing waterbag, parabolic, and thermal equilibrium
continuous-focusing forms—which cover a wide range of
phase-space structure. Illustrative Vlasov PIC simulations
were carried out to evolve transverse pseudoequilibrium
loads in a periodic FODO quadrupole focusing channel to
explicitly demonstrate the advantages of the smooth core
structure in terms of diminished transient waves relative to
more standard initial distributions. This more quiescent
behavior can aid understanding of detailed transport phys-
ics. The pseudoequilibrium procedure can be applied to
load both 2D transverse slices (4D phase space) as well as
full 6D phase space (with specified longitudinal structure)
distributions. Also, relaxation methods can be applied to
initial pseudoequilibrium loads to further improve the
adaptation of the beam in the sense of being more equili-
briumlike in cases where the distributions should be stable.
Considerable opportunities still exist for future research in
equilibriumlike loads in linear-focusing channels with
nonconstant focusing forces—both in terms of the intrinsic
existence or nonexistence of smooth Vlasov equilibrium
distribution functions and in construction of better approxi-
mate loads through improved physical insight or system-
atic perturbation theory.
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APPENDIX A: ACCELERATION EFFECTS

In the absence of axial beam acceleration, (b%b ¼ const
and the particle equation of motion in the x direction that is
produced by the Hamiltonian (8) is

x00 þ !xx ¼ !
q

m(3
b%

2
bc

2

@)

@x
: (A1)

If (b%b is allowed to vary slowly in s consistent with axial
acceleration forces acting on the beam, then the equation of
motion (A1) is modified as [31,67,68]

x00 þ ð(b%bÞ0
ð(b%bÞ

x0 þ !xx ¼ !
q

m(3
b%

2
bc

2

@)

@x
: (A2)

For ð(b%bÞ0 > 0, one may deduce from Eq. (A2) and
analysis of damped harmonic oscillators [100] that the
acceleration will tend to damp particle oscillations.
Analogous equations hold in the y plane both here and in
subsequent equations.
A transformation to tilde variables is defined by taking

[67,68,101]

~x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
(b%b

p
x: (A3)

Then

~x 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
(b%b

p
x0 þ 1

2

ð(b%bÞ0ffiffiffiffiffiffiffiffiffiffiffiffi
(b%b

p x; (A4)

and the particle x-x0 phase-space coordinates are related to
the ~x-~x0 coordinates by

x ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
(b%b

p ~x; x0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
(b%b

p ~x0 ! 1

2

ð(b%bÞ0
ð(b%bÞ3=2

~x:

(A5)

Some straightforward manipulation then shows that the
equation of motion (A2) can be expressed as

~x 00 þ
$
!x þ

1

4

ð(b%bÞ02
ð(b%bÞ2

! 1

2

ð(b%bÞ00
ð(b%bÞ

'
~x

¼ ! q

m(2
b%bc

2

@)

@~x
: (A6)

A transformed potential ~) is defined as
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~) ¼ (b%b): (A7)

Then the equation of motion (A6) becomes

~x 00 þ ~!x~x ¼ !
q

m(3
b%

2
bc

2

@ ~)

@~x
; (A8)

where

~! x ' !x þ
1

4

ð(b%bÞ02
ð(b%bÞ2

! 1

2

ð(b%bÞ00
ð(b%bÞ

(A9)

is a linear-focusing function that incorporates acceleration
effects.

The equivalence of form between the equations of mo-
tion (A2) and (A8) shows that the formulation with
(b%b ¼ const can be applied to accelerating beams if the
particle phase-space coordinates are interpreted consis-
tently with the transformations in Eqs. (A3) and (A4).
Note that in a periodic applied-focusing lattice, if the
beam is to remain envelope matched in the usual sense,
Eq. (A9) shows that the focusing functions !j (j ¼ x; y)
must, in general, be adjusted such that the ~!j maintain
proper periodicity with ~!jðsþ LpÞ ¼ ~!jðsÞ. For a lattice
with discrete acceleration gaps and separated function
magnets for beam focusing, this can be done approxi-
mately when the fractional gain in particle energy through
each acceleration gap is small.

The transformation defined by Eqs. (A3) and (A4) is
straightforward to interpret. The Jacobian of the transfor-
mation shows that phase-space area elements are related as

d~x / d~x0 ¼ (b%bdx / dx0: (A10)

The (b%b factor compensates for acceleration induced
damping in x-x0 phase space. If the transformed equations
of motion are linear, then single-particle Courant-Snyder
invariants exist in ~x-~x0 phase space (see Appendix B), but
the phase-space area associated with the Courant-Snyder
invariant will be damped by the factor 1=ð(b%bÞ in x-x0

phase space. This is the reason for the conventional appli-
cation of normalized emittances that incorporate the (b%b

factor when measuring the phase-space area in accelerating
beams [31,67,68,102].

Finally, it should be pointed out that if a transformed
distribution ~f? is defined such that

~f ?d
2~x?d

2~x0? ¼ f?d
2x?d

2x0?; (A11)

then the Jacobian of the transformation (A5) d2~x?d
2~x0? ¼

ð(b%bÞ2d2x?d2x0?, and consequently ~f? is simply related
to the beam distribution f? by

~f ? ¼
1

ð(b%bÞ2
f?: (A12)

If one naturally defines a charge density for the trans-
formed distribution as

~, ¼ q
Z

d2~x0?
~f?; (A13)

then the regular charge distribution , ¼ q
R
d2x0?f? is

related to ~, by

~, ¼ 1

(b%b
,; (A14)

and the transformation of the Poisson equation (9) is

%
@2

@~x2
þ @2

@~y2

&
~) ¼ ! ,

'0
¼ ! ,

(b%b'0
: (A15)

The additional factor of 1=ð(b%bÞ is an expression of the
weakening of transverse space-charge effects with accel-
eration and must be treated with care to establish the proper
correspondences.

APPENDIX B: LINEAR-FORCE COURANT-
SNYDER INVARIANTS

An x-plane particle orbit within a KV beam is described
by the Hill’s equation [30–32,36,67,68]

x00ðsÞ þ !xðsÞxðsÞ !
2QxðsÞ

½rxðsÞ þ ryðsÞ+rxðsÞ
¼ 0: (B1)

ForQ ¼ 0 this equation also describes an x-plane orbit of a
single-particle moving in the linear applied-focusing fields
of a lattice. In a phase-amplitude resolution of the particle
orbit we take

x ¼ Ax cosc x; (B2)

where Ax and c x denote s-varying amplitude and phase
functions. Without loss of generality, Ax and c x can be
taken to satisfy 2A0

xc
0
x þ Axc

00
x ¼ 0, or equivalently,

c 0
x ¼

const

A2
x

: (B3)

The amplitude is set to be Ax ¼Axrx, where Ax is a
positive dimensionless constant. We can then take const ¼
A2

x"x in Eq. (B3) without restrictions on the generality of
the solution. Then the equation of motion (B1) becomes

Ax

$
r00x þ !xrx !

2Q

rx þ ry
! "2x

r3x

'
¼ 0;

c 0
x ¼

"x
r2x

:
(B4)

The amplitude equation is satisfied for Ax ! 0 if the rj
(j ¼ x; y) satisfy the KVenvelope equation (21). Note that
the rate of phase advance, c 0

x ¼ "x=r
2
x, is independent of

relative particle oscillation amplitude Ax. This phase-
advance equation can be integrated to express the total
phase advance #x through an axial distance from s ¼ si
to s ¼ si þ Lp (lattice period) as
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#x ¼ c xðsi þ LpÞ ! c xðsiÞ ¼ "x
Z siþLp

si

ds

r2x
: (B5)

If the focusing lattice is periodic with period Lp, and the
envelope rj is matched, then the ‘‘depressed’’ phase ad-
vance #x [see Eq. (25)] is independent of si. Using Ax ¼
Axrx and c 0

x ¼ "x=r
2
x, we have

x

rx
¼Ax cosc x;

rxx
0 ! r0xx

"x
¼Ax sinc x: (B6)

Adding the square of these equations, we obtain the
Courant-Snyder invariant

%
x

rx

&
2
þ

%
rxx

0 ! r0xx

"x

&
2
¼A2

x ¼ const: (B7)

An analogous invariant holds in the y plane.
The x-x0 phase-space area enclosed by the ellipse de-

fined by the Courant-Snyder invariant (B7) is &"xAx. A
particle at the edge of the beam in phase space will have
amplitude Ax ¼ 1, showing that &"x is the maximum
phase-space area enclosed by particles in the coasting
beam. A statistical average of Eq. (B7) shows that
hA2

xi? ¼ 1=2 for consistency with the requirement that
the statistical emittance of a KV beam satisfy "2x ¼
16½hx2i?hx02i? ! hxx0i2?+. For the KV distribution, "x can
be interpreted as the maximum single-particle emittance
and a statistical edge measure of the rms-edge emittance
(i.e., "x ¼ 4"x;rms). Note that the KV distribution (16) is a
delta function of x- and the y-plane Courant-Snyder invar-
iants that generates the required uniform-density elliptical
beam required for self-consistency. The initial particle
distributions defined in Sec. III D are based on linear-field
Courant-Snyder invariants.

In the limit of zero space charge (Q ¼ 0), the Courant-
Snyder invariant (B7) reduces to a form familiar from
conventional accelerator physics of a single-particle
oscillating in linear applied fields [97]. In this case it is
conventional to employ alternative, positive-definite am-
plitude functions %0jðsÞ (or alternatively, w0j ¼ %2

0j) that

are related to the Q ¼ 0 envelope functions rj ' r0j by

r0j ¼
ffiffiffiffiffi
"j

p
w0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
"j%0j

q
: (B8)

The function %0j is called the betatron function, and for
periodic lattices, is employed analogously to a defined
special function that characterizes the applied-focusing
properties of the lattice.

The Courant-Snyder invariant can be applied to improve
the understanding of the pseudoequilibrium initial distri-
butions defined in Sec. IV. Using the transformation (87) in
the Courant-Snyder invariant (B7), we obtain

%
x

rb

&
2
þ

%
rbx

0

"b

&
2
¼ const; (B9)

where rb and "b are the envelope radius and emittance of

an rms-equivalent, matched KV beam in a continuous-
focusing channel. Adding the analogous y-plane invariant
then shows that

2
r2b
"2b

$
1

2
x02
? þ

"2b
2r4b

x2
?

'
¼A2

x þA2
y ¼ const: (B10)

For a matched KV equilibrium beam in a continuous-
focusing channel, it is straightforward to show that the

transverse beam Hamiltonian H? ¼ 1
2x

02
? þ

k2%0
2 x2

? þ
q)=ðm(2

b%
2
bc

2Þ can be expressed as H? ¼ 1
2x

02
? þ

"2b
2r4b

x2
?

[see Eq. (45)], giving

2
r2b
"2b

H? ¼A2
x þA2

y ¼ const: (B11)

This shows that the composite Courant-Snyder invariant
A2

x þA2
y is proportional to H? for the equivalent

continuous-focusing channel. Therefore, the transforms
applied to generate the pseudoequilibrium distributions
from a continuous-focusing equilibrium distribution pre-
serve linear-field Courant-Snyder invariants appropriate
for the noncontinuous lattice. The transformations fail to
produce an exact equilibrium because the self-fields are not
linear for general (non-KV) continuous equilibrium distri-
butions employed. For high space-charge intensity, the
approximation of replacing the actual nonlinear space-
charge field with an rms-equivalent beam linear-field is
expected to be worse for particles near the edge of the
beam.

APPENDIX C: RMS EQUIVALENCYAND
PROJECTIONS OF THE DISTRIBUTIONS IN

SEC. III D

For a distribution to be rms equivalent with a KV dis-
tribution described by the envelope radii rj (j ¼ x; y), the
envelope angles r0j, and the rms-edge emittances "j, it
follows from Eqs. (23) and (24) that the nonzero second-
order moments of the distribution must satisfy

hx2i? ¼
r2x
4
; hxx0i? ¼

rxr
0
x

4
;

hx02i? ¼
r02x
4
þ "2x

4r2x
:

(C1)

Here, we have expressed the x-plane equations and
h, , ,i? ¼

R
d2x

R
d2x0 , , , f?=

R
d2x

R
d2x0f?. Analogous

equations hold in the y plane both here and in subsequent
equations. All second-order cross moments must vanish
(e.g., hxyi? ¼ 0).
To analyze constraints that rms equivalency places on

the class of linear-field Courant-Snyder invariant (LCS)
distributions defined by Eqs. (60)–(64), it is convenient to
employ canonical transformations [30] by taking
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X ' ffiffiffiffiffi
"x

p x

rx
; _X ' ffiffiffiffiffi

"x
p %

rxx
0 ! r0xx

"x

&
; (C2)

with inverse transform

x ¼ rxffiffiffiffiffi
"x

p X; x0 ¼
ffiffiffiffiffi
"x

p

rx
_X þ r0xffiffiffiffiffi

"x
p X: (C3)

Phase-space area elements transform as

d2x? ¼ dx / dy ¼ rxryffiffiffiffiffiffiffiffiffiffi
"x"y

p dX / dY;

d2x0? ¼ dx0 / dy0 ¼
ffiffiffiffiffiffiffiffiffiffi
"x"y

p

rxry
d _X / d _Y;

(C4)

with

d2x?d
2x0? ¼ dx / dy / dx0 / dy0

¼ dX / dY / d _X / d _Y; (C5)

reflecting the local phase-space invariance of a canonical
transform [103]. Using these canonical transforms it is
straightforward to show that the rms-equivalency require-
ments in Eq. (C1) can be expressed as

hX2i? ¼ h _X2i? ¼
"x
2
; hX _Xi? ¼ 0; (C6)

and the linear-field Courant-Snyder invariant A2 in
Eq. (61) becomes

A 2 ¼ 1

"x
ðX2 þ _X2Þ þ 1

"y
ðY2 þ _Y2Þ; (C7)

thereby simplifying the expression of the LCS distribution
(60) to

f?ðA2Þ ¼ $

q
f
%
X2 þ _X2

"x
þ Y2 þ _Y2

"y

&
: (C8)

Employing Eqs. (C5) and (C8), it follows by symmetry that
hX _Xi? ¼ 0 is satisfied independent of the form of the
function f used in the distribution definition (C8). Some
straightforward manipulation using these equations then
shows that hX2i? ¼ h _X2i? ¼ "x=2 is satisfied if the func-
tion f satisfies

R1
0 dU

R1
0 d _UUfðUþ _UÞR1

0 dU
R1
0 d _UfðUþ _UÞ ¼

1

2
: (C9)

Here, U ' X2="x þ Y2="y and _U ' _X2="x þ _Y2="y.
Denoting

GðUÞ '
Z 1

U
d ~Ufð ~UÞ; (C10)

the constraint in Eq. (C9) can be equivalently expressed as
R1
0 dUUGðUÞR1
0 dUGðUÞ ¼

1

2
: (C11)

This shows that the moment constraints (C1) required for

rms equivalency are automatically satisfied for LCS dis-
tributions defined by Eqs. (60) and (61) regardless of the
(physical) values of rj, r

0
j, and "j and the specific form of

the choice of function f.
Projections of the LCS distributions can be more easily

calculated using the canonical transforms in Eqs. (C2)–
(C5). For example, the x-y density projection reduces to

n ¼
Z

d2x0?f?

¼ $

q

ffiffiffiffiffiffiffiffiffiffi
"x"y

p

rxry

Z
d _X

Z
d _Yf

%
X2 þ _X2

"x
þ Y2 þ _Y2

"y

&

¼ &$

q

"x"y
rxry

Z 1

-2
dUfðUÞ; (C12)

where -2 ' x2=r2x þ y2=r2y. Similarly, using

dy / dy0 ¼ dY / d _Y; (C13)

the canonical transforms can be applied to calculate the
x-x0 phase-space projection as

Z
dy

Z
dy0f? ¼

$

q

Z
dY

Z
d _Yf

%
X2 þ _X2

"x
þ Y2 þ _Y2

"y

&

¼ &$"y
q

Z 1

A2
x

dUfðUÞ; (C14)

where A2
x ' ðx=rxÞ2 þ ðrxx0 ! r0xxÞ2="2x. Further simpli-

fications to Eqs. (C12) and (C14) can be made for specific
choices of f (see Table II).

APPENDIX D: CONTINUOUS-FOCUSING
WATERBAG EQUILIBRIUM DISTRIBUTION

A thorough treatment of the waterbag equilibrium has
been presented by Reiser [31] and others [32,59,67–
69,104]. Sheet beam models of the waterbag distribution
have also been extensively studied in continuous and
periodic-focusing channels both in terms of equilibrium
[105,106] and stability properties [106,107]. Here we re-
view and extend analysis of the waterbag equilibrium
within the present framework to facilitate generation of
Vlasov simulation loads formulated with standard inputs
for accelerator simulations. For a waterbag equilibrium
distribution in continuous focusing, we take

f?ðH?Þ ¼ f0#ðHb !H?Þ: (D1)

Here, #ðxÞ is a unit-step function [see Eq. (57)], f0 ¼
const> 0 is the distribution normalization factor, and
Hb ¼ const is the value of the Hamiltonian H? at the
physical beam edge at radius r ¼ re, i.e.,

H?jr¼re ¼ Hb: (D2)

The waterbag distribution expresses that all transverse
particle energies out to the beam edge have uniform proba-
bility, which gives rise to the name ‘‘waterbag’’ motivated
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by analogy to an incompressible fluid confined within a
membrane boundary. The sharp beam edge in phase space
associated with the step-function definition of the distribu-
tion generates a simple, highly idealized model conducive
to analytical calculations. Because @f?ðH?Þ=@H? ¼
!f0*ðHb !H?Þ . 0, the waterbag distribution is stable
to all perturbations within the Vlasov model [30,32].

Using the formulation developed in Sec. III B, we take
H? ¼ x02

?=2þ c with c ¼ k2%0r
2=2þ q)=ðm(3

b%
2
bc

2Þ,
and calculate the radial beam density n ¼ R

d2x0?f? using
Eqs. (36) and (D1) to be

nðrÞ ¼ 2&f0

"
Hb ! c ðrÞ; c <Hb;
0; c >Hb:

(D3)

Note that the density falls smoothly to zero at the physical
beam edge [i.e., nðr ¼ reÞ ¼ 0]. The physical edge radius

re is generally distinct from the rms-edge radius rb ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hr2i?

p
with re > rb. Using Eq. (D3), the transformed

Poisson equation (37) for c can be expressed within the
beam (r < re) as

1

r

@

@r

%
r
@c

@r

&
! k20c ¼ 2k2%0 ! k20Hb; (D4)

where

k20 '
2&q2f0

'0m(3
b%

2
bc

2 ¼ const: (D5)

Equation (D4) is a modified Bessel function equation of
order zero [108]. The solution c of this equation that is
regular as r ! 0 and satisfies c ðr ¼ reÞ ¼ Hb is given
within the beam by

c ðrÞ ¼ Hb ! 2
k2%0
k20

$
1! I0ðk0rÞ

I0ðk0reÞ

'
; (D6)

where I‘ðxÞ is the modified Bessel function of order ‘.
Using this result, Eq. (D3) for the density becomes

nðrÞ ¼ 4&f0
k2%0
k20

$
1! I0ðk0rÞ

I0ðk0reÞ

'

¼
2'0m(2

b%
2
bc

2k2%0
q2

$
1! I0ðk0rÞ

I0ðk0reÞ

'
(D7)

within the beam. Similarly, the x-plane kinetic temperature
Tx ¼ hx02ix0

?
is calculated, using Eq. (38) and previous

results, to be

TxðrÞ ¼
k2%0
k20

$
1! I0ðk0rÞ

I0ðk0reÞ

'
(D8)

within the beam. Comparing Eqs. (D7) and (D8), note that
TxðrÞ / nðrÞ. This proportionality between Tx and n is a
consequence of the waterbag equilibrium choice for
f?ðH?Þ, and is not a general result for continuous-focusing
equilibria.

In Fig. 10 the normalized waterbag density profile is
plotted as a function of k0r for characteristic values of k0re.
Note that as k0re increases, the density profile (and the
temperature profile with Tx / n) becomes increasingly flat
within the core of the beam, with r0 re.
It can be useful to employ H? ¼ 1

2x
02
? þ c [see

Eq. (35)] and Eq. (D6) for c to explicitly calculate the
waterbag distribution as

f?ðx?;x
0
?Þ ¼ f0#

%
2
k2%0
k20

$
1! I0ðk0rÞ

I0ðk0reÞ

'
! 1

2
x02
?

&
: (D9)

Note that Hb has been eliminated in Eq. (D9), and the
distribution is expressed in terms of normalization factor
f0, the scaled edge radius k0re, and k%0=k0.
To use the formulation above effectively, distribution

parameters should be cast in terms of standard quantities
associated with accelerator physics as discussed in
Sec. III B. First, the beam line charge can be calculated
using $ ¼ 2&q

Rre
0 drrnðrÞ and Eq. (D7) to show that

$ ¼ 4&2qf0
k2%0
k20

r2e

$
1! 2

k0re

I1ðk0reÞ
I0ðk0reÞ

'

¼ 4&2qf0
k2%0
k20

r2e
I2ðk0reÞ
I0ðk0reÞ

: (D10)

Here we have employed the modified Bessel function
identities [108]

d

dx
½x‘I‘ðxÞ+ ¼ x‘I‘!1ðxÞ;

! 2‘

x
I‘ðxÞ ¼ I‘þ1ðxÞ ! I‘!1ðxÞ;

with ‘ an integer, to simplify the integrals in the calculation
of $. Similarly, the statistical rms-beam envelope given by

rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hr2i?

p
with hr2i? ¼

Rre
0 drr3nðrÞ=Rre

0 drrnðrÞ can

Radius,

D
en

si
ty

,

FIG. 10. For a waterbag equilibrium, the scaled density profile
nðrÞ=f4&f0ðk2%0=k20Þ½1! 1=I0ðk0reÞ+g is plotted versus the scaled
radial coordinate k0r, calculated from Eq. (D7) for the indicated
values of k0re.
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be explicitly calculated using Eq. (D7) [or equivalently,
using Eq. (40)] to be
%
rb
re

&
2
¼ I0ðk0reÞ

I2ðk0reÞ
! 4

ðk0reÞ2
$
2þ ðk0reÞ

I3ðk0reÞ
I2ðk0reÞ

'
: (D11)

From Eqs. (D5) and (D10), the perveance Q ¼
q$=ð2&'0m(3

b%
2
bc

2Þ is conveniently expressed as

Q ¼ ðk%0reÞ2
I2ðk0reÞ
I0ðk0reÞ

: (D12)

Then Eqs. (D11) and (D12) can be combined to obtain the
constraint equation

k2%0r
2
b

Q
¼ I20ðk0reÞ

I22ðk0reÞ

! 4

ðk0reÞ2
$
2
I0ðk0reÞ
I2ðk0reÞ

þ ðk0reÞ
I0ðk0reÞI3ðk0reÞ

I22ðk0reÞ

'
;

(D13)

which relates the dimensionless factor k0re in terms of the
dimensionless ratio of beam physics parameters k2%0r

2
b=Q.

Using Eq. (47), k2%0r
2
b=Q [or k0re using Eq. (D13)] can be

directly related to the rms-equivalent beam measure of
relative space-charge strength #=#0 as

k2%0r
2
b

Q
¼ 1

1! ð#=#0Þ2
: (D14)

Alternatively, the dimensionless self-field parameter sb
defined in Eq. (48) can be related to k0re from

sb '
!̂2

p

2(3
b%

2
bc

2k2%0
¼ 1! 1

I0ðk0reÞ
: (D15)

Here, !̂p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2n̂=ð'0mÞ

p
is the plasma frequency defined

from the peak, on-axis beam density n̂ ¼ nðr ¼ 0Þ. For
specified Q the ratio of k0=k%0 can be calculated from
Eq. (D12) and k0re as

k%0
k0
¼ 1

ðk0reÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q
I0ðk0reÞ
I2ðk0reÞ

s
: (D16)

The matched-beam envelope constraint [see Eq. (39)]

k2%0rb !
Q

rb
! "2b

r3b
¼ 0 (D17)

can be employed in the constraint equation (D13) to elimi-
nate either k2%0, rb, or Q occurring in k2%0r

2
b=Q in terms of

the emittance "b to affect various parametrization choices.
The nonlinear constraint equation (D13) must, in gen-

eral, be solved numerically to specify the needed value of
k0re. Using Eqs. (D13) and (D14), k0re can be regarded as
a function of the rms-equivalent beam tune depression
#=#0. These equations are solved numerically to plot
k0re as a function of #=#0 in Fig. 11. Because k0re is a

one-to-one function of #=#0, the relative space-charge
strength can be regarded as uniquely determining k0re.
Figure 11 illustrates the wide range of characteristic values
of k0re obtainable as the relative space-charge strength is
varied. From the envelope equation, note that k2%0r

2
b=Q ¼

1þ "2b=ðQr2bÞ> 1. Analysis of Eq. (D13) shows that
k2%0r

2
b=Q is a monotonic decreasing function of k0re with

limk0re!0k
2
%0r

2
b=Q ! 1 and limk0re!1k

2
%0r

2
b=Q ¼ 1.

Therefore, a unique value of k0re 2 ð0;1Þ exists for any
equilibrium with finite space charge (Q ! 0). Analytical
solution of the constraint equation (D13) is possible in the
limit of small and large values of k0re. Using the expansion
[108]

I‘ðxÞ ¼
X1

k¼0

ðx=2Þ‘þ2k
k!ð‘þ kÞ!

for jxj0 1, we obtain to leading order

k0re ’
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðk2%0r2b=Q! 17=18Þ

q (D18)

for values of k2%0r
2
b=Q sufficiently large to produce small

k0re. This limit of small k2%0r
2
b=Q corresponds to weak

space-charge forces relative to applied-focusing forces
(#=#0 " 1) and Eqs. (D6) and (D7) for nðrÞ can be ap-
proximated in this regime as

nðrÞ ’ &f0k
2
%0ðr2e ! r2Þ (D19)

within the beam. Similar parabolic approximations follow
immediately for c and Tx in this limit. Using the expan-
sion [108]

I‘ðxÞ ¼
exffiffiffiffiffiffiffiffiffi
2&x

p
$
1þ ð!1Þ

1ð4‘2 ! 12Þ
1!ð8xÞ1

þ ð!1Þ
2ð4‘2 ! 12Þð4‘2 ! 32Þ

2!ð8xÞ2 , , ,
'

FIG. 11. Waterbag equilibrium parameter k0re versus rms-
equivalent beam tune depression #=#0 as calculated from
Eqs. (D13) and (D14).
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for x1 ‘, the constraint equation (D13) can be approxi-
mated to leading order as

k0re ’
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2%0r

2
b=Q! 1

q (D20)

for values of k2%0r
2
b=Q > 1 sufficiently close to unity to

produce large k0re. The large-k0re regime corresponds to
strong space-charge depression with #=#0 small.
Simplified expressions for the density profile valid within
the full radial range of the beam core are more difficult to
derive in this case. For general space-charge strength, the
limiting solutions in Eqs. (D18) and (D20) can be em-
ployed to seed numerical solutions of the constraint equa-
tion (D13) using conventional root-finding techniques [95].

Although the envelope equation (39) can be applied to
calculate the beam rms-edge emittance "b in terms of k2%0,

rb, and Q, it can be useful in some circumstances to
calculate "b ¼ "j explicitly for the waterbag distribution
function (D1). From Eqs. (42) and (D1), "2b ¼ 2r2bhx02

?i?
can be calculated to be

"2b ¼
16&2qf0r

2
b

$

$
H2

br
2
e

4
!Hb

Z re

0
drrc þ 1

2

Z re

0
drrc 2

'
:

Use of Eqs. (D6) and (D10) in this result leads to

"2b ¼ 4r2b
k2%0
k20

$
2
I0ðk0reÞ
I2ðk0reÞ

! 4

ðk0reÞ
I1ðk0reÞ
I2ðk0reÞ

! I21ðk0reÞ
I0ðk0reÞI2ðk0reÞ

'
: (D21)

To better understand properties of the waterbag equilib-
rium, we employ Eqs. (D11)–(D17) to plot the radial
density profile and the phase-space boundary of the distri-
bution in Fig. 12 for fixed applied-focusing strength (k2%0 ¼
const) and fixed beam perveance (Q ¼ const) as the rela-
tive space-charge strength (#=#0) is varied. In Fig. 12(a)
the scaled radial density profile is plotted. For the waterbag
equilibrium the temperature profile is proportional to the
density profile [i.e., Tx / n, see Eqs. (D7) and (D8)], and
therefore Fig. 12(a) also serves to illustrate the beam radial
temperature profile. The boundary edge of the waterbag
equilibrium distribution in x?-x

0
? phase-space is shown in

Fig. 12(b). This f? ¼ 0 boundary is calculated as the
maximum value of x0

? as a function of r from Eq. (D9)
to be

Max ðx0
?Þ ¼ 2

k%0
k0

$
1! I0ðk0rÞ

I0ðk0reÞ

'
1=2

(D22)

within the beam. The distribution f? is uniformly filled
within the outer edge. Various dimensionless parameters
for the equilibria in Fig. 12 are given in Table III. Note that
for high space-charge intensity (small #=#0) the waterbag
equilibrium density profile becomes very flat deep within

in the core (r0 re) due to Debye screening effects asso-
ciated with the interaction of the applied-focusing and
space-charge forces [30,109]. Near the edge (r & re) the
applied-focusing forces start to dominate the self-field
forces and the density decreases rapidly to zero with a
characteristic (modified Bessel function) falloff associated
with the waterbag equilibrium choice. For weak relative
space-charge forces (#=#0 " 1), the density profile
approaches the parabolic limiting form in Eq. (D19),
and the phase-space boundary becomes elliptical [i.e.,
Eq. (D22) is approximated by ½Maxðx0

?Þ+2 þ k2%0r
2
e ¼

k2%0r
2
e]. For large relative space-charge intensity (#=#0 0

1), the phase-space boundary of the uniform core distribu-
tion becomes more rectangular, indicating nearly force-
free motion deep within the beam core until a particle
enters the edge region where a strong nonlinear force
transition effectively reflects the particle. From Table III,
note that small values of #=#0 correspond to values of the
self-field parameter sb that are extremely close to sb ¼ 1.

Radius,

Radius,

FIG. 12. Waterbag equilibrium distribution in continuous-
focusing channel for fixed focusing-field strength (k2%0 ¼
const) and perveance Q ¼ 10!4 with (rms-equivalent beam
measure) relative space-charge strengths #=#0 ¼ 0:9; 0:8; . . . ;
0:1. In (a) the scaled density profile ½q2=ð2m'0(

3
b%

2
bc

2k2%0Þ+nðrÞ
is plotted versus the dimensionless radial coordinate k%0r, and in
(b) the distribution edge (f? ¼ 0 curve) in x?-x

0
? phase space is

plotted as a function of k%0r and jx0
?j. Values of #=#0 corre-

spond to the dimensionless equilibrium parameters in Table III.
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Thus, the self-field parameter is insensitive relative to k0re
to employ to specify scaled intense-beam waterbag equi-
libria with high space-charge intensity.

To load the waterbag equilibrium distribution in either
direct-Vlasov or PIC simulations, the general framework
presented in Sec. III B can be applied. For PIC loading of
the waterbag distribution, the radial probability transform
(51) for loading macroparticle coordinates x? can be ex-
pressed in the reduced form

r

re

$
r

re

I0ðk0reÞ
I2ðk0reÞ

! 1

k0re

I1ðk0rÞ
I2ðk0reÞ

'
¼ ûr: (D23)

Here, ûr 2 ½0; 1Þ is an independent, uniformly distributed
random number generated for each macroparticle. This
equation must, in general, be solved numerically for
rðûrÞ to specify macroparticle coordinates using Eq. (52).
Values can be saved on a radial grid in r 2 ½0; re+, and
interpolation applied to efficiently load many macropar-
ticles. For loading the macroparticle angles x0

?, the proba-
bility transform (53) can be greatly simplified by exploiting
the structure of the waterbag distribution. With particle
radii r ¼ jx?j specified, the macroparticle angles jx0

?j
are uniformly distributed in U ¼ 1

2x
02
? from U ¼ 0 to a

maximum value consistent with Eq. (D22) leading to

UðûUÞ ¼ 2
k2%0
k20

$
1! I0ðk0rÞ

I0ðk0reÞ

'
ûU: (D24)

Here, ûU 2 ½0; 1Þ is an independent, uniformly distributed
random number generated for each macroparticle.
Macroparticle angles are set using this value of UðûUÞ in
Eq. (54).

APPENDIX E: CONTINUOUS-FOCUSING
PARABOLIC EQUILIBRIUM DISTRIBUTION

For a parabolic equilibrium distribution in continuous
focusing, we take

f?ðH?Þ ¼ f0ðHb !H?Þ#ðHb !H?Þ; (E1)

where #ðxÞ is a unit-step function [see Eq. (57)], f0 ¼
const> 0 is the distribution normalization factor, and
Hb ¼ const is the value of the Hamiltonian H? at the
physical beam edge at radius r ¼ re, i.e.,

H?jr¼re ¼ Hb: (E2)

The parabolic distribution has linearly decreasing particle
probabilities with increasing transverse particle energy out
to a sharp beam edge where the probability is zero. This
distribution is named ‘‘parabolic’’ because at fixed x?, the
probability decreases parabolically with increasing x0

? due
to the 1

2x
02 dependence of H? on x0

?. The parabolic dis-
tribution coarsely reflects what one might expect on physi-
cal grounds—that probabilities fall off towards the edge of
the beam in a continuous manner, and may in this sense
represent a lesser degree of idealization than the waterbag
distribution [see Sec. D].
Using the formulation developed in Sec. III B, we take

H? ¼ x02
?=2þ c with c ¼ k2%0r

2=2þ q)=ðm(3
b%

2
bc

2Þ
and calculate the radial beam density profile nðrÞ ¼R
d2x0?f? from Eqs. (E1) and (36). This gives

nðrÞ ¼ &f0

" ½Hb ! c ðrÞ+2; c <Hb;
0; c >Hb:

(E3)

Using Eq. (E3), the transformed Poisson equation (37) can
be conveniently expressed within the beam (r < re) as

1

r

@

@r

%
r
@c

@r

&
þ K

2
ðHb ! c Þ2 ¼ 2k2%0r

2
e: (E4)

Here,

K ' 2&q2f0Hbr
2
e

'0m(3
b%

2
bc

2 ¼ const (E5)

is a dimensionless constant. Equation (E4) can be inte-
grated subject to

TABLE III. Dimensionless waterbag equilibrium parameters in Fig. 12 calculated for specified
#=#0. The values of k0=k%0 and k%0"b are evaluated for Q ¼ 10!4, and all other quantities are
independent of Q.

Q ¼ 10!4

#=#0 k0re sb
k2%0r

2
b

Q
re
rb

k0
k%0

103 # k%0rb 103 # k%0"b

0.9 1.112 0.2502 0.19 1.217 39.81 22.94 0.4737
0.8 1.709 0.4666 0.36 1.208 84.87 16.67 0.2222
0.7 2.304 0.6477 0.51 1.197 137.5 14.00 0.1373
0.6 2.979 0.7916 0.64 1.183 201.5 12.50 0.093 75
0.5 3.821 0.8968 0.75 1.166 283.8 11.55 0.066 67
0.4 4.978 0.9626 0.84 1.144 398.7 10.91 0.047 62
0.3 6.789 0.9928 0.91 1.118 579.3 10.48 0.032 97
0.2 10.25 0.9997 0.96 1.085 925.6 10.21 0.020 83
0.1 20.38 0.999 999 98 0.99 1.046 1938.0 10.05 0.010 10
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c ðr ¼ reÞ ¼ Hb;
@c

@r

((((((((r¼0
¼ 0;

@c

@r

((((((((r¼re
¼ k2%0re !

Q

re
:

(E6)

Here, c ðr ¼ reÞ ¼ Hb follows from Eq. (E2), the deriva-
tive condition on c at r ¼ 0 follows from the structure of
Eq. (E4), and the derivative condition on c at r ¼ re is
readily derived from a direct integration on the equilibrium
Poisson equation (33) to show that @)=@rjr¼re ¼
!$=ð2&'0reÞ and employing the definition of the per-
veance Q ¼ q$=ð2&'0m(3

b%
2
bc

2Þ ¼ const.
Equation (E4) for c is highly nonlinear and must be

numerically integrated subject to the conditions in
Eq. (E6). The integration can be carried out inward from
r ¼ re and subject to the two ‘‘initial’’ conditions in
Eq. (E6) at r ¼ re, i.e., c ðr ¼ reÞ ¼ Hb and
½@c =@r+r¼re ¼ k2%0re !Q=re. Only specific parameters

will be consistent with the derivative condition
½@c =@r+r¼0 ¼ 0 in Eq. (E6) necessary for a physical so-
lution. This boundary condition can in this sense be em-
ployed as a constraint to eliminate one free parameter.
Careful analysis of Eqs. (E4) and (E6) shows that simple
rescalings result in a final system with three free parame-
ters, one of which can be regarded as eliminated in enforc-
ing boundary conditions. Ultimate specification of the
solution in terms of standard quantities associated with
accelerator physics as discussed in Sec. III B will, in gen-
eral, become complicated to enforce even in numerical
solution.

Fortunately, a more convenient alternative formulation
can be derived as follows. Within the beam (r < re),
Eq. (E3) can used to relate c to n by

c ¼ Hb

%
1!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

&f0H
2
b

s &
: (E7)

This result, together with a simple variable rescaling

r ' rs,; n ' n̂N; (E8)

where rs > 0 is a scale radius to be determined, and n̂ ¼
nðr ¼ 0Þ> 0 is the on-axis density [Nð, ¼ 0Þ ¼ 1], can
then be applied to express Eq. (E4) to give

N
@2N

@,2 þ
N

,

@N

@,
! 1

2

%
@N

@,

&
2
¼ !C1N

3=2 þ C2N
5=2: (E9)

Here,

C1 ¼ 4k2%0r
2
s

ffiffiffiffiffiffiffiffiffi
&f0
n̂

s
> 0;

C2 ¼
1

2

q2n̂

m'0

C1

(3
b%

2
bc

2k2%0
> 0:

(E10)

The freedom of scale choice in rs allows us to take C1 ¼ 1.
Then we identify

C2 ¼
!̂2

p

2(3
b%

2
bc

2k2%0
' sb; (E11)

where !̂p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2n̂=ðm'0Þ

p
is the on-axis plasma frequency,

and sb is the dimensionless self-field parameter defined in
Eq. (48).
With this rescaling, the normalized density N within the

beam is given by

N
@2N

@,2 þ
N

,

@N

@,
! 1

2

%
@N

@,

&
2
¼ !N3=2 þ sbN

5=2; (E12)

subject to

Nð, ¼ 0Þ ¼ 1;
@N

@,

((((((((,¼0
¼ 0: (E13)

Equation (E12) can be simply integrated outward from the
initial conditions at , ¼ 0 in Eq. (E13) until the beam edge
is reached at , ¼ ,e, where

Nð, ¼ ,eÞ ¼ 0: (E14)

It also follows directly from Eq. (E12) that

@N

@,

((((((((,¼,e

¼ 0: (E15)

Note that in this formulation only one dimensionless pa-
rameter sb > 0 is necessary to specify the normalized
density N of the parabolic equilibrium distribution.
As a practical matter, the numerical integration for N

needs to be started from a small value of , ! 0. A power-
series analysis of Eq. (E12) shows that the first few terms of
the solution for small , are given by

N ¼ 1! 1! sb
4

,2 þ ð1! sbÞð1! 2sbÞ
64

,4

þ sbð1! sbÞð11! 13sbÞ
4608

,6 þ , , , : (E16)

For consistency with @N=@,< 0 for small ,, this expan-
sion shows that the physical range of the self-field parame-
ter sb for the parabolic equilibrium is sb 2 ½0; 1Þ. The limit
sb ¼ 0 corresponds to zero space-charge intensity with a
shaped density profile reaching into the core of the beam
(the analysis below shows that the density expansion trun-
cates at the first two terms), and sb ! 1 corresponds to the
limit of maximum space-charge intensity with a flat den-
sity profile in the core of the beam.
Numerical solutions of Eqs. (E12) and (E13) for N

versus , are plotted in Fig. 13 for values of sb 2 ½0; 1Þ.
Because of an extreme sensitivity of the solution in sb near
sb ¼ 1, we employ an alternative parameter,

p ' ! logð1! sbÞ (E17)

to characterize the solutions. The solutions are plotted out
to the beam edge , ¼ ,e whereN ¼ 0. In generating these
solutions, it is convenient to integrate through N ¼ 0 to
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allow calculation of ,e by numerical root finding. This can
be accomplished by replacing N3=2 ! NjNj1=2 and
N5=2 ! jNj5=2 on the right-hand side of Eq. (E12) without
influencing the needed core solution of Nð,Þ for ,< ,e.
The extended solution for N with ,> ,e has N - 0 and
generally oscillates in , between zero and a value at some
fraction of the core. Because ,e occurs where @N=@, ¼ 0,
,e can be calculated by bracketed numerical root finding
for @Nð,Þ=@, ¼ 0 near the first radial location where
N ’ 0.

Note from the solutions in Fig. 13 that the core beam
density profile becomes flat as sb ! 1 (i.e., p ! 1) out
until , increases towards ,e where N drops to zero with a
radial profile characteristic of the parabolic equilibrium
choice of f?ðH?Þ. This edge shape extends deeper into
the core of the beam as sb (or p) decreases. In the limit
sb ¼ p ¼ 0, the exact solution to Eqs. (E12) satisfying
Eq. (E13) is

N ¼
%
1! ,2

8

&
2
; (E18)

with a corresponding beam edge (i.e., where N ¼ 0) at
, ¼ ,e ¼ 2

ffiffiffi
2

p
’ 2:8284. This result, consistent with the

sb ¼ 0 numerical solution in Fig. 13, can be shown directly
from the nonlinear equation (E12). However, the solu-
tion (E18) is most readily derived by solving the linear
equation (E4) for c with K ¼ 0 and employing Eqs. (E3)
and (E8). Note that Eq. (E18) is consistent with the first
two terms of the expansion in Eq. (E16) with sb ¼ 0,
showing that the series expansion truncates in this limit.

The x-plane kinetic temperature Tx ¼ hx02ix0
?

of the

parabolic equilibrium can be calculated from Eq. (38)
and previous results. This gives

TxðrÞ ¼
" 1
3 ½Hb ! c ðrÞ+; c <Hb;
0; c >Hb:

(E19)

Equation (E7) can be applied to express this result in terms
of the beam density n (in normalized and unnormalized
form) as

Tx ¼
1

3

ffiffiffiffiffiffiffiffiffi
n

&f0

s
¼ 1

3

ffiffiffiffiffiffiffiffiffi
n̂

&f0

s ffiffiffiffi
N

p
: (E20)

This result, illustrating that Tx /
ffiffiffi
n

p
, is a consequence

of the parabolic equilibrium choice for f?ðH?Þ. Equa-
tion (E20) can then be applied in Eq. (43) to explicitly
calculate the parabolic distribution rms-edge emittance

"b ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2i?hx02i?

p
in terms of the density (in normalized

and unnormalized form) as

"2b ¼
2

3

r2bffiffiffiffiffiffiffiffiffi
&f0

p
R1
0 drrn3=2R1
0 drrn

¼ 2

3

ffiffiffiffiffiffiffiffiffi
n̂

&f0

s
r2b

R,e
0 d,,N3=2

R,e
0 d,,N

:

(E21)

Alternatively, the emittance "b can be calculated from
other equilibrium parameters using the matched envelope
equation (39).
It is useful to employH? ¼ 1

2x
02
? þ c [see Eq. (35)] and

Eq. (E7) to express the parabolic equilibrium distribution
(E1) in the form

f?ðx?;x
0
?Þ ¼ f0

%
! 1

2
x02
? þ

ffiffiffiffiffiffiffiffiffi
n

&f0

s &
#
%
! 1

2
x02
? þ

ffiffiffiffiffiffiffiffiffi
n

&f0

s &
:

(E22)

Note that Hb has been eliminated in Eq. (E22). The maxi-
mum of the parabolic distribution occurs at f?ðx? ¼
0;x0

? ¼ 0Þ, where

f?ðx? ¼ 0;x0
? ¼ 0Þ ' f̂ ¼

ffiffiffiffiffiffiffiffi
f0n̂

&

s
: (E23)

Analogous to the waterbag equilibrium case discussed in
Appendix D, parameters introduced in the formulation
need to be related to standard parameters employed in
accelerator physics. To do this, we first calculate the
beam perveance Q in terms of the normalized density
Nð,Þ to be

Q ¼ q$

2&'0m(3
b%

2
bc

2 ¼ 2sbk
2
%0r

2
s

Z ,e

0
d,,N: (E24)

Here, we have employed Eq. (E8) to scale the radial
coordinate and density and Eq. (E11) to simplify the
coefficient. Next, the definition of the statistical beam

edge radius rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hr2i?

p
can be similarly applied to

obtain

%
rb
rs

&
2
¼ 2

R,e
0 d,,3NR,e
0 d,,N

: (E25)

Equations (E24) and (E25) then show that

2
4

6
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FIG. 13. For a parabolic equilibrium, the scaled density N ¼
n=n̂ is plotted versus the scaled radial coordinate , ¼ r=rs
numerically calculated from Eqs. (E12) and (E13) for p ¼
0; 2; . . . ; 10.
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Q

k2%0r
2
b
¼ sb

ðR,e
0 d,,NÞ2R,e
0 d,,3N

: (E26)

The matched-beam envelope equation (39) shows that

ðk2%0"bÞ2 ¼ ðk%0rbÞ4 !Qðk%0rbÞ2; (E27)

and Eq. (E26) can be rearranged to give

ðk%0rbÞ2 ¼
Q

sb

R,e
0 d,,3N

ðR,e
0 d,,NÞ2 : (E28)

Equations (E27) and (E28) then show that
%
"b
rb

&
2
¼ Q

%
1

sb

R,e
0 d,,3N

ðR,e
0 d,,NÞ2 ! 1

&
; (E29)

which can be employed with Eq. (E21) to identifyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂=ð&f0Þ

p
, a factor useful in setting the distribution scale

[see Eq. (E23)], as
ffiffiffiffiffiffiffiffiffi
n̂

&f0

s
¼ Q

%
1

sb

R,e
0 d,,3N

ðR,e
0 d,,NÞ2 ! 1

& R,e
0 d,,NR,e

0 d,,N3=2
: (E30)

Note that the integrals in Eqs. (E24)–(E30) are pure func-
tions of the dimensionless self-field parameter sb. Because
Q=ðk2%0r2bÞ is a dimensionless function of accelerator pa-

rameters, Eq. (E26) can be applied to numerically solve for
sb, or alternatively p ¼ ! logð1! sbÞ, in terms of accel-
erator parameters.

The rms-equivalent beam measure of relative space-

charge strength #=#0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1!Q=ðk2%0r2bÞ

q
[see Eq. (47)]

can be applied with Eq. (E26) to numerically calculate the
parameters p and/or sb ¼ 1! e!p as a function of #=#0.
This result is shown in Fig. 14 over a broad range of
relative space-charge strength. Note that small values of
#=#0 correspond to values of self-field parameter sb ex-
tremely close of sb ¼ 1, demonstrating that sb is incon-
venient to describe parabolic equilibria with high space-

charge intensity. As expected, p ¼ 0 (sb ¼ 0) corresponds
to #=#0 ¼ 1 and a warm equilibrium with the applied-
focusing force dominating, whereas p ! 1 (sb ! 1) cor-
responds to #=#0 ! 0 and a cold, fully space-charge de-
pressed equilibrium.
To better understand properties of the parabolic equilib-

rium, we employ Eqs. (E25) and (E26) to plot the radial
density and temperature profiles and the phase-space dis-
tribution in Figs. 15 and 16 for fixed applied-focusing
strength (k2%0 ¼ const) and fixed beam perveance (Q ¼
const) as the relative space-charge strength (#=#0) is
varied. In Fig. 15(a) the scaled radial density profiles
illustrate the sharpening of the parabolic equilibrium den-
sity profile with increasing relative space-charge strength
(i.e., small #=#0 or sb close to unity) and bell shaped for
weak relative space-charge strength [i.e., #=#0 " 1, or
equivalently, small sb, with the density profile approxi-
mated by Eq. (E18)]. Similarly, the radial temperature

0.2 0.4 0.6 0.80.0 1.0

15

10

5

20

0

Tune Depression,

FIG. 14. Parabolic equilibrium parameter p ¼ ! logð1! sbÞ
versus rms-equivalent beam tune depression #=#0 as calculated
from Eqs. (E26) and (47).
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FIG. 15. Continuous-focusing parabolic equilibrium radial
density and temperature profiles for fixed focusing-field strength
(k2%0 ¼ const) and perveance Q ¼ 10!4 with (rms-equivalent

beam measure) relative space-charge strengths #=#0 ¼
0:9; 0:8; . . . ; 0:1. In (a) and (b), the scaled density
½q2=ð2'0m(3

b%
2
bc

2k2%0Þ+nðrÞ and temperature TxðrÞ profiles are

plotted versus the dimensionless radial coordinate k%0r. Values
of #=#0 correspond to the dimensionless equilibrium parameters
in Table IV.
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profile in Fig. 15(b) indicates for strong relative space-
charge forces that the temperature strongly decreases and
flattens in the core of the beam before rapidly dropping to
zero at the beam edge. Contours of the scaled distribution
f?ðH?Þ=f̂? are shown in Figs. 16(a)–16(d) for values of
#=#0 corresponding to weak, intermediate, and strong
relative space-charge strengths. The contours are generated
by scaling Eq. (E22) to obtain

f?ðH?Þ
f̂?

¼
%
! x02

?

2
ffiffiffiffiffiffi
n̂

&f0

q þ
ffiffiffiffi
N

p &
#
%
! x02

?

2
ffiffiffiffiffiffi
n̂

&f0

q þ
ffiffiffiffi
N

p &
;

(E31)

and employing Eq. (E30) to calculate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂=ð&f0Þ

p
. Specific

contours with f?=f̂? ' f 2 ½0; 1+ are then generated by

plotting

jx0
?j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ffiffiffiffiffiffiffiffiffi
n̂

&f0

s
ð

ffiffiffiffi
N

p
! fÞ

vuut
(E32)

as a function of , ¼ r=rs ¼ ðk%0rÞðrb=rsÞ=ðk%0rbÞ for , 2
½0;,f+, where ,f is the numerical solution of Nð,fÞ ¼ f2.
For large relative space-charge intensity (#=#0 0 1), the
flatness of the contours deep within the core of the distri-
bution indicates nearly force-free motion until the particle
enters the nonlinear edge region. Various parameters for
the equilibria presented in Figs. 15 and 16 are given in
Table IV.
To load the parabolic equilibrium distribution in either

direct-Vlasov or PIC simulations, the general framework
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A
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A
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,

Radius,

Radius, Radius,

FIG. 16. Parabolic equilibrium distribution contours f?ðH?Þ=f̂? are plotted as a function of k%0r and jx0
?j for the profiles shown in

Fig. 15 with #=#0 ¼ 0:9, 0.5, 0.3, and 0.1 in (a)–(d). Contours are labeled with the value of f?ðH?Þ=f̂?, and the edge contour
(f? ¼ 0) is represented by the dashed curve.

TABLE IV. Dimensionless parabolic equilibrium parameters in Figs. 15 and 19 calculated for
specified #=#0. The values of k%0"b are evaluated for Q ¼ 10!4, and all other quantities are
independent of Q.

Q ¼ 10!4

#=#0 p sb
Q

k2%0r
2
b

,e
rs
rb

103 # k%0rb 103 # k%0"b

0.9 0.3254 0.2778 0.19 3.115 0.4471 22.94 0.4737
0.8 0.7137 0.5102 0.36 3.471 0.3942 16.67 0.2222
0.7 1.191 0.6960 0.51 3.925 0.3415 14.00 0.1373
0.6 1.800 0.8347 0.64 4.526 0.2891 12.50 0.093 75
0.5 2.619 0.9271 0.75 5.360 0.2373 11.55 0.066 67
0.4 3.805 0.9778 0.84 6.598 0.1864 10.91 0.047 62
0.3 5.730 0.9968 0.91 8.626 0.1370 10.48 0.032 97
0.2 9.520 0.999 93 0.96 12.59 0.089 55 10.21 0.020 83
0.1 21.87 0.999 999 999 7 0.99 24.27 0.043 98 10.05 0.010 10
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presented in Sec. III B can be applied. For PIC loading of
the parabolic distribution, the radial probability transform
(51) for loading macroparticle coordinates x? can be ex-
pressed in scaled form as

R,
0 d~, ~,Nð~,ÞR,e
0 d,,Nð,Þ ¼ û,; (E33)

where û, 2 ½0; 1Þ is an independent, uniformly distributed
random number generated for each macroparticle.
Equation (E33) is solved for ,ðû,Þ 2 ½0;,eÞ, and macro-
particle coordinates x? are set using r ¼ rs, in Eq. (52).
Values can be saved on a radial grid to efficiently load
many particles with the same equilibrium parameters. To
load the macroparticle angles x0

? with the macroparticle
coordinates x? already loaded, the probability transform
(53) is applied with Eq. (E31). Carrying out the integrals
leads to a quadratic equation that can be solved for the
smallest physical solution as

UðûUÞ ¼
ffiffiffiffiffiffiffiffiffi
n̂

&f0

s ffiffiffiffi
N

p
½1!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! ûU

p
+: (E34)

Here, ûU 2 ½0; 1Þ is an independent, uniformly distributed
random number generated for each macroparticle,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂=ð&f0Þ

p
is calculated (once) for the equilibrium parame-

ters using Eq. (E30), and N ¼ Nð,Þ is the density at the

loaded radial macroparticle coordinate , ¼
ffiffiffiffiffiffiffi
x2
?

q
=rs.

Macroparticle angles are set using this value of UðûUÞ in
Eq. (54). To efficiently carry out this angle loading proce-
dure using Eq. (E34),N should be calculated once on a grid
for , 2 ½0;,e+ and gridded values can then be interpolated
for more accuracy.

APPENDIX F: CONTINUOUS-FOCUSING
THERMAL EQUILIBRIUM DISTRIBUTION

The thermal equilibrium distribution has been studied
extensively in nonneutral plasma physics [30,110] and in
accelerator physics by Reiser [31,111] and others
[32,67,68,112,113]. Here we review previous results in a
format that allows easy contrast to other continuous-
focusing distributions (see Appendices D and E) while
presenting extensions needed for practical implementation
of Vlasov simulation loads using standard inputs for ac-
celerator physics. For a thermal equilibrium distribution in
continuous focusing, we take

f?ðH?Þ ¼
m(b%

2
bc

2n̂

2&T
exp

%
!m(b%

2
bc

2H?
T

&
; (F1)

where n̂ ¼ const is a constant density scale, and T ¼ const
is the thermodynamic temperature (expressed in energy
units) in the laboratory frame. The thermal equilibrium
distribution is a special class of stable Vlasov equilibria
with @f?=@H? . 0 [30]. Within the weak coupling ap-
proximation (q2=n̂!2=3 0 T), any initial distribution func-

tion f?ðx?;x
0
?; s ¼ siÞ, however complex, relaxes

through collisions to the thermal equilibrium form in
Eq. (F1). This is true regardless of the details of the
intervening evolution due to both collective and collisional
processes. Even stable Vlasov equilibria must ultimately
relax to thermal equilibrium form due to collisional effects
outside the Vlasov model. Although the time scales for
collisional relaxation are usually long relative to beam
residence times in a machine, couplings to external error
sources together with collective effects can result in en-
hanced rates of effective thermalization. In this regard,
thermal equilibrium can be regarded as a preferred equi-
librium state of the system.
The thermal equilibrium distribution is characterized by

a radial kinetic temperature profile that is uniform. Direct
calculation with Eqs. (14) and (F1) shows that

Tx ¼ Ty ¼
R
d2x0?x

02f?R
d2x0?f?

¼ T

m(b%
2
bc

2 ' T2 ¼ const: (F2)

This constant temperature results in a diffuse beam edge
since the spread in particle transverse energy will prevent
an abrupt turning point of all particles. For analysis of the
radial density profile and the Poisson equation of the
equilibrium, we employ the formulation developed in
Sec. III B. For the thermal equilibrium distribution it is
convenient to define a dimensionless potential

~c ðrÞ ¼ c ðrÞ
T2
¼ 1

T

$m(b%
2
bc

2k2%0r
2

2
þ q)ðrÞ

(2
b

'
; (F3)

and make, without loss of generality, the choice of poten-
tial reference )ðr ¼ 0Þ ¼ 0. Then Eqs. (36) and (F1) can
be employed to calculate the equilibrium radial density
profile in terms of ~c . This gives

nðrÞ ¼
Z

d2x0?f?ðH?Þ ¼ n̂e! ~c ðrÞ: (F4)

Because ~c ðr ¼ 0Þ ¼ 0, n̂ is identified as the on-axis den-
sity of the equilibrium. Using Eq. (F4), the transformed
Poisson equation (37) can be recast in scaled form as

1

,

@

@,

%
,
@ ~c

@,

&
¼ 1þ !! e! ~c ; (F5)

and solved subject to the boundary conditions ~c ð, ¼ 0Þ ¼
0 and @ ~c

@, j,¼0 ¼ 0. Here, , ' r=ð(b$DÞ is a scaled radial

coordinate with $D ' ½T=ðm!̂2
pÞ+1=2 and !̂p '

½q2n̂=ð'0mÞ+1=2 denoting the Debye length and plasma
frequency formed from the (on-axis) density scale n̂, and
! is defined by

! '
2(3

b%
2
bc

2k2%0
!̂2

p
! 1: (F6)
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Here, ! 2 ð0;1Þ is a positive, dimensionless parameter
relating the ratio of applied to space-charge defocusing
forces. Note that ! is simply a convenient rescaling of
the self-field parameter sb ' !̂2

p=ð2(3
b%

2
bc

2k2%0Þ defined in
Eq. (48) with

! ¼ 1

sb
! 1: (F7)

Strictly speaking, from the form of the thermal equilibrium
density profile in Eq. (F4), it follows that the radial density
profile nðrÞ is nonzero for any finite radius r <1 and the
thermal equilibrium distribution is only consistent with a
free-space model with no conducting beam pipe (rp ! 1).
However, since the density becomes exponentially small at
large radii, this nonzero density inconsistency can be
ignored if the cylindrical pipe radius rp is chosen suffi-
ciently large in comparison with the rms-envelope radius
rb. Here we analyze properties of thermal equilibrium
beams in the formally correct, infinite-system limit.
Modified thermal-equilibrium-like distributions have also
been presented that modify Eq. (F1) to introduce a sharp
cutoff [114]. In some applications, this can improve the
model at the expense of introducing another parameter to
identify.

It is useful to employH? ¼ 1
2x

02
? þ c [see Eq. (35)] and

Eqs. (F3) and (F4) to express the thermal equilibrium
distribution (F1) as

f?ðx?;x
0
?Þ ¼ n̂e!½x

02
?=ð2T2Þ+e! ~c ¼ nðrÞe!½x02

?=ð2T2Þ+: (F8)

The maximum of the thermal distribution occurs at x? ¼ 0
and x0

? ¼ 0, where f?ðx? ¼ 0;x0
? ¼ 0Þ ¼ n̂.

The thermal equilibrium distribution parameters corre-
sponding to the on-axis density n̂, the thermodynamic
temperature T, and the parameter ! must be related to
standard quantities associated with accelerator physics as
discussed in Sec. III B. To carry out this procedure, the

transformed Poisson equation (F5) is first solved for ~c to
obtain the thermal equilibrium density profile from
Eq. (F4) and calculate the needed parametric constraints.
This equation is highly nonlinear and must, in general, be
solved numerically [91,115]. However, closed-form ap-
proximate analytical solutions have recently been con-
structed for both large and small values of ! that are
highly accurate [116]. The numerical solution is illustrated
in Fig. 17, where the normalized density nð,Þ=n̂ ¼
expð! ~c Þ is plotted versus , ¼ r=ð(b$DÞ for values of !
covering several decades. Note that for small values of !,
the scaled density nðrÞ=n̂ varies little from unity from , ¼
0 until intermediate-to-large values of , [corresponding to
a large number of Debye lengths, since , ¼ r=ð(b$DÞ],
where the density profile rapidly falls to exponentially
small values as , increases by 4–5 units (i.e., Debye
lengths). Note that the width in , of the radial falloff varies
little with !, whereas the width of the flat, central region is
a strong function of !. It will be shown that this highly
nonlinear regime of small !, with !" 10!6 and smaller
can correspond to beam parameters of practical interest
when the space-charge intensity is strong and the beam can
be many Debye lengths in radial extent. In this regime,
conventional numerical methods to integrate Eq. (F5) for
~c as a function of , from the on-axis values ~c ð, ¼ 0Þ ¼ 0
and @ ~c =@,j,¼0 ¼ 0 can fail. This parametric sensitivity is
evident from the extreme flatness of nð,Þ for ,0 1 and
small !. Small, high-order derivative values of ~c at , ¼ 0
sensitively determine the value of , where the rapid edge
falloff begins for ! small, complicating numerical solu-
tions. We address this issue in Appendix G, where an
analytical series solution of the scaled Poisson equa-
tion (F5) is developed that is valid within the core of the
beam. Use of this series solution allows the integration to
be initiated at a value of ,> 0 where there is sufficient
variation that standard numerical methods can be applied
to generate solutions for ~c ð,Þ for arbitrarily small values
of !. In the emittance-dominated regime, !1 1, and the
solution to the scaled Poisson equation becomes ~c ’ ð1þ
!Þ,2=4, and the scaled density profile n ¼ n̂ expð! ~c Þ
becomes Gaussian in r with

nðrÞ ’ n̂ exp
$
!ð1þ!Þ

4

%
r

(b$D

&
2
'
: (F9)

Note from Fig. 17 that nðrÞ is well approximated by
Eq. (F9) even when !" 1, showing that even modest
values of ! correspond to weak space-charge intensity.
For !0 1 and arbitrarily small but nonzero, a nonlinear
analysis presented in Ref. [116] shows that nðrÞ is well
approximated by

nðrÞ ’ n̂
ð1þ 1

2!þ 1
24!

2Þ2
f1þ 1

2!I0ð r
(b$D
Þ þ 1

24 ½!I0ð r
(b$D
Þ+2g2 ; (F10)

where I0ðxÞ denotes an order zero modified Bessel function

FIG. 17. For a thermal equilibrium, the scaled density
nð,Þ=n̂ ¼ expð! ~c Þ is plotted versus the scaled radial coordinate
, ¼ r=ð(b$DÞ calculated from the solution of the scaled thermal
equilibrium Poisson equation (F5) for ! ¼ 10!‘ with ‘ ¼ 0, 2,
4, 6, and, 8.
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[108]. The closed-form solution given by Eq. (F10) is
highly accurate outside of the far tail where N < 0:001
when ! < 10!2.

Specification of the line-charge density $ [see Eq. (10)]
and the transverse energy of the beam macrostate fixes the
values of the constants n̂ and T. Alternatively, we derive
constraints to relate the thermal equilibrium parameters n̂,
T, and !, or equivalently, the effective Debye length

(b$D ¼ (b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
'0T=ðq2n̂Þ

p
, the scaled temperature T2 ¼

T=ðm(b%
2
bc

2Þ, and !, in terms of the focusing strength
k%0, the perveance Q [see Eq. (22)], and the emittance "b
[see Eq. (42)] using the formulation developed in
Sec. III B. First, the beam line-charge density $ ¼
2&q

R1
0 drrnðrÞ and the beam rms-edge radius rb ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hr2i?
p

are expressed in terms of the thermal equilibrium
density in Eq. (F4) as

$ ¼ (2
bT

2q

Z 1

0
d,,e! ~c ;

r2b ¼ 2(2
b$

2
D

R1
0 d,,3e! ~c

R1
0 d,,e! ~c

:

(F11)

Note that the integrals occurring in Eq. (F11) depend only
on the parameter ! with the solution ~c ð,Þ formally given
by the scaled Poisson equation (F5). Next, the rms-edge
emittance "b is simply calculated directly from "2b ¼
2r2bhx02

?i? and the thermal equilibrium distribution func-
tion (F1) to show that

"2b ¼ 4T2r2b: (F12)

The matched-beam envelope equation (39) and "2b in
Eq. (F12) can be used to express equivalently the rms-
envelope radius rb as

r2b ¼
1

k2%0
ð4T2 þQÞ: (F13)

Equation (F11) and the definition of the perveance Q ¼
2q$=ð2&'0m(3

b%
2
bc

2Þ obtains the constraint

Q ¼ T2
Z 1

0
d,,e! ~c (F14)

and Eqs. (F11) and (F12) can be combined to yield the
constraint

k2%0"
2
b ¼ 4T2ð4T2 þQÞ: (F15)

Then Eq. (F6) and the Debye length definition $D ¼
ðT=!̂pÞ1=2 yield

k2%0 ¼ T2
ð1þ !Þ
2(2

b$
2
D

: (F16)

Equation (F15) can be solved analytically for T2, and the
constraints in Eqs. (F14)–(F16) expressed as

T2 ¼ Q

8
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k2%0"

2
b=Q

2
q

! 1Þ;

8 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k2%0"

2
b=Q

2
q

! 1Þ
Z 1

0
d,,e! ~c

ðk%0(b$DÞ2 ¼
Q

16
ð1þ!Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k2%0"

2
b=Q

2
q

! 1Þ: (F17)

The constraint equations (F17) provide relations fixing
(b$D, T

2 ¼ T=ðm(b%
2
bc

2Þ, and ! in terms of Q, "b, and
k%0. Note that the integral

R1
0 d,, expð! ~c Þ is an implicit

function of ! and must, in general, be calculated numeri-
cally to fully solve the constraints. In some applications it
is useful to explicitly identify the on-axis density scale
nðr ¼ 0Þ ¼ n̂ in terms of accelerator parameters. This
can be done by rewriting Eq. (F16) as

n̂ ¼
2'0m(3

b%
2
bc

2k2%0
ð1þ!Þq2 : (F18)

We first employ Eqs. (F11) and (F17) to reinforce the
interpretation that the ! can be regarded as a parameter
related to the relative space-charge strength. Using these
constraints, the rms-equivalent beam tune depression

#=#0 '
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1!Q=ðk2%0r2bÞ

q
[see Eq. (47)] and ! can be

related by

#

#0
¼

"
1! ½R1

0 d,,e! ~c +2
ð1þ !ÞR1

0 d,,3e! ~c

#
1=2

: (F19)

This equation is solved numerically to plot ! as a function
of #=#0 in Fig. 18. Note that strong tune depressions with
#=#0 < 0:2 correspond to extremely small values of
!. Because ! is a single-valued function of #=#0, the
relative space-charge strength uniquely determines !. Al-

Tune Depression,

lo
g

FIG. 18. Thermal equilibrium parameter ! plotted versus rms-
equivalent beam tune depression #=#0 as calculated from
Eq. (F19).
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ternatively, the on-axis self-field parameter sb '
!̂2

p=ð2(3
b%

2
bc

2k2%0Þ ¼ 1=ð1þ !Þ [see Eq. (F7)] can be em-

ployed in place of #=#0 to specify the scaled equilibrium.
The physical range of!> 0 implies that sb 2 ½0; 1Þ for the
thermal equilibrium distribution. Note that sb will be ex-
tremely close to unity for small #=#0 corresponding to
beams with high space-charge intensity intensity, render-
ing sb a less convenient parameter to describe thermal
equilibria in the space-charge-dominated regime.
Generally, when numerically solving for needed values
of! for thermal equilibria with high space-charge intensity
(#=#0 small), it can be more convenient to use! ¼ ep and
solve for p due to the sensitivity of the equilibrium speci-
fication in ! [or sb ¼ 1=ð1þ!Þ].

To better understand properties of the thermal equilib-
rium, we employ Eqs. (F17) and (F18) to plot the radial
density profile and the phase-space distribution in Fig. 19
for fixed applied-focusing strength (k2%0 ¼ const) and fixed

beam perveance (Q ¼ const) as the relative space-charge
strength (#=#0) is varied. In Fig. 19(a) the scaled radial
density is plotted. For thermal equilibrium, the tempera-
ture profile is spatially uniform with Tx ¼ Ty ¼
T=ðm(b%

2
bc

2Þ ¼ T2 ¼ const [see Eq. (F2)]. Contours of
the scaled distribution f?ðH?Þ=f?ð0Þ are shown in
Figs. 19(b)–19(d) for values of #=#0 corresponding to
weak, intermediate, and strong relative space-charge inten-
sity. Various parameters for the equilibria presented in
Fig. 19 are given in Table V. Figure 19(a) illustrates how
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FIG. 19. Thermal equilibrium distribution in continuous-focusing field for fixed focusing strength (k2%0 ¼ const) and perveance Q ¼
10!4 (rms-equivalent beam measure). In (a) the scaled density ½q2=ð2'0m(3

b%
2
bc

2k2%0Þ+nðrÞ is plotted versus the dimensionless radial

coordinate k%0r for relative space-charge strengths #=#0 ¼ 0:9; 0:8; . . . ; 0:1, and in (b), (c), and (d), the normalized distribution
f?ðH?Þ=f?ð0Þ ¼ const contours are plotted as a function of k%0r and jx0

?j for #=#0 ¼ 0:9, 0.5, and 0.1. Contours are labeled by the
value of f?ðH?Þ=f̂?. Values of #=#0 correspond to the dimensionless equilibrium parameters in Table V.

TABLE V. Dimensionless thermal equilibrium parameters in Fig. 19 calculated for specified #=#0. The values of k%0(b$D, T
2 ¼

T=ðm(b%
2
bc

2Þ, and k%0"b are evaluated for Q ¼ 10!4, and all other quantities are independent of Q.

Q ¼ 10!4

#=#0 ! sb
Q

k2%0r
2
b

k2%0"
2
b

Q2 k%0(b$D
T

m(b%
2
bc

2 103 # k%0rb 103 # k%0"b

0.9 1.851 0.3508 0.19 22.44 12.33 1:065# 10!4 22.94 0.4737
0.8 6:382# 10!1 0.6104 0.36 4.938 6.034 4:444# 10!5 16.67 0.2222
0.7 2:649# 10!1 0.7906 0.51 1.884 3.898 2:402# 10!5 14.00 0.1373
0.6 1:059# 10!1 0.9043 0.64 0.8789 2.788 1:406# 10!5 12.50 0.093 75
0.5 3:501# 10!2 0.9662 0.75 0.4444 2.077 8:333# 10!6 11.55 0.066 67
0.4 7:684# 10!3 0.9924 0.84 0.2268 1.549 4:762# 10!6 10.91 0.047 62
0.3 6:950# 10!4 0.9993 0.91 0.1087 1.112 2:473# 10!6 10.48 0.032 97
0.2 6:389# 10!6 0.999 994 0.96 0.043 40 0.7217 1:042# 10!6 10.21 0.020 83
0.1 4:975# 10!12 0.999 999 999 995 0.99 0.010 20 0.3553 2:525# 10!7 10.05 0.010 10
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the thermal equilibrium density profile sharpens and be-
comes more step-function-like with increasing relative
space-charge strength (i.e., small #=#0, or equivalently
small T2) and Gaussian-like for weak relative space-charge
strength [i.e., #=#0 " 1, or equivalently large T2, with the
density profile approximated by Eq. (F9)]. Note that the
peak density n̂ of the beam increases with increasing
space-charge strength, whereas the rms-envelope radius

rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hr2i?

p
decreases with increasing space-charge

strength.
To load the thermal equilibrium distribution in either

direct-Vlasov or PIC simulations, the general framework
presented in Sec. III B can be applied. For PIC loading, the
radial probability transform (51) for loading macroparticle
coordinates x? is straightforward to apply using the nor-
malized coordinates defined by

R,
0 d~,,e! ~c ð~,Þ

R1
0 d,,e! ~c ð,Þ ¼ û,; (F20)

where û, 2 ½0; 1Þ is a uniformly distributed random num-
ber generated for each macroparticle. Equation (F20) is
solved for ,ðû,Þ and macroparticle coordinates x? are set
using r ¼ (b$D,ðû,Þ in Eq. (52). Values can be saved on a
radial grid in r out to a maximum cutoff value, where the
beam density is negligible, to efficiently load many macro-
particles with the same equilibrium parameters. For load-
ing the macroparticle angles x0

?, the probability transform
(53) can be greatly simplified for the thermal equilibrium
distribution. Independent of macroparticle position, we
have

UðûUÞ ¼ !T2 logð1! ûUÞ; (F21)

where ûU 2 ½0; 1Þ is a uniformly distributed random num-
ber generated for each macroparticle. Using the constraint
equation (F12) and this result shows that the angle loading
given by Eq. (54) can be expressed as

x0 ¼ "b
2rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 logð1! ûUÞ

q
cosð2&û’Þ;

y0 ¼ "b
2rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 logð1! ûUÞ

q
sinð2&û’Þ;

(F22)

where û’ 2 ½0; 1Þ is a uniformly distributed random num-
ber generated for each macroparticle. Using two-
dimensional probability transforms [95], this result can
be shown to be equivalent to

x0 ¼ "b
2rb

ĝx; y0 ¼ "b
2rb

ĝy; (F23)

where ĝx and ĝy are independent, Gaussian-distributed
random numbers with unit variance.

APPENDIX G: SERIES SOLUTION OF POISSON’S
EQUATION FOR THE CONTINUOUS-FOCUSING

THERMAL EQUILIBRIUM DISTRIBUTION

The scaled thermal equilibrium Poisson equation (F5),
ð1=,Þð@=@,Þð,@ ~c =@,Þ ¼ 1þ !! expð! ~c Þ is most
naturally numerically integrated for ~c as a function of ,
from the on-axis values ~c ð, ¼ 0Þ ¼ 0 and @ ~c =@,j,¼0 ¼
0. In regimes of practical interest corresponding to very
cold beams (T small), the parameter ! can be "10!6 and
smaller. For such small values of !, the scaled density
profile nð,Þ=n̂ ¼ expð! ~c Þ (see Fig. 17) is very flat for
small ,, and falls abruptly to zero at intermediate-to-large
values of ,. This highly sensitive parametric dependence
on ! renders the direct numerical integration difficult (i.e.,
the system is very stiff) using conventional numerical
methods. For this reason, most work on thermal equilib-
rium beams has focused on values of ! sufficiently high
that numerical issues are easily avoided. Here, we outline a
series solution for the thermal equilibrium density profile
[115] valid for intermediate values of , that can be em-
ployed to construct accurate numerical solutions over the
entire range of , for arbitrarily small values of !, thereby
enabling the analysis of arbitrarily low-temperature ther-
mal equilibrium beams. The methods described are em-
ployed to generate the solutions needed for the explicit
calculation of thermal equilibrium quantities illustrated in
Appendix F.
Operating on the scaled Poisson equation (F5) withR,

0 d~, ~, , we obtain

,
@ ~c

@,
¼ 1þ !

2
,2 !

Z ,

0
d~, ~, e! ~c ð~,Þ:

This equation can be interpreted as the radial force-balance
equation for a thermal equilibrium beam [115].
Introducing the scaled radial coordinate R and density
N defined by

R ¼ 1þ !

4
,2 ¼ 1þ !

4

%
r

(b$D

&
2
;

N ¼ e! ~c

1þ !
¼ nðrÞ=n̂
ð1þ !Þ ;

(G1)

this radial force-balance equation can be expressed in an
equivalent form, with no free parameters, as

R
@

@R
N ðRÞ ¼ !RN ðRÞ þN ðRÞ

Z R

0
d ~RN ð ~RÞ:

(G2)

The solution to Eq. (G2) can be expressed as a power series
of the form

N ðRÞ ¼
X1

i¼0
.iRi; (G3)

subject toN ðR ¼ 0Þ ¼ ð1þ !Þ!1. Substituting Eq. (G3)

LUND, KIKUCHI, AND DAVIDSON Phys. Rev. ST Accel. Beams 12, 114801 (2009)

114801-46



into Eq. (G2) and equating like powers of R gives the
recursion relations

.0 ¼ ð1þ !Þ!1;

.1 ¼ !ð.0 ! .2
0Þ;

.2 ¼ !
1

2
.1 þ

3

4

%
1

2
.0.1 þ

1

2
.1.0

&

¼ 1

2
ð.0 ! .2

0Þ !
3

4
.0ð.0 ! .2

0Þ;

..

.

.iþ1 ¼ !
.i

iþ 1
þ iþ 2

2ðiþ 1Þ
Xi

j¼0

.j.i!j
ðjþ 1Þði! jþ 1Þ :

(G4)

Note that all .i with i - 1 can be calculated in terms of
.0 ¼ ð1þ !Þ!1, and thus the coefficients .i can be re-
garded as known functions of !. From Eqs. (G1) and (G3)
the thermal equilibrium density profile nðrÞ can be ex-
pressed as

nðrÞ ¼ n̂þ n̂ð1þ !Þ
X1

i¼1
.i

$
1þ!

4

%
r

(b$D

&
2
'
i
; (G5)

and the solution for ~c ð,Þ ¼ ! log½nð,Þ=n̂+ is given by

~c ðrÞ ¼ ! log
"
1þ ð1þ !Þ

X1

i¼1
.i

$
1þ!

4

%
r

(b$D

&
2
'
i
#
:

(G6)

Note from Eq. (G5) that ½@n=@r+r¼0 ¼ 0 and
½@2n=@r2+r¼0 ¼ !!n̂=ð2(2

b$
2
DÞ, corresponding to weak

downward concavity in the density profile for !0 1.
The power-series solutions for nðrÞ and ~c ðrÞ given by

Eqs. (G5) and (G6) rapidly converge for large values of !
(weak space-charge, see Appendix F) for all , ¼
r=ð(b$DÞ 2 ½0;1Þ. Conversely, for small !0 1 (strong
space-charge, see Appendix F), numerical studies show
that the solutions rapidly converge for , ranging from
the beam center (, ¼ 0 ¼ r) to near the outer radial
edge of the beam where the density profile begins falling
rapidly. The convergence failure is rapid. For ! & 0:1, an
accurate approximate formula for the value of , where
N ¼ 1=2 (denoted by , ¼ ,1=2) is derived in Ref. [116] as

,1=2 ’ log
$
C

!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2& log

%
C

!

&s '
; (G7)

where C ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 6

ffiffiffi
2

pp
! 6 ’ 0:777 99. The power-series

solutions are expected to fail for small ! when , is near
, ¼ ,1=2.

To circumvent the small ! difficulty with direct numeri-
cal integration of the thermal equilibrium Poisson equa-
tion (F5) and the lack of convergence of the power-series
solutions given by Eqs. (G5) and (G6) near the radial edge

of the beam (i.e., ," ,1=2), we construct numerical solu-
tions as follows. The power-series solutions are employed
out to some sufficiently large value of the radial coordi-
nates , ¼ ,c, where the series solution is still reliable and
highly accurate, but the local variation of the density
profile N in , is large enough to allow reliable initializa-
tion of numerical integration for , - ,c with standard
methods. Applying the series in small radial steps in ,
out to , ¼ ,c < ,1=2 where Nð,cÞ ’ 0:98 appears to be an
adequate, simple to implement, criterion. Note from
Fig. 17 that the radial edge of the beam is always 3–5 units
in , for !0 1, regardless of the specific value of !, so
this choice of cutoff is always safely removed from , ¼
,1=2.
Rather than numerically integrating the scaled Poisson

equation (F5) from , ¼ ,c, it is convenient to recast the
equation in terms of N ¼ expð! ~c Þ instead of ~c , and
integrate

@2N

@,2
þ 1

N

%
@N

@,

&
2
! 1

,

@N

@,
¼ N2 ! ð1þ !ÞN (G8)

from the ‘‘initial’’ conditionsNð,cÞ and @N
@, j,¼,c

calculated

from Eq. (G5). In integrating this equation, ð@N=@,Þ2
vanishes much faster than 1=N diverges in the low-density
tail, so 1=N can be replaced by 1=ðN þ 'Þ with ' suffi-
ciently small to avoid challenges with the numerical evalu-
ation of the equations.
The procedure given above can be applied to calculate

highly accurate numerical solutions for N or c ¼ ! logN
for arbitrary values of !—however large or small. This
method was employed in Ref. [116] to verify approximate
solutions constructed for N [see Eq. (F10)].
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