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The formation of a quasiequilibrium beam distribution matched to an alternating-gradient
quadrupole focusing lattice by means of the adiabatic turn-on of the oscillating focusing field is
studied numerically using particle-in-cell simulations. Quiescent beam propagation over several
hundred lattice periods is demonstrated for a broad range of beam intensities and vacuum phase
advances describing the strength of the oscillating focusing field. Properties of the matched-beam
distribution are investigated. In particular, self-similar evolution of the beam density profile is
observed over a wide range of system parameters. The numerical simulations are performed using
the WARP particle-in-cell code. © 2009 American Institute of Physics. �doi:10.1063/1.3271467�

I. INTRODUCTION

The equilibrium and stability properties of an intense
charged particle beam propagating through an alternating-
gradient quadrupole focusing lattice are of particular impor-
tance for a wide range of applications to high energy and
nuclear physics, ion-beam-driven high energy density phys-
ics and heavy ion fusion, and nuclear waste transmutation.1–5

It is therefore important to develop an improved theoretical
understanding of intense beam transport. Although the non-
linear effects of the intense self-fields produced by the beam
space-charge provide a significant challenge for analytical
studies, various analytical models have been developed to
describe an equilibrium beam distribution matched to an
alternating-gradient quadrupole focusing lattice.1,6,7 To vali-
date prospective models it is particularly important to de-
velop numerical techniques allowing for the formation of a
quasiequilibrium beam distribution. Furthermore, numerical
schemes describing the quiescent loading of a beam distribu-
tion into a transport lattice and minimizing the deleterious
effects of beam mismatch are of particular importance for
detailed numerical studies of various collective processes
and instabilities. This paper develops a numerical method for
the formation of a quasiequilibrium beam distribution
matched to an alternating-gradient quadrupole focusing lat-
tice by means of the adiabatic turn-on of the oscillating fo-
cusing field.

The approach of adiabatic turn-on of the oscillating fo-
cusing field has been previously investigated by means of
nonlinear �F simulations by Stoltz et al.8 for the case of a
periodic focusing solenoidal lattice. In that work the total
distribution function Fb of a beam propagating through a
periodic focusing soleniodal field with coupling coefficient
�z�s+S�=�z�s� is divided into a zero-order part �Fb

0� that
propagates through the average focusing field �̄z=const, plus
a perturbation ��Fb�, which evolves nonlinearly in the zero-
order and perturbed field configurations. It was demonstrated
that for the case where the oscillatory component of the cou-
pling coefficient, ��z�s�=�z�s�− �̄z, turns on adiabatically
over many periods of the focusing lattice, the amplitude of

the mismatch oscillations reduces by more than one order of
magnitude compared to the case where the field oscillation is
turned on suddenly. The technique reported in Ref. 8, how-
ever, cannot be applied to the case of an alternating-gradient
quadrupole system, because the average component of the
focusing field vanishes.

In this paper we generalize the method of adiabatic for-
mation of a matched beam distribution to the case of an
alternating-gradient quadripole lattice. In this generalized ap-
proach, an equilibrium beam distribution is initially loaded
into a uniform focusing channel with the focusing field given
by the smooth-focusing approximation, which describes the
average effects of the alternating-gradient lattice.1,6,7,9 The
oscillating quadrupole focusing field is then adiabatically
turned on as the amplitude of the uniform field component is
adjusted to maintain the average �smooth-focusing� effects of
the total focusing field fixed. It is demonstrated that the gen-
eralized method allows for quiescent formation of a quasi-
equilibrium beam distribution matched to a quadrupole lat-
tice for a broad range of beam intensities and vacuum phase
advances describing the strength of the oscillating focusing
field. For the case of sufficiently large values of the vacuum
phase advance, the deviations of the beam distribution func-
tion from the initial state can be significant. Therefore, in the
present work, we use the full particle-in-cell code WARP �Ref.
10� to perform the numerical simulations. However, we note
that the formalism developed here will also provide a useful
approach for initializing the choice of self-consistent quasi-
equilibrium distributions f0 in nonlinear �F simulations for
intense beam propagation in periodic-focusing lattices.11–13

Properties of the quasiequilibrium matched beam distribution
are investigated in the present analysis. In particular, self-
similar evolution of the transverse beam density profile is
observed. Furthermore, the density profile of the beam dis-
tribution matched to the quadrupole lattice is found to be
self-similar to the initial density profile corresponding to the
smooth-focusing equilibrium distribution. These observa-
tions are consistent with predictions of the Hamiltonian av-
eraging theory developed by Davidson et al.6 The range of
validity of the self-similarity feature is also investigated.
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It should be noted that a mismatch between the beam
and the transport lattice can produce halo particles, which
may cause degradation of the beam quality and activation of
the chamber wall.14–20 For intense beam accelerators and
transport systems it is increasingly important to suppress
beam halo production; therefore, quiescent beam matching
from the source region into the transport lattice is of particu-
lar practical importance.21,22 Note that the method developed
in this paper for adiabatic formation of a matched beam dis-
tribution may possibly be utilized in the design of next-
generation transport systems. Indeed, an intense beam pro-
duced by an emitting source typically has an azimuthally
symmetric envelope with a negligible convergence �diver-
gence� angle and can be easily matched to a uniform focus-
ing channel. Then, a matching section where the oscillating
quadrupole field is turned on adiabatically can be used to
provide quiescent beam matching to the transport lattice.
Conditions on the length of the matching section required to
assure that matching is maintained are discussed.

This paper is organized as follows. The theoretical
model and assumptions in the present analysis are described
in Sec. II. In Sec. III, the approach for the quiescent forma-
tion of a quasiequilibrium beam distribution matched to a
quadrupole lattice by means of adiabatic turn-on of the os-
cillating focusing field is investigated for a wide range of
transport system parameters, making use of particle-in-cell
simulations. Finally, in Sec. IV, properties of the quasiequi-
librium matched-beam distribution are investigated and com-
pared with the predictions of the analytical theory developed
by Davidson et al.6

II. THEORETICAL MODEL AND ASSUMPTIONS

In this section, following the analysis in Ref. 9, we sum-
marize the general theoretical model describing the nonlinear
dynamics of the beam propagating through an alternating-
gradient quadrupole focusing lattice, and the assumptions for
the smooth-focusing approximation, which describes the av-
erage effects of an alternating-gradient focusing lattice. Here,
we consider an axially continuous intense charged particle
beam propagating in the z-direction with average axial ve-
locity Vb through a periodic focusing lattice with axial peri-
odicity length S=const. The beam is assumed to be thin, with
characteristic transverse dimensions a and b in the x and y
directions satisfying a, b�S. Furthermore, it is assumed that
the beam self-field perveance, Kb, satisfies

Kb �
2Nbeb

2

�b
3mb�b

2c2 � 1,

where Nb=�dxdydx�dy�fb�x ,y ,x� ,y� ,s� is the number of
particles per unit axial length, �b=Vb /c, �b= �1−�b

2�−1/2 is
the relativistic mass factor, eb and mb are the charge and rest
mass of the beam particles, respectively, and c is the speed of
light in vacuo. The beam dynamics in the transverse phase
space �x ,y ,x� ,y�� is described by the distribution function
fb�x ,y ,x� ,y� ,s�, where s=s0+�bct is the effective axial co-
ordinate, and x�=dx /ds and y�=dy /ds denote the dimension-
less transverse velocities. The applied focusing force acting
on a beam particle is assumed to be of the form

Ffoc
q = − �q�s��xêx − yêy� , �1�

where �q�s�=�q�s+S�, and �s0

s0+Sds�q�s�=0. It is readily
shown that the nonlinear Valsov equation describing the evo-
lution of the beam distribution function, fb, is given by9

� fb

�s
+ x�

� fb

�x
+ y�

� fb

�y
− � ��

�x
+ �q�s�x� � fb

�x�

− � ��

�y
− �q�s�y� � fb

�y�
= 0. �2�

Here, the normalized self-field potential ��x ,y ,s�
=eb��x ,y ,s� /�b

3mb�b
2c2 is determined self-consistently from

	 �2

�x2 +
�2

�y2
� = −
2�Kb

Nb
� dx�dy�fb, �3�

and ��x ,y ,s� is the beam space-charge potential. Assuming
that a perfectly conducting cylindrical wall is located at ra-
dius r= �x2+y2�1/2=rw, Eq. �3� is to be solved subject to the
boundary condition

�1

r

�

�	
��r,	��

r=rw

= 0, �4�

where �r ,	� corresponds to the cylindrical polar coordinates
defined by x=r cos 	 and y=r sin 	.

Solutions to Eqs. �2�–�4� describe the self-consistent
nonlinear evolution of an intense beam propagating through
an alternating-gradient quadrupole lattice. Of particular prac-
tical importance are the “quasiequilibrium” �matched� solu-
tions in which the beam distribution function is periodic with
axial periodicity length equal to the lattice period, i.e.,
fb�x ,y ,x� ,y� ,s+S�= fb�x ,y ,x� ,y� ,s�. However, the oscillat-
ing nature of the focusing field offers a significant challenge
for detailed determination of matched quasiequilibrium solu-
tions. The problem can be significantly simplified if the so-
called smooth-focusing approximation,1,6,7,9 which describes
the average effects of the oscillating focusing field, is used
for analysis of the average dynamics of the beam particles.
Within this approximation, the average external focusing
force has the form

Ffoc
sf = − �sf�xêx + yêy� , �5�

where �sf is defined by1,9

�sf =�	�
s0

s

ds�q�s� −��
s0

s

ds�q�s�

s

2


s

, �6�

and �¯ �s=S−1�s0

s0+Sds¯ denotes the average of an
s-dependent function over one lattice period S.

In the following analysis we consider a so-called
focusing-off defocusing-off transport lattice, in which �q�s�
has the form of a step-function lattice with constant ampli-
tude �̂q and filling factor 
, as shown in Fig. 1. Making use
of Eq. �6� it follows that1

�sf = 1
16
2�̂q

2S2�1 − 2
3
� . �7�

As evident from Eq. �5�, within the smooth-focusing ap-
proximation, the beam particles exhibit oscillatory motion
with axial periodicity length �smooth-focusing period� given
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by 2� /��sf in the absence of the self-fields. Therefore, it is
intuitively appealing to assume that the smooth-focusing ap-
proximation is valid if the lattice period is sufficiently small
compared to the smooth-focusing period, i.e.,

��sfS/2� � 1. �8�

It is convenient to introduce dimensionless parameters
describing the lattice strength and the beam intensity. For this
purpose we introduce the envelope equations that describe
�approximately� the evolution of the characteristic transverse

beam dimensions ā�s�=2�x2�1/2 and b̄�s�=2�y2�1/2 �Ref. 1�,

d2

ds2 ā + ��q�s� −
2Kb

ā�ā + b̄�
�ā =

�2

ā3 , �9�

d2

ds2 b̄ + �− �q�s� −
2Kb

ā�ā + b̄�
�b̄ =

�2

b̄3
, �10�

where we assumed �x=�y ��, where the transverse emit-
tance, �x, is defined by

�x = 4���x − �x�2����x� − �x��2�� − ��x − �x���x� − �x����2.

�11�

Here, �
�=Nb
−1�dxdydx�dy�
fb denotes the statistical aver-

age of a phase function 
 over the beam distribution func-
tion, fb. Note that for the special case of a Kapchinskij–
Vladimirskij distribution,1,2 the beam density is uniformly
distributed within the elliptical cross section 0� �x2 / ā2�s�
+y2 / b̄2�s���1, the transverse beam emittance is conserved,
��s�=const, and Eqs. �9� and �10� describe the exact evolu-

tion of the outer edge �ā , b̄� of the beam envelope. The av-
erage strength of the applied focusing lattice can be de-
scribed by the vacuum phase advance, �v,

�v � lim
Kb→0

��
s0

s0+S ds

ā2�s�
= lim

Kb→0
��

s0

s0+S ds

b̄2�s�
, �12�

and the effective beam intensity �space-charge strength� can
be measured by � /�v, where the depressed phase advance,
�, is defined by

� � ��
s0

s0+S ds

ā2�s�
= ��

s0

s0+S ds

b̄2�s�
. �13�

Note that envelope functions ā�s� and b̄�s� in Eqs. �12� and
�13� are the matched solutions to Eqs. �9� and �10� satisfying

ā�s+S�= ā�s� and b̄�s+S�= b̄�s�.
Within the smooth-focusing approximation, the evolu-

tion of the characteristic transverse beam dimensions is de-
scribed �approximately� by the envelope equations �9� and
�10� where the terms describing the oscillating force of a
quadrupole lattice, i.e., �q�s� in Eq. �9� and −�q�s� in Eq.
�10�, are replaced with the term �sf corresponding to the
smooth-focusing lattice coefficient. The matched smooth-

focusing solutions are given by ā�s�= b̄�s�=const, and it is
straightforward to show that in the smooth-focusing approxi-
mation the phase advances are determined by1

�v
sf = ��sfS �14�

and

�sf

�v
sf = �1 + 	 Kb

2���sf

2�1/2

− 	 Kb

2���sf

 . �15�

In addition, we note that the normalized beam intensity can
be conveniently measured by the following parameter:

sb =
�̂pb

2

2�b
2���

2 , �16�

where �̂pb��4�n̂beb
2 /�bmb�1/2 is the relativistic plasma

frequency, n̂b is the on-axis plasma number density, and
������sf�b

2c2�1/2 is the average transverse focusing fre-
quency associated with the �smooth-focusing� lattice coeffi-
cient �sf.

III. QUIESCENT LOADING OF A BEAM
DISTRIBUTION INTO AN ALTERNATING-GRADIENT
QUADRUPOLE LATTICE

In this section we describe the numerical scheme that
allows for the quiescent formation of a quasiequilibrium
beam distribution matched to an alternating-gradient quadru-
pole lattice. The scheme is then examined for a range of
values of beam intensity and lattice vacuum phase advance,
making use of particle-in-cell numerical simulations per-
formed with the 2D slice version of the WARP code. The
scheme works as follows. First, the oscillating focusing field
of the quadrupole lattice is replaced with the smooth-
focusing force given by Eqs. �5� and �7�, and the thermal
equilibrium beam distribution,

FIG. 1. Alternating-gradient step-function model of a periodic quadrupole
lattice with filling factor 
 for the lens elements. The figure shows a plot of
the quadrupole coupling coefficient �q�s� vs s for one full period �s� of the
lattice �see Fig. 3.7 of Ref. 1�.
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fb
0�H�

0 � = n̂b	�bmb�b
2c2

2�T̂�b


exp�−
�bmb�b

2c2

T̂�b

H�
0 � , �17�

is loaded into the uniform channel. Here, the transverse
smooth-focusing Hamiltonian, H�

0 , is defined by9

H�
0 = 1

2 �x�2 + y�2� + 1
2�sfr

2 + ��r� , �18�

and T̂�b is a positive constant with units of energy. Assum-
ing, without loss of generality, ��r=0�=0, it readily follows
from Eqs. �17� and �18� that n̂b is the on-axis number density.
Then, the oscillating quadrupole focusing force in Eq. �1� is
adiabatically turned on, and the uniform focusing component
is correspondingly adjusted to maintain the smooth-focusing
effect of the total focusing field fixed. That is, the total fo-
cusing force acting on the beam particles is specified by

Ffoc�s� = �V2�s� − 1��sf�xêx + yêy� − V�s��q�s��xêx − yêy� ,

�19�

where �sf is defined in Eq. �7�, and V�s� is a function de-
scribing the smooth transition of the focusing field in the
matching section that satisfies V�s=0�=0 and V�s=��=1.
Here, we adopt a simple model in which V�s� varies accord-
ing to

V�s� = �1 + exp	L1/2 − s

Ltr

�−1

− �1 + exp	L1/2

Ltr

�−1

,

�20�

where 2L1/2 is the length of the matching section, and Ltr is
the characteristic length scale for variation of V�s� from zero
to unity provided L1/2�Ltr.

Results of the numerical simulations for the illustrative
parameters corresponding to the cases of a space-charge-
dominated beam with 2KbRb0

2 /�2=15.3 �� /�v�0.26�,
and an emittance-dominated beam with 2KbRb0

2 /�2=0.2
�� /�v�0.91�, are shown in Figs. 2–7. Here, Rb0

2

���x2+y2��0 is the mean-square beam radius, where
�
�0=Nb

−1�dxdydx�dy�
fb
0 denotes the statistical average of a

phase function 
 over the initial smooth-focusing beam dis-
tribution function fb

0 in Eq. �17�. For each value of the beam
intensity, the following values of the lattice vacuum phase
advance have been considered: �v=44.8°, �v=65.9°, and
�v=87.5°. The corresponding values of the phase advances
��v

sf ,�sf�, and normalized beam intensity sb, calculated for
the initial beam equilibrium in the smooth-focusing channel,
are indicated in the captions of Figs. 2–7. Other important
parameters of the numerical simulations correspond to filling
factor 
=0.3 and wall radius rw=4Rb0; the total number of
macroparticles used in the simulation is Npt=4�106, and the
total number of grid cells in the x and y directions is
Nx=Ny =128. To assure that matching is approximately main-
tained in the matching section, we choose L1/2 /Ltr=5 and

take L1/2=5L̄sf, where L̄sf is the smooth-focusing period of
the linear mismatched oscillations determined by1

L̄sf =
2�S

�2��v
sf�2 + 2��sf�2

. �21�
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FIG. 2. Evolution of a space-charge-dominated beam with 2KbRb0
2 /�2

=15.3. Phase advances are given by �v=44.8° and � /�v=0.255. The corre-
sponding smooth-focusing parameters are �v

sf =43.3°, �sf /�v
sf =0.247, sb

=0.9999, and 2L1/2 /S=57.1. The figures show plots of �a� Xmax /Xb0 vs num-
ber of lattice periods, Np, where Xb0= �x2�0

1/2, and Xmax corresponds to the
value of Xrms calculated at the end of the focusing cell, �b� FFT of Xrms�s� vs
kS /2�, and �c� normalized perturbed emittance ��x�s� /�0 vs s /S. The solid
curves correspond to an adiabatic turn-on of the lattice, and the dashed
curves correspond to the case of an instantaneous beam loading.
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FIG. 3. Evolution of an emittance-dominated beam with 2KbRb0
2 /�2=0.2.

Phase advances are given by �v=44.8° and � /�v=0.913. The corresponding
smooth-focusing parameters are �v

sf =43.3°, �sf /�v
sf =0.91, sb=0.32, and

2L1/2 /S=43.5. The figures show plots of: �a� Xmax /Xb0 vs number of lattice
periods, Np, where Xb0= �x2�0

1/2, and Xmax corresponds to the value of Xrms

calculated at the end of the focusing cell, �b� FFT of Xrms�s� vs kS /2�, and
�c� normalized perturbed emittance ��x�s� /�0 vs s /S. The solid curves cor-
respond to an adiabatic turn-on of the lattice, and the dashed curves corre-
spond to the case of an instantaneous beam loading.
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FIG. 4. Evolution of a space-charge-dominated beam with 2KbRb0
2 /�2

=15.3. Phase advances are given by �v=65.9° and � /�v=0.260. The corre-
sponding smooth-focusing parameters are �v

sf =61.8°, �sf /�v
sf =0.247, sb

=0.9999, and 2L1/2 /S=40. The figures show plots of �a� Xmax /Xb0 vs number
of lattice periods, Np, where, Xb0= �x2�0

1/2 and Xmax corresponds to the value
of Xrms calculated at the end of the focusing cell, �b� FFT of Xrms�s� vs
kS /2�, and �c� normalized perturbed emittance ��x�s� /�0 vs s /S. The solid
curves correspond to an adiabatic turn-on of the lattice, and the dashed
curves correspond to the case of an instantaneous beam loading.
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FIG. 5. Evolution of an emittance-dominated beam with 2KbRb0
2 /�2=0.2.

Phase advances are given by �v=65.9° and � /�v=0.915. The corresponding
smooth-focusing parameters are �v

sf =61.8°, �sf /�v
sf =0.91, sb=0.32, and

2L1/2 /S=30.5. The figures show plots of �a� Xmax /Xb0 vs number of lattice
periods, Np, where Xb0= �x2�0

1/2, and Xmax corresponds to the value of Xrms

calculated at the end of the focusing cell, �b� FFT of Xrms�s� vs kS /2�, and
�c� normalized perturbed emittance ��x�s� /�0 vs s /S. The solid curves cor-
respond to an adiabatic turn-on of the lattice, and the dashed curves corre-
spond to the case of an instantaneous beam loading.
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FIG. 6. Evolution of a space-charge-dominated beam with 2KbRb0
2 /�2

=15.3. Phase advances are given by �v=87.5° and � /�v=0.265. The corre-
sponding smooth-focusing parameters are �v

sf =78.7°, �sf /�v
sf =0.247, sb

=0.9999, and 2L1/2 /S=31.4. The figures show plots of �a� Xmax /Xb0 vs num-
ber of lattice periods, Np, where Xb0= �x2�0

1/2, and Xmax corresponds to the
value of Xrms calculated at the end of the focusing cell, �b� FFT of Xrms�s� vs
kS /2�, and �c� normalized perturbed emittance ��x�s� /�0 vs s /S. The solid
curves correspond to an adiabatic turn-on of the lattice, and the dashed
curves correspond to the case of an instantaneous beam loading.
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In each of Figs. 2–7, the frames in �a� illustrate the dis-
crete evolution of the normalized rms envelope x-dimension,
Xrms��x2�1/2, calculated at the end of each focusing cell
where the beam x-envelope has a local maximum value.
Such a graphical representation for a matched beam would
be a horizontal straight line; therefore �a� provides a conve-
nient representation of beam mismatch. The frames in �b�
show fast-Fourier transform �FFT� plots of Xrms�s�, where the
continuous evolution of Xrms�s� is used for the FFT calcula-
tions. Finally, the frames in �c� show the evolution of the
x-component of the normalized perturbations in transverse
beam emittance, ��x�s� /�0���x�s�−�x�s=0�� /�x�s=0�.
Along with the evolution of the beam parameters for the case
of adiabatic turn-on of V�s� shown by the solid curves, Figs.
2–7 also show the evolution of beam parameters �dashed
curves� for the case where the initial distribution is loaded
instantaneously into an alternating-gradient quadrupole lat-
tice with V�s��1.23 To load particles for this case, first the
matched solutions to the envelope equations �9� and �10� are
found. Then, the smooth-focusing thermal equilibrium distri-

bution that satisfies 2Rb0
2 = ā2�s��= b̄2�s�� is calculated. Here

s� denotes the location inside the focusing cell where ā�s��
= b̄�s��. Finally, the positions and velocities of the beam par-
ticles are linearly scaled providing the size and the slope of
the beam envelope to be consistent with the matched solution
to the envelope equations �9� and �10�. Note that the frames
in �a� in Figs. 2–7 illustrate the initial evolution of the beam
mismatch for the case of instantaneous loading, and the evo-
lution near the exit of the matching section, s�2L1/2, for the
case of the adiabatic formation of a beam quasiequilibrium.
Correspondingly, the averages for the FFT calculations are
from s=0 to s=100S for the case of instantaneous loading,
and from s=2L1/2 to s=2L1/2+100S for the case of adiabatic
turn-on of V�s�. Note that the 100-lattice-period window for
the FFT averages is found to be sufficient for present pur-
poses. It allows us to resolve the difference between the even
�symmetric� and the odd �quadrupole� mismatch envelope
mode frequencies as seen in Figs. 2, 4, and 6. Furthermore,
for the case of an emittance-dominated beam the mismatch
oscillations are significantly damped after �100 lattice peri-
ods; therefore an increase in the FFT-average window would
result in noise integration.

It is evident from Figs. 2–7, for the case of adiabatic
formation of the beam quasiequilibrium, that the amplitude
of the mismatch oscillations is reduced compared to the case
of instantaneous loading of the beam distribution. Further-
more, note that for the case of adiabatic formation the beam
mismatch is attributed primarily to the numerical imprecision
in loading the initial smooth-focusing equilibrium distribu-
tion, and therefore can be further suppressed if a finer grid
structure, and larger number of macroparticles are used in the
simulations. In contrast, the numerical scheme for instanta-
neous loading cannot provide the detailed quasiequilibrium
intrinsically. Note that mismatch relaxation is more pro-
nounced for the case of an emittance-dominated beam com-
pared to the case of a space-charge-dominated beam, which
is consistent with the studies in Refs. 17, 18, and 24. Of
particular interest is the case of intense beam propagation
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FIG. 7. Evolution of an emittance-dominated beam with 2KbRb0
2 /�2=0.2.

Phase advances are given by �v=87.5° and � /�v=0.918. The corresponding
smooth-focusing parameters are �v

sf =78.7°, �sf /�v
sf =0.91, sb=0.32, and

2L1/2 /S=23.9. The figures show plots of �a� Xmax /Xb0 vs number of lattice
periods, Np, where Xb0= �x2�0

1/2, and Xmax corresponds to the value of Xrms

calculated at the end of the focusing cell, �b� FFT of Xrms�s� vs kS /2�, and
�c� normalized perturbed emittance ��x�s� /�0 vs s /S. The solid curves cor-
respond to an adiabatic turn-on of the lattice, and the dashed curves corre-
spond to the case of an instantaneous beam loading.
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�2KbRb0
2 /�2=15.3� through the quadrupole lattice with mod-

erately high vacuum phase advance ��v=87.5°�. In this case,
appreciable emittance growth is evident even for adiabatic
formation of the beam distribution �Fig. 6�c��. The simula-
tions demonstrate that the beam is well-matched to the
lattice for over 450 lattice periods, and therefore the increase
in the beam emittance cannot be attributed to mismatch
relaxation. A plausible explanation of this phenomena can be
attributed to “higher-order resonance” effects, which limit
intense beam transport in the region where �vac

2 −�2

� �2� /3�2 /2,25,26 as proposed in Ref. 27. As the system pa-
rameters approach this stability limit, higher-order reso-
nances appear near the beam core in the transverse phase-
space; therefore, near-edge particles can diffuse outside the
beam core sufficiently to partake in the resonances, thus pro-
viding emittance growth.27

The matching section that provides adiabatic lattice tran-
sition from a uniform channel to an alternating-gradient
quadrupole lattice could in principle be utilized to provide
beam matching from the source into the quadrupole lattice
for next-generation accelerators and transport systems. It is
therefore of particular practical importance to estimate how
smooth �adiabatic� the lattice transition should be to assure
that matching is maintained during the transition. Figure 8

illustrates the degree of beam mismatch, �m, calculated at the
end of the matching section �s�2L1/2� for different values of
the matching section length, 2L1/2, for the case where the
vacuum phase advance of the lattice �v is 65.9°. Here, we
measure the beam mismatch, �m, by the ratio of the maxi-
mum to minimum values of Xrms��x2�1/2 calculated at the
end of each focusing cell within the first two periods of the
smooth-focusing mismatch oscillations after the beam leaves
the matching section, i.e., within the range 2L1/2�s�2L1/2

+2L̄sf. Recall that the beam rms envelope x-dimension, Xrms,
has a local maximum at the end of a focusing cell. It is
readily seen from Fig. 8 that a moderate length of the match-
ing section, approximately ten lattice periods, is sufficient to
assure that the beam is well-matched to the lattice. Further-
more, a longer matching section is required for higher beam
intensities. It should be noted that these observations are
consistent with the results of detailed numerical and experi-
mental studies in Refs. 17, 18, 28, and 29 of the beam re-
sponse to the smooth variations of the lattice amplitude.

IV. SELF-SIMILAR EVOLUTION OF THE BEAM
DENSITY PROFILE

In the previous section we demonstrated that the forma-
tion of a quasiequilibrium beam distribution matched to an
alternating-gradient quadrupole focusing lattice can be
achieved in the numerical simulations by means of the adia-
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intensity 2KbRb0
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0�r=0� vs x /Rb0. Density profiles correspond

to: the initial smooth-focusing thermal equilibrium �solid blue curve�, the
maximum value of Xrms �dotted pink curve�, the minimum value of Xrms

�dashed green curve�, and the location inside the focusing cell where Xrms

=Yrms �dot-dashed cyan curve�.
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batic turn-on of the oscillating focusing field. In this section
we investigate properties of the matched beam distribution in
order to compare results of the numerical simulations with
predictions of the analytical theory developed by Davidson
et al.6 Furthermore, we make use of the numerical simula-
tions to investigate the validity limits of the theory. The
analytical model developed in Refs. 1, 6, and 7 applies
Hamiltonian averaging techniques to the nonlinear Vlasov–
Maxwell equations �2� and �3�, assuming sufficiently small
vacuum phase advance, �v. It has been demonstrated that the
evolution of the beam density profile for the case of intense
beam propagation through an alternating gradient-
quadrupole lattice is given by1,6

nb�x,y,s� =
Rb0

2

a�s�b�s�
nb

0� R̃�x,y,s�
Rb0

� , �22�

correct to order �3, where ���v /2� is the expansion param-
eter of the theory. Here, nb

0�r� is the beam density profile
corresponding to an arbitrary smooth-focusing equilibrium,

and R̃�x ,y ,s� /Rb0 is defined by

R̃�x,y,s�
Rb0

= � x2

a2�s�
+

y2

b2�s��1/2
, �23�

where a�s�=�2Xrms�s� and b�s�=�2Yrms�s�. Note that the
theory assumes that the conducting wall is sufficiently far
removed from the beam �rw→��.

We now investigate properties of the quasiequilibrium
beam density profiles obtained in the numerical simulations
for the illustrative parameters considered in Sec. III, and
compare it with predictions of the analytical theory given by
Eqs. �22� and �23�. For all of the simulations we take
rw=4Rb0, which corresponds to a sufficiently large radius of
the conducting wall. Results of the numerical simulations are
presented in Figs. 9–14, and the density profiles shown in the
figures are calculated within the first lattice period after the
beam leaves the matching section, i.e., 2L1/2�s�2L1/2+S.
Figures 9 and 10 show contour plots of the beam density for
the cases of a space-charge-dominated beam with
2KbRb0

2 /�2=15.3 �Fig. 9�, and an emittance-dominated beam
with 2KbRb0

2 /�2=0.2 �Fig. 10�. It is readily seen from the

figures that, plotted in the scaled coordinates
�x /a�s� ,y /b�s��, the contours of constant beam density are
approximately circular, which is consistent with Eqs. �21�
and �22�. Therefore, without loss of generality, in the follow-
ing analysis we present results of the numerical simulations
for the evolution of the beam density projected along the
x-direction, nb

x�x ,s��nb�x ,y=0,s�. Figures 11 and 12 show
the evolution of the beam density plotted in scaled coordi-
nates �Figs. 11�a� and 12�a�� and regularly normalized coor-
dinates �Figs. 11�b� and 12�b�� for the cases where
2KbRb0

2 /�2=15.3 and 2KbRb0
2 /�2=0.2, respectively. For these

simulations, a relatively modest value of the vacuum phase
advance of �v=44.8° is considered. It is readily seen that the
evolution of the quasiequilibrium beam density is self-
similar, i.e., nb

x�x ,s�=nb
x�x /a�s�� to very good approximation.

Note that the flutter on top of the beam density profiles in
Figs. 11 and 12 is due to the numerical noise, and much
lower noise level has been observed in the numerical simu-
lations with a larger number of macroparticles �Npt=6
�106� and coarser grid �Nx=Ny =64�. Furthermore, to good
visual accuracy, it is evident that the beam density evolution
in the quadrupole lattice is also self-similar to the initial
beam density profile �plotted in Figs. 11 and 12 by the blue
curves� corresponding to the initial smooth-focusing thermal
equilibrium with the distribution function in Eq. �17�. Ana-
lytical theory1,6 predicts that the beam density profile is self-
similar to the density profile determined from the choice of
smooth-focusing equilibrium distribution function. However,
it is interesting to note that the smooth-focusing equilibrium
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FIG. 14. �Color online� Plots of the normalized beam density profile,
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corresponding to the beam distribution matched to the quad-
rupole lattice remains the same during the adiabatic transi-
tion phase in the matching section.

Finally, Figs. 13 and 14 show the beam density evolution
plotted in scaled coordinates for larger values of the vacuum
phase-advance �v=65.9° and �v=87.5°. It is readily seen
that the beam density evolution is still self-similar to good
visual accuracy for �v=65.9°. However, a more pronounced
difference in the density profiles in the fall-off region occurs
for �v=87.5° for both space-charge-dominated and
emittance-dominated beams. This illustrates the range of va-
lidity of the analytical predictions given by Eqs. �21� and
�22�. Again, we note that the flutter on top of the beam den-
sity profiles in Figs. 13 and 14 can be substantially sup-
pressed if a larger number of macroparticles is used in the
simulations; however, in the density-fall-off region, the dif-
ference in the beam density profiles shown in Figs. 13�b� and
14�b� remains nearly the same. It is particularly interesting to
note, for the case of an emittance-dominated beam with
� /�v=0.918 and �v=87.5°, that the beam transport is stable,
the effects of higher-order resonances are weak, and yet the
analytical theory predictions is of limited validity.

V. CONCLUSIONS

In this work we described a numerical scheme allowing
for the formation of a quasiequilibrium beam distribution
matched to an alternating-gradient quadrupole focusing lat-
tice by means of adiabatic turn-on of the oscillating focusing
field. The scheme demonstrates the ability to load a matched-
beam distribution into a quadrupole lattice for a broad range
of beam intensity and vacuum phase advance �v�66°. Fur-
thermore, for higher values of vacuum phase advance �for
instance, �v=87.5°�, even in a regime where the parameters
of the transport system approach the unstable transport crite-
rion given by �v

2 −�2� �2� /3�2 /2, and the transport of the
intense beam is accompanied by beam emittance growth, it is
found that the method of adiabatic formation described here
still provides adequate beam matching. Therefore, the
scheme described here can be effectively used for detailed
studies of intense beam transport and stability properties,
since it is able to suppress the effects of the initial beam
mismatch. Finally, it is found that a moderate length of the
matching section ��10 lattice periods� is sufficient to assure
that the beam is well matched to the lattice, thus making the
scheme attractive for practical applications.

Properties of the matched beam quasiequilibrium ob-
tained in the numerical simulations have been investigated
and compared with the predictions of the analytical theory
developed by Davidson et al. in Ref. 6. The theory shows
that for sufficiently small values of ���v /2�, the evolution
of the beam density is self-similar correct to �3. In
accordance with the theory, the numerical simulations dem-
onstrate self-similar evolution of the beam density profile for
�v�66°. However, for higher values of vacuum phase ad-
vance �for instance, �v=87.5°� the self-similarity feature be-
comes less accurate for wide range of beam intensities,
which demonstrates the validity limits of the theory.

It should be noted that the formalism developed here can
provide a useful approach for initializing the choice of self-
consistent quasiequilibrium distributions f0 in nonlinear �F
simulations11–13 for intense beam propagation in periodic-
focusing lattices. Finally, the present approach can be gener-
alized in straightforward manner to the case of a periodic
focusing solenoidal lattice.
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