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Abstract

Based on the compelling physics analogy between intense beam propagating through a

periodic focusing quadrupole magnetic field and nonneutral pure ion plasma confined

in a linear Paul trap configuration, experimental studies of intense beam propaga-

tion under the influence of self-field effects have been performed using the Paul Trap

Simulator Experiment (PTSX) device. A new charge collector diagnostic has been

implemented, which permits detailed measurement of the radial ion density profile

that can be compared with theoretical predictions. To further investigate the trapped

plasma properties, a laser-induced fluorescence (LIF) diagnostic system with accom-

panying barium ion source has also been developed and tested.

To achieve a well-characterized initial beam state for subsequent beam physics

experiments, ion injection into the trap has been carefully optimized by characteriz-

ing various beam dynamics issues that may invalidate the physics analogy between

intense coasting beam and trapped pure ion plasma in the quadrupole focusing fields.

An optimized plasma is held in the quasi-equilibrium state for more than 50 ms,

which is equivalent to more than 3000 full alternating-gradient (AG) focusing pe-

riods, and has a defocusing space-charge force that is about 10% of the applied

transverse focusing force. The PTSX device is used to investigate basic physics of

transverse beam compression. From a comparison of the analytical estimates based

on a Kapchinskij-Vladimirskij (KV) beam model, experimental results on changes in

iii



both the lattice amplitude and frequency, and particle-in-cell (PIC) simulations, it is

found that a key physics issue in transverse beam compression is how to suppress the

excitation of mismatch oscillations, which is often accompanied by emittance growth

and halo formation. When the phase advance is low enough, adiabatic changes in

the smooth-focusing frequency turn out to provide an effective control of transverse

beam compression. Machine imperfection effects which are unavoidable in the op-

eration of high-intensity accelerators are also investigated. In particular, the effects

of faulty magnet sets and random noise in the AG focusing channel are considered.

The excitation of mismatch oscillations is observed as a result of focusing field errors,

and their characteristics are effectively explained in terms of the KV-equivalent beam

model. A continuous increase in emittance that depends on the noise duration and

amplitude is observed, together with the synergistic effects between collective modes

and colored noise.
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Chapter 1

Introduction

For the optimal design and stable operation of high-intensity accelerators and beam

transport systems, it is essential to develop a basic understanding of the beam dy-

namics with significant space-charge effects [Davidson and Qin, 2001]. In this thesis,

based on the physics analogy between intense beam propagating through a periodic

focusing quadrupole magnetic field and nonneutral pure ion plasma confined in a com-

pact Paul trap configuration [Davidson et al., 2000], experimental studies of intense

beam propagation have been performed using the Paul Trap Simulator Experiment

(PTSX) device [Gilson et al., 2004]. The PTSX device is a linear Paul trap [Paul

and Steinwedel, 1953] which consists of three cylindrical electrodes of radius rw =

10 cm that are sliced into four 90◦ azimuthal sectors. The trap confines nonneutral ion

plasmas radially by applying an oscillatory voltage ±V0(t) to the central electrodes.

A DC bias voltage, +V̂ , applied to the end electrodes, confines the nonneutral ion

plasma axially.

1
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1.1 Background

1.1.1 Nonneutral Plasmas and Intense Beams

A nonneutral plasma is defined as a many-body collection of charged particles in

which there is not overall charge neutrality [Davidson, 1990]. In principle, nonneu-

tral plasmas are more easily confined than neutral plasmas, and consequently, can

be more easily controlled and studied in relatively simple experimental setup like

Malmberg-Penning traps [Malmberg and deGrassie, 1975; Penning, 1936] and

Paul traps [Paul and Steinwedel, 1953]. Similar to the electrically neutral plas-

mas [Chen, 1984; Goldston and Rutherford, 1995], nonneutral plasmas exhibit

shielding of perturbed electric fields on a scale of the Debye length (Debye shield-

ing) and support various organized (collective) motions such as plasma oscillations,

waves, and instabilities. However, there are fundamental differences between nonneu-

tral plasmas and neutral plasmas. Nonneutral plasmas have intense self-electric fields

since they have a net charge, and can produce self-magnetic fields in high-current

configurations [Davidson, 1990]. These self fields have a large influence on detailed

plasma behavior and stability properties. A few examples of nonneutral plasmas

are pure electron plasmas in Malmberg-Penning traps for the investigations of basic

plasma properties, laser-cooled pure ion plasmas in Paul traps for atomic clock appli-

cations, and antimatter plasmas such as positrons and antiprotons for basic atomic

and molecular physics [NRC, 1995]. On the more practical side, nonneutral plasmas

are widely applied to the the development of many high-power microwave devices used

for radar, satellite communications, RF heating of fusion plasmas, and high-intensity

accelerators for basic research in high energy and nuclear physics.
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A charged particle beam is defined as a collection of charged particles all traveling

in nearly the same direction with the nearly the same speed [Rosenzweig, 2003].

Particle beams are usually generated from a particle source and injected into the main

accelerator where charged particles are focused and bent by use of magnets, and accel-

erated by use of electromagnetic fields in cavities or waveguides. Recent applications

of charged particle beams [Davidson and Qin, 2001; Reiser, 1994; Wangler, 1998]

such as heavy ion fusion, spallation neutron sources, and high-gain X-ray free electron

lasers, however, require much higher beam currents and charge densities than con-

ventional accelerator systems. For such intense beams, understanding the effects of

self fields produced by the beam space charge and current on the detailed dynamics

and stability behavior of the beam is increasingly important [Davidson and Qin,

2001]. While tenuous beams are readily described by single particle and linear beam

dynamics [Wiedemann, 1999; Lee, 2004], intense beam requires extensive consider-

ation of self-field forces through linear and nonlinear analysis [Davidson and Qin,

2001; Qian, 1995; Strasburg, 2001], or advanced numerical simulations [Friedman

et al., 1992; Qian et al., 1997; Qin et al., 2000].

There is a compelling similarity between the physics of nonneutral plasmas and

the physics of intense charged particle beams. An intense beam can be considered

as a nonneutral plasma in the frame of reference of the beam. Hence, similar to

laboratory-confined pure electron plasmas or pure ion plasmas, an intense beam is

expected to exhibit many collective properties during propagation through a focusing

channel. Many theoretical models and techniques developed for the description of

nonneutral plasmas can provide a systematic treatment of the equilibrium, stability,

and transport properties of intense charged particle beams. Most interestingly, the
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collective processes and nonlinear transverse dynamics of an intense beam propagat-

ing through a periodic focusing quadrupole magnetic field (see Sec. 1.1.2) is fully

equivalent to the transverse dynamics of a nonneutral plasma trapped in an oscil-

lating quadrupole electric field [Davidson et al., 2000], such as a pure ion plasma

confined in a linear Paul trap (see Sec. 1.1.3).

1.1.2 Periodic Focusing Quadrupole Magnetic Field

As mentioned earlier, charged particle beams are transversely focused by use of exter-

nal magnets arranged along the desired beam path. In most accelerators and beam

transport systems, the arrangement of magnets is periodic with a repetitive sequence

of identical modules (periodic focusing). The simplest and most common periodic

focusing module is a combination of two quadrupole magnet sets with alternating po-

larity of field gradients, which is often termed an alternating-gradient (AG) focusing

lattice. Development of AG focusing in the 1950’s [Courant et al., 1952; Courant

and Snyder, 1958] was a major breakthrough in the history of accelerator develop-

ment. AG focusing is also called strong focusing in contrast to the weak focusing

of the betatron, in which the focusing is achieved only in one transverse dimension

[Wiedemann, 1999; Rosenzweig, 2003]. In the AG focusing system, due to the

simultaneous focusing in the two transverse dimensions, the transverse beam size is

significantly reduced. Hence, we usually have a thin beam with a, b� S, where a and

b are the characteristic x- and y-dimensions of the beam, and S is the axial periodicity

length of the AG focusing lattice. For small values of x and y (|x|, |y| � S), the AG

quadruple magnetic field Bq(x) = Bq
xêx + Bq

y êy near the beam axis in Fig. 1.1 can

be approximated to leading order by [Davidson, 1990]

Bq(x) = B′
q(z)(yêx + xêy). (1.1)
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Figure 1.1: (a) Schematic of magnet sets producing an alternating-gradient
quadrupole field with axial periodicity length S. Note that the quadrupole magnet
sets are rotated by 90◦ every half-lattice period (S/2). (b) Schematic of the FODO
(Focusing-Off-Defocusing-Off) lattice with piece-wise constant B′

q(z) (QF:focusing
quadrupole, QD:defocusing quadrupole). (c) Thin lens approximation of the FODO
lattice with characteristic x(y)-dimension of the beam, a(b).
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Here, the field gradient coefficient B′
q(z) is defined by B′

q(z) ≡ (∂Bq
x/∂y)(0,0) =(

∂Bq
y/∂x

)
(0,0)

, and B′
q(z) = B′

q(z + S) has axial periodicity length S. For B′
q(z) > 0,

the quadrupole field focuses (defocuses) the beam in the x(y)-direction, while for

B′
q(z) < 0, the quadrupole field defocuses (focuses) the beam in the x(y)-direction.

Note from Eq. (1.1) that ∇ · Bq vanishes exactly, and |∇ × Bq| is of order a/S (or

b/S) times |B′
q|. This suggests that for a thin beam, Eq. (1.1) is a valid approxima-

tion to the vacuum quadrupole magnetic field generated from the quasi-steady-state

(∂/∂t = 0) external current sources [Davidson and Qin, 2001].

For the case of hard-edged quadrupole magnets with small end-field effects [Wiede-

mann, 1999], an AG focusing lattice can be approximated to have piece-wise constant

values of the field gradient, and be composed of a focusing (F) and defocusing (D)

quadrupoles with field-free drift spaces (O) in between [Fig. 1.1(b)]. This FODO

lattice is the most widely used lattice in accelerator systems because of its simplicity,

flexibility, and beam dynamical stability [Wiedemann, 1999]. Moreover, when the

length of the quadrupole magnet is small compared to the axial periodicity length

S, the transverse motion of a beam particle in a FODO lattice can be described by

a beam ray trajectory in converging (focusing) or diverging (defocusing) lenses with

finite focal length |f | ≥ S/2 (thin lens approximation) [Wiedemann, 1999; Lee,

2004]. Hence, it is expected that characteristic beam dimensions evolve out of phase

with the direction of the focusing force, i.e., beam width is maximum (minimum) at

the focusing (defocusing) element [Fig. 1.1(c)].

For an intense beam, the repulsive self-field force associated with the net space

charge becomes comparable with the externally applied AG focusing force. The self-

field force is generally nonlinear, and can directly and immediately affect the dynamics

of intense beam propagation. Therefore, for the optimal design and stable operation



1.1. Background 7

of high-intensity accelerators and beam transport systems, most of which are based

on AG focusing, it is of practical importance to understand the basic equilibrium,

stability, and transport properties of an intense beam propagating through an AG

focusing lattice.

1.1.3 The Paul Trap

The Paul trap (also known as a quadrupole ion trap, RF trap, or ion trap) is a device

that permits the trapping of ions by applying radio frequency (RF) AC voltages in

combination with DC voltages [Wikipedia, 2008]. The invention of the Paul trap is

attributed to Wolfgang Paul who received the Nobel Prize in Physics in 1989 for this

work [Paul and Steinwedel, 1953]. The Paul trap has two configurations: one is

the three-dimensional form which consists of two hyperbolic end caps facing each other

and a hyperbolic ring electrode between the two end caps (Fig. 1.2), and the other is

the linear form which is made of four parallel electrodes (rod or segmented cylinder)

and two DC end caps (see Fig. 2.1 of Chapter 2). Both Paul trap configurations are

designed to create a saddle-shaped electrostatic potential distribution near the device

center. Interestingly, the intuitive explanation and lowest-order approximation of

how a Paul trap confines ions is the same as AG focusing in accelerator systems.

Since the applied field affects the acceleration of the ion motion, the position lags

behind (to lowest order by one half-cycle). So the ions are at defocused positions

when the field is focusing and visa versa. In addition, the ions move further in the

half-cycle when they are moving from a strong-field region to a weak-field region

than vise versa, so there is a net inward drift. Such a net inward force is often

termed ponderomotive force [Chen, 1984]. Note that when there is no gradient in

the focusing field strength, the average ion motion will drift linearly in time with
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Figure 1.2: Schematic of three-dimensional form of Paul trap.

its initial velocity. This analogy between the effects of a quadrupole magnetic and

electric fields on charged particles has lead to the idea of using a single-species trap

to study the dynamics of intense beams in accelerators. In recent papers, Davidson

et al. [Davidson et al., 2000] proposed a linear Paul trap, while Okamoto and

Tanaka [Okamoto and Tanaka, 1999] proposed a solenoidal magnetic trap, to

simulate periodically focused intense beam propagation. Further, Kjærgaard and

Drewsen [Kjærgaard and Drewsen, 2001] proposed a pulse-excited linear Paul

trap to study crystalline beam properties in storage rings. In addition, there are many

other applications of the Paul trap. Theses include: mass spectroscopy, quantum

computing, atomic clocks, environmental monitoring, antimatter traps, and Coulomb

crystal formation [Major et al., 2005], to mention a few examples.
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1.2 Motivation

Periodic focusing accelerators and transport systems [Davidson, 1990; Davidson

and Qin, 2001; Reiser, 1994; Wangler, 1998; Edwards and Syphers, 1993; Wil-

son, 2004] have a wide range of applications ranging from basic scientific research in

high energy and nuclear physics to applications such as heavy ion fusion, ion-beam-

driven high energy density physics, tritium production, nuclear waste transmutation,

and spallation neutron sources and high-gain X-ray free electron lasers for material

and biological research. Recent trends for those advanced applications are using very

intense beams that are accelerated or stored through extremely long AG focusing

channels on the order of kilometers to achieve the required beam properties [Rosen-

zweig, 2003]. For example, the currently envisioned International Linear Collider

(ILC) [Brau et al., 2007] will use two 11 km-long linear accelerators (linacs) to ac-

celerate electron and positron beams with unprecedented precision in beam control

(tens of nanometers at the collision spot). This leads to the need for a detailed under-

standing of the equilibrium, stability, and transport properties of long-distance beam

propagation subject not only to the applied focusing field but also to the self fields

produced by the beam space charge and current. Through analytical investigations

based on the nonlinear Vlasov-Maxwell equations [Davidson, 1990; Davidson and

Qin, 2001], numerical simulations using particle-in-cell (PIC) models and nonlinear

perturbative simulation techniques [Friedman et al., 1992; Qian et al., 1997; Qin

et al., 2000], and advanced beam instrumentations and diagnostics [Minty and Zim-

mermann, 2003; Strehl, 2006], considerable progress has been made in developing

an improved understanding of the collective processes and nonlinear beam dynamics

characteristic of intense beam propagation. Nonetheless, due to the lack of dedicated

experimental devices for fundamental studies, it is very difficult to verify the results
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from the theories and numerical simulations, and to apply them to the design of new

accelerator facilities with confidence. Experimental studies on existing accelerators,

which are typically very expensive to operate, are limited in beam time and beam

parameters. For example, for the case of the Superconducting Super Collider (SSC)

which was aborted in 1993 due to significant cost overruns, the lack of confidence in

predicting the dynamic aperture (the largest beam oscillation amplitude which is still

stable in the presence of nonlinear fields [Wiedemann, 1999]) led to the design of

a beam pipe size much larger than necessary [Ryne et al., 1999]. This resulted in

significant cost overruns in manufacturing thousands of superconducting magnets.

Recently, as an alternative approach to provide testbed for advanced theoretical

models and numerical simulations, several small-scale and cost-effective intense beam

experiments have been proposed. These include the beam halo experiments on the

Low-Energy Demonstration Accelerator (LEDA) at Los Alamos National Laboratory

[Allen et al., 2002], the University of Maryland Electron Ring (UMER) [Walter

et al., 2006], and the Paul Trap Simulator Experiment (PTSX) at the Princeton

Plasma Physics Laboratory [Gilson et al., 2004]. These facilities provide research

opportunities for fundamental studies of collective processes on long time scales such

as beam mismatch, emittance growth, and beam halo formation. While LEDA and

UMER are laboratory-frame experiments which scale down an actual linear transport

channel and a circular accelerator respectively, PTSX is a beam-frame experiment

which builds on the physics equivalence between an intense coasting beam and a

trapped nonneutral pure ion plasma. Highlights of each experiment are described in

the following section.
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(a) An intense proton beam is injected from
radio frequency quadrupole (RFQ) linac into
the 26-FODO lattice transport channel.

(b) An intense electron beam is injected
from thermionic electron gun into the 36-
FODO lattice circulation ring.

Figure 1.3: Photographs of (a) Low-Energy Demonstration Accelerator (LEDA) and
(b) University of Maryland Electron Ring (UMER).

1.3 Overview of Intense Beam Experiments

1.3.1 Low-Energy Demonstration Accelerator (LEDA)

The Low-Energy Demonstration Accelerator (LEDA) is a high-current continuous-

wave (CW) proton accelerator at Los Alamos National Laboratory (LANL), which

was initiated by the Accelerator for the Production of Tritium (APT) program to

demonstrate the technically challenging front end of a 1000-MeV, 100-mA proton

accelerator [Allen et al., 2002]. Its operation from 1999 to 2001 demonstrated

the feasibility of creating extremely high beam current. As an application of the

high-intensity feature of LEDA, beam halo experiments have been performed in a

52-quadrupole periodic focusing transport channel (26 FODO lattice) installed at the

end of LEDA [see Fig. 1.3(a)]. Beam halo is an extended low-density region outside

the beam core, which often causes further beam loss and radioactivation of the ac-

celerator structure. Understanding the basic physics mechanism for halo formation

is one of the critical issues in the design and operation of high-intensity accelerators.
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In the LEDA halo experiment, a 6.7-MeV proton beam from a 350-MHz Radio Fre-

quency Quadrupole (RFQ) linac section is injected into the transport channel with

several settings of beam current. The focusing gradients of the first four quadrupole

magnets are independently adjusted to match or mismatch the injected beam to the

transport channel. For an initially mismatched beam, there is a slow transverse en-

velope oscillation superimposed on the fast oscillation due to the periodic focusing.

These envelope oscillations drive some particles to very large transverse amplitude

through a resonant mechanism. The channel length of 11 m corresponds to the de-

velopment of about ten mismatch oscillations, enough to observe at least the initial

stages of emittance growth and halo formation caused by beam mismatch. The major

diagnostic elements in LEDA are the transverse beam-profile scanners, each of which

consists of 33-µm-diameter carbon wire to measure dense beam core and a pair of

1.5-mm-thick graphite scraper plates for outer beam halo. A significant shoulder in

the transverse density distribution has been measured at the exit of the channel as a

result of beam mismatch and halo formation [Allen et al., 2002]. The experimental

results support the simple particle-core model of halo formation in mismatched beams

[Wangler et al., 1998]. However, due to the finite length of the transport channel,

the observation of longer-time-scale phenomena such as saturation of the mismatch

oscillation is limited.

1.3.2 University of Maryland Electron Ring (UMER)

The University of Maryland Electron Ring (UMER) uses a nonrelativistic (∼10 keV)

electron beam created within a Pierce-type thermionic gun to study intense beam

physics by circulating the beam in compact fast-cycling synchrotron over many lat-

tice periods [Walter et al., 2006]. UMER is a versatile experimental platform with
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a beam current of up to 100 mA and a pulse length as long as 100 ns. Intercepting

and nonintercepting diagnostic apparatus are positioned every 20◦ around the ring,

which allows time-resolved measurements of the beam position, beam current den-

sity, and emittance. The main circulation ring of UMER is composed of 36 FODO

lattice periods, each of which consists of two printed-circuit (PC) quadrupoles for

focusing and a PC dipole for 10◦ bending, with a period length of 32 cm [see Fig.

1.3(b)]. In addition, Helmholtz coils are mounted on each ring chamber to cancel

the horizontal component of the earth’s magnetic field. As a convenient measure of

the influence of space charge on the beam, the normalized intensity χ (or equiva-

lently ŝ defined in the next section), which is the ratio of the space-charge force to

the external focusing force, has been introduced [Reiser, 1994]. In UMER, χ can

vary from 0.2 to 0.9, which covers the range from the emittance-dominated regime to

the space-charge-dominated regime. Research topics currently being investigated on

UMER include both transverse dynamics (beam matching, halo formation, strongly

asymmetric beams, transverse space-charge waves, etc.) and longitudinal dynamics

(bunch capture/shaping, evolution of energy spread, longitudinal space-charge waves,

etc.). Recently, multi-turn transport of an electron beam up to 125 turns of the ring

(4500 full lattice periods) has been demonstrated for χ = 0.21 with some degradation

of beam quality [Kishek, 2007]. Hence, it is expected that multi-turn operation at

higher beam intensity requires refinement of the steering and matching control in

the injection line, and the use of induction modules to compensate the longitudinal

spread of the beam.
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1.3.3 Paul Trap Simulator Experiment (PTSX)

The Paul Trap Simulator Experiment (PTSX) at Princeton Plasma Physics Labo-

ratory (PPPL) is a compact linear Paul trap that simulates the collective processes

and nonlinear transverse dynamics of an intense beam propagating through a peri-

odic focusing quadrupole magnetic field. The idea of studying beam dynamics using

a linear Paul trap confining a one-component plasma was proposed by Davidson et

al. [Davidson et al., 2000]. The equivalence of the Paul trap configuration to in-

tense beam propagation through a periodic focusing quadrupole field is discussed in

Chapter 2 of this thesis. After a two-year construction period, the PTSX device was

commissioned by Dr. Erik Gilson et al. in 2003 [Gilson et al., 2003a,b], successfully

demonstrating quiescent beam propagation over equivalent distances of tens of kilo-

meters, and accessing a wide operating range with stable confinement of the charge

bunch [Gilson et al., 2004]. A Faraday-cup diagnostic was used to measure the radial

density profiles of the plasmas, and the experimental data were in good agreement

with a simple force balance model [Davidson and Qin, 2001] for a range of system

parameters where the mismatch between the plasma and the focusing channel is not

too large. Values of the normalized intensity parameters ŝ = ω2
p(0)/2ω

2
q up to 0.8 were

achieved, where ωp(r) is the local plasma frequency and ωq is the average transverse

focusing frequency [Davidson and Qin, 2001]. The normalized intensity parameter

describes whether the beam is emittance dominated (ŝ � 1) or space-charge dom-

inated (ŝ → 1), and is equivalent to the normalized intensity parameter χ used for

UMER but more convenient for use in the beam frame. The PTSX device consists of

three co-linear cylinders with radius rw = 0.1 m, each divided into four 90◦ azimuthal

sectors (see Figs. 3.1 and 3.5 in Chapter 3). The plasma is confined radially in the

central 2 m-long cylinder by oscillating voltages. The two end cylinders are each 0.4
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m long, and static voltages on the end cylinders confine the ions axially. Details of

the PTSX device and diagnostics are described in Chapter 3 of this thesis.

1.4 Thesis Overview

In this thesis research, detailed experimental studies have been performed on the

PTSX device to increase our basic understanding of the transverse dynamics of intense

beam propagation through a periodic focusing quadrupole magnetic field.

As indicated in the previous sections, the PTSX device has several unique features

compared with other scaled intense beam experiments. First, the PTSX device is a

beam-frame experiment based on the equivalence of the transverse dynamics of an

intense coasting beam and a trapped pure ion plasma. Hence, it is critical to have

a well-characterized trapped plasma without effects that may invalidate the physics

similarity. Second, due to the very good confinement of nonneutral plasmas in a Paul

trap and the capability of applying arbitrary lattice waveforms, the PTSX device

has a great advantage in observing the long-time-scale emittance growth induced by

transverse beam compression or machine imperfections. Third, because of the very

different plasma parameters (low density and energy, pure ion plasma) and unique

confinement configuration (particle trapping by means of time-varying electric fields),

use of conventional plasma diagnostic methods such as a Langmuir probe, phosphor

screen, or interferometry are typically not applicable to the PTSX device. In particu-

lar, the lack of non-destructive diagnostics makes it difficult to determine the detailed

plasma behavior during the middle of a trapping cycle. Indeed, it is generally chal-

lenging to develop non-destructive diagnostics for the PTSX device.
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To address these issues, several important and new research activities have been

performed on the PTSX device. First, the ion injection process has been optimized

to achieve a well-characterized initial beam state by considering various factors such

as injection beam mismatch, production of fast ions, two-stream interactions, and

virtual cathode formation. Second, experiments on transverse beam compression

have been performed. Changes in both the lattice amplitude and the lattice period

are considered. Emittance growth during the compression is measured and compared

with analytical theory and numerical simulations. Third, machine imperfection effects

have been investigated. In particular, the effects of faulty magnet sets and random

noise are considered. The excitation of envelope oscillations are identified as a result

of focusing field errors, and a continuous increase in emittance that depends on the

noise duration and amplitude are observed. Finally, as a non-destructive diagnostic, a

laser-induced fluorescence (LIF) diagnostic system and a compact barium ion source

have been developed and tested. This thesis is organized in the following manner.

Chapter 2 provides derivations and discussions of various theoretical frameworks

of intense beam dynamics relevant to subsequent chapters. The equivalence between

the Paul trap configuration and intense beam propagation through a periodic focusing

quadrupole magnetic field is presented, including a discussion of limitations of the

analogy. In support of the analysis of the experimental data obtained in the PTSX

device, several beam dynamics models are presented. Single-particle orbits are first

introduced, including a discussion of the smooth-focusing approximation. To describe

an ensemble of particles, the envelope equations are derived using the Kapchinskij-

Vladimirskij (KV) distribution function. The beam equilibrium is presented in the

smooth-focusing approximation, and the corresponding global force balance equation

is derived.
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Chapter 3 describes the PTSX apparatus. A general overview of the basic equip-

ment, including vacuum system and electrode control system, is presented. The

operation of the PTSX device is described, together with the characteristic plasma

parameters. The cesium ion source which has been used for the initial phase of

PTSX experiments is described. The design, fabrication, and data acquisition of the

radially scanning charge collector system for the measurement of the low levels of

charge are also presented. It is demonstrated that the radial ion charge profiles can

be measured accurately to as low as the 1 fC range, which is adequate to detect the

formation of halo particles. As an effort to develop a non-destructive diagnostic in the

PTSX device, the design and installation of the barium ion source and laser-induced

fluorescence (LIF) diagnostic system are described, together with initial test results.

Chapter 4 addresses the ion injection optimization processes to achieve a well-

characterized initial plasma. Various factors that may invalidate the physics similar-

ity, such as injection beam mismatch, production of fast ions, two-stream interactions,

and virtual cathode formation, are characterized with the goal of finding optimum ion

injection conditions. When the external focusing field is too weak or the self-field force

is too strong, it is observed that the initial beam experiences mismatch oscillations,

which leads to a shoulder in radial density profile measured in the downstream region.

The population of the fast ions, which results from the particle trapping using a DC

bias voltage, is minimized by the optimal timing of the inject-trap-dump-rest cycle.

Two-stream interactions and virtual cathode formation set the upper and lower limits

of the axial beam velocity. Finally, a well-matched initial plasma has been obtained

with a normalized beam intensity ŝ ∼ 0.2 and a nearly Gaussian radial profile. This

initial plasma is stable for more than 50 ms (3000 FODO equivalent lattice periods),

and serves as a baseline case for the subsequent experiments.
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Chapter 5 presents key results and analysis of the experiments on transverse

beam compression. Both changes in the lattice amplitude and changes in the lattice

period are considered. From a comparison of the analytical estimates, experimental

results, and particle-in-cell (PIC) simulations, it is found that the key physics issue

in transverse beam compression is how to suppress the excitation of mismatch os-

cillations, which are usually accompanied by emittance growth and halo formation.

When the phase advance is low enough, adiabatic changes in the smooth-focusing

frequency turned out to be an effective control of transverse beam compression, min-

imizing the emittance growth. During the frequency modulation experiments, fre-

quency overshoot (or undershoot) of the instantaneous frequency has been observed,

which provides useful insights into single-particle orbit instabilities and collective

mode excitations.

Chapter 6 of this thesis contains experimental investigations of the transverse

beam dynamics in response to various machine imperfection effects present in high-

intensity accelerators. Faulty magnet effects are simulated by spoiling the voltage

waveform for a few or several lattice periods. A non-trivial oscillatory behavior in the

on-axis signal has been observed, which is effectively explained in terms of collective

mode excitations and beam mismatch in a KV-equivalent beam. Random noise effects

are studied by adding a small random ripple on top of the applied voltage waveform.

Noise-enhanced emittance growth is demonstrated, which may affect intense beam

transport over long propagation distances in linacs, or the length of the beam lifetime

in storage rings. In particular, the synergistic effects of collective modes and colored

noise are observed, which is consistent with theoretical predictions and numerical

simulations.
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Finally, Chapter 7 summarizes the conclusions drawn from the earlier chapters

and identifies possible areas of future research.



Chapter 2

Theoretical Background

2.1 Principles of the Paul Trap Simulator Experi-

ment (PTSX)

In this section, we present a brief theoretical description that illustrates the equiva-

lence between the Paul trap configuration and intense beam propagation through a

periodic focusing quadrupole magnetic field.

2.1.1 Intense Beam Propagation

We consider an intense charged particle beam with average axial momentum pb =

γbmbβbc propagating in the z-direction through a periodic focusing quadrupole mag-

netic field with axial periodicity length S = const. Here, (γb − 1)mbc
2 is the directed

axial kinetic energy of the beam particles, γb = (1 − β2
b )
−1/2 is the relativistic mass

factor, Vb = βbc is the average axial velocity, mb is the rest mass of a beam particle,

20
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and c is the speed of light in vacuo. We assume a thin beam with

a, b� S, (2.1)

where a and b are the characteristic x- and y- dimensions of the beam. Furthermore,

the beam is assumed to be continuous in the z-direction. The thin-beam approximation

in Eq. (2.1) permits a Taylor expansion of the applied focusing fields about the beam

axis at (x, y) = (0, 0). Consistent with Eq. (2.1), we can also make use of the paraxial

approximation [Davidson, 1990; Davidson and Qin, 2001]

v2
x, v

2
y , (vz − Vb)

2 � V 2
b , (2.2)

and the particle motion in the beam frame is nonrelativistic. In addition, we introduce

the scaled time variable s = βbct, and the dimensionless transverse velocities x′ =

dx/ds and y′ = dy/ds. From now on, as is customary in accelerator physics, we

denote by s the configuration space coordinate measured along the principal direction

of beam propagation, i.e., s = z [Wiedemann, 1999; Lee, 2004]. Then, within the

framework of the assumptions summarized above, the nonlinear beam dynamics in

the transverse, laboratory-frame phase space (x, y, x′, y′) is described by the evolution

of the distribution function fb(x, y, x
′, y′, s).

With regard to the self-generated electric and magnetic fields, we make use of the

electrostatic and magnetostatic approximations [Davidson and Qin, 2001]. That is,

the self-generated electric and magnetic fields, Es(x, t) and Bs(x, t), are approximated

by

Es = −∇φs,

Bs = ∇× Aszêz, (2.3)
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where the self-field potentials, φs(x, t) and Asz(x, t), are determined self-consistently

from Maxwell’s equations

∇2
⊥φ

s = −qbnb
ε0

= −qb
ε0

∫
dx′dy′fb,

∇2
⊥A

s
z = −µ0qbnbVb = −µ0qbVb

∫
dx′dy′fb, (2.4)

where qb is the beam particle charge, ε0 is permittivity of free space, µ0 is permeability

of free space, and nb(x, y, s) =
∫
dx′dy′fb is the number density of beam particles.

Here, we assume the axial velocity spread is small in comparison with the directed

axial velocity Vb = βbc, and approximate ∇2 ' ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2 in consistent

with the thin-beam approximation. In addition, we can approximate Asz = Vbφ
s/c2

from Eq. (2.4). The transverse Lorenz force due to the self fields can be expressed as

Fs
⊥ = qb (E

s + Vbêz ×Bs)⊥

= −qb∇⊥ (φs − VbA
s
z)

= −qb
(
1− β2

b

)
∇⊥φ

s, (2.5)

and the normalized self-field potential can be defined by

ψ(x, y, s) =

(
1

γ2
b

)
qbφ

s

γbmbβ2
b c

2
. (2.6)

The factor 1/γ2
b is associated with the fact that the focusing self-magnetic force pro-

duced by the axial beam current reduces the net self-field (self-electric plus self-

magnetic) force on a beam particle [Davidson and Qin, 2001]. In particular, for the

case of relativistic electron beam, self-magnetic force nearly cancels the effective self-

electric force [Wangler, 1998]. Hence, self-field effect is more significant for proton

or heavy ion beams at the lower velocities.

For a thin beam, the transverse focusing force on a beam particle produced by

the periodic focusing quadrupole magnetic field given by Bq(x) = Bq
xêx + Bq

y êy (see
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Chapter 1) can be approximated over the cross-section of the beam as

Ffoc = qbVbêz ×
(
Bq
xêx +Bq

y êy
)

= −qbVbB′
q(s) [xêx − yêy] , (2.7)

where (x, y) is the transverse displacement of a particle from the beam axis, and the

field gradient coefficient B′
q(s) is defined by

B′
q(s) ≡

(
∂Bq

x

∂y

)
(x,y)=(0,0)

=

(
∂Bq

y

∂x

)
(x,y)=(0,0)

, (2.8)

and B′
q(s) = B′

q(s + S) has axial periodicity length S. If we define the s-dependent

focusing coefficient κq(s+ S) = κq(s) by

κq(s) =
qbVbB

′
q(s)

γbmbβ2
b c

2
, (2.9)

then the laboratory-frame Hamiltonian Ĥ⊥(x, y, x′, y′, s) for the transverse single-

particle motion is given (in dimensionless variables) by

Ĥ⊥ =
1

2
(x′2 + y′2) +

1

2
κq(s)(x

2 − y2) + ψ(x, y, s). (2.10)

Finally, the nonlinear beam dynamics and collective process in the laboratory-

frame transverse phase space is described self-consistently by the Vlasov-Maxwell

equations{
∂

∂s
+ x′

∂

∂x
+ y′

∂

∂y
+

(
−κq(s)x−

∂ψ

∂x

)
∂

∂x′
+

(
+κq(s)y −

∂ψ

∂y

)
∂

∂y′

}
fb = 0,

(2.11)

and (
∂2

∂x2
+

∂2

∂y2

)
ψ = − 1

ε0

q2
b/γ

2
b

γbmbβ2
b c

2

∫
dx′dy′fb

= −2πKb

Nb

∫
dx′dy′fb. (2.12)
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Here, Nb =
∫
dxdynb is the number of beam particles per unit axial length, and Kb is

the dimensionless self-field perveance defined by [Lawson, 1958]

Kb =
(

1

4πε0

)
2Nbq

2
b/γ

2
b

γbmbβ2
b c

2
, (2.13)

which is the ratio of self-field energy to axial kinetic energy. Proportional to the

beam current Ib = qbNbβbc but independent of the radial beam dimensions, the self-

field perveance Kb is a convenient dimensionless measure of the beam intensity during

axial beam propagation. The Vlasov-Maxwell equations (2.11) and (2.12) are strongly

nonlinear because the self-field potential ψ is coupled with fb through Maxwell’s

equations, and are widely used to describe the stability and transport properties of

an intense beam propagating through a periodic focusing quadrupole magnetic field.

2.1.2 Paul Trap Configuration

From the previous section, we note that the particle motion in the beam frame is

nonrelativistic, and that the periodic quadrupole focusing terms in Eqs. (2.10) and

(2.11) can be simulated in the laboratory frame by applying oscillatory quadrupole

electric fields. Therefore, it is possible to study the nonlinear transverse beam dynam-

ics described by Eqs. (2.10), (2.11), and (2.12) in a compact Paul trap configuration

[Davidson et al., 2000; Okamoto and Tanaka, 1999; Kjærgaard and Drewsen,

2001].

To simulate an axially continuous intense charged particle beam, we consider a

long nonneutral plasma column with length ∼ 2L and characteristic radius rp � 2L,

confined axially by applied DC voltages +V̂ = const. on end cylinders at z = ±L.

The particles constituting the nonrelativistic pure ion plasma have charge q and mass

m. With respect to transverse confinement of the particles in the x− y plane, there
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Figure 2.1: (a) Side view and (b) end view of the Paul trap configuration [Davidson
and Qin, 2001].

is no applied axial magnetic field (B0 = B0êz = 0). Rather, segmented cylindri-

cal electrodes at radius rw have applied oscillatory voltage ±V0(t) with alternating

polarity on adjacent segments. Here, the applied voltage V0(t) is oscillatory with

V0(t + T ) = V0(t) and
∫ T
0 dtV0(t) = 0, where T = const. is the period, and f0 = 1/T

is the oscillation frequency. For the typical operating conditions in the Paul trap

(rwf0 � c), inductive electromagnetic effects are negligible. Neglecting end effects

(∂/∂z = 0), and representing the applied electric field by Ea = −∇⊥φq(x, y, t), where

∇⊥ ·Ea = 0 and∇⊥×Ea ' 0, it is readily shown that the solution to∇2
⊥φq(x, y, t) = 0

that satisfies the appropriate boundary conditions at r = rw is given by [Davidson
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et al., 2000]

φq(x, y, t) =
4V0(t)

π

∞∑
l=1

sin(lπ/2)

l

(
r

rw

)2l

cos(2lθ) (2.14)

for 0 ≤ r ≤ rw and 0 ≤ θ ≤ 2π. Near the cylinder axis (r � rw), Eq. (2.14) readily

gives to lowest order

φq(x, y, t) =
1

2

m

q
κq(t)

(
x2 − y2

)
, (2.15)

where the time-dependent oscillatory quadrupole focusing coefficient κq(t+T ) = κq(t)

is defined by

κq(t) ≡
8qV0(t)

mπr2
w

, (2.16)

which has dimensions of [s−2] (note that the s-dependent focusing coefficient κq(s)

defined in the previous section has dimensions of [m−2]). Most importantly, from Eq.

(2.14), the leading-order correction to Eq. (2.15) is of order (1/3)(r/rw)4. Hence,

for sufficiently small rp/rw, the quadrupole potential in Eq. (2.15) is a very accurate

representation of the applied focusing potential.

We now construct the Hamiltonian for the transverse particle motion in the

quadrupole potential, neglecting axial variations (∂/∂z = 0). Denoting the (dimen-

sional) transverse particle velocities by ẋ = dx/dt and ẏ = dy/dt, and the self-field

electrostatic potential due to the plasma space charge by φs(x, y, t), it readily follows

that the (dimensional) Hamiltonian H⊥(x, y, ẋ, ẏ, t) describing the transverse particle

motion is given by

H⊥(x, y, ẋ, ẏ, t) =
1

2
m(ẋ2 + ẏ2) +

1

2
mκq(t)(x

2 − y2) + qφs(x, y, t). (2.17)

Since the axial beam current is quite small in the trap, the self-magnetic force is

negligible. We recognize that the transverse Hamiltonian in Eq. (2.17) is identical

in functional form to the transverse Hamiltonian defined in Eq. (2.10) provided we

make the replacements summarized in Table 2.1.
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Finally, the nonlinear Vlasov-Poisson equations describing the self-consistent evo-

lution of the distribution function f(x, y, ẋ, ẏ, t) and the self-field electrostatic poten-

tial φs(x, y, t) in the transverse phase space (x, y, ẋ, ẏ) can be expressed as{
∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+

(
−κq(t)x−

q

m

∂φs

∂x

)
∂

∂ẋ
+

(
+κq(t)y −

q

m

∂φs

∂y

)
∂

∂ẏ

}
f = 0,

(2.18)

and (
∂2

∂x2
+

∂2

∂y2

)(
q

m
φs
)

= − q2

ε0m
n(x, y, t)

= −2πK

N

∫
dẋdẏf, (2.19)

where n(x, y, t) =
∫
dẋdẏf is the particle number density in the Paul trap, N =∫

dxdyn(x, y, t) is the number of particles per unit axial length (particle line density),

and K is the dimensional self-field perveance defined by

K =
1

4πε0

2Nq2

m
. (2.20)

Therefore, the collective process and nonlinear transverse dynamics described by the

nonlinear Vlasov-Poisson equations (2.18) and (2.19) for the one-component nonneu-

tral plasma configuration in Fig. 2.1 are identical to those described by Eqs. (2.11)

and (2.12) for an intense beam propagating through a periodic focusing quadrupole

magnetic field, provided we make the replacement in Table 2.1.

2.1.3 Limitations of Paul Trap Analogy

As noted earlier, the Paul trap analogy described above is intended to simulate the

transverse dynamics of a continuous and thin beam propagating in a periodic focusing

quadrupole magnetic field. Furthermore, the Hamiltonian in Eq. (2.17) and the
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ŝ
=

ω̂
2 p

2
ω

2 q
[1

]

Se
lf-

fie
ld

pe
rv

ea
nc

e
K

b
=

1
4
π

ε
0

2
N

b
q
2 b
/
γ
2 b

γ
b
m

b
β
2 b
c
2

[1
]

K
=

1
4
π

ε
0

2
N

q
2

m
[m

2
/
s2

]

T
ra

ns
ve

rs
e

H
am

ilt
on

ia
n

Ĥ
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Table 2.1: Equations for the transverse dynamics of an intense relativistic beam prop-
agating through a periodic focusing quadrupole magnetic field, and for a nonneutral
plasma trapped in the oscillating quadrupole electric field of a Paul trap.
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nonlinear Vlasov-Poisson equations (2.18) and (2.19) describe only the transverse

dynamics of the long nonneutral plasma column (2L � rp) in Fig. 2.1, and z-

variation and axial particle motions are not included in the description. While such

a model is expected to provide a good description of the transverse dynamics of

the nonneutral plasma column for 2L � rp, there are important limitations on the

range of applicability of the Paul trap analogy for simulating the propagation of a

continuous beam through a periodic focusing lattice.

Most importantly, the nonneutral plasma column illustrated in Fig. 2.1 is confined

axially, and the particles execute axial bounce motion between the ends of the plasma

column (nearly at z = ±L). If we denote the characteristic axial velocity of a particle

with axial kinetic energy Eb by vb = (2Eb/m)1/2, then the characteristic bounce time

is τb ∼ 4L/vb. At low-to-moderate density, the characteristic period τq for transverse

motion and characteristic plasma radius rp are approximately related by τq ∼ 2rp/vt,

where vt = (Ti/m)1/2 is the thermal speed of ions with temperature Ti. Therefore, in

an approximate sense, the transverse and axial oscillation periods stand in the ratio

τq/τb ∼ (rp/2L)(vb/vt). On a time scale τq ∼ τb, the finite-length effects of the axial

bounce motion of a particle become important, and limit the validity of the Paul

trap analogy with the propagation of a continuous beam through a periodic focusing

lattice. For sufficiently large 2L � rp and moderate vb, however, the axial bounce

period τb can be very long. As illustrative parameters, consider the case where rp = 1

cm, 2L = 200 cm, and the frequency f0 = 1/T of the applied oscillatory voltage

V0(t) is set to f0τq & 4 for stability. Further, we assume that particles are injected

with axial kinetic energy Eb = 5 eV and ion temperature Ti = 0.1 eV. In this case,

τb ∼ 20τq ∼ 80T . Hence, a typical particle in Fig. 2.1 experiences the effects of 80
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oscillation periods of the quadrupole focusing potential (80 equivalent lattice periods)

before it executes one axial bounce in the trap.

Another limiting factor of the Paul trap analogy is the effect of collisions. Col-

lisional effects in high-energy beams in actual accelerators and transport lines are

often negligible. Therefore, if collisional effects become significant for the nonneutral

plasma in the trap, then the Paul trap analogy is no longer valid. The characteristic

collision time for scattering of ions by background neutral atom is [Huba, 2004]

τin ≈
1

nnσins vt
, (2.21)

where nn is the average neutral density, and σins is the ion-neutral collision cross

section, typically ∼ 5× 10−15 cm2 and weakly dependent on temperature. If we use

the ideal gas law nn = P/Tr, it is estimated that τin > 2 sec when the base pressure P

is kept below 10−7 Torr at room temperature Tr = 300 K. The characteristic collision

time for ions colliding with other ions is given [Goldston and Rutherford, 1995]

τii ≈
12π3/2ε20m

2v3
t

niq4 ln Λ
, (2.22)

where ni is the average ion density and ln Λ is Coulomb logarithm, to good approxi-

mation ∼ 14 for the PTSX parameters. For the typical operating conditions for the

PTSX, it is estimated that τii > 0.5 sec when ni < 106 cm−3. Hence, by limiting

the trapping time of ions below several hundred milliseconds, we can avoid collisional

effects.

2.1.4 System Parameters

The detailed transverse motion of individual particles in the PTSX is approximately

composed of both a rapid oscillation with frequency f0 and a slow oscillation with
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characteristic frequency ωq. In the smooth-focusing approximation [Davidson, 1990;

Reiser, 1994; Davidson and Qin, 2001], where there is averaging over the rapid mo-

tion with frequency f0, orbit equations with a constant focusing coefficient are often

used to describe the average effects of the periodic focusing quadrupole field. The ex-

pression for the average focusing frequency ωq in the smooth-focusing approximation

is given by [Davidson and Qin, 2001]

ωq =

√√√√〈(∫ t̃

t0
dtκq(t)

)2〉
T

−
〈(∫ t̃

t0
dtκq(t)

)〉2

T

, (2.23)

where 〈· · ·〉T denotes the temporal average over one oscillation period.

〈· · ·〉T (t) =
1

T

∫ t+T/2

t−T/2
dt̃ · · · . (2.24)

Two illustrative examples of oscillatory waveforms for the quadrupole focusing coef-

ficient κq(t) = (8q/mπr2
w)V0(t) are shown in Fig. 2.2. Here, Fig. 2.2(a) corresponds

to a sinusoidal waveform with κq(t) = κ̂q sin(2πt/T ), where κ̂q = (8q/mπr2
w)V̂0 and

V̂0 = |V0(t)|max. This sinusoidal waveform is least taxing on the bandwidth limit of the

electronic system of the PTSX device [Gilson et al., 2004] and is an approximation

to a quadrupole lattice with short magnets with significant fringe fields. The smooth-

focusing frequency for the case of the sinusoidal waveform is given approximately

by

ωq =
8q

mπr2
w

(
V̂0

f0

)
1

2π
√

2
. (2.25)

Figure 2.2(b) corresponds to a periodic step-function lattice with maximum amplitude

κ̂q and filling factor η. This FODO lattice (Focusing-Off-Defocusing-Off) has hard-

edged quadrupole magnets and is an idealization of a magnetic alternating-gradient
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Figure 2.2: Illustrative oscillatory waveforms for the quadrupole focusing coefficient
κq(t) corresponding to (a) the sinusoidal waveform κq(t) = κ̂q sin(2πt/T ), and (b) a
periodic step-function waveform with maximum amplitude κ̂q and filling factor η.

transport system. The smooth-focusing frequency for the case of a periodic step-

function lattice is given approximately by

ωq =
8q

mπr2
w

(
V̂0

f0

)
η

4

√(
1− 2

3
η
)
. (2.26)

It is interesting to note that when η = 0.572, both the sinusoidal waveform and the

periodic step-function lattice give the same value of the smooth-focusing frequency.

Experiments performed to date using PTSX have employed a sinusoidal waveform

[Gilson et al., 2004].

The actual slow transverse oscillation frequency (depressed betatron frequency) is

determined by including the net radial force. The self-electric field of the nonneutral
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plasma is repulsive and serves to depress the transverse oscillation frequency. For uni-

form density plasma, the depressed betatron frequency νb for slow transverse particle

oscillations is approximately given by

ν2
b = ω2

q −
ω̂2
p

2
. (2.27)

Here, we denote the uniform plasma density by n̂ and the corresponding plasma fre-

quency by ω̂p = (n̂q2/ε0m)
1/2

. An important dimensionless parameter ŝ that measures

the normalized beam intensity and self-field force on a particle is defined by

ŝ ≡
ω̂2
p/2

ω2
q

. (2.28)

The factor 1/2 associated with ω̂2
p in Eqs. (2.27) and (2.28) is a geometric factor

which results when a rigorous calculation of the collective oscillation frequency is

carried out [Davidson and Qin, 2001]. For the transverse confinement of a beam

particle by applied focusing field, we require that ŝ < 1, or equivalently ν2
b > 0.

Particles in general travel for several oscillation periods of V0(t) before completing

one slow transverse oscillation, and the advance in phase of the slow transverse oscil-

lation that the particle undergoes per oscillation period T is called the phase advance

σ. Due to the self-electric field, the phase advance σ is smaller than the vacuum

phase advance σv that is computed in the absence of space-charge effects. The quan-

tity σ/σv is a measure of the relative strength of space-charge effects as compared

to the strength of the applied focusing field. In the smooth-focusing approximation

which is valid for vacuum phase advance σv . 2π/5 = 72◦, σv is estimated to be

σsfv =
ωq
f0

. (2.29)

Further, for a uniform density profile, the depressed vacuum phase advance is related

to ŝ by the relation σsf = σsfv (1− ŝ)1/2 in the smooth-focusing approximation.



2.1. Principles of the Paul Trap Simulator Experiment (PTSX) 34

In storage rings and circular accelerators, it is customary to introduce the tune ν

(often, especially in the European literature, it is denoted by Q), which is defined as

the number of slow transverse oscillations that a particle makes as it circulates once

around the ring with circumference C. In the absence of the beam, the undepressed

tune is approximately ν0 = Cωq/2πVb, where Vb is the axial beam velocity. In the

presence of the unform density beam, however, the depressed tune ν is given by

ν = ν0(1 − ŝ)1/2. The corresponding tune shift that results from the beam space

charge is given by ∆ν = ν − ν0 = ν0

[
(1− ŝ)1/2 − 1

]
, and tune depression is given by

ν

ν0

= (1− ŝ)1/2. (2.30)

The dimensionless parameter ν/ν0 is complementary to the normalized intensity pa-

rameter ŝ in the way in which it characterizes the relative strength of the space-charge

effects. We also note that ν/ν0 = σsf/σsfv .

2.1.5 Operating Range

As mentioned earlier, transverse confinement of the nonneutral plasma column by

the focusing field requires ŝ < 1 or ω̂p/
√

2 < ωq. On the other hand, to avoid so-

called the single-particle orbit instability associated with an overly strong focusing

field, the vacuum phase advance σv should be less than 180◦. In the smooth-focusing

approximation for a sinusoidal waveform of V0(t), this condition can be expressed as

σsfv = ωq/f0 < 0.9080π/
√

2 (= 115.6◦). Combining these inequalities gives

1√
2

(
n̂q2

ε0m

)1/2

<
8qV̂0

mπr2
wf0

1

2
√

2π
< 0.9080

π√
2
× f0. (2.31)

The inequalities in Eq. (2.31) are expected to assure robust transverse confinement

of the plasma particles in the PTSX. The PTSX device is capable of reaching and ex-

ceeding the right-most inequality in Eq. (2.31). Note that this limit can be expressed
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Figure 2.3: In the (f0, V̂0) parameter space, curves of constant vacuum phase advance
σsfv are parabolae, while the curves of constant average focusing frequency ωq are
straight lines [Gilson et al., 2003b].

as a quadratic relationship between V̂0 and f0 which are the parameters directly con-

trolled in the laboratory. Due to electronics limitations, we normally operate the

system in the parameter space (f0 < 100 kHz, V̂0 < 400 Volts). Combining these

conditions and Eq. (2.31) for a singly ionized cesium ion yields ωq . 100 × 103 s−1,

and n̂ . 1.5× 106 cm−3. The density limit is consistent with the collisionless plasma

condition discussed in Sec. 2.1.3.
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2.2 Beam Dynamics in the Paul Trap Simulator

Experiment (PTSX)

In this section, we present several beam dynamics models that are relevant to the

analysis of the experimental results of the PTSX in the subsequent chapters. For the

quadruple focusing field, a sinusoidal waveform

κq(t) = κ̂q sin(2πf0t+ Φ) (2.32)

is adopted. Here, an arbitrary constant phase Φ has been introduced in Eq. (2.32).

When the initial beam is in the focusing (F) and defocusing (D) phases, then Φ =

±π/2, and when in the drift (O) phase, then Φ = 0.

2.2.1 Single-Particle Orbits

For the quadrupole focusing field given in Eq. (2.32), the single-particle motion in the

absence of space-charge effects and end effects is governed by the Mathieu equation,

d2

dt2
x(t) + κ̂q sin(2πf0t+ Φ)x(t) = 0, (2.33)

with a similar equation for y(t), provided we make the replacements x(t) → y(t) and

κ̂q → −κ̂q in Eq. (2.33).

Detailed properties of the solutions for x(t) to Mathieu’s equation (2.33) have

been extensively tabulated by Abramowitz and Stegun [Abramowitz and Stegun,

1972]. The first-order solution x̃(t) can be approximated as follows:

x̃(t) = xsf (t)

[
1 +

σsfv
π
√

2
sin(2πf0t+ Φ)

]
, (2.34)

with the smooth-focusing motion term xsf (t) given by (for cosφ0 6= 0)

xsf (t) =
x0

cosφ0

[
1 + (σsfv /π

√
2) sin Φ

] cos(ωqt+ φ0). (2.35)
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Figure 2.4: Illustrative examples of (a) focusing coefficient κq(t), and time history
of (b) position and (c) velocity of single-particle motion in the PTSX. Here, σsfv =
49.8◦, Φ = 0, x(t = 0) = x0, and ẋ(t = 0) = 0. The dashed lines correspond
to the contributions from the smooth-focusing motion term in Eq. (2.34) with φ0 =
tan−1

√
2. When σsfv is too high, the single-particle motion is overfocused and becomes

unstable (i.e., σsfv → 115.6◦). When σsfv is too low, the transverse focusing is too weak
and single-particle motion becomes vulnerable to the defocusing space-charge force
(i.e., ŝ→ 1).
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Here, ωq is the smooth-focusing frequency in Eq. (2.25), σsfv = ωq/f0 is the smooth-

focusing vacuum phase advance, and x0 and φ0 are constants determined from the

initial conditions x(t = 0) = x̃(t = 0) = x0 and ẋ(t = 0) = ˙̃x(t = 0). The smooth-

focusing motion term represents a simple harmonic oscillation with spring constant

mω2
q , where the restoring force is the ponderomotive force associated with rapidly

oscillating inhomogeneous electric fields [Chen, 1984]. The approximate solution Eq.

(2.34) is valid only for sufficiently small σsfv , and when σsfv > 115.6◦, the solutions

for x(t) to Eq. (2.33) are unstable (i.e., grow without bound). If one is near the

stability limit, then the actual value of vacuum phase advance σv has to be obtained

by integrating Eq. (2.33) numerically over several focusing periods. Making use

of Floquet’s theorem [Wiedemann, 1999] allows us to determine the exact phase

advance through the relation

σv = cos−1

{
x(t) + x(t+ 2T )

2x(t+ T )

}
, (2.36)

which is indeed independent of t, and the single-particle orbit remains stable for

σv < 180◦. As shown in Fig. 2.5, the smooth-focusing vacuum phase advance σsfv

is in good agreement with the exact (numerically-calculated) vacuum phase advance

σv for σv . 2π/5 = 72◦, suggesting that the smooth-focusing approximation is valid

provided the σv is sufficiently small. Possible end effects on the single-particle orbits

due to axial bouncing motions in the PTSX are discussed in Appendix A.

2.2.2 Envelope Equations

To describe an ensemble of particles in a periodic focusing quadrupole field with

self-field force, we consider an axially-uniform long charge bunch with uniform num-

ber density n(x, y, t) = n̂(t) (independent of x and y, but dependent on t) within
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Figure 2.5: Plot of the (exact) vacuum phase advance σv calculated numerically from
Eq. (2.36) versus the vacuum phase advance σsfv determined using ωq as calculated in
the smooth-focusing approximation for the sinusoidal lattice function. The agreement
is very good for σv . 2π/5 = 72◦.

the elliptical cross-section 0 ≤ x2/a2(t) + y2/b2(t) ≤ 1, and zero density outside.

Here, a(t) and b(t) are the x- and y-direction envelopes (or half-width) of the beam.

Such a periodically-focused uniform-density beam is obtained self-consistently for the

choice of the Kapchinskij-Vladimirskij (KV) distribution function [Kapchinskij and

Vladimirskij, 1959; Davidson and Qin, 2001], which is the only known exact,

periodically-focused equilibrium solution to the nonlinear Vlasov-Poisson equations

(2.18) and (2.19), including intense self-field effects. In this KV beam, the line den-

sity N =
∫
dxdyn(x, y, t) = n̂πab = const., and the self-field potential is given by
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[Davidson, 1990; Davidson and Qin, 2001]

q

m
φs(x, y, t) = − 2K

a+ b

[
1

a
x2 +

1

b
y2
]
, (2.37)

in the beam interior. Here, we have taken φs = 0 at (x, y) = (0, 0) without loss of

generality, and assumed a, b � rw, which means that image-charge effects [Allen

and Reiser, 1996; Qian et al., 2003] from the conducting wall at radius rw are

neglected.

Even though the KV beam is singular and unphysical (i.e., has a highly-inverted

distribution in phase space), it can describe the root-mean-squared (rms) behavior

of a beam with a more realistic transverse phase-space distribution, when the two

beams have the same line density and rms beam quality (such as rms emittance

defined later). This concept of equivalent beams was first introduced by Lapostolle

[Lapostolle, 1971] and Sacherer [Sacherer, 1971] in 1971 and has been a useful

approximation for beam dynamics analysis. Important parameters in the concept

of equivalent beams include the rms x and y dimensions of the beam, 〈x2〉1/2 and

〈y2〉1/2, and the x and y direction rms beam velocities, 〈ẋ2〉1/2 and 〈ẏ2〉1/2. Here, the

statistical average of a phase function ξ(x, y, ẋ, ẏ, t) over the four-dimensional phase

space is denoted by 〈ξ〉 (t) and is defined by

〈ξ〉 =

∫
dxdydẋdẏξf∫
dxdydẋdẏf

, (2.38)

where f(x, y, ẋ, ẏ, t) is the distribution function. Note that for a KV beam, 〈x2〉1/2 =

a(t)/2 and 〈y2〉1/2 = b(t)/2.

To quantitatively describe the beam quality, the concept of rms emittance [La-

postolle, 1971; Sacherer, 1971] is introduced. The rms emittance is not only

related to the phase-space volume occupied by the beam particles (which should be
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conserved by Liouville’s theorem), but also dependent on the distortion (filamenta-

tion) produced by nonlinear forces [Reiser, 1994; Wangler, 1998]. If the motions

in the x and y directions are decoupled, as often happens in beam transport sys-

tems [Strehl, 2006], we can define two transverse phase planes (x, ẋ) and (y, ẏ),

and corresponding x- and y-transverse emittances, εx(t) and εy(t), which are given by

[Reiser, 1994; Qian, 1995]

εx(t) = 4

〈x2
〉 〈
ẋ2
〉
−
{

1

2

d

dt

〈
x2
〉}2

1/2

, (2.39)

εy(t) = 4

〈y2
〉 〈
ẏ2
〉
−
{

1

2

d

dt

〈
y2
〉}2

1/2

. (2.40)

Because these emittances are defined in the beam frame (i.e., laboratory frame of the

PTSX) and are not affected by the axial motion, they can be said to be normalized.

If both transverse focusing and space-charge forces are linearly proportional to trans-

verse displacement (such as for the KV beam), the emittances defined by Eqs. (2.39)

and (2.40) can be shown to be conserved by Liouville’s theorem [Davidson and Qin,

2001]. For the KV beam, the transverse rms emittance is directly proportional to

the phase-space area uniformly occupied by the beam particles by factor 1/π, and its

value is invariant in the smooth-focusing approximation [Davidson and Qin, 2001].

Making use of Eq. (2.37) to express self-field forces and following the procedures in

Davidson and Qin [Davidson and Qin, 2001; Courant and Snyder, 1958] readily

gives

d2

dt2
a(t) + κq(t)a(t)−

2K

a(t) + b(t)
=

ε2x
a3(t)

, (2.41)

d2

dt2
b(t)− κq(t)b(t)−

2K

a(t) + b(t)
=

ε2y
b3(t)

, (2.42)

which describe the evolutions of x- and y-direction envelopes of the KV beam, a(t)

and b(t), in periodic focusing quadruple field κq(t). The envelope equations (2.41)
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and (2.42) represent a system of two nonlinear, second-order coupled differential

equations which, in general, must be solved numerically for given initial conditions{
a(0), ȧ(0), b(0), ḃ(0)

}
. If two beams have the same perveance (or equivalently, line

density or current), rms emittances, and initial conditions as the KV beam, then

the transverse rms dimensions of the two beams evolve identically according to Eqs.

(2.41) and (2.42). However, there is an implicit assumption in this concept that the

rms emittance of the two beams being compared remains the same or that the emit-

tance change in time is known a priori [Reiser, 1994]. This assumption is in general

not correct, especially when there is a free energy source for emittance growth such

as charge nonuniformity [Qian, 1995] and rms mismatch [Reiser, 1991].

When the rms dimensions of a beam have the same oscillation frequency as the

focusing field, the beam is said to be rms-matched and emittance growth is minimized.

For a KV beam, the rms matching condition can be expressed as a(t+T ) = a(t) and

b(t + T ) = b(t), resulting in f(x, y, ẋ, ẏ, t + T ) = f(x, y, ẋ, ẏ, t) and 〈a(t)b(t)〉T =

r̄2
b = const. On the other hand, if the beam is rms-mismatched, nonlinear forces

can give rise to a filamentation in phase space causing the rms emittance to increase

[Lapostolle, 1971; Wangler, 1998]. This process cannot be described solely by

the envelope equations for the equivalent KV beam. When the beam is mismatched

in a quadrupole focusing channel, the two transverse degrees of freedom in Eqs. (2.41)

and (2.42) yield two fundamental oscillation modes, which are the breathing mode

and the quadrupole mode. For the breathing mode, the evolution of 〈a(t)〉T and

〈b(t)〉T are in-phase body-wave perturbations, and the frequency is approximately

given by [Reiser, 1994; Davidson and Qin, 2001]

ωB ≈ 2ωq

[
1− 1

2

(
K

r̄2
bω

2
q

)]1/2

. (2.43)
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On the other hand, for the evolution of 〈a(t)〉T and 〈b(t)〉T for the out-of-phase surface-

wave perturbations of the quadrupole mode, the frequency is approximately given by

[Reiser, 1994; Davidson and Qin, 2001]

ωQ ≈ 2ωq

[
1− 3

4

(
K

r̄2
bω

2
q

)]1/2

. (2.44)

Note that ωq ≤ ωQ ≤ ωB ≤ 2ωq and ωQ = ωB = 2ωq for K → 0. Generally,

beam mismatch produces a mixed mode composed of both breathing and quadrupole

modes. In the mixed mode, there often appears a slow amplitude modulation in the

oscillations of the mean radius
√
a(t)b(t) [see Fig. 2.6(b)].

2.2.3 Envelope Oscillation and Halo Formation

In the smooth-focusing approximation for a KV beam with εx = εy = ε = const.,

the envelope equations (2.41) and (2.42) can be further simplified as [Davidson and

Qin, 2001]

d2

dt2
rb(t) + ω2

qrb(t)−
K

rb(t)
=

ε2

r3
b (t)

, (2.45)

which determines the (slow) evolution of the average beam envelope of the KV beam

rb(t) =
√

2
〈
x2
sf + y2

sf

〉1/2
=
√

2Rb(t) with average transverse emittance ε given as

ε = 2Rb

〈ẋ2
sf + ẏ2

sf

〉
−
(
dRb

dt

)2
1/2

. (2.46)

Here, (xsf , ysf , ẋsf , ẏsf ) are slow variables in the smooth-focusing approximation.

The rms matching condition is then rb(t) = const. and ∂f/∂t = 0. For a matched

beam, d2rb/dt
2 = 0 in Eq. (2.45) and the matched-beam radius r̄b is given by

r̄2
b =

K +
√
K2 + 4ε2ω2

q

2ω2
q

. (2.47)
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(a) Φ = π/2. A pure breathing mode is excited.

(b) Φ = 0. A mixed mode is excited.

Figure 2.6: Time evolutions of the x- and y-beam envelopes, a(t) and b(t), mean
radius [a(t)b(t)]1/2, and beam radius rb(t) in the smooth-focusing approximation.
Here, we consider a KV beam with strong injection mismatch for µ = 0.54, s̄ = 0.85,
σsf ≈ 49.8◦(1 − s̄)1/2, and σ ≈ 51.4◦(1 − s̄)1/2. Initially,

{
a(0), ȧ(0), b(0), ḃ(0)

}
=

{µr̄b, 0, µr̄b, 0} and εx = εy = ε = r̄2
bωq(1− s̄)1/2.
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If the initial beam radius rbi is unequal to the r̄b, the imbalance between focusing and

defocusing forces excites a symmetric breathing mode, resulting in oscillations of the

beam envelope rb(t) and on-axis density n̂(t). The frequency of this breathing mode

ωB can be approximated as

ωB = 2ωq

(
1− s̄

2

)1/2

, (2.48)

where s̄ = K/
(
r̄2
bω

2
q

)
is the normalized intensity for the matched beam. Note that the

value of ŝ is oscillating according to the envelope oscillations while s̄ = const. After

introducing the scaled variables R = rb/r̄b and τ = ωqt, the dimensionless equation

of motion for the envelope oscillations becomes

d2R

dτ 2
+R− (1− s̄)

R3
− s̄

R
= 0. (2.49)

To describe the degree of initial mismatch, we also introduce the mismatch parameter

defined by µ = rbi/r̄b. Hence, Eq. (2.49) depends only on the two dimensionless

parameters s̄ and µ, when the initial beam is assumed to be stationary (drbi/dt = 0).

Numerical simulations [Wangler et al., 1998; Ryne et al., 1999] and experiments

[Kehne et al., 1991; Allen et al., 2002] show that beam mismatch is one of the

main sources for the formation of a tail in the density distribution. This tail is the

so-called beam halo. Such a halo leads to beam loss and radioactivation when high

energy particles intercept the accelerator structures. To make a simple quantitative

prediction of halo formation in the PTSX, we consider the motion of a test particle

that interacts with the external focusing force and time-dependent space-charge force

of the mismatched beam core, which can be expressed as

d2X

dτ 2
+X = s̄×


X/R2, |X| < R,

1/X, |X| ≥ R,
(2.50)
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(a) µ = 0.54 and s̄ = 0.85. (b) µ = 0.54 and s̄ = 0.2.

(c) µ = 0.95 and s̄ = 0.85. (d) µ = 0.95 and s̄ = 0.2.

Figure 2.7: Stroboscopic plots of test particles in the mismatched beam. The particles
are plotted in (X, dX/dτ) space every time the core oscillation reaches its minimum,
which corresponds to the occurrence of the maximum displacement of the resonant
orbit. The nonlinear force outside the beam core makes the oscillation period of the
single particle depend on oscillation amplitude. On the other hand, the maximum
single particle displacement within the beam core occurs when the core is at its
maximum radius. Evolution of mismatched beam core for case (a) is illustrated in
Fig. 2.6. Initially, test particles are distributed uniformly in the region (0.1 ≤ X ≤
3.5, dX/dτ = 0).
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where, X = x/r̄b. For the present analysis, we assume axisymmetry and the case of

zero canonical angular momentum, corresponding to one-dimensional particle motion

in the x-direction, say, with y = 0 and dy/dt = 0 [Strasburg, 2001]. Note that the

particles experience a nonlinear force proportional to s̄/X when they are spatially

outside the core, and from Gauss’s law this force is independent of the instantaneous

size of the beam core R. This particle-core model [Wangler et al., 1998; Gerigk,

2004] predicts that the halo is formed from the parametric resonance between test

particles near the beam edge and envelope oscillations induced by the initial mis-

match. If the single particle’s oscillation frequency has a 1:2 parametric ratio with

the oscillation frequency of the core, the particle picks up energy from the core and

increases its oscillation amplitude until the resonant condition becomes out of phase

[Gluckstern, 1994; Gerigk, 2004]. The general tendency is that the maximum

amplitude of the halo particles depends on the mismatch parameter µ, while the

growth rate of halo formation increases with normalized intensity s̄ [Wangler et al.,

1998]. For example, in the case of a strong initial mismatch (µ = 0.54), as illustrated

in Figs. 2.7(a) and 2.7(b), particles initially within the core can have a maximum

amplitude of ∼ 3r̄b, which is about 50% larger than the maximum envelope of the

mismatched core (see Fig. 2.6).

Here, it should be also noted that particles inside the beam core cannot pick up

all of the applied focusing force due to the repulsive space-charge force. The spring

constant for transverse particle motion is depressed to be ν2
b ≈ ω2

q (1 − s̄). Hence,

phase-space particle trajectories inside the core shrink considerably in the dX/dτ

direction for the case of higher s̄ [see Figs. 2.7(a) and 2.7(c)]. The parameters used

in Figs. 2.6 and 2.7 have been chosen for the analysis of the experimental results

presented in Sec. 4.1.
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2.2.4 Beam Equilibrium

A nonneutral collection of ions confined by an external periodic focusing potential

will relax to a quasi-equilibrium state. In equilibrium, local radial force balance on a

fluid element of ions with charge q and mass m in the smooth-focusing approximation

is given by [Davidson and Qin, 2001]

∂

∂r
P⊥(r) = −qn(r)

∂

∂r
φs(r)−mω2

qn(r)r, (2.51)

where n(r) is the equilibrium radial density profile, ωq is the applied smooth-focusing

frequency, and r is the radial distance from the beam axis. Here, the space-charge po-

tential φs(r) is determined self-consistently from Poisson’s equation r−1∂r (r∂rφ
s) =

−qn(r)/ε0, and P⊥(r) = n(r)T⊥(r) is the perpendicular pressure profile which is pro-

portional to transverse temperature profile T⊥(r). A necessary condition for trans-

verse confinement of the ions is that the applied focusing force in Eq. (2.51) should be

sufficiently strong to exceed the defocusing self-field force, i.e., mω2
qn(r)r > qn(r)Es

r ,

where Es
r = −∂φs/∂r = (q/ε0r)

∫ r
0 drrn(r) is the radial space-charge field that solves

Poisson’s equation. For present purposes, we assume that n(r) is a monotonically

decreasing function of r from the on-axis value n(r = 0) = n̂. Then for small r, we

obtain Es
r = (q/2ε0)n̂r, and have the requirement

ŝ ≡
ω̂2
p/2

ω2
q

< 1. (2.52)

Here, ω̂2
p = n̂q2/ε0m is the on-axis (r = 0) plasma frequency-squared.

We now consider an anisotropic equilibrium distribution function f 0 in the smooth-

focusing approximation of the form

f 0 = F (H⊥)G(pz), (2.53)
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where the perpendicular Hamiltonian H⊥ can be expressed as

H⊥ =
p2
x + p2

y

2m
+ V (r), (2.54)

with effective potential for the transverse particle motion V (r) being defined by

V (r) =
1

2
mω2

qr
2 + qφs(r). (2.55)

Here, equilibrium properties (∂/∂t = 0) are assumed to be azimuthally symmetric

(∂/∂θ = 0) and independent of axial coordinate (∂/∂z = 0). Assuming the axial

momentum distribution G(pz) to be normalized according to
∫∞
−∞ dpzG(pz) = 1, it

follows that

n(r) =
∫
dpxdpydpzf

0 =
∫ ∞

0
πdp2

⊥F

(
p2
⊥

2m
+ V (r)

)
, (2.56)

and

P⊥(r) = n(r)T⊥(r)

=
1

2

∫
dpxdpydpz(pxẋsf + pyẏsf )f

0

=
∫ ∞

0
πdp2

⊥

(
p2
⊥

2m

)
F

(
p2
⊥

2m
+ V (r)

)
. (2.57)

Here, (px, py) = m(ẋsf , ẏsf ), p
2
⊥ = p2

x+p
2
y, and use has been made of

∫∞
−∞ dpx

∫∞
−∞ dpy · · · =∫∞

0 πdp2
⊥ · · ·. We now operate on Eq. (2.51) with 2π

∫ rw
0 drr2 · · ·, and carry out an

integration by parts assuming P⊥(r = rw) = 0. This gives the exact global force

balance equation [Davidson and Qin, 2001]

mω2
qR

2
b = 2T̄⊥ +

Nq2

4πε0
, (2.58)

which is valid for the entire class of anisotropic equilibrium functions f 0 = F (H⊥)G(pz)

expressed in Eq. (2.53). Here, N = 2π
∫ rw
0 drrn(r) is the line density, R2

b =
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(2π/N)
∫ rw
0 drrr2n(r) is the mean-square radius of the beam, and T̄⊥ is the effec-

tive transverse temperature defined by

T̄⊥ =
2π

N

∫ rw

0
drr

〈
p2
⊥

2m

〉
px,py

n(r). (2.59)

The notation 〈· · ·〉px,py
denotes the statistical average over the equilibrium distribution

function in the transverse momentum subspace. Note that the effective transverse

temperature T̄⊥ measures the kinetic energy per particle averaged over the transverse

phase space (i.e., T̄⊥ = m
〈
ẋ2
sf + ẏ2

sf

〉
0
/2) in the smooth-focusing equilibrium, where

fast micromotion associated with quadrupole focusing frequency f0 has been averaged

out, and there is no drift motion in the fluid element (dRb/dt = 0).

Thermodynamically, a possible beam equilibrium state can be best described by

a thermal equilibrium distribution with a constant temperature [Davidson, 1990;

Reiser and Brown, 1993; Brown and Reiser, 1995; Davidson and Qin, 1999].

Practically, only beams in storage rings and circular accelerators can have enough life-

time to relax to a thermal equilibrium state via Coulomb collisions [Reiser, 1994].

In fast transient systems, such as high-gain free-electron lasers and high-intensity

linear accelerators, relaxation mechanisms are too slow to be relevant, and if beam

equilibria are found, they are usually a property of the particle source used [Rosen-

zweig, 2003]. For these cases, however, nonlinear stochastic space-charge forces may

significantly speed up the relaxation process by the thermalization of free energy

or equipartitioning, resulting in emittance growth and beam degradation [Reiser,

1991]. A beam that is injected from the source in a state close to the thermal equilib-

rium distribution can minimize emittance growth resulting from the relaxation toward

equilibrium. Hence, an understanding of thermal equilibrium properties, such as the

equilibrium density profile and relations between global equilibrium parameters, is of

great practical importance.
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We consider the case where F (H⊥) is specified by thermal equilibrium distribution

F =
n̂

(2πmT̂⊥)
exp

(
−H⊥

T̂⊥

)
, (2.60)

where T̂⊥ is a positive constant which will be identified with uniform beam tempera-

ture. Substituting Eq. (2.60) into Eqs. (2.56) and (2.57) readily gives

n(r) = n̂ exp

{
−

1
2
mω2

qr
2 + qφs(r)

T̂⊥

}
, (2.61)

and P⊥(r) = n(r)T̂⊥. Here, we again take φs(r = 0) = 0 without loss of generality, so

that n̂ can be identified with the on-axis number density. As expected, the transverse

temperature profile is isothermal (independent of position), with T⊥(r) = T̂⊥ = const.

Further, T̄⊥ = T̂⊥ is the measure of particle’s random or thermal energy. Finally,

Poisson’s equation becomes

1

r

∂

∂r
r
∂

∂r
φs(r) = − q

ε0
n̂ exp

{
−

1
2
mω2

qr
2 + qφs(r)

T̂⊥

}
, (2.62)

which is a nonlinear differential equation for the space-charge potential φs(r).

After introducing dimensionless variables ρ = r/rβ and χ = qφs/T̂⊥, Eq. (2.62)

can be expressed in the equivalent form

1

ρ

∂

∂ρ
ρ
∂

∂ρ
χ = −4ŝ exp

[
−ρ2 − χ

]
, (2.63)

where r2
β = 2T̂⊥/mω

2
q is the zero-beam-intensity mean-square radius. Numerical

integration of Eq. (2.63) gives a numerically tabulated function, χ(ρ, ŝ), which can

be used to calculate a new dimensionless parameter [Davidson and Qin, 1999]

δb(ŝ) =
1

4πε0

Nq2

2T̂⊥
= ŝ

∫ ∞

0
dρρ exp

[
−ρ2 − χ(ρ, ŝ)

]
, (2.64)

that measures the relative space-charge force compared to the thermal pressure force.

Here, for further simplicity, the integration limit has been set to infinity without
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(a) Linear versus r/Rb scale.

(b) Log versus (r/Rb)2 scale

Figure 2.8: Plots of normalized thermal equilibrium density profiles n(r)/(N/πR2
b)

(a) in the linear versus r/Rb scale and (b) in the log versus (r/Rb)
2 scale for different

values of normalized beam intensity ŝ. The density distribution of nonthermal halo
particles (dotted line) is much more extended and more densely populated than the
natural Debye tail of a thermal equilibrium beam.
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loss of significant accuracy, provided that rβ � rw. A beam is emittance-dominated

for δb � 1(ŝ → 0), while it is space-charge dominated for δb � 1(ŝ → 1). The

mean-square radius R2
b can be expressed in terms of δb as

R2
b = r2

β(1 + δb), (2.65)

which is equivalent to the global force balance equation (2.58). To describe shape

changes of equilibrium density profiles according to the beam intensity, we define a

dimensionless form factor which is defined by [Gilson et al., 2007a]

ζ(ŝ) =
N

n̂πR2
b

=
2δb(ŝ)

ŝ [1 + δb(ŝ)]
. (2.66)

The equilibrium density profile is Gaussian when ŝ→ 0 and ζ = 1, whereas the profile

is uniform when ŝ→ 1 and ζ = 2. The population of the tail portion of the beam can

be quantified by the profile parameter h defined by [Allen and Wangler, 1998]

h =
3

2

{
∫∞
0 dρρ5 exp [−ρ2 − χ]} {

∫∞
0 dρρ exp [−ρ2 − χ]}

{
∫∞
0 dρρ3 exp [−ρ2 − χ]}2 − 2. (2.67)

The profile parameter h is used to compare the peakedness of a distribution to that of a

Gaussian distribution (h = 1 for a Gaussian). The presence of significant nonthermal

halo particles usually corresponds to h > 1 [see Fig. 2.8(b)]. Another important

parameter that measures the scale length over which a local charge perturbation from

the thermal equilibrium state can be effective is the thermal Debye length [Davidson

and Qin, 2001]. The on-axis thermal Debye length λD =
(
ε0T̂⊥/n̂q

2
)1/2

can be

expressed as

λD
rb

=
1

2
√

2ŝ [1 + δb(ŝ)]
, (2.68)

in units of the outer radius of equivalent uniform density beam rb =
√

2Rb.
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(a) Thermal beam intensity parameter. (b) Form factor.

(c) Profile parameter. (d) Thermal Debye length.

Figure 2.9: Plots of dimensionless parameters describing the characteristics of thermal
equilibrium density profiles as a function of normalized beam intensity ŝ.

2.2.5 Longitudinal Dynamics

For analytical simplicity in dealing with the axial momentum distribution G(pz), we

introduce here the drifting Lorentzian distribution for the counter-streaming ions in

the PTSX as

G(pz) =
∆‖/2

π
[
(pz −mvb)2 + ∆2

‖

] +
∆‖/2

π
[
(pz +mvb)2 + ∆2

‖

] , (2.69)

where vb is the average axial speed of streaming ions and ∆‖ = const. > 0 is a measure

of the axial momentum spread which is related to the effective axial thermal speed

vT‖ = (2T‖/m)1/2, by ∆‖ = mvT‖. Here, T‖ is the effective longitudinal temperature.

Note from Eq. (2.69) that 1 =
∫∞
−∞ dpzG(pz) and 0 =

∫∞
−∞ dpzvzG(pz). In actual

accelerators, the temperature anisotropy (T⊥ > T‖) is well known to develop naturally
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[Startsev et al., 2003]. This is mostly due to longitudinal cooling by acceleration

[Reiser, 1994]. For example, for a beam of charged particles with charge q that is

accelerated through a voltage ∆V , a simple estimate shows that the final and initial

longitudinal temperatures are related in the nonrelativistic case by T‖f = T 2
‖i/(2q∆V ).

However, in the PTSX, ∆V is usually less than 9 V, and the longitudinal cooling effect

turns out be to very weak. Particle-in-cell (PIC) simulations using the 3D WARP

code [Friedman et al., 1992; Dorf, 2006] show that the space-charge forces from

the virtual cathode near the source couple the longitudinal and transverse thermal

motions, resulting in T‖ ≈ T⊥. Possible two-stream interactions in the PTSX are

discussed in Appendix B, based on the drifting Lorentzian distribution introduced

in Eq. (2.69).

2.3 Summary and Discussion

For the optimal design and stable operation of high-intensity accelerators and beam

transport systems, it is essential to develop a basic understanding of the beam dy-

namics with significant space-charge effects. Several simplified beam dynamics models

such as test particle calculations (Secs. 2.2.1 and 2.2.3, and Appendix A), envelope

equations based on an equivalent KV beam (Sec. 2.2.2), and a thermal equilib-

rium model (Sec. 2.2.4) can give some insights on intense beam propagation. For

the self-consistent description of an intense beam, however, one must generally solve

the nonlinear Vlasov-Maxwell equations (2.11) and (2.12) using advanced numeri-

cal methods that employ particle-in-cell (PIC) models and nonlinear perturbative

simulation techniques [Friedman et al., 1992; Qian et al., 1997; Qin et al., 2000].
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Due to the lack of dedicated experimental devices for fundamental studies, it is

difficult to verify the results from the numerical simulations and to develop robust

physical models. In Sec. 2.1, we have shown that there is a compelling physics analogy

between intense beam propagation through an AG focusing lattice and nonneutral

plasma confined in a compact Paul trap configuration. Hence, experimental studies

of nonneutral plasma properties in the PTSX device can provide an alternative path

for the detailed study of intense charged particle beam dynamics. The operation

of PTSX has been optimized for ŝ ∼ 0.2, which corresponds to the case where the

space-charge force contributes to about 10% of the total applied focusing force. In

this operating regime, it is expected that the self-consistent effects of the nonlinear

space-charge force, such as emittance growth, can be observed experimentally and be

compared with theory and PIC simulations.



Chapter 3

Experimental Apparatus

In this chapter, the Paul Trap Simulator Experiment (PTSX) apparatus is described.

Section 3.1 gives a general overview of the basic equipment and operation of the

PTSX device, Sec. 3.2 describes the cesium ion source which has been used for the

initial phase of PTSX experiments, Sec. 3.3 describes the charge collector diagnostic

for measuring the radial ion density profile, and finally Sec. 3.4 is devoted to the

laser-induced fluorescence (LIF) diagnostic system with accompanying barium ion

source.

3.1 The Paul Trap Simulator Experiment Device

The Paul Trap Simulator Experiment (PTSX) device is a linear Paul Trap [Paul and

Steinwedel, 1953] constructed from a 2.8 m-long, rw = 10 cm-radius, gold-plated

stainless steel cylinder as shown in Figs. 3.1 and 3.2. The cylinder is divided into

two 40 cm-long end cylinders and a 2L = 2 m-long central cylinder. All cylinders

are azimuthally divided into four 90◦ sectors so that when an oscillating voltage V0(t)

is applied with alternating polarity on adjacent segments, the resulting electric field

57
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Figure 3.1: Schematic diagram of the PTSX device showing the quadrupole electrodes,
cesium ion source, and charge collector.

becomes an oscillating quadruple field near the trap axis. This quadrupole electric

field exerts a ponderomotive force that confines the pure ion plasma radially. To

trap the plasma axially, the two end electrodes are biased to a constant positive

voltage +V̂ . The gold plating of the electrodes increases the surface conductivity

so that small patches of charge do not build up on the surface and influence the

behavior of the trapped plasma. Note that, to place the charge collector along the

null of the quadrupole potential and to facilitate the laser-induced fluorescence (LIF)

diagnostic set up (Sec. 3.4), the electrodes are installed after rotating 45◦ azimuthally

from the configuration used in the theoretical analysis (compare Figs. 2.1 and 3.1).

The aluminum rings and insulating spacers support the electrodes, and in-vacuum

insulated wires are attached to each electrode surface using lead-free silver solder

[Fig. 3.2(b)]. Adjustments of the set screws that move the ball-bearings on the
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(a) Central and source end electrode sets. (b) Diagnostic end electrode set.

Figure 3.2: The gold-plated stainless-steel electrodes are supported by the aluminum
rings with teflon and vespel spacers.

aluminum rings with the use of a theodolite allow alignment of the center of the

electrodes to within 1 mm.

The cesium ion source is located on the trap axis near the center of one of the

short electrode sets so that ion injection is not affected by the fringe fields (Sec. 3.2).

The charge collector is mounted on a linear motion feedthrough at the other end

of the short electrode set, and moves in the transverse direction along a null of the

applied potential in order to minimize the perturbation on the quadrupole potential

configuration (Sec. 3.3). The construction of the PTSX device has been completed

by Dr. Erik Gilson et al. in 2003 after a two-year construction period [Gilson

et al., 2003a,b], and initial experiments successfully demonstrated quiescent beam

propagation over equivalent distances of tens of kilometers over a wide operating

range [Gilson et al., 2004].
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3.1.1 Operation Principle

The PTSX device manipulates the plasma using an inject-trap-dump-rest cycle, and

the one-component plasmas created in the trap are highly reproducible. The time

duration of the injecting (ti), trapping (tt), dumping (td), and resting (tr) phases can

be varied independently, and the total cycle time is tcycle = ti + tt + td + tr. For the

applied voltage waveform, a sinusoidal waveform V0(t) = V̂0 sin(2πf0t) is used.

(a) During injection, the short electrodes on the source end (injection electrodes)

are made to oscillate with the same voltage waveform, ±V0(t), as the central elec-

trodes, which allows the ions to stream into the trap [Fig. 3.3(a)]. Because ions are

injected from the ion source with a circular, stationary cross section into a transverse

focusing system in which the matched state has a pulsating elliptical beam enve-

lope, the injected plasma column is always somewhat mismatched to the alternating-

gradient (AG) focusing lattice (see Figs. 1.1 and 2.2). This type of mismatch is

inherent and unavoidable with the ion source as presently configured. We can min-

imize this injection mismatch by setting rs ∼
√

2Rb, where rs is the radius of the

emission surface and Rb is the rms radius of the matched beam.

(b) The short electrodes on the diagnostic end (dump electrodes) are biased to

a DC voltage +V̂ so that the ions bounce off the potential barrier. In order to

minimize the number of ions present in the vicinity of the injection electrodes when

the electrodes are switched to their static trapping voltage +V̂ , the time duration of

injecting (ti) is kept less than the axial bounce time (τb) and ion injection is stopped

at a short time ∆ti before the end of the injecting stage [Fig. 3.3(b)]. Although,

the ion source is operated in a steady-state manner, ion injection can be controlled

by adjusting the bias voltage on the emission surface (Vs). Hence, to stop the ion

emission, Vs is switched to a negative bias voltage. Possible two-stream interactions



3.1. The Paul Trap Simulator Experiment Device 61

Charge collectorIon source

Injection electrodes Central electrodes Dump electrodes

(a)

(b)

(c)

(d)

(e)

(f)

Injecting

Trapping

Dumping

Resting

V 0  ( t ) ^+ V

 0
V 0  ( t )

V 0  ( t )
∆t r

^+ V^+ V

( f )( e )( d )( c )( b )( a )

∆t i

t rt dt tt i

R e s t i n gD u m p i n gT r a p p i n gI n j e c t i n g

E m i s s i o n  s u r f a c e

C e n t r a l  e l e c t r o d e s

D u m p  e l e c t r o d e s

I n j e c t i o n  e l e c t r o d e s

V s

Figure 3.3: Operation sequence of the PTSX. The shaded regions in the plasma
columns indicate the overlapping of two counter-streaming beams.
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from the overlapping of two counter-streaming beams are estimated to be weak for

the nominal injection conditions in PTSX (Appendix B).

(c) After injection is finished, the plasma is allowed to relax for several bounce

periods so that the residual mismatch oscillation is damped away. The time duration

of trapping (tt) is tt . 300 ms to prevent collisional effects from playing a significant

role. Due to axial potential leak from the end electrodes to the central electrodes,

the plasma length Lp is less than the trap length 2L [Fig. 3.3(c)]. The characteristic

parameters of the typical trapped plasma in PTSX are summarized in Table 3.1.

(d) The charge collector is a destructive diagnostic that requires dumping the

plasma out of the trap each cycle. During dumping, the dump electrodes are made to

oscillate with the same voltage waveform as the central electrodes, which allows the

ions to stream out of the trap through the axial drift motion [Fig. 3.3(d)]. Due to

the finite axial beam velocity, the collected charge signal is effectively averaged over

dozens of oscillation periods T = 1/f0. The reproducibility of this process allows us

to construct a radial charge profile out of multiple measurements at different radial

positions of the collector for each shot. In addition, by trapping the plasma with

different time durations, the time evolution of the trapped plasma properties can also

be measured. No bias voltage is applied to the collector plate, otherwise ion motion

will be affected by the position of the charge collector. The time duration of dumping

(td) should be longer than the axial bounce time (τb), and is normally set to td ≥ 15

ms to make sure the trap becomes empty. In the dumping stage, the inherent beam

mismatch is present when the charge bunch with line density N/2 is separated from

the initially matched beam with line density N . The degree of beam mismatch can

be given by µ = Rbi/Rbf ≈ (1 + δb)/(1 + δb/2). Here, Rbi(f) is the initial (final) rms

beam radius, and δb is the thermal beam intensity parameter introduced in Chapter
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Quantity Symbol Characteristic value

Background gas pressure P 5× 10−9 Torr

Applied AC focusing voltage V̂0 150.4 V

Applied DC bias voltage V̂ 36 V
Applied magnetic field B0 0 G
Plasma length Lp 170 cm
Plasma rms radius Rb 0.85 cm
Debye length (on-axis) λD 0.88 cm
Plasma density (on-axis) n̂ 0.89× 105 ions/cm3

Plasma line density N 1.6× 105 ions/cm
Plasma parameter ND 2.6× 105 ions
Applied AC focusing frequency f0 60 kHz
Smooth-focusing frequency ωq/2π 8.4 kHz
Plasma frequency (on-axis) ω̂p/2π 5.4 kHz
Breathing mode frequency ωB/2π 15.8 kHz
Quadrupole mode frequency ωQ/2π 15.3 kHz
Ion-neutral collision time τin & 2.0 sec
Ion-ion collision time τii & 0.5 sec
Axial bounce time τb 1.9 msec
Axial beam energy Eb 3 eV
Axial beam current Ib 5.4 nA
Axial beam velocity vb 2.09× 103 m/s
Ion thermal velocity vt 0.27× 103 m/s
Ion temperature Ti 0.1 eV
Space-charge potential φs(0)− φs(rw) 0.13 V

Table 3.1: Characteristic parameters of the PTSX pure ion plasma. The plasma
parameter ND is the number of particles in a Debye sphere [Chen, 1984].
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2. For the case of moderately low space-charge density beams (ŝ = 0.2 ∼ 0.3), it is

estimated that µ . 10% and the matched beam profile is projected onto the charge

collector without significant perturbation.

(e) Two resting stages are added at the end of the dumping stage to prepare a

new cycle. Even though most of the ions have streamed out of the trap during the

dumping process, it is observed that there remains a small number of residual ions

with extremely low axial velocity. These residual ions are negligible in contributing a

radial charge profile. However, to get rid of any possible accumulated effect of these

ions, we switch the voltages of the central and dump electrodes to ground for the time

duration ∆tr. The residual ion cloud in the trap will expand toward the grounded

electrodes at the thermal speed vt, and will be neutralized at the room-temperature

electrode surfaces [Fig. 3.3(e)]. Normally, we set ∆tr = 5 ms, which is much longer

than the characteristic expansion time rw/vt ∼ 0.4 ms.

(f) Finally, we switch the voltage of the dump electrodes from ground to +V̂ and

make the system ready for the new cycle [Fig. 3.3(f)]. The time duration of resting

(tr) can be arbitrarily chosen for tr > ∆tr, and is used to set the total cycle time tcycle

to a desired value.

Detailed analysis and further discussion of the injection process outlined here are

presented in Chapter 4 of this thesis.

3.1.2 Vacuum System

The PTSX vacuum chamber is approximately 134.5 in. in overall length, and con-

sists mainly of a 10 in. O.D. electropolished stainless-steel chamber with Conflat

(CF) metal-seal flanges (Fig. 3.4). The aluminum rings with teflon and vespel in-

sulating spacers support the electrodes while keeping them electrically isolated from
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Figure 3.4: Schematic drawing of the PTSX vacuum flanges. Electrodes inside the
flanges are indicated by the dashed lines. All dimensions are in inches.

Figure 3.5: Photograph of the PTSX device.
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Figure 3.6: Schematic diagram of the PTSX vacuum system. Solid lines represent
the flow of gas, while dotted lines represent the electrical signals.

the vacuum chamber. A centrally-located, six-way cross accommodates the laser-

induced fluorescence (LIF) diagnostic described later in this chapter. The chamber

is enclosed by custom-made baking jacket (Fig. 3.5) whose temperature is monitored

by two thermocouples (TC) and adjusted by proportional-integral-derivative (PID)

controllers. Considering the permissible temperature ranges of the lead-free solder

(. 220 ◦C) and insulating spacers (. 260 ◦C) used inside the vacuum chamber, the

maximum baking temperature is set to be 200 ◦C. The PTSX device is evacuated

using a turbomolecular pump (TMP) with a pumping speed of 1000 `/sec, which is

backed by an oil-free (dry) scroll-type roughing pump (RP) with a pumping speed

of 600 `/min. The maximum forevacuum pressure of the TMP is 10 Torr, and the
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ultimate pressure is 7.5 × 10−11 Torr. The pumping utilizes a “T” section near the

injection electrodes in order to permit good axial access to the device. Changes in

operating pressure are measured with a nude ionization gauge (IG) near the dump

electrodes. As shown in Fig. 3.6, the foreline and vent pressures (mostly from Ar)

are measured by convectron gauges (CG). In order to prevent neutral collisions from

affecting the plasma behavior, the base pressure of PTSX is kept below 5×10−9 Torr

after a week-long bake at 200 ◦C. When the ion source is on, the operating pres-

sure rises up to 10−8 ∼ 10−7 Torr. Even in this case, the characteristic ion-neutral

collision time is τin & 2 sec, and the trapped plasma is collisionless to very good

approximation.

3.1.3 Electrode Control System

To apply the oscillatory voltage ±V0(t), a National Instruments 5411 Arbitrary Func-

tion Generator Card (NI PCI-5411) with a 20 MHz clock rate and a 2 M-sample,

16-bit waveform memory is used. This PCI card has a single analog output con-

nector whose voltage levels are ±5 V with 12-bit resolution for nominal 50 Ω load

termination. The memory architecture of the card imposes certain restrictions on the

waveform size and resolution. The minimum size of a single waveform is 256 samples

and the number of samples must be divisible by 8. For a 20 MHz clock rate, the

time resolution becomes ∆t = 1/(20 MHz) = 50 nsec. These requirements adjust the

actual frequency of a single waveform according to

n1

f0 + ∆f
= {256 + 8(n2 − 1)}∆t, (3.1)

where f0 is original desired frequency, f0 + ∆f is adjusted frequency, and n1 and n2

are positive integers that minimize |∆f |. For example, if we set f0 = 60 kHz, then
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Figure 3.7: Schematic diagram of the PTSX electrode control system.

from Eq. (3.1), n1 = 1, n2 = 11, and the final frequency is adjusted to f0 + ∆f =

59.5238 kHz. Such a slight adjustment in frequency is not noticeable for most of the

PTSX experiments, except for the aliasing pattern in the on-axis density oscillation

presented in Chapter 4 of this thesis. By looping a single waveform many times

and linking different waveforms together, a long arbitrary waveform is generated to

simulate a wide variety of periodic-focusing quadrupole lattice patterns.

To create the train of TTL (Transistor-Transistor Logic) pulses that controls the

timing of the injecting, trapping, and dumping of the plasma, a National Instruments

6534 Digital I/O Card (NI PCI-6534) is used. We use 3 channels of the PCI card that

switch on and off the bias voltages of the injection electrodes, dump electrodes, and

emission surface. The output of each channel is either 5 V for “On”, or 0 V for “Off”.
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For example, an “On” signal (5 V) switches the voltages of the short electrodes from

±V0(t) to a DC bias +V̂ , and essentially closes the trap so that no ions can pass

through. On the other hand, an “Off” signal (0 V) switches the voltages from +V̂ to

±V0(t), allowing ions to pass through the short electrodes.

To prevent an unwanted phase delay between the waveform from the NI PCI-5411

and the TTL pattern from the NI PCI-6534, the two cards are made to have the

same clock rate (20 MHz). Moreover, to ensure synchronization, a marker pulse is

added to the very beginning of the first waveform of the NI PCI-5411. This marker

pulse is used to initially trigger the NI PCI-6534 via the RTSI (Real-Time System

Integration) bus line to start the TTL pattern generation.

As illustrated in Fig 3.7, the waveform signal from the arbitrary function gener-

ator is split into +V0(t) and −V0(t) by a pair of unbalanced wideband transformers

and these signals are sent to a set of solid-state SPDT (Single Pole Double Throw)

switches. Based on the TTL pattern from the digital I/O card, the switches allow

the end electrodes to receive either the DC voltage +V̂ for trapping, or ±V0(t) for

injecting and dumping the plasma. The amplitude of the DC voltage +V̂ is adjusted

by a potentiometer from 36 to 150 V. The central electrodes always have a voltage

waveform ±V0(t), but can be biased to ground by setting |V0(t)|max ≡ V̂0 = 0 V. To

compensate for the phase difference between the central and end electrode signals

due to the SPDT switches, two voltage followers are inserted for the central electrode

waveform ±V0(t).

The signals are then sent to high-voltage operational amplifiers (Apex Microtech-

nology PA94) with ±400 V supply voltages (Fig. 3.8). The system can apply signals

up to V̂0 = 400 V and f0 = 100 kHz to the electrodes. These limits are set by

the supply voltage limit, 100 mA continuous output current limit, and the frequency
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Figure 3.8: Schematic circuit diagram of the PTSX electrode driver [Gilson, 2008].

bandwidth of the operational amplifiers. To eliminate high-frequency noise on the

voltage input Vin, an input bypass capacitor has been added, setting the 3dB point

of the low-pass filter at f3dB ≈ 400 kHz. The voltage gain of this inverting amplifier

is −Vout/Vin ≈ 100. To ensure stable operation of the amplifier at such a high gain,

a compensation capacitor CC of 2.2 pF and a current limit resistor RLIM of 7.5 Ω

are added. For overvoltage protection, general-purpose 1N914 diodes are used on

the input voltages and unidirectional zener diodes are used in the supply voltages.

Each electrode of the PTSX device represents a capacitive load and draws increasing

current at higher frequencies. The capacitances of the long and short electrode sec-

tors are measured to be ∼ 270 pF and ∼ 90 pF, respectively [Gilson et al., 2003a].

These capacitances are measured by a simple capacitive voltage divider with respect

to ground. To achieve stability in driving purely capacitive loads, a load resistance of
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1.875 kΩ is added on the voltage output, making the load not purely capacitive, and

all the BNC cables (∼ 30.5 pF/ft) which deliver voltage signals to the electrodes are

made to have the same lengths. A variac transformer optimizes the performance of

the electrode drivers by adjusting the AC input voltages of the DC power supplies.

Even though a heatsink, a thermal washer, and a cooling fan maintain the tempera-

ture of the system properly, the extra heat produced by high-voltage and high-speed

operation occasionally damages the operational amplifier (on the average once a year

for 8 copies of the electrode driver).

3.2 Cesium Ion Source

Cesium ions (Cs+) were used in the initial phase of the PTSX experiment because

of cesium’s large mass (133 amu) and the commercial availability of sources. The

ion source consists of a 0.6 in. diameter aluminosilicate cesium emitter (Heatwave

Labs TB-118) surrounded by a Pierce electrode, followed by an acceleration grid

and a deceleration grid (Fig. 3.9). This triode grid system has flexibility to change

the extraction field strength without changing the beam energy. Cesium is melted

into the emitter surface, which is an extremely porous tungsten disc welded to the

molybdenum heater body. When the emitter surface is heated, cesium is ionized

through contact ionization with tungsten which has a high work function (∼ 4.55

eV). The heater is a non-inductively wound coil of molybdenum wire solidly potted

into the molybdenum body with high purity alumina (Al2O3). A DC power supply is

connected to the heater, keeping the source temperature 900 ∼ 1200 ◦C with 7 ∼ 13

A of applied current. The thermionic electron emission from the emission surface is
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negligible. In any event, electrons cannot be confined in PTSX due to their small

mass.

The Pierce electrode is made of copper and has a 67.5◦ opening angle to compen-

sate for possible beam divergence due to space-charge forces [Pierce, 1940]. Because

the ion beam energy is relatively low in the PTSX experiment, 85% transparent elec-

troformed copper meshes have been used for the fabrication of the acceleration and

deceleration grids. To avoid the possible formation of a virtual cathode (i.e., an ax-

ial potential structure generated by space charge), we set the distance between the

emission surface and acceleration grid (d1) to be larger than the distance between

the acceleration and deceleration grids (d2), i.e., d1 > d2 [Humphries, 1990]. While

the two grids and the Pierce electrode are electrically insulated using machinable ce-

ramic spacers, the emission surface is biased with the voltage of the Pierce electrode.

The amount of charge injected can be controlled easily by adjusting the voltages on

the emitter surface (Vs), acceleration grid (Va), and deceleration grid (Vd) of the ion

source. Normally, we set Vs > Va > Vd ≥ 0 V to minimize the effects of virtual

cathode. The voltage difference between the emitter surface and the acceleration

grid determines the extraction voltage Ve = Vs − Va, and the voltage difference be-

tween the emitter surface and the deceleration grid adjusts the axial beam velocity

vb =
√

2q(Vs − Vd)/m.

In Fig. 3.10, we present the axial beam current Ib = qNvb measured by allowing

the ion to stream directly from the source to the large copper plate at the diagnostic

end electrodes for different values of extraction voltage Ve. For the case of space-

charge-limited flow [Davidson, 1990; Goldston and Rutherford, 1995], it is

expected that Ib ≈ ICL from current density conservation. Here, the Child-Langmuir

current ICL is estimated by ICL ≈ (4ε0/9d
2
1)(2q/m)1/2V 3/2

e × πr2
s × (0.85)2, where rs
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(a) Aluminosilicate cesium ion source. (b) Pierce electrode.

(c) Acceleration (or deceleration) grid. (d) Ion source assembly.

Figure 3.9: Photographs of the cesium ion source.
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Figure 3.10: The current extracted from the source actually collected on the large
copper plate at the diagnostic end electrodes (solid circles) and estimated from the
Child-Langmuir law (open circles).

is the radius of the emission surface, and (0.85)2 term represents transparency of the

grids. Figure 3.10 shows, however, that Ib depends linearly on Ve rather than the V 3/2
e

scaling of the Child-Langmuir law for Ve . 10 V. On the other hand when Ve & 10

V, Ib is saturated and becomes much smaller than ICL. Despite the departure from

the Child-Langmuir law, this control allows us to fill the trap with a wide range of

ion densities.

3.3 Radially Scanning Charge Collector

3.3.1 Mechanical Description

The primary diagnostic on PTSX is a radially scanning charge collector on the dump-

ing end of the device. The charge collector is mounted on a linear motion feedthrough
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with a 6-in. stroke that allows the assembly to go from 2 in. beyond the device center

to being completely withdrawn from the trap. The original charge collector was based

on a commercially-available Faraday cup that consists of a stack of three 0.75-in. by

1.5-in. plates that support the cup and has small apertures. In order to reduce the

effect of stray charge striking the edges of these plates and confounding the measure-

ments, the assembly was enclosed in a copper box that measured 1 in. across by 3

in. tall, and was not symmetrically placed about the collection aperture. This results

in a boundary condition for the electric potential that varies as the Faraday cup is

moved, and this is evidenced in the data as an offset in the position of the peak charge

density. To assure a boundary condition that is independent of the position of the

Faraday cup, a slotted 8-in. diameter copper disk is placed in front of the Faraday

cup. Although this eliminates the dependence of the measurement on the position of

the Faraday cup, the dumped plasma now broadens significantly as it approaches the

diagnostic. The time-dependent oscillating voltage that normally confines the plasma

radially, gradually becomes a constant axial field in the vicinity of the copper disk,

and there is no longer a transverse confining field.

The original Faraday cup has been replaced by a charge collector with a simpler

design on PTSX [Gilson et al., 2005]. Figure 3.11(a) shows a schematic of the final

charge collector, and Figs. 3.11(b) and (c) show photographs of the final collector in

place in PTSX. The 5 mm diameter head of a copper nail now serves as the collection

surface. A coaxial wire is connected to the body of the nail, and the wire and nail

are inserted into a thin, alumina rod that insulates the collector from the conductive

support rod. The ceramic rod, in turn, is inserted into a 3/16 in. diameter, stainless

steel support rod. The base of this rod is clamped into a block that sits atop the

arm of the linear motion feedthrough. Thus, the collection surface sits approximately
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(a) The charge collector plate is placed transversely at a null of the applied
quadrupole potential and axially away from the the fringe fields. All dimen-
sions are in mm.

(b) The charge collector is guided in the hor-
izontal direction by a pair of copper plates
attached to a slotted copper disk at the end
of the PTSX device.

(c) The 5 mm diameter head of a copper nail
serves as the collection plate.

Figure 3.11: Schematic drawing and photographs of the charge collector.
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halfway into the dumping electrodes, thereby avoiding fringe fields. Since this thin

support rod is grounded and moves in a null of the fully time-dependent voltage, the

charge collector has a minimum impact on the potential structure within the dumping

electrodes. Measurements show that the radial charge profile no longer exhibits the

broadening associated with the equipotential copper disk used previously, and the

profile is well-centered. Moreover, because of the low axial kinetic energy of the ions,

there is no need for an additional structure to suppress secondary electron emission.

3.3.2 Model 6514 Electrometer

The Model 6514 electrometer [Keithley, 1998] makes charge measurements with 10

fC resolution. In the electrometer, an accurately known capacitor is placed in the

feedback loop of the amplifier so that the voltage developed is proportional to the

charge, which is the integral of the input current. The voltage is then scaled and

displayed digitally as charge. The integration time of the A/D converter affects the

amount of reading noise, as well as the ultimate reading rate of the charge measure-

ment [Keithley, 1998]. The integration time is specified in terms of the number of

power line cycles (PLC), where 1 PLC for 60 Hz is 16.67 ms. If the A/D converter

integrates for an amount of time equal to an integer number of 1 PLC, then the signal

components from the power line noise, which tend to be periodic, can be cancelled. In

the PTSX device, charge measurement is optimized for a 6 PLC reading rate which

corresponds to a 100 ms integration time. In addition, to reduce the periodic noise

from the AC/DC switching of the end electrodes, the cycle time tcycle is set to be

a divisor of the integration time. Figure 3.12 indicates that setting tcycle to be a

divisor of the integration time averages out coupling from the electrodes and makes

background signal less noisy.



3.3. Radially Scanning Charge Collector 78

0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
I n t e g r a t i o n  t i m e  =  5 0  m s e c  ( 3  P L C )

  T u r n i n g  o f f  e l e c t r o d e s
  T u r n i n g  o n  e l e c t r o d e s

Ba
ckg

rou
nd

 sig
na

l (A
. U

.)

C y c l e  t i m e ,  t c y c l e   ( m s )

(a) Integration time = 50 msec (3 PLC).
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(b) Integration time = 100 msec (6 PLC).

Figure 3.12: The background signal measured without trapped ions is linearly pro-
portional to the cycle time of PTSX operation. When the electrodes are turned on,
the background signal becomes noisy (open circles). Setting the cycle time to be a
divisor of the integration time averages out coupling from the electrodes (indicated by
arrows). Considering that the dumping time is td ≥ 15 ms, the cycle time is usually
set to be tcycle ≥ 25 ms.
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In the charge measurement using the electrometer, the input offset current is

usually very low. However, for low level charge measurements, as in the PTSX device,

even this small offset current can generate a significant error factor after long-time

integration. The typical input offset current in the Model 6514 electrometer is about 4

fA, which will cause the offset in the charge measurement Qoffset to be about 0.4 fC for

tcycle = 100 ms. Due to the temperature dependence of the input offset current and a

number of other external current sources in the system, it is very difficult to determine

the exact offset current of the entire system and subtract it from the actual reading.

A general rule of thumb is to set Qoffset ∼ 1 fC and cut off the charge measurement

when Q(r) < Qoffset, allowing an additional uncertainty associated with subtracting

the offset. Other unwanted currents can result from triboelectric effects, electrostatic

interference, and magnetic fields. Triboelectric currents are generated by charges

created between a conductor and an insulator due to friction [Keithley, 2004].

In the PTSX device, insulated cable delivering collected charges inside the vacuum

chamber creates some noise when subjected to expansion and contraction. One easy

solution is to wait several seconds after moving the position of the charge collector.

Electrostatic interference is recognizable when hand or body movements near the

experiment cause erroneous or unstable readings. Magnetic fields from neighboring

experiments can also introduce fluctuations in the readings. To minimize these two

effects, the electrometer has been shielded with a grounded high permeability metal

(so called µ-metal).

In calibrating the internal voltage offset of the electrometer, which drifts with

time and temperature, we perform zero check and zero correction for every charge

measurement. The zero check feature provides a mean for internal zero verification,

and the zero correction feature corrects the internal offset so that the display reads
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zero with no input signal. When turning on the zero check feature, the accumulated

charges in the charge collector and the BNC cable dissipate through the 10 MΩ

resistor. After turning off the zero check feature, a new measurement cycle begins.

However, the residual charges remaining in the system often cause sudden changes in

the charge reading (known as zero check hop). This effect gives rise to a nonlinear

increase in charge in the initial phase of the measurement (see Fig. 3.13), which

becomes significant particularly for low charge level. A convenient way to deal with

this effect is to avoid the nonlinear regime by starting the charge measurement several

seconds after the zero check. The measured charge signal is transferred to a LabVIEW

program of PC in the ASCII data format through a GPIB interface. The Model 6514

electrometer can be used within one minute after it is turned on. However, it should

be allowed to warm up for at least one hour to achieve optimum performance.

3.3.3 Radial Profile and Inferred Quantities

If the true density profile n(r′) is uniform in the z direction and axisymmetric in

the smooth-focusing approximation, the total charge collected per cycle Q(r) by the

collector plate centered at radius r can be related to n(r′) as

Q(r) = qLp

∫ rc

0
ρdρ

∫ 2π

0
dθn(r′), (3.2)

where r′ = (r2 + ρ2 − 2rρ cos θ)1/2 is the local radius, rc is the size of the circular

collecting plate, and Lp is the plasma length, which can be estimated either from

numerical simulations or the analytical formula for the axial potential distribution

(see Appendix A). To increase the collected charge signal out of a low beam current

density, the size of the charge collector has been chosen to be rc = 2.5 mm, which

is much larger than the opening of the commercial Faraday cup (rc . 0.5 mm). By
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noting that the typical density profile in the PTSX device is close to Gaussian, we

obtain

n(r̄) ≈ Q(r)/q

πr2
cLp

, (3.3)

where for r . rc, r̄ ≈ [r2 + r2
c/2]

1/2
, and for r > rc, r̄ ≈ r [1 +O(r2

c/r
2)]. The exact

on-axis density n̂ = n(r = 0) can be approximately determined by extrapolation from

the two nearest data points to r = 0.

The mean-square radius of the trapped plasma column can be calculated from

either n(r) or Q(r) according to

R2
b =

〈
r2
〉

=
1

N

∫ rw

0
dr2πrr2n(r) ≈ 1

Qb

∫ rw

0
dr2πrr2Q(r), (3.4)

where N = 2π
∫ rw
0 drrn(r) is the line density, and Qb = 2π

∫ rw
0 drrQ(r) is the total

charge in the trap for one cycle. The integrals are evaluated numerically using the

Simpson rule with relative errors of order (δri/Rb)
5, where δri is the radial spacing

between measurements, which is typically 2.54 mm. Since the collected charge is

necessarily averaged over many focusing periods, the values of Rb calculated from

Eq. (3.4) can be interpreted as the rms radius of the beam in the smooth-focusing

approximation. The effective transverse temperature T̄⊥ of the ions is inferred from

global force balance equation as [Davidson and Qin, 2001]

T̄⊥ =
1

2

[
mω2

qR
2
b −

Nq2

4πε0

]
. (3.5)

This temperature is a measure of the average (random) kinetic energy of the beam

particles in the smooth-focusing equilibrium. For a matched beam in thermal equi-

librium, T̄⊥ is approximately equal to the thermal temperature of the ion source, i.e.,

T̄⊥ ≈ Ts. Furthermore, the average transverse emittance in the beam frame can be

estimated as

ε ≈ 2Rb

(
2T̄⊥
m

)1/2

. (3.6)
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Figure 3.13: Illustrative example of repeated charge measurement. The resolution
of the accumulated charge measurement is 10 fC, which is set by the electrometer.
We wait for 5 sec (or more, if necessary) and collect data only in the linear regime
for 10 sec, which corresponds to 100 trapping cycles for tcycle = 100 ms. Due to the
finite speed of the GPIB communication between the electrometer and the LabVIEW
interface, the total number of data readout Nt is about 20 out of 100 cycles.

3.3.4 Data Reduction and Error Analysis

Since the charge collected during one cycle time tcycle is usually quite small (. 1 pC),

we make repeated measurements to improve the resolution and reduce the uncertainty

in obtaining the charge per cycle. For a given radius, we record the accumulation of

charge as a discrete function of time, (tj, qj), for j = 0, 1, · · · , Nt − 1 (see Fig. 3.13).

Here, Nt is the total number of data readout, and the period of one data readout is

∆tj = tj − tj−1. If the charge is measured exactly, then its accumulation becomes a

linear function of time. Therefore, we use a linear function, q(t) = a+ bt, to apply a
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least-squares fit, which allows us to calculate the charge per cycle Q as

Q =
1

Nt − 1
×

Nt−1∑
j=1

{qj − qj−1} ×
tcycle

∆tj

≈ 1

Nt − 1
×

Nt−1∑
j=1

{(a+ btj)− (a+ btj−1)} ×
tcycle

∆tj

= b× tcycle. (3.7)

The total charge accumulation time (tNt−1− t0) is usually 10 sec in PTSX operation.

The instrumental uncertainty associated with each measurement j can be estimated

as

σ2 ' 1

Nt − 2

Nt−1∑
j=0

{qj − (a+ btj)}2 , (3.8)

which does not change with Nt. Moreover, from the formula for propagation of errors

[Bevington and Robinson, 1992], the uncertainty in determining the charge per

cycle Q is estimated as

σ2
Q '

1

(Nt − 1)2

Nt−1∑
j=1

(σ2 + σ2)×
(
tcycle

∆tj

)2

, (3.9)

which is the standard error of the true mean. Note that the uncertainty σQ decreases

as Nt is increased.

The charge per cycle is sampled at discrete radial positions ri with uncertainty

σQ(r = ri) = σi. For the purpose of estimating errors in the inferred quantities from

the charge measurements, it is most straightforward to approximate the integral by

a simple summation as

Qb ≈
imax∑
i=1

(Qi −Qoffset)2πriδri, (3.10)

R2
b ≈

1

Qb

imax∑
i=1

r2
i (Qi −Qoffset)2πriδri, (3.11)

where Qi = Q(r = ri), δri = ri−ri−1, and imax is the maximum radial index satisfying

Qi ≥ Qoffset. As mentioned earlier, the offset originates from the external noise and
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the input offset current in the electrometer. Usually, this offset is very small (∼ 1 fC),

and the uncertainty in setting the offset can be estimated as σoffset ∼ Qoffset. Finally,

applying the error propagation formula yields

σ2
Qb
≈

imax∑
i=1

(2πriδri)
2
[
σ2
i + σ2

offset

]
, (3.12)

σ2
Rb
≈ 1

4R2
bQ

2
b

imax∑
i=1

r4
i (2πriδri)

2
[
σ2
i + σ2

offset

]
. (3.13)
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Figure 3.14: An example of the output generated by the LabVIEW interface of the
Model 6514 electrometer and the post-processing Python [Martelli, 2003] script.
The radial profile is truncated when the charge signal is saturated near 1 fC on
the log scale. This prevents the small external noise and input offset current from
contributing significantly to the calculation of Rb ∝

∫
drr3Q(r) at large radii. Here,

errors in Qb and Rb are calculated from Eqs. (3.12) and (3.13), respectively, and h is
the profile parameter defined in Chapter 2 (h = 1 for Gaussian).
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3.4 Laser-Induced Fluorescence (LIF) Diagnostic

System

The initial experiments in the PTSX device with a cesium ion source and a radi-

ally scanning charge collector diagnostic have been very successful in providing many

important physical insights into injection mismatch (Chapter 4), transverse beam

compression (Chapter 5), and machine imperfection effects (Chapter 6). However,

for the in-situ measurements of the transverse density profile and the velocity distri-

bution function in the PTSX device [Chung et al., 2005b], which are essential for

the detailed study of beam mismatch and halo particle production, a laser-induced

fluorescence (LIF) diagnostic system has been developed in parallel with the PTSX

experiments described in Chapters 4−6. Because the optical transition of barium

ions is more relevant to LIF than cesium ions, barium ions have been chosen as the

preferred ion species [Chung et al., 2005a, 2007a]. In this section, the development of

the barium ion source and the installation of the LIF system are summarized together

with initial test results.

3.4.1 Compact Barium Ion Source with Platinum Ionizer

Theoretical Consideration

Barium ions are produced at the hot metal surface by contact ionization. Tradition-

ally, rhenium and tungsten have been used for the hot metal plate to produce both

ions by contact ionization, and electrons by thermionic emission. Because electrons

are not used in the PTSX device, platinum is a more favorable choice for the hot
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Figure 3.15: Energy level diagram for Ba+ with transition wavelengths in air, natural
lifetimes τ , and energy level differences between the ground state and metastable
states [Koerber et al., 2002].

metal plate because of its higher work function than rhenium and tungsten. Plat-

inum’s work function is 5.65 eV, and its melting point is 1768 ◦C.

The available optical transition lines of barium ions are presented in Fig. 3.15.

Although there are several visible transition lines for the laser excitation of barium

ions, the transition from the 52D3/2 metastable state has been considered first, mainly

because a stable, operating, broadband, and high-power laser system is available for

experiments in this region of the red spectrum [Foley, 2005]. Ions excited from the

metastable state 52D3/2 to the excited state 62P1/2 decay to the ground state 62S1/2

almost immediately (8 ns), emitting blue-green light (493.41 nm).

The ionization probability for contact ionization (or surface ionization) can be

calculated using the formula given by the Saha-Langmuir equation for thermal equi-

librium conditions. For a barium ion, where two metastable states lie within about

0.7 eV from the ground state (see Fig. 3.15), the possibility of the ion being excited
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into metastable states must be considered as well. Hence, it is expected that the

ionization probabilities for the ground state ions (Pi) and the metastable ions (P ∗
i )

are equal to or less than the theoretical estimates given by

Pi =
gi

ga exp
(
Ei−W
T

)
+ gi +

∑
∗ g

∗
i exp

(
−∆E∗

T

) , (3.14)

P ∗
i =

g∗i exp
(
−∆E∗

T

)
ga exp

(
Ei−W
T

)
+ gi +

∑
∗ g

∗
i exp

(
−∆E∗

T

) . (3.15)

Here, W and T are the work function and temperature of the hot metal plate (plat-

inum in this case), Ei is the ionization potential of the atom, and ∆E∗ is the energy

difference between the ground and metastable states. The quantities ga, gi, and g∗i

are statistical weights of the atoms, ground state ions, and metastable ions, respec-

tively. The statistical weight g can be calculated from the total angular momentum

quantum number J using the familiar relationship, g = 2J + 1.

It is interesting to note that for the case of contact ionization of barium vapor

on platinum, Ei(= 5.21 eV) < W(= 5.65 eV) and P ∗
i is inversely proportional to T .

This might suggest that platinum ionizer could be operated at a very low temperature.

However, Eq. (3.15) is only valid when the metal surface temperature is above the

critical temperature (or threshold temperature) Tc [Wilson and Brewer, 1973;

Kaminsky, 1965]. When T < Tc, the evaporation rate of atoms decreases and the

surface coverage of adsorbed atoms increases, which in turn causes the effective work

function of the composite surface to decrease and finally results in a sharp drop in

net ion current [Wilson and Brewer, 1973; Kaminsky, 1965]. Therefore, it is

essential to maintain the surface of the ionizer above the critical temperature. The

critical temperature for contact ionization on platinum differs for different ion species.

For most cases, Tc & 1000 ◦C [Kaminsky, 1965]. Hence, the ionizer temperature of

the newly developed ion source is normally set to 1000 ◦C. If the ionizer temperature



3.4. Laser-Induced Fluorescence (LIF) Diagnostic System 88

Exit nozzle 
assemblyPlatinum mesh ionizer

Tantalum oven tube

Heat shield

Ceramic tube

Support 
assembly

Copper rod

Stainless steel can

Ceramic 
spacer

Pierce 
electrode

10.16 cm

Acceleration 
grid

Deceleration 
grid

Heater

1.27 cm

Figure 3.16: Schematic diagram of the barium ion source assembly.

is too hot, it is then possible to burn out the platinum. For an ionizer temperature of

1000 ◦C, it is estimated from Eqs. (3.14) and (3.15) that the fraction of barium ions

produced by the hot platinum surface will be 98.7% in the ground state (62S1/2), 0.8%

in the 52D3/2 metastable state, and 0.5% in the 52D5/2 metastable state. Because the

typical ion density in PTSX is about 105 cm−3, the 52D3/2 metastable ion density

will be about 102 ∼ 103 cm−3, which is slightly above the detection limit for typical

LIF diagnostics [Muraoka and Maeda, 2001]. Hence, suppression of background

signals and sufficiently long integration times are essential for meaningful LIF data.

Description of Ion Source Assembly

The design concept for the barium ion source described here is based on the compact

metal-ion source developed for heavy ion beam probes used for plasma diagnostics
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[Sakai et al., 1983; Katsumata et al., 1994; Murakami et al., 1996]. The ion source

is composed of a beam material oven and a metal ionizer. The oven is a tantalum

tube with a radius of 0.635 cm and a length of 10.16 cm (Fig. 3.16). The radial tube

dimension is adequate to make sure that the beam is rms-matched to the externally

applied focusing field for the nominal operating conditions in PTSX. The length of the

tantalum tube is chosen in such a way that heat conduction and radiation processes

sustain the proper temperature distribution along the tube. Normally, the tantalum

tube is maintained at temperatures higher than 400 ◦C to decompose any barium

oxide layer. The ionizer consists of a stack of platinum meshes which are woven

from 0.1 mm platinum wires and have a 62.7% open area. The platinum meshes are

inserted into the open end of the oven tube, and the vapor of the beam material

is ionized on the hot platinum wire surfaces as it passes through the tube. Two

tantalum heaters are wrapped around the tube and the ionizer, respectively. Each

heater has its own heat shield to increase the thermal efficiency and is connected to

a high-current power supply through thick (0.635 cm in diameter) copper rods. The

temperatures of the oven and the ionizer are controlled by adjusting the currents of

the power supplies and monitored by two K-type thermocouples attached to these

components. The currents of the power supplies for the oven and the ionizer can be

increased up to 150 A and 250 A, respectively. To minimize oxidization, barium is

loaded into the oven inside an argon-filled tent. About 6 g of barium allowed 2 ∼ 3

months of operations in the initial experiments.

The ionizer is surrounded by a Pierce electrode, followed by an acceleration grid

and a deceleration grid to extract the desired ion current and adjust the final ion

kinetic energy (Fig. 3.17). To further increase the ion density, a positive bias voltage

(& 10 V) is usually applied to the ionizer. The Pierce electrode and two grids are
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Figure 3.17: Assembly of tantalum oven tube, platinum mesh ionizer, tantalum
heaters, and copper rods (left). Assembly of Pierce electrode, acceleration grid, and
deceleration grid mounted on top of the stainless steel can (right).

electrically insulated using machinable ceramic spacers (Macor). Because the ion

beam energy is relatively low for the PTSX device, 85%-transparent, electroformed

copper meshes have been used for the acceleration and deceleration grids. However,

due to the chemical reaction with the barium vapor, the lifetime of the copper mesh

can be limited. Hence, nickel and tantalum meshes have been adopted for more recent

experiments. The Pierce electrode is made of stainless steel and has a 67.5◦ opening

angle to produce laminar flow of the beam ions. The entire assembly consisting of

the oven, ionizer, and heater is surrounded by a large stainless steel can to prevent

the neutral barium from contaminating the electrodes and reduce visible radiation

from the hot glowing ion source. To further reduce the background light, which

may decrease the signal-to-noise ratio of the LIF measurement, a carbon coating

(Aquadag) is applied to the inside of the source end electrodes. To facilitate the
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Figure 3.18: Characteristics of the barium ion source in streaming-mode operation
of the PTSX device. Time evolution of (top) the on-axis beam current generated by
the barium ion source, (middle) background pressure, and (bottom) temperatures of
the oven and the ionizer.

loading of barium and the replacement of the platinum mesh, the grid assembly is

mounted on top of the stainless steel can.

The typical characteristics of the barium ion source in streaming-mode operation

of the PTSX device are shown in Fig. 3.18. For the LIF measurements, background

subtraction is required. Hence, for a given experimental setup, we record two CCD

images with the barium ion source on and off. The barium ion source can be effectively

turned off by applying zero focusing fields in the PTSX electrodes.
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3.4.2 Laser-Induced Fluorescence (LIF) Diagnostic

Population Dynamics

For the initial test of the LIF system, streaming-mode operation of the PTSX device

is employed to make optimum use of the metastable ions. Since there is a continuous

supply of metastable ions into the detection volume through drift motion, we can

write down rate equations for the populations of the metastable state (n1), excited

state (n2), and ground state (n3) with source-sink terms according to [Hill, 1983]

dn1

dt
= −n1B12ρν(ν0) + n2B21ρν(ν0)

+A21n2 +
(n0

1 − n1)

τd
, (3.16)

dn2

dt
= +n1B12ρν(ν0)− n2B21ρν(ν0)

−A21n2 − A23n2 +
(n0

2 − n2)

τd
, (3.17)

dn3

dt
= +A23n2 +

(n0
3 − n3)

τd
. (3.18)

Here, Aij and Bij are the Einstein coefficients [Demtroder, 2002], n0
i is the initial

population of each state, τd is the characteristic ion transit time through the detection

volume, and ρν(ν0) is the spectral energy density of the laser around the resonance

frequency ν0. For the broadband operation of the laser, we assume that the laser power

PL is evenly distributed around ν0 with spectral width ∆νL, i.e., ρν(ν0) ≈ PL/cA∆νL.

Here, A is the cross sectional area of the laser beam. The saturation intensity of the

laser Isat, which makes the spontaneous emission equal to the stimulated emission, is

given by

Isat =
A21 + A23

A21

8πhν3
0

c2
∆νL, (3.19)

and is typically Isat = 141 mW/mm3 for the LIF scheme considered here. Note that

there will be no significant increase in the LIF signal after the laser intensity is above
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Figure 3.19: Plots of (a) time evolutions of the metastable population n1(t) with the
laser power of PL = 360 mW for the different values of τd, and (b) dependence of the
steady state LIF intensity on PL and τd. Here, the initial metastable population is
assumed to be n0

1/n
0 = 0.8%.

Isat. The number of photons emitted from the detection volume V to the collection

optics with solid angle Ω per unit time is given by

ILIF = η
(

Ω

4π

)
V A23n2, (3.20)

where η is the overall efficiency of the collection optics .

As shown in Fig. 3.19(a), the population of the metastable state is quickly de-

pleted to the final steady state value, which is strongly dependent on τd. Steady-state

solutions of rate equations in Fig. 3.19(b) illustrate the dependence of the LIF inten-

sity ILIF on the ion flux into the detection volume (∼ 1/τd), the incident laser power

PL, and the initial metastable density n0
1. Taking τd ∼ 1− 10 µsec in the PTSX de-

vice, we note that ILIF is less sensitive to the spatial and temporal variations of the

laser power when PL & 300 mW. As the laser power becomes even higher, the level

of the stray light will increase accordingly and there will be no further improvement

in the signal-to-noise ratio.



3.4. Laser-Induced Fluorescence (LIF) Diagnostic System 94

Hardware Setup

The continuous-wave (CW) laser used in this research is a Coherent 899-21 ring dye

laser that is optically pumped by an argon ion laser [Foley, 2005]. DCM dye is

used with EPH solvent, giving output powers of up to 800 mW at around 650 nm,

appropriate for matching the 52D3/2 to 62P1/2 transition. A Burleigh wavemeter is

used to measure the output wavelength, and the laser power is monitored with an

Ophir photodiode power meter. An optical isolator is inserted in the beam path before

coupling to a multimode fiber, which carries the laser beam across the laboratory to

the PTSX apparatus. The three-plate birefringent filter (BRF) allows broadband

operation via rapid mode-hopping of the longitudinal modes over approximately 2

GHz (≈ 10 modes), which is matched to the Doppler width range of the transition

in the typical PTSX experimental condition (see Appendix C). During the long

integration of the LIF signal, however, increased mode-hopping across the BRF modes

due to the ambient temperature changes can occur. Hence, it is recommended to

adjust the BRF in the course the experiment so that the laser wavelength is always

matched to the transition wavelength.

At the fiber output, a commercial laser beam line generator has been installed to

increase the detection volume and fully utilize the available metastable barium ions.

The line generator, which uses a Powell lens, transforms the collimated laser beam

into a line with a uniform output intensity. A Powell lens with 10◦ fan angle and 0.8

mm linewidth can result in a detection volume with a width of ∼ 6.8 cm near the

PTSX center (see Fig. 3.22). For the safety interlock, a beam shutter and a shutter

controller are employed. Before shining the dye laser, the laser path is aligned via

low-power He-Ne laser, adjusting a precise rotation stage where the line generator and

beam shutter assembly is mounted [Fig. 3.21(a)]. To suppress the stray light, i.e., the
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Figure 3.20: Schematic diagram of (a) the laser-induced fluorescence (LIF) diagnostic
setup and (b) the dye laser operation. For the broadband operation considered in the
PTSX, only a birefringent filter (BRF) is employed for the frequency selection.
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(a) Entrance window for laser. (b) Viewport for CCD camera.

Figure 3.21: Photographs of (a) the entrance window for laser and (b) the viewport
for CCD camera. In photograph (a), the laser beam sheet appears bright red line
on the entrance window. In photograph (b), the central electrodes are coated with
conductive carbon particles (Aquadag) to reduce possible reflections.

part of the incoming laser light reaching the detection system through reflection at

windows, electrodes, and the vacuum vessel walls, an anti-reflection coating is applied

to the entrance window, a laser collimator is installed, and a stack of razor blades has

been employed as a beam dump. In addition, the line generator and beam shutter

are enclosed by a light-tight aluminum box so that no background room light enters

into the entrance window.

The fluorescence light passes through the 1-in. O.D. hole in the central electrode

[Fig. 3.21(b)], a glass vacuum window, a narrow bandpass interference filter, and a

C-mount lens with a diameter comparable to the 1-in. O.D. hole. The filter has a

1 nm bandwidth with a 10−4 out-of-band blocking. The central wavelength of the

filter has been tuned to slightly over the wavelength of the 62P1/2 to 62S1/2 transition

to compensate for the wavelength shift with angle of incidence. Finally, a Princeton
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Instruments ICCD-MAX intensified CCD camera captures the fluorescence image

digitally. The CCD camera has 16-bit A/D converter with 512× 512 resolution, and

uses a microchannel plate (MCP) image intensifier fiber-optically coupled to the CCD

array. The thermoelectric cooler mounted on the heat removal block and the external

fan keep the temperature to −20 ◦C. In order that the overall detection system has

a wide field-of-view (FOV) and covers the entire transverse dimension of the plasma

column, a custom-made reentrant viewport has also been installed.

The major source of background light is the glowing red-hot barium ion source,

which is operated at around 1000 ◦C. To reduce the scattered light from the ion

source, the background of the observation path has to appear black. For this purpose,

a so-called viewing dump has been installed. In order not to affect the performance of

the electrodes, conductive carbon particles (Aquadag) are applied as a coating. This

coating reduces the scattered light by two orders-of-magnitude. The focal length of

the lens and the length of the extension tube have been adjusted so that the CCD

camera is focused mostly onto the darkest region of the viewing dump.

Because of the long integration time (∼ 20 min) and high gain to detect the

small LIF signal, the CCD camera itself generates noise as well. This noise includes

thermally-induced dark current, readout noise, intensifier noise, and hot pixels. To

improve the signal-to-noise ratio (SNR), we subtract the background image without

a barium ion beam from the image with a barium ion beam with keeping other

conditions (laser power and ion source temperature) same. Finally, we obtain an

image of the net fluorescence light in which the intensity is proportional to the local

ion density. Initial test results in Fig. 3.22 show, however, that the background light

is so dominant that the SNR is rather inadequate to reconstruct the radial density

profile from the LIF measurements. The fundamental difficulty of this LIF scheme
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Figure 3.22: Initial test results of the LIF measurements showing (a) the image of
the background light and (b) average line readouts of various signal contributions.
The dark circle in the image (a) is the inner hole made in the central electrode shown
in Fig. 3.21(b). Here, the incident laser power is 360 mW and the integration time
is 20 min.

originates from the low level of the initial metastable state population (. 0.8%).

Hence, the best way to further improve the SNR is either to change the dye to excite

the ground state directly, or use a second laser to populate the initial metastable state.

For these purposes, a high-power pulsed laser system is currently being developed and

is expected to increase the LIF intensity by more than an order of magnitude.

3.5 Summary and Discussion

In this chapter, the Paul Trap Simulator Experiment (PTSX) apparatus has been

described in detail. The PTSX device is basically a linear Paul trap that has been

widely employed for the mass spectrometer, quantum computing, and Coulomb crys-

tal formation [Major et al., 2005]. However, for the PTSX device to confine and
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detect the pure ion plasma with parameters relevant for the simulation of the intense

beam in the alternating-gradient (AG) focusing channel, the device configuration,

electrode control system, vacuum system, ion source, and charge collector have been

carefully designed and installed. Initial experiments with a cesium ion source and a

radially scanning charge collector diagnostic, which will be presented in Chapters

4−6 of this thesis, demonstrate the wide operating range and the large degree of flex-

ibility of the PTSX device. As a non-destructive diagnostic method, a laser-induced

fluorescence (LIF) diagnostic system and an accompanying barium ion source has also

been developed and tested. Due to the low level of the initial target metastable state

and the strong background light associated with high-temperature operation of the

barium ion source, the LIF signal is insufficient to reconstruct the radial ion density

profile. Use of a second laser (or a change in the dye) together with a minimization

of the light illumination from the ion source will be the subject of future research on

PTSX, which is beyond the scope of the present thesis.



Chapter 4

Ion Injection Optimization

As noted earlier in this thesis, the PTSX device is a compact and flexible labora-

tory setup that simulates the collective processes and nonlinear transverse dynam-

ics of an intense beam propagating through an alternating-gradient (AG) focusing

quadrupole lattice. Externally-created cesium ions are injected and trapped in the

long central electrodes of the PTSX to study several important beam physics top-

ics, such as beam mismatch and halo generation [Allen et al., 2002; Chung et al.,

2007c], collective mode excitation and control [Davidson and Qin, 2001; Gilson

et al., 2007b], transverse beam compression [Dorf et al., 2006; Chung et al., 2007b;

Gilson et al., 2007a], and random noise effects [Bohn and Sideris, 2003; Gerigk,

2004], to mention a few examples. To perform these experimental studies, it is im-

portant to have well-characterized initial beam equilibria without effects that may

invalidate the physics similarity between an intense coasting beam and a nonneutral

trapped plasma. In this chapter, it is shown that the ion injection process is critical

for achieving such an initial beam state and can be optimized by minimizing the beam

mismatch between the source and the focusing lattice (Sec. 4.1), and by minimizing

100
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the number of ions present in the vicinity of the injection electrodes when the injec-

tion electrodes are switched from the fully oscillating voltage waveform to their static

trapping voltage (Sec. 4.2). In addition, possible two-stream interactions (Sec. 4.3)

and virtual cathode formation (Sec. 4.4) in the injection processes are discussed via

3D WARP particle-in-cell (PIC) simulations.

4.1 Injection Beam Mismatch

The beam physics experiments to be performed on PTSX must begin with a non-

neutral ion plasma column that corresponds to a matched beam so that the initial

state is well-known and characterized. However, during the injection stage, there

can be a beam mismatch between the plasma emitted from the ion source and the

transverse focusing lattice created by the applied voltage waveform. Beams are called

mismatched when the (applied) focusing and the (space-charge and thermal) defocus-

ing forces are unbalanced. This mismatch induces coherent oscillations of the beam

envelope, halo particles, and emittance growth, and finally causes the trapped plas-

mas to have radial profiles far from those of a thermal equilibrium state [Davidson

and Qin, 2001; Reiser, 1994]. Because ions are injected continuously from the ion

source with a stationary circular cross-section into a transverse focusing system in

which the matched state has a pulsating elliptical cross section, the injected plasma

column is always mismatched to the focusing lattice to some degree. This type of

mismatch is inherent and unavoidable for the ion source as presently configured in

the PTSX.
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However, it is important to note that the injection mismatch can be minimized by

adjusting the envelope of the plasma column to be as close as possible to the cross-

section of the ion source. If we apply the smooth-focusing approximation [Davidson

and Qin, 2001], a pulsating elliptical beam envelope can be effectively represented

on average by a circular envelope with rms radius Rb. Further, if we consider an

equivalent KV beam with outer radius rb =
√

2Rb, then the transverse motion of the

beam envelope evolves according to [Davidson and Qin, 2001; Reiser, 1994]

d2rb
dt2

+ ω2
qrb −

ε2

r3
b

− K

rb
= 0, (4.1)

where ωq is the smooth-focusing frequency, ε is the average transverse emittance in the

beam frame, andK is the effective self-field perveance. Suppose that the ion source in-

jects a uniform density plasma with initial transverse emittance εs and perveance Ks,

then there can be an envelope oscillation around r̄b =
[(
Ks +

√
K2
s + 4ε2sω

2
q

)
/2ω2

q

]1/2
.

If the ion source radius rs is equal to r̄b, then the envelope oscillation and injection

mismatch can be minimized. In this case, the mismatch parameter µ = rs/r̄b, which

is the ratio of the size of the initial beam to that of the matched beam [Allen and

Wangler, 1998], becomes µ = 1. We can adjust r̄b by changing ωq, εs, and Ks

(or equivalently the initial line density Ns). Changing εs ≈
√

2rs(2Ts/m)1/2 requires

controlling the temperature of the emission surface of the ion source Ts, which is not

practical in the actual experiments due to the finite thermal response time. There-

fore, most of the experiments on minimizing injection mismatch have been carried

out by changing ωq and Ns. For an applied voltage waveform V0(t) = V̂0 sin(2πf0t),

ωq is proportional to V̂0/f0. Therefore, by changing V̂0 and f0, we can increase or

decrease ωq accordingly. However, due to the electronic limitations in generating the

voltage waveform in the PTSX device, and the single-particle stability condition in
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the smooth-focusing vacuum phase advance σsfv = ωq/f0 < 115.6◦, we can only in-

crease ωq up to about 100 × 103 s−1. On the other hand, the initial line density Ns

can be controlled easily by adjusting the voltages on the emission surface (Vs), accel-

eration grid (Va), and deceleration grid (Vd) of the ion source. The voltage difference

between the emission surface and acceleration grid determines the extraction voltage

Ve, and the voltage difference between the emission surface and the deceleration grid

adjusts the axial beam velocity vb. The axial beam velocity remains approximately

constant throughout the trap and can be estimated from energy conservation. If we

assume space-charge-limited current flow, then line density can be approximated by

Ns ≈ ICL/qvb ∝ V 3/2
e , where ICL is the Child-Langmuir current.

Smooth-focusing injection mismatch is observed in experiments in which the ex-

traction voltage is high enough that r̄b is larger than rs, i.e., when µ < 1. To best

measure this effect by minimizing the relaxation of the plasma to an equilibrium ra-

dial profile, PTSX is operated in a single-pass (streaming) mode where the confining

electrodes at the diagnostic end of the device do not trap the plasma axially. Ions

travel from the ion source to the diagnostic in a single transit of the machine. For

the experimental data on single-pass operation, each data point is obtained after av-

eraging over 100 repeated measurements, and the relative error is only a few percent.

The experimental data and 3D WARP particle-in-cell (PIC) simulation [Friedman

et al., 1992] results in Fig. 4.1 show the z-integrated radial current profiles for the

cases where ωq = 52.2 × 103 s−1 and ωq = 65.2 × 103 s−1. If we take source pa-

rameters corresponding to Ts ∼ 0.1 eV, rs = 0.762 cm, and Ve = 7.5 V, then r̄b =

1.41 cm and µ = 0.54 for ωq = 52.2 × 103 s−1, and r̄b = 1.17 cm and µ = 0.65 for

ωq = 65.2× 103 s−1. Hence, we expect a significant injection beam mismatch. Shoul-

ders in the radial profiles are observed both in experiments and simulations. This is
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(a) ωq = 52.2× 103 s−1.

(b) ωq = 65.2× 103 s−1.

Figure 4.1: The radial profiles of the axial current streaming from the ion source to
the charge collector in a single-pass. Both experiments (solid circles) and simulations
(open circles) show shoulders around r = 3 cm for ωq = 52.2×103 s−1 (a), and around
r = 2.5 cm for ωq = 65.2× 103 s−1 (b). Here, the extraction voltage is set at Ve = 7.5
V. The solid lines connecting the data points are drawn to guide the eye.
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Figure 4.2: Radial profiles of (a) the axial streaming current for several different
smooth-focusing frequencies with fixed extraction voltage Ve = 7.5 V, and (b) the
trapped charge for several different trapping times with injection mismatch (ωq =
65.2× 103 s−1).

the result of the injection mismatch. The radial position of the shoulder scales with

ωq as shown in Fig. 4.2(a); when ωq is decreased, the shoulder moves outwards, and

when ωq is increased the shoulder moves towards the axis, or disappears. These types

of radial profiles induced by beam mismatch were reported previously by Allen et al.

[Allen et al., 2002]. This mismatch, when the plasma is trapped, causes the plasmas

to be relaxed and heated considerably, and have radial profiles with super-Gaussian

tails at r > 5 cm [Fig. 4.2(b)]. When trapped for much longer time durations, the

tail part tends to further diffuse toward the wall (r = 10 cm), likely due to the end

effects (see Appendix A). In Fig. 4.2(b), the plasma heating effect is estimated by

calculating effective transverse temperature from the global force balance equation

[Davidson and Qin, 2001].

The detailed structure of the injection mismatch can be seen in 3D WARP simula-

tions (Fig. 4.3). In the single-pass mode, the time evolution of the beam envelope can

be mapped onto a z-varying beam envelope because z ' vbt, where vb ' const., and
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Figure 4.3: 3D WARP PIC simulation of injection mismatch with ωq = 52.2×103 s−1

and Ve = 7.5 V, showing both rapid and slow oscillations near z = 0 m [Dorf, 2006].
For larger z, the envelope oscillations result in a diffuse halo around the core.

the axial bouncing is absent. Hence, the simulation results in Fig. 4.3 have similar

spatial structure to the evolution of the mean radius [a(t)b(t)]1/2 in Fig. 2.6 of Chap-

ter 2. Figure 4.3 indicates that near the ion source at z = 0, the injection mismatch

appears as large-amplitude envelope oscillations at both the applied frequency f0 and

the breathing-mode frequency ωB = 2ωq
√

1−Ks/(2r̄2
bω

2
q ). The transverse particle

distribution relaxes as the injected particles move downstream, and when z > 1 m,

consists of a dense core that oscillates with frequency ωB and a broad diffuse halo.

This structure results in a significant shoulder in the density profile measured at the

exit of the channel [Hofmann et al., 2001]. The axial wavelength of the core os-

cillation is estimated to be λ ∼ vb(2π/ωB), which gives λ ∼ 0.287 m when Vs = 9
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(a) On-axis charge dependence on the extraction
voltage Ve.

(b) Radial profiles of the axial streaming
currents.

Figure 4.4: Injecting less plasma by decreasing the extraction voltage minimizes the
injection mismatch. When beam is matched to the focusing channel, radial profile
becomes a Gaussian which is a straight line in the log versus r2 plot. Here, Vs = 3 V,
Vd = 0 V, and ωq = 52.2× 103 s−1.

V, Vd = 0 V, vb =
√

2q(Vs − Vd)/m = 3615 m/s, and ωB = 79.2 × 103 s−1. This

wavelength is consistent with the simulation results, where there are about 9 core

envelope oscillations during the 2.6 m transit, enough to see at least the initial stage

of halo formation caused by injection mismatch [Allen et al., 2002]. The halo is

produced by the combined effects of particle-core resonance due to mismatch oscilla-

tions [Wangler et al., 1998] and the finite spread in the axial velocity of the beam

particles. Consistent with the particle-core model calculation in Fig. 2.7(a) of Chap-

ter 2, particles initially within the core reach a maximum amplitude of ∼ 3r̄b, which

is about 50% larger than the maximum envelope of the initial mismatched core. In

the PTSX, axial smearing of beam particles due to the finite longitudinal tempera-

ture and the axial potential distribution, mixes the envelope oscillation structure and

saturates the halo formation faster than an actual transport channel.

The simplest way to minimize the injection mismatch is to inject less plasma by

decreasing the extraction voltage for a given axial beam velocity, so that the expected
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equilibrium radius of the the plasma is close to the radius of the ion source. Figure

4.4(a) shows that the amount of charge injected can be easily adjusted by controlling

the extraction voltage. When a plasma with moderately low space-charge density is

well-matched to the focusing channel, its radial profile has a nearly Gaussian profile

shape, which corresponds to a straight line in the log versus r2 plot [Davidson

and Qin, 2001]. After scanning the acceleration grid voltages, it is found that well-

matched plasmas in the single-pass mode can be created with an extraction voltage of

Ve = 0.8 V [Fig. 4.4(b)]. For the well-matched case in Fig. 4.4, the profile parameter

h introduced in Eq. (2.67) of Chapter 2 is equal to 1.05, and the rms beam radius

is Rb = 0.72 cm, which is comparable to the source size rs = 0.762 cm. Here, the ion

source bias voltage Vs has been lowered from 9 V to 3 V to avoid possible two-stream

interactions (discussed in Sec. 4.3). These plasmas, when trapped, correspond to a

normalized intensity of ŝ = 0.2 ∼ 0.3, and serve as the baseline case for subsequent

experiments.

4.2 Fast Ions

4.2.1 Minimization of Fast Ions

In order to create well-matched one-component plasmas in PTSX, further optimiza-

tion is required in addition to minimizing the injection mismatch. Experiments show

that it is optimal to inject plasma for slightly less than the round-trip transit time of

ions in the trap, and stop the ion emission a short time before closing the injection

electrodes. Both considerations arise out of the need to minimize the number of ions

present in the vicinity of the injection electrodes when the electrodes are switched

from the fully oscillating voltage waveform to their static trapping voltage value V̂ .
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(a) After injection with too short ∆ti. (b) After injection with too long ti.

(c) After optimum injection. (d) After 6 ms trapping.

(e) After 12 ms trapping. (f) At the end of 50 ms trapping.

Figure 4.5: 3D WARP simulation results of PTSX operation for ωq = 52.2× 103 s−1

and ŝ = 0.2 ∼ 0.3. Plots of axial (z, vz) phase space are made with Vs = 3 V and Ts =

0.1 eV, which correspond to vb = (2qVs/m)1/2 ≈ 2087 m/s and vT‖ = (2Ts/m)1/2 ≈
381 m/s initially.
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Figure 4.6: Minimization of fast ions by optimizing ∆ti (a) and ti (b). By measuring
the on-axis charge with the dumping electrode closed, one can effectively monitor the
fast ions. Only ions with large kinetic energy & qV̂ can escape from the trap and be
collected even when the dumping electrodes are closed.

Ions that are near the injection region at the time the end electrodes close are in-

creased to a potential energy as high as qV̂ [for example, see Figs. 4.5(a) and 4.5(b)].

These fast ions can stream along the length of the trap, and then be reflected off the

end potential of the trap with large radial excursions. Some of these fast ions may

escape over the potential barrier on the dumping end and be detected by the charge

collector. The result, whether the fast ions are trapped or not, is an unwanted distor-

tion of the measured radial density profile. Inhibiting ion emission with a bias voltage

applied to the emission surface allows the already-injected ions to move away from

the injection region. An ion source pulsing circuit has been installed for this purpose,

which switches the voltage of the emission surface to a negative bias at a short time

∆ti before the end of the injection stage. Keeping the total time duration of injection

(ti) less than a round-trip transit time of the ions (τb) minimizes the number of ions

that have come back to the injection region. The round-trip transit time of an ion is

estimated to be τb ≈ 2× 2L/vb ≈ 1.92 ms for the injection conditions in the previous

section.
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Figure 4.7: Time history plot of on-axis charge after trapping with optimum injection
conditions. After about 6 ms, the normalized beam intensity is about ŝ ∼ 0.24. The
small residual oscillation has a period equal to the round-trip transit time of the beam
ions in the trap.

The data in Fig. 4.6(a) demonstrate that if ∆ti is at least 0.2 ms, the number

of ions that overcome the axial potential barrier is minimized. If ∆ti is less than 0.2

ms, then fast ions are generated, and can escape from the trap and be collected even

when the dumping electrodes are not opened. The data in Fig. 4.6(b) indicate that

the number of ions that pass over the axial trapping potential increases if ti is greater

than about 1.9 ms. This is consistent with the estimate of τb ∼ 1.92 ms. Therefore,

for the injection optimization of the initial beam state in the present experimental

studies, ∆ti and ti are normally chosen to be 0.3 ms and 1.7 ms, respectively. 3D

WARP simulation results in Fig. 4.5(c) also confirm that the population of fast ions

can be significantly reduced if the injection process is properly optimized. If ∆ti is too

large, the trapped plasma becomes bunched axially and has a much smaller number

density after debunching.
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Figure 4.8: The slope of the on-axis charge versus dumping time curve corresponds
to the on-axis beam current. If the trapping time is too short, the axial density gap
induced by the time delay ∆ti is not fully smoothed out.

After injection is finished, the plasma is allowed to relax for several milliseconds.

This relaxation time allows the residual mismatch oscillations to be damped away

and the axial density nonuniformity induced by ∆ti to be smoothed out. As shown

in Fig. 4.7, the on-axis density saturates in approximately 6 ms of the trapping time.

The small residual oscillation in Fig. 4.7 results from the axial density nonuniformity,

and has a period equal to the round-trip transit time of the beam ions in the trap.

This has been reduced to ∼ 1.7 ms due to the shorter axial plasma length after

trapping. By measuring the on-axis charge with different dumping times, the on-axis

beam current can be estimated. In Fig. 4.8, the instantaneous slope of each curve

represents the instantaneous on-axis beam current collected on the charge collector.

For the case of 0.3 ms trapping, the instantaneous beam currents have both higher

(regions A and C of Fig. 4.8) and lower (region B of Fig. 4.8) values than the average

current, which indicates that the beam is still axially nonuniform. The time span of
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Figure 4.9: Measured radial profiles of trapped plasmas with ωq = 52.2 × 103 s−1:
after minimizing the population of fast ions (A); and with a significant population of
fast ions (B). A straight line in the log of the charge versus r2 plot indicates that the
radial profile is a Gaussian.

region B of Fig. 4.8 is nearly matched to ∆ti = 0.3 ms introduced from the injection.

On the other hand, for the case of 6 ms of trapping, the collected beam current

remains nearly constant until it is saturated after 2 ms of dumping, which indicates

that the beam is mixed axially. 3D WARP simulation results in Fig. 4.5(d) shows

that, after several bounces, trapped plasmas are mixed axially with multi-streaming

beam components caused by finite thermal spread. Although the beam currents are

nearly saturated in 2 ms, to collect the slow ions as well, the total dumping time is set

at 15 ms for most of the experiments. Slow ions are generated near the turning point

in the diagnostic end during the dumping process. When the dumping electrodes

are switched from DC trapping voltages to an AC voltage waveform, ions near the

turning point suddenly lose axial acceleration from the DC potential, and remain slow

without further increase in axial velocity [Fig. 4.5(f)].
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The radial density profile of the trapped plasma after 12 ms becomes nearly Gaus-

sian (curve A in Fig. 4.9), as expected for a thermal equilibrium distribution corre-

sponding to a moderately low space-charge density [Davidson and Qin, 2001]. It

is interesting to note that if we do not introduce the time delay ∆ti, then the radial

density profile has a super-Gaussian tail due to the presence of fast ions (curve B

in Fig. 4.9). The rms radius Rb = [(1/N)
∫ rw
0 n(r)2πr3dr]

1/2
can be calculated from

the measured radial density profile n(r). For the case where ∆ti = 0.3 ms, Rb is

calculated to be 0.85 cm. On the other hand, for ∆ti = 0.0 ms, Rb has increased to

1.38 cm. Therefore, minimization of the population of fast ions is very important in

establishing a well-behaved beam equilibrium. For a thermal equilibrium distribu-

tion in the smooth-focusing approximation, the global force balance equation can be

written as [Davidson and Qin, 2001]

mω2
qR

2
b = 2T̂⊥ +

Nq2

4πε0
. (4.2)

The transverse temperature inferred from the global force balance equation (4.2) is

T̂⊥ = 0.13 eV for the trapped plasma with ∆ti = 0.3 ms, which is consistent with the

thermal temperature of the cesium ion source (∼ 1000 ◦C).

4.2.2 Fast Ion as a Diagnostic Tool

As discussed earlier, fast ions are undesirable for obtaining a well-matched initial

beam. However, by intentionally generating fast ions with a different time duration

of injection ti, kicking them out of the DC potential barrier, and measuring their on-

axis density evolutions, we can get useful information on envelope oscillations, which

are usually averaged out during the dumping process. For this purpose, the DC bias
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Input frequency Adjusted frequency Aliased frequency Aliased period
(f0, in kHz) (f0 + ∆f , in kHz) (falias, in kHz) (Talias, in ms)

75 75.7576 1.51515 0.66
60 59.5238 0.952381 1.05
50 50 0 ∞

Table 4.1: The original input frequency f0 is adjusted to f0 + ∆f via the LabVIEW
interface and applied to the electrodes of the PTSX. The aliased frequency associated
with the on-axis density oscillation frequency 2(f0 + ∆f) is estimated by finding an
integer l that satisfies |2(f0 + ∆f)− lfs| < fs/2.

voltage V̂ has been increased to its maximum value (150 V), which allows the fast

ions to be collected almost immediately (. 0.3 ms) without significant relaxation.

To describe this process, we apply a KV-equivalent beam model introduced in

Chapter 2 of this thesis. We consider an axially-uniform long charge bunch with

uniform number density n̂(t) = N/πa(t)b(t), in an oscillating quadrupole potential

with the waveform V0(t) = V̂0 sin(2πf0t + Φ). If we assume that the initial phase

is Φ = 0, and the beam is symmetric and matched to the focusing channel, then

a(t) = a(t+T ) and b(t) = b(t+T ), where a(0) = b(0) = r̄b. To the lowest-order Fourier

mode analysis, we approximate a(t) ≈ r̄b+δrb sin(2πf0t) and b(t) ≈ r̄b−δrb sin(2πf0t),

and at the instant when the injection is complete at t = ti, the on-axis density is

approximately given by

n̂(ti) ≈
N/πr̄2

b[
1−

(
δrb
r̄b

)2
sin2(2πf0ti)

] . (4.3)

The fast ions will be generated near the injection electrodes at t = ti, and the collected

on-axis charge signals Q(0) downstream will be directly proportional to αn̂(ti), where

α is the fraction of ions energetic enough to overcome the DC potential barrier near

the dumping electrodes (typically, ≈ 1%). Since the present LabVIEW program that

controls the operation sequence of PTSX is optimized with 0.1 ms time step, we
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Figure 4.10: On-axis charge oscillations of fast ions are (a) calculated from a KV-
equivalent beam model described by Eq. (4.3) and (b) measured from experiments
with a 10 kHz sample rate. Here, the smooth-focusing phase advance σsfv is fixed at
49.8◦, and the injection time ti varies from 1 to 5 ms.

sample the fast ion signal with a sample frequency fs = 10 kHz. The on-axis density

oscillation frequency fn̂ is twice the external focusing frequency f0, and normally an

order of magnitude higher than the sample frequency fs. Therefore, fn̂ greater than

the one-half of the sample frequency (fs/2 = Nyquist frequency) is folded back on

the frequency scale, and appears as an aliased frequency falias, which is given by

falias = |fn̂− lfs| < fs/2 for any integer l (i.e., folding effect). It should be noted here

that due to the memory architecture of the arbitrary function generator, the input

frequency f0 is adjusted to f0+∆f following the restrictions on the waveform size and

resolution explained in Chapter 3 of this thesis. The expected aliased frequencies

and periods are summarized in Table 4.1 for several different input frequencies.
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Figure 4.11: On-axis charge oscillations of fast ions are measured from experiments
with the same applied focusing frequency f0 = 75 kHz, but with several values of
smooth-focusing frequency ωq and normalized beam intensity ŝ.

Two free constant parameters αN/πr̄2
b and δrb/r̄b are scaled to best fit the ex-

perimental data. In particular, by measuring the ratio of the maximum to minimum

on-axis charge Q(0), one can estimate the relative amplitude of envelope oscillation

of the beam by

δrb
r̄b
∼

√√√√1− Q(0)min

Q(0)max

. (4.4)

Figure 4.10 shows good agreement between theoretical estimates and experimental

measurements within their aliased periods. In the experimental data, there are slight

increases in the oscillation amplitudes after 2 ms. This is because the round-trip

transit time of the ion beam is τb ≈ 1.92 ms, and the returning up-stream particles
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start to contribute to the generation of fast ions when ti > 2 ms. The relative

amplitudes of envelope oscillations are estimated to be δrb/r̄b ∼ 0.6 for ωq = 65.2 ×

103 s−1, 0.45 for 52.2×103 s−1, and 0.32 for 43.5×103 s−1, respectively. It is interesting

to note that the case where f0 = 50 kHz has a period exactly divisible by the sampling

period. In this case, it is expected that the discretely-sampled on-axis charges are

constant for a perfectly-matched beam. Hence, the small on-axis charge modulation

observed in case F of Fig. 4.10 can be attributed to the result of mismatch oscillations.

The effects of mismatch oscillations are further noticeable when the average focusing

frequency ωq is decreased, and the normalized beam intensity ŝ is increased for a

given applied focusing frequency. Figure 4.11 shows that as ωq is lowered, there

appears irregular noise on top of the aliased oscillations, where the period is nearly

)(t0V−)(t0V+
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)(tI
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Figure 4.12: Schematic diagram of the collective mode diagnostic based on signal
processing with capacitive pick-ups [Gilson et al., 2007b]. Here, C represents the
capacitance which is determined by the geometry of the pick-up electrodes (inside)
and main electrodes (outside), and by the capacitance distributed over the cable. To
lower the cut-off frequency fcut = (2πRC)−1 of the high-pass characteristic of the
input circuit, the induced displacement current Iind(t) ∼ ε0A[dE(t)/dt] is terminated
with a buffer with high input impedance R (∼ 108 Ω).
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constant for a given f0. Presently, the number of samples is insufficient to resolve

the characteristic frequencies of the mismatch oscillations. Future experiments with

higher sample frequency and longer time span may provide useful information on

collective mode excitation, and can be compared with the collective mode diagnostic

which is being developed in PTSX, based on signal processing with capacitive pick-ups

(Fig. 4.12) [Gilson et al., 2007b].

4.3 Two-Stream Interactions

During the injection stage, the stream of ions leaving the ion source interacts with the

counter-streaming ions that have reflected off the end of the trap. In these counter-

streaming plasmas, (electrostatic) two-stream interactions may be a source of noise

in the signal, could lead to heating, expansion, and loss of the plasma, and may dete-

riorate the beam quality [Stix, 1992; Gorgadze et al., 2003]. Electron-cloud effects

in proton storage rings are a typical example of dipole-mode two-stream interactions

observed in experiments [Zimmermann, 2004].

In a simple counter-streaming uniform plasma system (Appendix B), the condi-

tion for instability (Imω > 0) can be expressed in terms of the threshold value of the

normalized intensity ŝth as

ŝ > ŝth = 4
vb/vT‖(

1 + vb/vT‖
)2 ,

for vb > vT‖. For ŝ > ŝth, the maximum growth rate (Imω)max and corresponding

wavelength λmax can be estimated as

(Imω)max '
ω̂p
4

(
ŝ

2− ŝ

)1/2 [
1−

(
vT‖
vb

)
(4− 3ŝ)1/2(4− ŝ)1/2

ŝ

]
, (4.5)
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λmax ' 2π

(
vb
ωq

)√√√√ (1− ŝ/2)

(1− 3ŝ/4)(1− ŝ/4)
, (4.6)

respectively. When ŝ → 1 and vT‖ = 0, then (Imω)max = ω̂p/4 and λmax =

2π(vb/ωq)
√

8/3. In this space-charge-dominated limit, similar to the case of sym-

metric counter-streaming beams (without net transverse focusing), the two-stream

instability has a growth rate that scales like the plasma frequency, and enhances

the density fluctuation and beam bunching extremely fast [Stix, 1992]. However,

when ŝ < 1, the external transverse focusing force becomes dominant and reduces

the growth rate of the unstable modes. Further, if ŝ < ŝth, then the external focusing

force completely suppresses the excitation of two-stream instabilities. If we take the

experimental parameters to be Vs = 3 V and T‖ ∼ 0.12 eV, then vb = (2qVs/m)1/2 =

2087 m/s, vT‖ = (2T‖/m)1/2 = 417 m/s, and ŝth = 0.56. Therefore, we expect that

two-stream interactions are linearly stable if we inject the beams rather slowly with

moderately low space-charge intensity (ŝ = 0.2 ∼ 0.3). The phase-space plots Figs.

4.5(c) and 4.5(d) show that the main beam stream remains quiescent during the in-

jection stage and the early stage of trapping, with |vz| around 2000 m/s and a finite

thermal spread, both of which are consistent with simple estimates. However, the sim-

ulations also indicate that if we trap the plasma longer for many bounce periods (> 10

ms) inside the axial potential barrier, then eventually two-stream interactions begin

to develop even when ŝ < ŝth [Fig. 4.5(e)]. This is most likely due to perturbations

in the vicinity of the turning points. Near the turning points, where vb → (vb− 0)/2,

the local density is much higher than in the trap (n̂→ 2n̂), resulting in an enhanced

density perturbation and beam bunching [Gorgadze et al., 2003]. These two-stream

interactions mix the multi-streaming beams inside the trap, increase the longitudinal

temperature, and eventually become saturated [Fig. 4.5(f)]. As noted previously, the
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Figure 4.13: Time history plots of the normalized beam intensity ŝ obtained from
(a) simulations, and (b) experiments for Vs = 3 V.

purpose of the PTSX device is to simulate the transverse dynamics of a continuous

beam propagating in kilometer-long periodic-focusing transport lines. In this regard,

it is important that the trapped plasma be maintained at least several tens of millisec-

onds without significant distortion of the radial profiles. For the case of beams with

moderately low space-charge intensity and axial beam velocity, the effects of two-

stream interactions on the transverse confinement after a long trapping time turn out

to be small. Both the simulations and experiments in Figs. 4.13(a) and 4.13(b)

demonstrate that a plasma slowly injected with moderate space-charge intensity is

maintained up to 50 ms (3000 lattice periods), and has only a slight decrease in the

z-integrated normalized beam intensity ŝ, despite the local density fluctuations. It is

interesting to note that when the trapping time is less than 6 ms in Fig. 4.13(a), the

evolution of ŝ at the plasma center shows oscillatory behavior similar to the experi-

mental results in Fig. 4.7, both of which are direct consequences of the density gap

introduced during the injection stage. The measured radial profiles in Fig. 4.14(a)
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(b) Vs = 9 V.

Figure 4.14: Radial trapped charge profiles with long trapping times for (a) Vs = 3 V
and (b) Vs = 9 V. For the case of Vs = 9 V, due to the strong injection mismatch and
the generation of fast ions during the injection stage, a non-Gaussian tail has already
developed in the 1 ms of trapping. Further relaxation of the radial density profile and
temperature is likely due to the result of enhanced two-stream interactions expected
from the simulations [Figs. 4.15(b) and 4.15(c)].

also indicate that the beam remains undistorted in a thermal equilibrium state, with

only a small increase in the transverse temperature.

On the other hand, if we inject a plasma with higher space-charge intensity and

beam velocity, then two-stream interactions can affect the transverse dynamics of

the trapped plasma. As the two-stream interactions become stronger, ions pick up

first-order energy at the expense of the beam’s zeroth-order axial kinetic energy. As

seen in Figs 4.15(b) and 4.15(c), the first-order ion motion results in beam bunching,

and increases the overall longitudinal temperature through space-charge-induced local

(axial) electric fields [Stix, 1992]. When there is a coupling of the longitudinal and

transverse motion through bouncing off the DC potential barrier and virtual cathode

formation, we can expect some additional partitioning of energy between longitudinal

(T‖) and transverse (T⊥) temperatures. Hence in the PTSX device, an increase in T‖



4.3. Two-Stream Interactions 123

(a) Right after injection. (b) After 5 ms trapping.

(c) At the end of 40 ms trapping. (d) In the middle of dumping.

Figure 4.15: Plots of axial (z, vz) phase space obtained from 3D WARP simulations
for ωq = 65.2 × 103 s−1 and Vs = 9 V. Due to the strong injection mismatch, the
initial longitudinal temperature right after injection is substantially increased from
T‖ ≈ Ts = 0.1 eV (compare with Fig. 4.17). Further increase in the longitudinal
temperature is attributed to the effects of two-stream interactions.
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Figure 4.16: Time history plots of normalized beam intensity ŝ obtained from (a)
simulations and (b) experiments for Vs = 9 V.

due to two-stream interactions may cause some relaxation in T⊥ [similarly, an increase

in T⊥ due to injection mismatch may cause some relaxation in T‖ as well. See Fig.

4.15(a)]. Although the longitudinal temperature itself is not practically measurable

in PTSX, by assuming T‖ ∼ T⊥, we can estimate T‖ from the effective transverse

temperature T̄⊥ inferred from the radial density profile measurement and the global

force balance equation [Davidson and Qin, 2001].

Both the simulations and experiments in Figs. 4.16(a) and 4.16(b) indicate that

the z-integrated normalized beam intensity ŝ decays gradually and becomes nearly

saturated after 20 ms of trapping. The local density fluctuations are quite active up

to 10 ms and the measured signals are also somewhat noisy during this time period.

The rapid decrease in ŝ at the very beginning of the trapping (. 1 ms) in Figs.

4.16(a) and 4.16(b) is caused by fast ions. The injection time of ti = 1.7 ms is much

longer than the round-trip transit time of the beam ions with Vs = 9 V, resulting in

considerable amount of fast ion population as seen in Fig. 4.15(a). These fast ions

can be lost axially over the DC potential barrier in a single pass, or, after several
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ŝ Vs (V) T‖ (eV) vb (m/s) vT‖ (m/s) ŝth (Imω)−1
max (ms) λmax (cm)

0.21 3 ∼ 0.12 < 2087 ∼ 417 > 0.56 - -
0.74 9 ∼ 0.79 < 3615 ∼ 1071 > 0.71 > 1.85 < 45.9

Table 4.2: Characteristic parameters of two-stream interactions. We assume T‖ ∼ T⊥,
where T⊥ is estimated from the measured radial profiles. The axial beam velocity vb
will be slightly less than the initial value specified by Vs, due to the virtual cathode
effect and increase in temperature. When ŝ > ŝth, it is expected that the density
perturbation grows with maximum growth rate (Imω)max and wavelength λmax.

bounces inside the trap, can have much higher radial excursions and finally be lost

radially to the wall due to end effects (see Appendix A).

The typical characteristic parameters of two-stream interactions are summarized

in Table 4.2. When ŝ and vb are moderately low, then two-stream instabilities are

expected to be absent or weak, even for the relatively cold plasma (T‖ ∼ 0.12 eV).

On the other hand, if ŝ and vb are moderately high, then the two-stream interactions

become unstable and strong even for relatively warm plasma conditions (T‖ ∼ 0.79

eV). The estimated growth rate, (Imω)−1
max ∼ 1.85 ms, is much slower than the plasma

frequency (ω−1
p ∼ 0.013 ms) because of the external transverse focusing and finite

thermal spread. In addition, the estimated wavelength of λmax ∼ 45.9 cm is quite

comparable to the velocity perturbation structure observed in Fig. 4.15(b). As an

instability grows, the resultant plasma heating and radial expansion will increase T‖,

decrease ŝ and vb, and finally bring the plasma into the stable regime.

4.4 Virtual Cathode Formation

In principle, unstable two-stream interactions and particle loss (or expansion) associ-

ated with end effects can be reduced if the axial beam velocity is lowered. Since, for

space-charge limited injection, ŝ ∝ n(0)/ω2
q ∝ ICL/vb ∝ V 1.5

e /V 0.5
s , we can adjust Ve
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(a) Vs = 9 V and Ve = 7.5 V. (b) Vs = 1.5 V and Ve = 4.25 V.

Figure 4.17: 3D WARP simulation results of ion injection with high normalized
beam intensity (ŝ ∼ 0.85). Plots of axial (z, vz) phase space are made with Vs = 9
V and Ve = 7.5 V (a), and Vs = 1.5 V and Ve = 4.25 V (b). Here, the emission
surface, and acceleration and deceleration grids are located at z ' 0, 0.01, and 0.014
m respectively. Note that the longitudinal temperature becomes slightly cooled and
remains relatively unchanged compared to the initial source temperature (∼ 0.1 eV)
for case (a), while there is a significant longitudinal heating for case (b).

and Vs in such a way that ŝ is kept constant while the axial beam velocity becomes

much slower. However, in this case, self-field potential can be comparable to the

axial kinetic energy of the beam particle. This self-generated potential barrier (often

called a virtual cathode) deflects (or even reflects) beam particles and degrades the

quality of the beam. As illustrated in the WARP simulation results near the source

region (Fig. 4.17), significant particle deflection and beam quality degradation occur

when the voltage of the emission surface is lowered from Vs = 9 V to 1.5 V keeping

ŝ ∼ 0.85. This virtual cathode formation sets the lower limit of axial beam velocity

(or equivalent Vs) available in PTSX.

To measure the virtual cathode effect without relaxation of the plasma through

injection mismatch, the focusing frequency has been increased to ωq = 93.9×103 s−1,

which results in a value of the mismatch parameter µ close to 1. Because both
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(a) On-axis potentials. (b) Axial streaming current profiles.

Figure 4.18: Characteristics of the virtual cathode effect. On-axis potential distribu-
tions near the source region are estimated from the 3D WARP simulations (a), and
axial streaming current profiles are measured by the charge collector at the end of the
machine (b). In calculating the potential distributions, space-charge-limited emission
and Neumann boundary condition are applied on the emission surface of the source.

injection mismatch and virtual cathode formation originate from too high space-

charge density and produce non-equilibrium density profiles, it is somewhat difficult

to make a clear distinction between them. While an injection mismatch results from

radial force imbalance and mainly affects the transverse dynamics through envelope

oscillations and halo formation, a virtual cathode results from an axial potential

build-up and mainly affects the longitudinal dynamics through beam deflection. This

beam deflection is highly localized near the source region and often produces sudden

changes in current density. Figure 4.18 illustrates that, as Vs decreases, the beam

becomes more subject to the virtual cathode effect and has a radial density profile

with a significant shoulder near r = rs (source radius).



4.5. Summary and Discussion 128

4.5 Summary and Discussion

This chapter has addressed the issue of how to make an initial quasi-equilibrium

plasma in the PTSX that can be used as a baseline for subsequent beam physics

experiments. Since most of the beam physics topics in high-intensity accelerators

are related to how the initial quasi-equilibrium beam responds to external pertur-

bations such as sudden beam mismatch, transverse compression, and random noise,

it is critical to have well-characterized initial beam equilibria without effects that

may invalidate the physics similarity between an actual periodic focusing accelerator

system and the Paul trap configuration. Hence, in this chapter, the ion injection

process on PTSX has been carefully optimized by investigating various factors such

as injection beam mismatch (Sec. 4.1), generation of fast ions (Sec. 4.2), two-stream

interactions (Sec. 4.3), and virtual cathode formation (Sec. 4.4). Finally, a quasi-

equilibrium plasma with ŝ = 0.2 ∼ 0.3 has been obtained, which corresponds to

normalized intensities characteristic of the intense proton beams in the Oak Ridge

National Laboratory (ORNL) Spallation Neutron Source (SNS) accumulator ring, and

Fermi National Accelerator Laboratory (Fermilab) booster synchrotron for the Teva-

tron collider. This optimized plasma is stable for more than 50 ms, which is equivalent

to more than 3000 full FODO lattice periods, and has a defocusing space-charge force

that is about 10% of the applied transverse focusing force. In this parameter regime,

it is expected that various self-consistent long-time-scale collective processes can be

effectively studied in the PTSX.



Chapter 5

Transverse Beam Compression

Applications of present- and next-generation high-intensity accelerators [Davidson

and Qin, 2001; Reiser, 1994; Wangler, 1998] to high energy and nuclear physics,

high energy density physics, and heavy ion fusion often require transverse and lon-

gitudinal compression of the charge bunch to a small spot size at the target loca-

tion [Dorf et al., 2006; Sefkow and Davidson, 2006]. Typically, the transverse

compression can be achieved by means of increasing the focusing strength of the

alternating-gradient (AG) lattice along the beam propagation direction [Dorf et al.,

2006]. However, intense beam propagation through such a lattice transition region in-

evitably leads to a certain amount of beam mismatch and emittance growth [Reiser,

1994; Wangler, 1998]. Furthermore, a beam mismatch can produce halo particles

and may deteriorate the beam quality [Wangler et al., 1998; Allen et al., 2002].

Hence, it is of considerable practical importance to determine how smooth the lat-

tice transition should be in order that the beam mismatch and emittance growth are

minimized during the transverse compression process. Because high-intensity accel-

erator systems are typically very sophisticated and expensive to operate, dedicated

129
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experimental studies of transverse compression are limited in number and scope [Hen-

estroza et al., 2004]. On the other hand, the PTSX device provides a compact and

flexible laboratory setup for the experimental investigation of transverse compression.

The amplitude and frequency of the voltage waveform applied to the electrodes of the

PTSX device correspond to the focusing strength and lattice spacing in an AG sys-

tem, respectively. The computer-generated arbitrary voltage waveform can emulate

various types of transition patterns. Hence, in this chapter, we present experimental

results describing the transverse compression of an intense beam pulse by compress-

ing a long nonneutral ion plasma trapped in the PTSX device, and compare them

with analytical theory and numerical simulations. In Sec. 5.1, analytical estimations

are made based on a smooth-focusing model. Four different cases are considered:

instantaneous and adiabatic changes in voltage amplitudes; and adiabatic changes

in instantaneous and applied focusing frequencies. In Sec. 5.2, experimental results

on both compression and expansion (“decompression”) are presented. In Sec. 5.3,

several key experimental results are analyzed either by WARP 2D PIC simulations

or by using a Kapchinskij-Vladimirskij (KV) equivalent beam model.

5.1 Analytical Theory

For simplicity in the theoretical analysis presented in this section, we assume that

the beam states before and after the transition are both quasi-equilibrium states, and

the average effects of the quadrupole focusing field are described by an equivalent

smooth-focusing force [Davidson and Qin, 2001; Reiser, 1994]. As described in

Chapter 2 of this thesis, in equilibrium, the global radial force balance on the beam
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ions with charge q and mass m in the smooth-focusing approximation is given by

mω2
qR

2
b = 2T̄⊥ +

Nq2

4πε0
, (5.1)

where N = 2π
∫ rw
0 drrn(r) is the line density, R2

b = (2π/N)
∫ rw
0 drrr2n(r) is the

(equilibrium) mean-squared radius of the beam, and T̄⊥ is the effective transverse

temperature defined by T̄⊥ = m
〈
ẋ2
sf + ẏ2

sf

〉
0
/2. Note that the effective transverse

temperature T̄⊥ measures the kinetic energy per particle averaged over the transverse

phase space in the smooth-focusing equilibrium.

For a general applied voltage waveform V0(t) = V̂0(t) sin[2πf0(t)t], where f0(t)

is an arbitrary applied focusing frequency, the smooth-focusing frequency is given

approximately by [Dorf, 2006; Gilson et al., 2007a]

ωq(t) ≈
1

2π
√

2

(
8q

mπr2
w

)
V̂0(t)

d[f0(t)t]/dt
. (5.2)

When f0 = const., Eq. (5.2) is reduced to Eq. (2.25) of Chapter 2. If ωq is changed,

a new quasi-equilibrium state will be achieved satisfying the force balance equation

(5.1) with new values of Rb and T̄⊥. When ωq is increased, the plasma is compressed;

and when ωq is decreased, the plasma expands.

5.1.1 Changes in Lattice Amplitude

In this section, changes in ωq created by changing the voltage waveform amplitude V̂0

at fixed focusing frequency f0 = const. are considered. By increasing or decreasing V̂0,

we can change ωq accordingly and achieve a new plasma state. To describe transitions

ranging from instantaneous changes to adiabatic changes, we adopt a simple model

in which V̂0 varies in time according to

V̂0(t) = Vi + (Vf − Vi)

[
exp

(
τ1/2 − t

τ/4

)
+ 1

]−1

, (5.3)
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Figure 5.1: Plot of voltage waveform amplitude V̂0(t) used in the compression ex-
periments. During the characteristic time scale τ , about 80% of the transition is
completed. Note that τ = 0 corresponds to an instantaneous change. If τ is too long,
there will be small discontinuities in the voltage amplitudes at t = 0 and t = 2τ1/2.

where τ1/2 is the time at which the transition is half complete, and τ is the char-

acteristic time scale for the variation of V̂0(t) from the initial amplitude Vi to the

final amplitude Vf (Fig. 5.1). The number of lattice periods for the transition can

be defined as Nt = τf0, where Nt = 0 corresponds to an instantaneous change. We

assume that the transition begins at t = 0, when the beam is in an initial equilibrium

state and well-characterized, and is essentially complete by t = 2τ1/2. For continuity

of the voltage waveform at t = 0 and t = 2τ1/2, we require exp(4τ1/2/τ) � 1.

Instantaneous Transition

The analysis in this section makes use of total energy conservation discussed by Reiser

[Reiser, 1991; Chung et al., 2007b]. When a beam is in a quasi-equilibrium state,

the average transverse kinetic energy per particle is identified with the effective trans-

verse temperature as Ek = T̄⊥. Moreover, the average potential energy per particle
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associated with the external focusing force is calculated to be

Ep =
2π

N

∫ rw

0
drr

1

2
mω2

qr
2n(r) =

1

2
mω2

qR
2
b , (5.4)

in the smooth-focusing approximation. The average electrostatic energy associated

with the self-electric field is defined by Ee = (2π/N)
∫ rw
0 drr 1

2
ε0(−∂rφs)2 [Davidson

and Qin, 2001]. For analytical simplicity, we assume that the beam has a uniform

density profile n(r) = n̂ = const. for 0 ≤ r <
√

2Rb. Then the electrostatic energy can

be calculated as Ee = (Nq2/4πε0)
[
ln(rw/

√
2Rb) + 1/4

]
, where rw is the radius of the

perfectly conducting wall. Therefore, the total energy per particle, E = Ek+Ep+Ee,

for a beam with uniform density profile can be expressed as

E = mω2
qR

2
b +

Nq2

4πε0

[
ln

(
rw√
2Rb

)
− 1

4

]
, (5.5)

where use has been made of the global force balance equation (5.1) to eliminate T̄⊥.

For an instantaneous change of the focusing field strength from ωqi to ωqf , there

will be an energy difference between the initial and final equilibrium states given by

∆E = m(ω2
qf − ω2

qi)R
2
bi/2, where Rbi is the rms radius of the initial beam, which is

assumed to remain constant at the instant of transition [Davidson and Qin, 2001].

Note that ∆E > 0 for compression, while ∆E < 0 for expansion. This energy

difference represents the free energy that can be redistributed by nonlinear space-

charge forces or instabilities [Reiser, 1991]. If the beam relaxes from an initial state

with energy Ei into a final quasi-equilibrium state with energy Ef = Ei + ∆E, we

obtain the transcendental equation for the final rms radius Rbf ,(
Rbf

Rbi

)2

− K

2ω2
qfR

2
bi

ln
(
Rbf

Rbi

)
− 1

2

(
1 +

ω2
qi

ω2
qf

)
= 0, (5.6)

where K = 2Nq2/4πε0m is the effective self-field perveance, and the line density N

is assumed to remain constant during the transition. Redistribution of the free en-

ergy ∆E usually introduces an emittance growth [Reiser, 1994; Wangler, 1998].
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Because there is often a large mismatch after an instantaneous transition, this emit-

tance growth typically occurs on the time scale of the envelope oscillations, and is

associated with the formation of a low-density halo region [Wangler, 1998; Wan-

gler et al., 1998]. Since the formation of the halo is not included in the present

simplified theoretical model, the final rms radius Rbf measured in experiments with a

significant halo contribution during an instantaneous transition is usually larger than

the analytical estimate in Eq. (5.6).

Adiabatic Transition

Beams in an ideal equilibrium do not experience emittance growth. However, beams

are rarely in an ideal equilibrium, and any changes in the focusing system and nonuni-

formities in charge density can produce changes in the beam distribution, usually

accompanied by emittance growth [Wangler, 1998; Strasburg, 2001]. Transverse

compression also induces emittance growth. However, we can minimize the emittance

growth by compressing the beam very slowly. For a quantitative description of the

adiabaticity of the compression process, we make use of the following equation that

describes the evolution of the rms radius of a long charge bunch with uniform density

profile [Davidson and Qin, 2001; Dorf et al., 2006]

d2

dt2
Rb +

(
ω2
q (t)−

K

2R2
b

)
Rb =

ε2(t)

4R3
b

. (5.7)

Here, the smooth-focusing frequency ωq(t) evolves in time according to Eqs. (5.2)

and (5.3), and ε(t) = 2Rb

[〈
ẋ2
sf + ẏ2

sf

〉
− (dRb/dt)

2
]1/2

is the transverse emittance de-

fined in the beam frame. The statistical average is made over a distribution function

of the slow variables in the smooth-focusing approximation. Hence, to describe the

time evolution of the transverse emittance self-consistently, we need to solve the non-

linear Vlasov-Maxwell equations numerically. However, for the case of an adiabatic
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transition in ωq(t), we can assume ε(t) ≈ 2Rb

〈
ẋ2
sf + ẏ2

sf

〉
0

= 2Rb(2T̄⊥/m)1/2 = const

[Dorf et al., 2006]. Here, 〈· · ·〉0 denotes the statistical average over the equilibrium

distribution function in the smooth-focusing approximation [Davidson and Qin,

2001]. If we change ωq(t) slowly, then there is a small-amplitude perturbation around

the quasi-equilibrium radius R̄b =
[(
K +

√
K2 + 4ε2ω2

q

)
/4ω2

q

]1/2
, with oscillation fre-

quency given by ωB = 2ωq
(
1−K/4R̄2

bω
2
q

)1/2
. As long as the characteristic transition

time τ is much longer than ω−1
B , the beam mismatch induced by changing ωq remains

small [Dorf et al., 2006]. Therefore, the condition for adiabatic transition is given

by

Nt

f0

min
[
2ωq

(
1−K/4R̄2

bω
2
q

)1/2
]
> 1. (5.8)

It is evident from Eq. (5.8) that for the case of beam expansion (ωqf/ωqi < 1), a

larger number Nt of lattice periods is required for the adiabatic transition to occur

(for example, see Fig. 5.6). If the beam relaxes adiabatically from an initial state with

εi = 2Rbi(2T̄⊥i/m)1/2 to a final state with εf = 2Rbf (2T̄⊥f/m)1/2, then by assuming

εi ' εf and making use of Eq. (5.1) we obtain the simple algebraic equation for the

final rms radius Rbf ,

(
Rbf

Rbi

)4

− K

2ω2
qfR

2
bi

[(
Rbf

Rbi

)2

− 1

]
−
ω2
qi

ω2
qf

= 0, (5.9)

where it is assumed thatK (or equivalentlyN) remains constant during the transition.

5.1.2 Changes in Lattice Period

In this section, changes in ωq created by modulating the applied focusing frequency

f0(t) at fixed voltage waveform amplitude V̂0 = const. are considered. Modulation

in f0(t) can be made by requiring that either d
dt

[f0(t)t] or f0(t) itself to be changed

adiabatically [i.e., with functional form given in Eq. (5.3)].
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Figure 5.2: Evolution of applied focusing frequency f0(t) (red curve) and instan-
taneous frequency d[f0(t)t]/dt (blue curve) after specifying either (a) the applied
focusing frequency, or (b) the instantaneous frequency to be adiabatic. Note that for
case (a), there can be an undershoot (or overshoot) of the instantaneous frequency
depending on the final frequency and the number of lattice periods for the transition.

Adiabatic Transition in Applied Focusing Frequency

Similar to the voltage amplitude change in Eq. (5.3), adiabatic transition in the

applied focusing frequency is made according to the functional form given by

f0(t) = fi + (ff − fi)

[
exp

(
τ1/2 − t

τ/4

)
+ 1

]−1

. (5.10)

Note that f0(t = 0) ' fi and f0(t = 2τ1/2) ' ff . Although f0(t) itself decreases

monotonically from its initial value fi to the final value ff , there can be an undershoot

(or overshoot) in the corresponding instantaneous frequency when transition is not

made gradually enough [Fig. 5.2(a)]. Since, ωq is dependent on d
dt

[f0(t)t] rather

than f0(t) [see Eq. (5.2)], this undershoot will give rise to a nonmonotonic variation

of ωq and a corresponding nonmonotonic transition in the beam equilibrium. In

particular, there exits a threshold time scale τc of the transition below which the

resultant d
dt

[f0(t)t] makes the smooth-focusing vacuum phase advance σsfv exceed the

single-particle orbit stability limit (= 115.6◦ for the sinusoidal waveform considered
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here) [Davidson and Qin, 2001]. The values of τc depend on the final frequency ff

and can be estimated numerically [Gilson et al., 2007a]. For example, both f0(t) and

d
dt

[f0(t)t] are plotted in Fig. 5.2(a) for the case where fi = 60 kHz and ff = 50 kHz.

The transition is made over 2τ1/2 = 1 ms and τ = 20/fi. Note that near the half-way

point of the transition, the instantaneous frequency becomes temporarily too low so

that σsfv > 115.6◦ (equivalently, the exact vacuum phase advance σv > 180◦). In

addition to the single-particle orbit instability, the beam may experience mismatches

to the focusing channel during the lattice transition. Particularly when σv > 90◦, this

mismatch can excite the (confluent resonance) envelope instability [Reiser, 1994;

Lund and Bukh, 2004].

Adiabatic Transition in Instantaneous Frequency

To obtain an adiabatic transition of the instantaneous frequency without an under-

shoot (or overshoot), we require d[f0(t)t]/dt to be changed according to

d

dt
[f0(t)t] = fi + (ff − fi)

[
exp

(
τ1/2 − t

τ/4

)
+ 1

]−1

. (5.11)

Note that d
dt

[f0(t)t]t=0 ' fi and d
dt

[f0(t)t]t=2τ1/2
' ff . Integrating Eq. (5.11) with

the initial condition f0(t = 0) = fi yields the functional form of the applied focusing

frequency given by

f0(t) =
1

2
(fi + ff )

+
1

2
(ff − fi)

(
τ/2

t

)[
ln

{
cosh

(
τ1/2 − t

τ/2

)}
− ln

{
cosh

(
τ1/2
τ/2

)}]
.(5.12)

Although f0(t) itself is discontinuous at t = 2τ1/2 [see Fig. 5.2(b)], by slightly ad-

justing τ1/2 so that 2πf0(2τ1/2)(2τ1/2) = 2π × integer, we can eliminate the phase

difference. This transition turns out to be more relevant to emulate transverse com-

pression of an intense beam through lattice period changes.
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(b) Transitions with ωqf = ωqi/1.5.

Figure 5.3: Measured radial charge profiles after abrupt changes in focusing frequen-
cies and voltage amplitudes are made with (a) ωqf = ωqi and (b) ωqf = ωqi/1.5. The
initial beam profile prior to transition is shown in the red curve in frame (a) with
error bars. Note that a straight line in the log versus r2 plot indicates that the radial
profile is a Gaussian function of r.

5.2 Experimental Results

The initial charge bunch for the compression experiments is trapped in the PTSX

device with a sinusoidal voltage waveform with f0 = 60 kHz and V̂0 = 150.4 V, which

corresponds to ωq = 52.2 × 103 s−1 and smooth-focusing vacuum phase advance

σsfv = ωq/f0 = 49.8◦. Ion injection into the trap has been optimized through the

process described in Chapter 4 of this thesis in order that the initial beam is both

well-matched to the focusing lattice and well-characterized [Chung et al., 2007c].

The initial beam has normalized intensity ŝ ≈ 0.22, and its density profile is nearly

Gaussian with Rb = 0.85 cm and T̄⊥ = 0.13 eV [red curve in Fig. 5.3(a)]. The total

duration of the transition 2τ1/2 is typically 1 ms, which is equivalent to 60 lattice

periods for f0 = 60 kHz. The radial charge profile Q(r), which is proportional to

the number density n(r), is measured by averaging the signal at each radial position

over 20 repeated measurements. The size of the charge collector aperture rc and an
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(b) Transitions with Vf = Vi × 1.5.

Figure 5.4: Measured radial charge profiles after transitions with ωqf = ωqi × 1.5.
In case (a), instantaneous transitions are made by allowing both the frequencies and
amplitudes to be changed. Note that when the final vacuum phase advance is too
high, the plasma is lost completely (green curve). In case (b), the transitions are made
instantaneously (circles), adiabatically with Nt = 4 (triangles), and adiabatically with
Nt = 20 (squares). The initial smooth-focusing vacuum phase advance σsfvi is 49.8◦,
and the applied focusing frequency f0 is fixed at 60 kHz during the transitions.

estimate of the length of the trapped plasma Lp are then used to calculate n(r) ≈

Q(r)/qπr2
cLp (see Chapter 3 for details). For example, the on-axis charge Q(0)

prior to the transition in Fig. 5.3(a) corresponds to an on-axis density n(0) of 0.83×

105 cm−3. Since the trapped plasmas are highly reproducible and the offset errors in

the charge collector system are typically ∼ 1 fC, the relative errors in the calculation

of low-order moments of the particle distribution (such as line density, rms radius,

and emittance) are typically a few percent. Typical standard errors in the radial

profile measurement are also shown in Fig. 5.3(a).

To begin with, we exam the validity of the smooth-focusing approximation by

changing V̂0 and f0 abruptly at t = τ1/2, where ωq is kept fixed. Theory predicts that

unless the phase advance is too high, there will be no changes in the smooth-focusing

equilibria. Figure 5.3(a) demonstrates that the measured charge profiles are almost

identical even after significant changes are made in both V̂0 and f0. Since ωq is fixed,
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no compression is achieved in the smooth-focusing equilibria as expected. Only the

final smooth-focusing vacuum phase advance is rescaled to σsfvf = σsfvi (fi/ff ). The

smooth-focusing approximation is also valid when the beam is actually compressed

or expanded. Fig. 5.3(b) indicates that when ωq is decreased from 52.2× 103 s−1 to

34.8× 103 s−1, the initial beam is expanded in nearly the same manner regardless of

the specific values for V̂0 and f0. This is also true for the compression cases shown

in Fig. 5.4(a). The exception is if σsfv becomes too large [green curve in Fig. 5.4(a)].

Note that in Fig. 5.4(a) the transitions are made instantaneously. Therefore, the

compression is not effective in the beam tail due to the beam mismatch [compare

with Fig. 5.4(b)].

5.2.1 Changes in Lattice Amplitude

In Fig. 5.5, scans of the number Nt of lattice periods for the compression transition

reveal that for voltage amplitude increases of 50% and 90%, the compression leads

to an increase in the on-axis charge that saturates after the transition is made in

several lattice periods. There is no extra benefit in adiabatic compression by making

the transition more gradual than approximately four lattice periods. Indeed, the

condition for adiabaticity [Eq. (5.8)], τωb ≈ 6.9 > 1, is well satisfied for compressions

with Nt = 4. It is interesting to note that for Nt = 0 (instantaneous transition), due

to the beam loss and emittance growth associated with the large beam mismatch, the

on-axis charge after the instantaneous transition with Vf/Vi = 1.9 becomes smaller

than for the case with Vf/Vi = 1.5. Figure 5.4(b) indicates that the measured radial

profiles for adiabatic transitions with Nt = 4 and Nt = 20 are almost identical,

whereas for the instantaneous case (Nt = 0), the radial profile broadens considerably.

Another example that illustrates this point is presented in Fig. 5.6, which shows
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Figure 5.5: Measured on-axis charge dependence on the number Nt of lattice periods
for transitions with Vf/Vi = 1.5 (solid circles) and Vf/Vi = 1.9 (open circles) for

σsfvi = 49.8◦ and f0 = 60 kHz. Nt = 0 corresponds to an instantaneous transition.
Here, the on-axis charge prior to the transition is 0.476 pC, which is indicated by the
dashed line.

the results of solving Eq. (5.7) numerically. For an adiabatic compression with

Vf/Vi = 1.5, it is evident that Nt = 4 constitutes enough lattice periods to avoid

mismatch oscillations, as expected from the experimental data. However, to make

certain that the transitions are sufficiently gradual, we have performed the subsequent

adiabatic compression experiments with Nt = 20. On the other hand, as noted earlier

in relation to Eq. (5.8), larger values of Nt are required for the case of expansion. As

illustrated in Fig. 5.6(b), unlike in the compression, Nt = 4 is not enough to suppress

mismatch oscillations during the beam expansion. Hence, to make the expansion as

smooth as possible, we set Nt = 40 for expansion experiments. If Nt > 40, then

small discontinuities in the voltage amplitude specified by Eq. (5.3) become larger

than 5% at the start and end points of the transition, which can be another source

of mismatch.
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Figure 5.6: Numerical solutions to the envelope equation (5.7) with ε(t) = const.
Evolution of the rms beam radius Rb(t) during (a) compressions with Vf/Vi = 1.5
and (a) expansions with Vf/Vi = 1/1.5. Note that for instantaneous transitions or
adiabatic transitions with not enough transition periods Nt, envelope oscillations with
breathing mode frequency ωB are excited. Here, σsfvi is 49.8◦, and f0 = 60 kHz.

In Fig. 5.7, the ratio of the final to initial on-axis beam density nf (0)/ni(0) is

estimated analytically and measured experimentally. The transition is made either

instantaneously or adiabatically, and the ratio of the final to initial voltage amplitude,

Vf/Vi, is scanned from 0.1 to 2.2. Since the applied focusing frequency is fixed, we have

Vf/Vi = ωqf/ωqi = σsfvf/σ
sf
vi . Except for the lower (Vf/Vi < 0.6) and upper (Vf/Vi >

1.6) ranges, the experimental data are in relatively good agreement with the analytical

estimates. In Fig. 5.7(a), the theoretical estimates are made by using Eqs. (5.6) and

(5.9). When it is assumed that the transverse emittance is approximately constant

during the adiabatic transition [Dorf et al., 2006], the on-axis beam density increases

approximately linearly according to the increase in the voltage amplitude. However,

the normalized beam intensity decreases after the compression because ŝ ∝ n̂ω−2
q ∝

ω−1
q due to linear dependence of n̂ on ωq. In Fig. 5.7(b), the on-axis beam density (or

equivalently, the on-axis charge) is measured by opening the diagnostic end electrodes

immediately after the transition is complete. Since it takes about 2 ms to dump all
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Figure 5.7: Plots of the ratio of final to initial on-axis beam density nf (0)/ni(0)
for different values of Vf/Vi with f0 = 60 kHz. The values nf (0)/ni(0) are either
(a) estimated from analytical theory, or (b) measured experimentally. Here, the
initial vacuum phase advance is σvi = 52◦, which corresponds to σsfvi = 49.8◦. Both
instantaneous (solid circles) and adiabatic (open circles) transitions are considered.
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(a) Transitions with Vf = Vi × 1.2.
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(b) Transitions with Vf = Vi × 1.9.

Figure 5.8: Measured radial charge profiles after transitions with (a) Vf/Vi = 1.2, and

(b) Vf/Vi = 1.9 for σsfvi = 49.8◦ and f0 = 60 kHz. The transitions are made either
instantaneously (solid circles), or adiabatically with Nt = 20 (open circles). Here,
squares correspond to the radial profile for the case where Vf = Vi (no transition). A
straight line in the log versus r2 plot indicates that the radial profile is a Gaussian
function of r.

of the trapped plasma to the charge collector, the measured signal for a single inject-

trap-dump cycle is necessarily averaged over about 120 lattice oscillation periods for

f0 = 60 kHz. It is clear that in the range 0.9 ≤ Vf/Vi ≤ 1.2, there is no noticeable

difference in the on-axis beam density between the instantaneous and adiabatic cases.

In fact, the measured radial profiles for the instantaneous and adiabatic compression

cases, for Vf/Vi = 1.2, are almost indistinguishable [Fig. 5.8(a)]. This suggests

that modest changes (. 20%) in the focusing field strength may be made abruptly,

without the need for a lengthy gradual-transition region. For example, if we increase

the voltage amplitude by 20% for each cycle, then after four cycles we find Vf/Vi =

(1.2)4 ≈ 2.1. This may explain why only several lattice periods are adequate for

adiabatic compression when Vf/Vi = 1.9 in Fig. 5.5.

It is also interesting to note, for the adiabatic compression case, that the enve-

lope instability can affect the on-axis plasma density when Vf/Vi > 1.6. We define
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the vacuum phase advance σv as the exact (not smooth-focusing) phase advance of a

particle oscillating in a quadrupole focusing field in the absence of any space-charge

force [Reiser, 1994; Lund and Bukh, 2004]. For Vf/Vi = 1.6, σv is approximately

88◦. Therefore, when the initial charge bunch is compressed by more than a 60%

increase in the voltage amplitude, the charge bunch enters the unstable parameter

region for the envelope instability (σv > 90◦) [Reiser, 1994; Lund and Bukh, 2004].

However, for the moderate space-charge-density beams (ŝ = 0.2 ∼ 0.3) considered in

the present study, the instability band around σv = 90◦ is usually very narrow [Lund

and Bukh, 2004]. Therefore, if the beam is compressed in such a way that the beam

passes through the instability band quiescently without mismatch oscillations (i.e.,

adiabatically), then we can minimize the emittance growth associated with the exci-

tation of the envelope instability. In the experimental results presented in Fig. 5.7(b),

no detrimental beam degradation is observed even when the final vacuum phase ad-

vance σvf becomes larger than 90◦ (or equivalently Vf/Vi > 1.6). Nonetheless, when

the initial beam is further compressed with Vf/Vi & 2.2, then σv → 180◦, and we

begin to lose confinement of the beam particles.

Plots of the ratio of final to initial line density Nf/Ni for different values of Vf/Vi

are shown in Fig. 5.9, from which we can verify particle number conservation in the

transition experiments. As expected, for the case of transverse compression, adiabatic

compression is more effective in minimizing particle losses. Considering the detection

limit (∼ 1 fC) of the charge collector system, particle loss can be interpreted as

the formation of a tenuous halo at large radius. In Figs. 5.10(a) and (b), we plot

the ratio of final to initial rms radius Rbf/Rbi for different values of Vf/Vi. The

values of final rms beam radius are either estimated based on analytical theory, or

calculated from the measured radial profiles. For the case of adiabatic compression,
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Figure 5.9: Plots of the ratio of final to initial line density Nf/Ni for different values
of Vf/Vi. The values of Nf/Ni are measured from experiments with instantaneous

transitions (solid circles), and adiabatic transitions (open circles). Here, σsfvi = 49.8◦

and f = 60 kHz.

the experimentally determined rms radius is in good agreement with the analytical

estimate [Fig. 5.10(b)]. This is mainly because mismatch oscillations are minimized

during adiabatic compression.

On the other hand, an instantaneous transition induces mismatch oscillations,

which causes the measured radial profile to have a super-Gaussian tail through halo

formation [see, for example, Fig. 5.8(b)]. Hence, the experimentally-determined rms

radius for the case of instantaneous transition is somewhat larger than the analytical

estimate [Fig. 5.10(a)]. The ratios of final to initial transverse emittance εf/εi are

illustrated in Figs. 5.10(c) and (d) for different values of Vf/Vi. For the experimental

results, the emittance is inferred from Eq. (5.1) and the measured radial profile,

which determines N and R2
b . It is remarkable that the experimental data for adiabatic

compression show that the emittance remains almost constant during the compression

process, which is approximately consistent with the analytical estimate. When the



5.2. Experimental Results 147

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5

( b )

A d i a b a t i c  t r a n s i t i o n
 A n a l y t i c a l  e s t i m a t e s
 E x p e r i m e n t a l  r e s u l t s

I n s t a n t a n e o u s  t r a n s i t i o n
 A n a l y t i c a l  e s t i m a t e s
 E x p e r i m e n t a l  r e s u l t s

R bf / R
bi

( a )

( d )

A d i a b a t i c  t r a n s i t i o n
 A n a l y t i c a l  e s t i m a t e s
 E x p e r i m e n t a l  r e s u l t s

 V f  /  V i V f  /  V i

( c )
 

I n s t a n t a n e o u s  t r a n s i t i o n
 A n a l y t i c a l  e s t i m a t e s
 E x p e r i m e n t a l  r e s u l t s

ε f / ε
i

Figure 5.10: Plots of the ratio of final to initial rms radius Rbf/Rbi [frames (a)
and (b)] and transverse emittance εf/εi [frames (c) and (d)] for different values of
Vf/Vi. The values of Rbf/Rbi and εf/εi are either estimated based on analytical
theory (solid circles), or inferred from experimental data (open circles). Frames (a)
and (c) correspond to instantaneous transitions, and frames (b) and (d) correspond
to adiabatic transitions.

final focusing strength is too small or too large, the rms mismatch induces a significant

emittance growth for the instantaneous case, as expected. For the case where Vf/Vi =

1.9, the emittance more than doubles. In this case, an adiabatic transition has a

large advantage over an instantaneous transition in obtaining high on-axis density,

and minimizing the emittance growth. While an instantaneous transition leads to a

radial profile that exhibits a broad halo region, an adiabatic transition results in a

radial profile that is nearly Gaussian [Fig. 5.8(b)]. Note that a straight line in the

log versus r2 plot indicates that the radial profile is a Gaussian function of r.

In contrast, it should be noted from Figs. 5.9 and 5.10 that for the case of

expansion (ωqf/ωqi < 1), there is no distinct advantage provided by an adiabatic
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transition. This is most likely due to the various non-ideal effects present in the

PTSX device, such as the 3D end effects caused when the beam pulse reflects from

the DC potential (see Appendix A), higher-order corrections to the quadrupole

focusing field in the off-axis region [Davidson et al., 2000], and image charge effects

[Allen and Reiser, 1996; Qian et al., 2003], all of which become strong when the

beam radius is sufficiently large.

5.2.2 Changes in Lattice Period

So far, we have presented experimental results on transverse beam compression with

f0 fixed. In this section, we discuss compression experiments in which f0(t) is varied

according to time while V̂0 is fixed. Adiabatic transitions are made by specifying either

the instantaneous frequency d [f0(t)t] /dt or the applied focusing frequency f0(t). The

initial beam state is the same as the baseline case used in the previous section. The

voltage amplitude is held constant at V̂0 = 150.4 V, and the initial applied focusing

frequency is fi = 60 kHz.

In Fig. 5.11, the final measured on-axis charge is plotted versus the number of

initial lattice periods τfi over which the change in instantaneous frequency is made.

An instantaneous transition (τfi = 0) compresses the beam less effectively compared

to an adiabatic transition which increases the on-axis charge by 30% over several

transition periods. Indeed, the instantaneous transition increases the emittance and

distorts the initial Gaussian radial profile (solid circles in Fig. 5.12). On the other

hand, the adiabatic transition conserves the emittance and results in the final radial

profile being approximately Gaussian (open circles in Fig. 5.12). The experimen-

tal tendencies observed in Figs. 5.11 and 5.12 are basically identical to the case of

amplitude changes presented in Sec. 5.2.1. This confirms that rather than V̂0 or f0
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Figure 5.11: Measured on-axis charge dependence on the number of initial lattice
periods for a transition τfi over which a change in the instantaneous frequency is
made. Note that τfi = 0 corresponds to an instantaneous transition and the on-axis
charge prior to the transition is 0.476 pC, which is indicated by the dashed line. Here,
the initial smooth-focusing phase advance is σsfvi = 49.8◦, and the voltage amplitude
is fixed to V̂0 = 150.4 V.

alone, the smooth-focusing frequency ωq given by Eq. (5.2) is an important param-

eter in characterizing transverse beam compression and obtaining good qualitative

predictions for experimental results.

Having demonstrated that adiabatic decreases in instantaneous frequency com-

press the beam in the same manner as adiabatic increases in voltage amplitude, we

now consider adiabatic transitions in the applied focusing frequency f0(t). In this

case, as discussed in Sec. 5.1.2, we expect an overshoot (or undershoot) of the in-

stantaneous frequency in the middle of changing f0(t) adiabatically from fi to ff .

It should be emphasized here, however, that the frequency overshoot in the PTSX

device is due to the frequency modulation (FM) in generating the sinusoidal voltage

waveform. Hence, it is rather irrelevant to the situation that occurs in a FODO lat-

tice channel. Nonetheless, this frequency overshoot demonstrates the flexibility of the
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Figure 5.12: Measured radial charge profiles after changes in instantaneous frequency
with τfi = 0 (solid circles) and τfi = 10 (open circles) are made. Here, squares
correspond to the radial profile of the baseline case. Both the baseline case and the
adiabatically compressed case have Gaussian radial profiles. Note that a straight line
in the log versus r2 plot indicates that the radial profile is a Gaussian function of r.

PTSX device, and allows the opportunity to investigate single-particle orbit stability

properties.

Figure 5.13 shows the experimental results of the two cases where the final focusing

frequency is decreased to ff = 50 kHz (compression) and increased to ff = 90 kHz

(expansion). When the transitions are not made gradually enough, we observe either

complete loss (for ff = 50 kHz) or partial loss (for ff = 90 kHz) of the on-axis charge.

These results can be interpreted by considering changes in the instantaneous frequency

d [f0(t)t] /dt in the course of the transition. If τfi is not large enough for a monotonic

decrease (increase) of the instantaneous frequency, then the instantaneous frequency

becomes temporarily lower (higher) than the desired final focusing frequency ff . Even

in this case, as long as ωq is varied sufficiently slowly, the plasma will remain in the

quasi-equilibrium state, adjusting its shape according to global radial force balance.
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Figure 5.13: Measured on-axis charge dependence on the number of initial lattice
periods for a transition τfi over which a change in the applied focusing frequency is
made. The two cases correspond to changes from 60 kHz to 50 kHz (squares) and to
90 kHz (circles). Here, the initial smooth-focusing phase advance is σsfvi = 49.8◦, and
the voltage amplitude is fixed to V̂0 = 150.4 V.

Hence, in this case, we still expect good confinement of the plasma (for example, τfi

= 23 for ff = 50 kHz and τfi = 15 for ff = 90 kHz in Fig. 5.13). When τfi is

further reduced, two distinct mechanisms play roles in breaking force balance, i.e.,

the single-particle orbit instability and mismatch oscillations.

For the case where ff = 50 kHz, as the instantaneous frequency decreases, the

vacuum phase advance increases closer to the limit of the single-particle orbit insta-

bility (σv = 180◦). Eventually, when τfi becomes less than a certain critical value

τcfi (for example, τcfi = 21 ∼ 22 in this case), the single-particle orbits of the plasma

particles become unstable, and the plasma loses its on-axis charge proportional to the

time duration in which σv & 180◦. The single-particle orbit instability is so abrupt

that it can lead to the total loss of the plasma confinement only in several focusing

periods. The possibility of the envelope instability could be also considered when
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(a) Transition with ff = fi/1.2 = 50 kHz.
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(b) Transition with ff = fi × 1.5 = 90 kHz.

Figure 5.14: Measured radial charge profiles after changes in the applied focusing
frequency with (a) ff = 50 kHz and (b) ff = 90 kHz are made. Here, squares
correspond to the radial profile of the baseline case.

σv & 90◦ [Reiser, 1994; Lund and Bukh, 2004]. However, for the experimental con-

dition considered here (tune depression ν/ν0 ∼ 0.95), it is found the instability band

is so localized around σv ≈ 90◦ that the beam can be compressed or expanded with-

out noticeable effects of the envelope instability. The measured radial profiles in Fig.

5.14(a) show that the initial beam is indeed expanded significantly when τfi = 20,

whereas it is compressed slightly when τfi = 23. It is also interesting to note that

the on-axis charge is not lost when the transition is made instantaneously. This is

consistent with the notion that modest changes (. 20%) in the smooth-focusing fre-

quency lead to nearly indistinguishable results, regardless of whether they are made

instantaneously or adiabatically.

For the case where ff = 90 kHz, on the other hand, the single-particle orbit

instability is absent. Instead, excitation of the mismatch oscillations do matter. As

the instantaneous frequency overshoots more and more, the resultant focusing force

becomes highly depressed [see Fig. 5.15(a)]. At some point (for example, τcfi < 15

in this case), mismatch oscillations are excited due to the sudden force imbalance
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(a) Instantaneous frequency. (b) On-axis charge.

Figure 5.15: The instantaneous frequency undergoes overshoots or undershoots de-
pending on final frequency and τfi (a). The onset of the on-axis charge loss matches
quite well with the instant when σv & 180◦ (b). Noth that the instantaneous fre-
quency is plotted on a log scale to cover a wide range of frequency change.

caused by the rapid decrease in ωq. These mismatch oscillations will eventually lead

to emittance growth, and decrease the on-axis charge. The measured radial charge

profile in Fig. 5.14(b) shows that the initial beam expands even more broadly than

the case with the single-particle orbit instability in Fig. 5.14(a). This is likely due

to the formation of a beam halo associated with mismatch oscillations. Since there is

no frequency overshoot, the beam mismatch for the instantaneous change (τfi = 0)

is less detrimental than for the cases with 1 . τfi < 15. Indeed, the on-axis charge is

comparable to the case with the most gradual change (τfi = 40), and the measured

radial charge profile expands less than the case with τfi = 4 [see Fig. 5.14(b)].

For completeness, we measured the changes in the on-axis charge according to

τfi for several different final frequency ff ranges from 55 kHz to 47 kHz. The onset

of particle loss matches quite well with the instant when σv & 180◦ [compare Figs.

5.15(a) and (b)]. This excellent agreement confirms that the beam particles are lost

because of the unstable single-particle orbits for the frequency-decrease experiments.
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Note that when the transition is sufficiently gradual, the values of the on-axis charge

scales linearly with (ff/fi)
−1.

5.3 Numerical Simulations

5.3.1 Changes in Lattice Amplitude

In this section, we present numerical simulation results using the two-dimensional

version of the WARP electrostatic particle-in-cell (PIC) code [Friedman et al., 1992]

for the analysis of experimental data on voltage amplitude changes in regimes where

there are significant departures from simple analytical estimates. The WARP code

describes the beam’s self-consistent response to an alternating-gradient quadrupole

focusing field with time-varying amplitude. To describe the effective emittance of such

a pulsating beam, we use the mean transverse emittance in the beam frame defined

by ε = (εxεy)
1/2, where εx = 4 (〈x2〉〈ẋ2〉 − 〈xẋ〉2)1/2

and εy = 4 (〈y2〉〈ẏ2〉 − 〈yẏ〉2)1/2

[Dorf et al., 2006]. The simulation results in Figs. 5.16 and 5.17 show the normalized

on-axis density n(0)/ni(0), and the normalized mean transverse emittance ε/εi as

functions of time. Simulation parameters for loading the initial particle distribution

have been chosen in such a way that the normalized intensity parameter ŝ and initial

transverse emittance εi are close to the measured values of the initial beam parameters

in the experiments. By considering a transition time of 1 ms, and a dumping time

of 2 ms, we perform simulations extending to 3 ms after the initial quasi-equilibrium

state is formed.

The simulation results shown in Fig. 5.16 clearly indicate that instantaneous

transitions introduce significant mismatch oscillations and emittance growth. The

emittance increase, ∆ε/εi = (ε − εi)/εi, is 33% for Vf/Vi = 1/1.5, and 150% for
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Figure 5.16: 2D WARP simulations for an alternating-gradient quadrupole lattice.
The evolution of the normalized on-axis density n(0)/ni(0) and normalized transverse
emittance ε/εi are shown during an instantaneous transition process with σsfvi = 49.8◦

and f0 = 60 kHz. Frames (a) and (c) correspond to the case with Vf/Vi = 1/1.5, and
frames (b)and (d) correspond to the case with Vf/Vi = 1.9.

Vf/Vi = 1.9, which are in much better agreement with the experimental data than the

simple analytical estimates, where there is no consideration of halo particle generation.

For example, the emittance increase for Vf/Vi = 1.9 in Fig. 5.10(c) is 25% based on

the analytical estimate, and 140% from the actual measurement. Because of the

large mismatch, significant oscillations in the on-axis plasma density last more than

2 ms after the abrupt changes are made at t = 0.5 ms. Hence, the measured signals

of the on-axis density can be interpreted as the time-averaged values of the on-axis

density oscillations during the dumping process. Note that the frequency of the on-

axis density oscillations observed in Fig. 5.16(a) is easily identified with the breathing

mode frequency (ωB ≈ 67.9× 103 s−1).
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Figure 5.17: 2D WARP simulations for an alternating-gradient quadrupole lattice.
The evolution of the normalized on-axis density n(0)/ni(0) and normalized transverse
emittance ε/εi are shown during an adiabatic transition process with σsfvi = 49.8◦ and
f0 = 60 kHz. Frames (a) and (c) correspond to the case with Vf/Vi = 1/1.5 and
Nt = 40, and frames (b) and (d) correspond to the case with Vf/Vi = 1.9 and
Nt = 20.

Simulation results for an adiabatic compression case with Vf/Vi = 1.9 are shown

in Figs. 5.17(b) and 5.17(d) for Nt = 20. As expected from the analytical esti-

mates and experimental results, adiabatic compression assures that the final beam

remains well-matched, and the emittance growth during the transition is minimized

(∆ε/εi < 0.5%). However, for the case of adiabatic expansion with Vf/Vi = 1/1.5,

even the numerical simulations do not reproduce the experimental results [compare

Figs. 5.10(d) and 5.17(c)]. As mentioned earlier, the enhanced emittance growth

observed in the expansion experiments is likely due to non-ideal effects present in

the PTSX device, which are not considered in the two-dimensional version of the

WARP code used in the present analysis. In contrast to the instantaneous transition
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cases, the on-axis densities relax almost immediately after the adiabatic transitions

are complete at t =1 ms. The final normalized on-axis density, nf (0)/ni(0), is about

0.65 for Vf/Vi = 1/1.5, and about 1.8 for Vf/Vi = 1.9, which are slightly less than the

analytical estimates in Fig. 5.7. Note that the on-axis density oscillations observed

in Fig. 5.17(b) have a frequency of 120 kHz, which is twice the external focusing fre-

quency f0. This oscillation is a result of the pulsating motion of the beam envelope,

and its amplitude increases considerably when the beam is compressed.

5.3.2 Changes in Lattice Period

In this section, we analyze the effects of frequency overshoot (or undershoot) observed

in the experiments on the adiabatic changes in the applied focusing frequency in terms

of the Kapchinskij-Vladimirskij (KV) equivalent beam model introduced in Chapter

2 of this thesis. The single-particle orbits in the presence of space-charge forces are

described by

d2

dt2
x(t) +

[
+κq(t)−

2K

a(t) {a(t) + b(t)}

]
x(t) = 0, (5.13)

d2

dt2
y(t) +

[
−κq(t)−

2K

b(t) {a(t) + b(t)}

]
y(t) = 0, (5.14)

in a KV beam model. Here, x- and y-dimension beam envelopes a(t) and b(t) are

calculated from the envelope equations. By setting the self-field perveance K = 0,

we can also track the single-particle orbits in the absence of space-charge effects.

For the case of a frequency decrease, a frequency undershoot causes the single-

particle orbits to be unstable as shown in Fig. 5.18(a). The amplitude of the single-

particle orbit is increased independent of the space-charge effects and drives the beam

envelopes large amplitudes. This numerical result reconfirms that the on-axis charge

loss and beam expansion observed in frequency-decrease experiments with τfi = 20
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Figure 5.18: Time evolution of the x-dimension beam envelope a(t) (blue), and the
single-particle x(t) orbits with (red) and without (green) space-charge effects for the
cases where (a) τfi = 20 and (b) τfi = 23. Adiabatic changes in the applied focusing
frequency f0(t) are made from fi = 60 kHz to ff = 50 kHz with V̂0 = 150.4 V.

are in fact direct outcomes of the unstable single-particle orbits, not due to collective

mode excitation [see Fig. 5.14(a)]. Note that due to the space-charge tune shift, there

is a phase lag between single-particle orbits with and without space-charge effects.

Here, the initial beam is assumed to be matched.

For the case of frequency increase, on the other hand, the frequency overshoot

excites envelope oscillations as shown in Fig. 5.19(a). The beam envelopes are os-

cillating with the breathing mode frequency due to the imbalance between focusing

and defocusing (space-charge and pressure) forces, and the amplitude of the single-

particle orbit is increased through the action of the space-charge force. In a KV beam

model, both the transverse focusing force and space-charge force are linearly propor-

tional to the transverse displacement. Hence, despite the envelope oscillations, there

is no phase-space filamentation, emittance growth, and damping of the oscillation

amplitudes. However, in the PTSX device, there exists nonlinearity in the beam’s
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Figure 5.19: Time evolution of the x-dimension beam envelope a(t) (blue), and
single-particle x(t) orbits with (red) and without (green) space-charge effects for the
cases where (a) τfi = 4 and (b) τfi = 15. Adiabatic changes in the applied focusing
frequency f0(t) are made from fi = 60 kHz to ff = 90 kHz with V̂0 = 150.4 V.

self-fields. These nonlinear self-fields will eventually damp the envelope oscillations

through phase-space filamentation. As the emittance grows, the beam will expand

further and the on-axis charge will decrease accordingly. In addition, particles in the

beam tail can resonantly interact with the oscillating nonlinear space-charge forces

outside the beam core (parametric resonance), and become halo particles with even

higher radial excursions r = (3 ∼ 4) × Rb. Therefore, the numerical result is consis-

tent with the observation of beam loss and extended beam tails in frequency-increase

experiments with τfi = 4 [see Fig. 5.14(b)].

5.4 Summary and Discussion

The transverse compression of an intense beam after acceleration allows for the deliv-

ery of a large number of particles and a large amount of energy to a small spot size.



5.4. Summary and Discussion 160

Hence, transverse compression is of considerable practical importance in applications

such as ion-beam-driven high energy density physics and heavy ion fusion. In this

chapter, the PTSX facility has been used to perform transverse beam compression

experiments in order to develop a better understanding of the physics of transverse

compression of intense beams. Both changes in the lattice amplitude and changes in

the lattice period are considered. From a comparison of the analytical estimates (Sec.

5.1), experimental results (Sec. 5.2), and numerical simulations (Sec. 5.3), it is found

that the key physics issue in transverse beam compression is how to suppress the ex-

citation of mismatch oscillations, which is usually accompanied by emittance growth

and halo formation. In most cases (when phase advance is low enough), adiabatic

changes in the smooth-focusing frequency ωq turned out to be an effective control

for transverse beam compression. During the frequency modulation experiments, we

observe somewhat artificial (in the sense that this is not directly related with actual

accelerators) overshoot (or undershoot) of the instantaneous frequency. Nonetheless,

this frequency overshoot provides useful insights into single-particle orbit instabilities

and collective mode excitations. So far, the voltage waveform used throughout the

experiments has been limited to the sinusoidal waveform. Hence, future experiments

with more realistic waveforms for emulating the AG focusing channel, such as a pe-

riodic step-function or a periodic trapezoidal waveform [Lund and Bukh, 2004] are

expected to further improve our basic understanding of transverse beam compression

for high-intensity accelerator applications.



Chapter 6

Machine Imperfection Effects

As emphasized earlier in this thesis, understanding the properties of intense charged

particle beam propagation over large distances is of great importance for a wide

variety of accelerator applications, including high energy and nuclear physics, heavy

ion fusion, ion-beam-driven high energy density physics, nuclear waste transmutation,

and spallation neutron sources [Davidson and Qin, 2001; Reiser, 1994; Wangler,

1998]. One critical but unavoidable problem in high-intensity accelerators is the

presence of undesired machine imperfections. The machine imperfections include

faulty magnet sets which have the incorrect magnetic field strength or misalignments

from ideal positions, and randomly distributed small noise in the quadrupole focusing

gradient and the RF field amplitude, to mention a few examples. The machine

imperfections influence the beam dynamics in a self-consistent way. They induce

irregular mismatch oscillations of the beam envelope, produce halo particles, and can

result in severe emittance growth and beam degradation, particularly when there

are strong nonlinear space-charge forces [Bohn and Sideris, 2003; Gerigk, 2004;

Yoon et al., 2005]. Consequently, the associated beam loss and its damage to the

161
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machine components define the practical and/or economic tolerances in the machine,

and can have a direct impact on the project costs [Wangler, 1998; Gerigk, 2003].

In the PTSX device, the amplitude of the voltage waveform applied to the electrodes

corresponds to the quadrupole focusing strength in an AG lattice system. Hence, by

modifying the voltage amplitude we can study the imperfection effects of quadrupole

magnets in the actual transport channel. In the experimental studies presented in

this chapter, faulty magnet sets are emulated by spoiling the voltage waveform for

short times, i.e., for a few or several lattice periods (Sec. 6.1), and small noise in the

quadrupole focusing gradients is handled by randomly sampling a voltage amplitude

ripple for each half lattice period within a given tolerance limit (Sec. 6.2).

6.1 Effect of Faulty Magnet Sets

An accelerator is composed of many focusing, bending, and correction magnets, which

are either permanent magnets or electromagnets (normal conducting or superconduct-

ing). For example, the currently envisioned International Linear Collider (ILC) [Brau

et al., 2007] is proposed to have 10872 normal conducting magnets (6873 water-cooled

and 3999 air-cooled) and 2318 superconducting magnets for the various parts of the

accelerator complex. As the beam intensity and energy become much higher for mod-

ern accelerator applications, a single magnet failure event and associated accidental

beam loss can have a much more severe impact on the project in terms of repair costs

and time. Hence, extensive engineering analyses have to be performed to improve the

reliability of the magnet system which includes mechanical structure, power supplies,

electrical connections, and cooling systems (or cryogenic system for superconducting

magnet) [Spencer and Rhee, 2003; Schmidt et al., 2006]. While some obvious
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Type of magnet Type of failure
Permanent magnet Tuner malfunctioning
Normal conducting magnet Water leaks

Overheating
Electrical shorts

Power supply failure
Superconducting magnet Magnet quench

Cryogenic system problem
Power supply failure

Table 6.1: Types of magnet failure [Spencer and Rhee, 2003].

magnet failures can be detected and fixed in the manufacturing, installation, or trial

run phases, some magnet failures occur during the actual operation stage (see Table

6.1), and can lead to significant beam degradation or loss by giving incorrect (or zero)

magnetic field strength [Wu et al., 2005].

6.1.1 Experimental Results

In order to provide the transverse beam dynamics characteristics of an intense beam

propagating under such a magnet failure scenario, a series of experiments have been

performed in the PTSX device. In the PTSX device, a failure of a single quadrupole

magnet in the actual accelerator corresponds to an abrupt change in the voltage

waveform V0(t) = V̂0 sin[2π(t − t0)/T )] over a half-period of oscillation. We perturb

the initial quiescent plasma trapped in PTSX by changing the voltage amplitude

instantaneously from its initial value V̂0 = V1 to a modified value V̂0 = V2 at a zero-

crossing of the sinusoidal waveform (t = t0), and restoring it to V1 after a half-period

T/2. To emulate the essence of the faulty magnet effect and complete the experiment

in a timely manner (without drift in the ion source condition), the time-averaged on-

axis charge signal is normally measured rather than entire radial profile. The initial
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Figure 6.1: Dependence of on-axis charge on relative amplitude of perturbation
V2/V1 for half-period perturbation (open circles) and full-period perturbation (solid
squares). The error bars are typically smaller than the size of the symbol, and, will
be neglected in the experimental data presented later in this chapter.

unperturbed plasma is approximately Gaussian in radial profile (see the black curve

in Fig. 6.2), and has a normalized beam intensity of ŝ ∼ 0.27, effective transverse

temperature of T̄⊥ ∼ 0.26 eV, and rms radius of Rb ∼ 1 cm. The plasmas are dumped

to the charge collector 3.4 ms after the changes in V̂0 are made, which allows enough

lattice periods for the perturbed plasmas to reach a new quasi-equilibrium state. For

the moderately low space-charge density beams (ŝ = 0.2 ∼ 0.3) considered in this

study, the on-axis density n̂ can be approximated as n̂ ≈ N/πR2
b when the beam is

in the quasi-equilibrium state, and can be an effective indicator of beam degradation

(increase in the rms radius Rb) or loss (decrease in the line density N). Generally, the

magnets in actual accelerators are operated either by individual power supplies, or

are in series with adjacent magnets using a single power supply. Hence, to include the

possibility of the simultaneous failure of several adjacent magnet sets, the modified
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Figure 6.2: Measured radial charge profiles for the case V2/V1 = 0 for several different
values of number of half-periods (N1/2) of the perturbation. Radial profiles are plotted
for (a) charge versus x-dimension, and (b) radius×charge versus radius to augment
the small changes in both the on-axis and off-axis regions.

voltage V2 is allowed to persist for a variable number N1/2 of half-periods before

returning to the initial value V1.

The expectation is that an abrupt change in V̂0 (equivalently, a failure of a

quadrupole magnet during the operation of the actual accelerator) will cause a mis-

match oscillation of the beam envelope and eventually lead to a degradation or loss

in transverse confinement of the plasma. A scan of V2/V1 in Fig. 6.1 shows that, re-

gardless of whether V2/V1 > 1 or V2/V1 < 1, the on-axis charge is reduced as a result

of the perturbation. However, quite interestingly, it is found that for V2/V1 < 1, the

full-period (N1/2 = 2) perturbation is less detrimental to the on-axis charge signal

than the half-period (N1/2 = 1) perturbation. This behavior is also observed in the ra-

dial charge profile measurements. Figure 6.2 shows that not only the on-axis charge,

but also the radial charge distribution is slightly less affected by the perturbation

with N1/2 = 2. Simulations using the 2D WARP PIC code demonstrate that, indeed,

the half-period (N1/2 = 1) perturbation produces much larger mismatch oscillations,
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(a) N1/2 = 1 (b) N1/2 = 2

Figure 6.3: WARP 2D simulation results for the evolutions of the mean radius
[a(t)b(t)]1/2, the on-axis density n(0), and the mean transverse emittance [εxεy]

1/2.
Here, each quantity is normalized to its initial value, and the instantaneous change
in the strength of the full quadrupole field (V2/V1 = 0) has been made at time
t = t0 = 1.6 ms.

leading to 10% larger emittance growth than the full-period (N1/2 = 2) perturbation

(Fig. 6.3). The final on-axis charge difference between the two cases is rather unclear

in Fig 6.3. In the actual experiment where there is an end effect, however, larger

mismatch oscillations tend to enhance particle loss to the conducting wall, resulting

in a further decrease in the on-axis charge.

To further investigate the beam response dependence on the duration of the per-

turbation, the on-axis charge is measured as a function of N1/2 for a discrete set of

values for V2/V1. As apparent from Fig. 6.4(a), for V2/V1 > 1, the on-axis charge

signal is not monotonic but oscillates with N1/2. For V2/V1 < 1, a similar oscillatory

behavior, but in this case with a beat-wave-like structure, appears in the on-axis
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(a) V2/V1 > 1.
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(b) V2/V1 < 1.

Figure 6.4: Dependence of on-axis charge on the number of full-periods for perturba-
tions with different values of V2/V1. An instantaneous perturbation in the amplitude
of the voltage waveform causes mismatch oscillations that result in various amount of
emittance growth depending on the duration of the perturbation, and various amounts
of radial expansion, and corresponding on-axis density decrease.

signal [Fig. 6.4(b)]. Due to the beam expansion and associated beam loss to the

conducting wall, the on-axis charge tends to decrease when there is an increase in

N1/2 for the cases with V2/V1 < 1. For example, the decay time in the V2/V1 = 0

case is in an order of the transit time (0.1 ∼ 0.2 ms) for a thermal ion to reach to the

wall of PTSX. For both a 10% increase or a 10% decrease in the waveform amplitude,

there is only a small impact on the beam state.

6.1.2 A Smooth-Focusing Model

The physics behind the oscillatory behavior observed in the on-axis signal can be

described qualitatively using the smooth-focusing model (see Fig 6.5). In the smooth-

focusing model, the average focusing frequency is linearly proportional to the voltage

waveform amplitude V̂0 [Davidson and Qin, 2001]. Initially, the trapped plasma is

in a quasi-equilibrium state with a constant rms radius Rb(t = t0) = Rb0 that satisfies
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Figure 6.5: Smooth-focusing schematic of the effect of faulty magnet sets. Whenever
there is a beam mismatch (dωq/dt 6= 0), we expect long-time-scale emittance growth
induced by the oscillation energy of the excited mode. Hence, regardless of whether
there is a sudden increase or decrease in the smooth-focusing frequency ωq, the net
result is expected to be an increase in the rms radius Rb, and a decrease in the on-axis
density n̂.

the global force balance equation given by

mω2
qR

2
b0 = 2T̄⊥ +

Nq2

4πε0
. (6.1)

When there is an instantaneous increase (decrease) in ωq at time t = t0, Rb(t >

t0) starts to decrease (increase) from Rb0 toward a new equilibrium radius R̄b =[(
K +

√
K2 + 4ε2ω2

q

)
/4ω2

q

]1/2
, and the corresponding on-axis plasma density with

moderately low space-charge intensity becomes n̂(t) ≈ N/πR2
b(t). Here, the line

density N , the self-field perveanceK, the effective transverse temperature T̄⊥, and the

average transverse emittance ε ≈ 2Rb0(2T̄⊥/m)1/2 are assumed to be approximately
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constant. Although the time-averaged rms radius 〈Rb(t)〉B approaches the new quasi-

equilibrium radius on the time scale of the breathing mode period (∼ 2π/ωB), there

remain envelope oscillations around R̄b due to the energy exchange introduced by the

external focusing force, which is given by 1
2
mR2

b(t0)∆(ω2
q ) [Davidson and Qin, 2001].

Here, 〈· · ·〉B denotes the temporal average over one breathing mode period 2π/ωB,

∆(ω2
q ) = ω2

q2−ω2
q1, and ωB = 2ωq

(
1−K/4R̄2

bω
2
q

)1/2
is the breathing mode frequency.

When ωq is switched back to its original value at t = t0 +(T/2)N1/2, now 〈Rb(t)〉B

approaches its original quasi-equilibrium radius Rb(t0). The final amplitude of the

envelope oscillation around Rb(t0) is most likely determined from the net energy ex-

change after t = t0+(T/2)N1/2, which is given by ∆E = 1
2
m [R2

b(t0)−R2
b(t)] ∆(ω2

q ) ≥

0, and is strongly dependent on the phase difference between the envelope oscillation

and the duration of the perturbation (or equivalently, the number of faulty magnets).

The envelope oscillations eventually lead to space-charge-induced emittance growth

over a longer time scale (typically, & 20π/ωp) [Wangler, 1998], and a correspond-

ing increase in the equilibrium rms beam radius. If particle number is conserved, an

increase in the rms beam radius implies a decrease in the on-axis density. Hence, de-

pending on the degree of mismatch oscillation (∝ ∆E), the measured on-axis charge

reveals an oscillatory behavior.

6.1.3 A Kapchinskij-Vladimirskij (KV) Envelope Model

The phase dependence of the amplitude of the mismatch oscillation and the resultant

oscillatory behavior in the on-axis signal can be more quantitatively explained in

terms of a KV envelope model with full quadrupole focusing field [Kapchinskij and

Vladimirskij, 1959; Reiser, 1991; Davidson and Qin, 2001]. As described in

Chapter 2 of this thesis, the envelope equations for an equivalent KV beam with



6.1. Effect of Faulty Magnet Sets 170

εx = εy = ε are given by

d2

dt2
a(t) + κq(t)a(t)−

2K

a(t) + b(t)
=

ε2

a3(t)
, (6.2)

d2

dt2
b(t)− κq(t)b(t)−

2K

a(t) + b(t)
=

ε2

b3(t)
, (6.3)

where, κq(t) is the focusing coefficient, K = 2Nq2/4πε0m is the dimensional self-field

perveance, and ε is the transverse emittance in the beam frame. Introducing the scaled

envelope momenta defined by pa = da/dt = 4 〈xẋ〉 /a and pb = db/dt = 4 〈yẏ〉 /b, we

can define the envelope Hamiltonian as [Lee, 2004]

Henv =
1

2
(p2
a + p2

b) +
1

2
κq(t)(a

2 − b2)− 2K ln(a+ b) +
ε2

2

(
1

a2
+

1

b2

)
, (6.4)

and the rate equation for the envelope energy Eenv = Henv is given by [Davidson

and Qin, 2001]

dEenv

dt
=

1

2

(
dκq(t)

dt

)
(a2 − b2). (6.5)

Hence, the envelope energy Eenv is not a constant in the periodic focusing field κq(t) =

κ̂q sin[2πf0(t− t0)], but exhibits oscillatory behavior for a time varying external field

and associated envelope oscillations. In particular, for a symmetrically matched beam,

where a(t+ T/2) = b(t) and b(t+ T/2) = a(t), Eenv oscillates in time with the exact

period T/2. Hence, a matched beam can be viewed as a state with minimum average

energy exchange, i.e., 〈dEenv/dt〉T = 0.

Suppose that the matched beam experiences an abrupt change in the focusing

strength at t = t0, then Eenv will oscillate irregularly due to the envelope oscillations

induced by the beam mismatch. After allowing the beam to remain in the perturbed

state until time t = t0 + (T/2)N1/2, we change the focusing field strength back to

the original value. Since the beam has already experienced two severe mismatches

at t = t0 and t = t0 + (T/2)N1/2, the final beam is no longer the same as the initial
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(a) V2
V1

= 1.5, σsf
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ωB
≈ 2.5T . (b) V2

V1
= 1.3, σsf

v ≈ 64.7◦, and 2π
ωB

≈ 2.9T .

(c) V2
V1

= 0.7, σsf
v ≈ 34.9◦, and 2π

ωB
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V1
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Figure 6.6: The envelope energy Eenv calculated from the the KV beam envelopes
a(t) and b(t) shows qualitatively similar oscillatory patterns to the measured on-axis
signals. The vacuum phase advance σsfv and the breathing mode frequencies ωB are
estimated in the smooth-focusing approximation. For V2/V1 > 1, a mixed mode is
excited rather than a pure breathing mode. The origin of the Eenv plot has been
adjusted according to the beam mismatch minimization condition discussed in the
text.
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matched beam. Instead, the beam mismatch eventually causes significant emittance

growth and a decrease in the on-axis density when the beam relaxes to a new quasi-

equilibrium state with larger beam envelopes. Considering that the amplitude of the

mismatch at t = t0 is the same, the amount of final emittance growth is most likely

determined by the degree of the mismatch at time t = t0 + (T/2)N1/2. Although a

KV beam model cannot describe changes in the emittance, the degree of mismatch

and the associated emittance growth can be estimated through the envelope energy

Eenv of the KV beam, which is calculated by solving the envelope equations (6.2) and

(6.3) numerically. For the voltage change experiments with V2/V1 > 1 in the PTSX

device, the average Eenv is supposed to be decreased after t = t0 + (T/2)N1/2 [see

the arrow in Fig. 6.5(a)]. Hence, to minimize further beam mismatch, it is desirable

that Eenv has a minimum at t = t0 + (T/2)N1/2. On the other hand, for the case of

V2/V1 < 1, the average Eenv is expected to be larger after t = t0 + (T/2)N1/2 [see

the arrow in Fig. 6.5(b)]. Therefore, in this case, additional beam mismatch can be

minimized when Eenv has a maximum at t = t0 + (T/2)N1/2. In Fig. 6.6, we found

that Eenv shows quite similar oscillatory behavior to the experimental observations

in the on-axis signals. For the cases with V2/V1 > 1 [Figs. 6.6(a) and (b)], the

agreement between the estimates and the experiments are particulary good during the

initial phase (N1/2/2 ≤ 4). Although the detailed oscillatory structures are somewhat

shifted for N1/2/2 > 4 (seemingly due to the betatron tune shift during the course of

the strong mismatch oscillations), their periods still remain in good agreement. On

the other hand, for V2/V1 < 1 [Figs. 6.6(c) and (d)], the experimentally measured

oscillatory patterns are quite well-matched to Eenv up to N1/2/2 = 10, while there are

(downward) shifts of the oscillation center of on-axis signal likely due to the beam loss

associated with radial expansion. Therefore, we conclude that the envelope energy



6.1. Effect of Faulty Magnet Sets 173

(a) V2
V1
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Figure 6.7: A KV envelope model can also resolve the basic features of the small
oscillatory patterns for the cases with ±10% changes in the focusing field.

Eenv during the malfunctioning of the quadrupole focusing field may be an effective

single-parameter figure of merit that predicts the final amount of emittance growth

and beam degradation. This analysis is sufficiently sensitive that it can even resolve

the basic features of the small oscillatory patterns for the cases with ±10% changes

(Fig. 6.7).

Here, the envelope equations are solved by the numerical integration for a matched

beam with initial parameters and conditions (such as K, ε, and a = b =
√

2Rb)

inferred from the experimental data. For the experimental data points in Figs 6.6

and 6.7, the error bars are much smaller than the symbol sizes, and the oscillatory

patterns are quite reproducible. Simulations using the WARP 2D code [Friedman

et al., 1992] in Fig. 6.8 also confirm the oscillatory behavior in the on-axis charge

measurements with comparable oscillation periods.
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Figure 6.8: Comparison between WARP 2D simulations (open circles) and experi-
mental data (solid squares) for the oscillatory behavior in the on-axis signal [Gilson
et al., 2006].

In conclusion, we have demonstrated experimentally that a direct outcome of

the faulty magnets is an irregular mismatch oscillation of the intense beam, which

eventually leads to significant emittance growth and beam degradation. In particular,

we discovered that the amplitude of such a mismatch oscillation depends rather non-

trivially on the number of the adjacent faulty magnets, but this can be explained by

a simple KV envelope model.

6.2 Effect of Random Noise

One common feature that is unavoidable in high-intensity accelerators is the presence

of random noise and its self-consistent influence on the long-time-scale beam dynamics

[Bohn and Sideris, 2003; Gerigk, 2004]. The random noise includes machine im-

perfections, such as quadrupole magnet and RF cavity alignment errors, quadrupole



6.2. Effect of Random Noise 175

focusing gradient errors, RF field amplitude and phase errors, and jitter in the power

supplies, to mention a few examples [Qiang et al., 2001]. Usually, random noise

in the machine components acts as a continuous supply of free energy to the intense

beam, which results in irregular mismatch oscillations of the beam envelope [Gerigk,

2004], enhanced halo formation [Bohn and Sideris, 2003; Sideris and Bohn, 2004],

and emittance growth [Franchetti and Hofmann, 2002b], particularly over long

propagation distances. From various multiparticle simulations including both space-

charge and random noise effects, considerable progress has been made in developing

an improved understanding of the random noise-induced beam degradation [Qiang

et al., 2001; Franchetti and Hofmann, 2002b; Gerigk, 2004; Ikegami et al.,

2004; Yoon et al., 2005]. However, experimental verification of these effects has

been somewhat limited due to the lack of dedicated experimental facilities which

allow the study of long-length-scale phenomena. On the other hand, as explained

in pervious chapters, the PTSX device can experimentally simulate the nonlinear

transverse dynamics of intense beam propagation over large distances through an

alternating-gradient (AG) focusing channel by equivalently putting the observer in

the beam frame [Davidson et al., 2000; Gilson et al., 2004]. The amplitude of the

voltage waveform applied to the electrodes in the PTSX device corresponds to the

quadrupole focusing strength in an AG lattice system. Hence, by slightly modifying

the voltage amplitude in every half focusing period (T/2), we can emulate the ran-

domly distributed quadrupole focusing gradient error in the actual transport channel.

As mentioned earlier, in intense beams, the action of the nonlinear space charge

plays a crucial role in transforming random noise effects into emittance growth [Franchetti

and Hofmann, 2002b]. The relative importance of space-charge effects can be de-

scribed either in terms of the tune depression ν/ν0 = (1 − s̄)1/2 or the normalized
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Figure 6.9: Relation between the tune depression ν/ν0 used to describe average space-
charge contribution in high-intensity accelerators and the normalized beam intensity ŝ
used to characterize a beam equilibrium with space-charge force in the PTSX device.
When the beam is in a thermal equilibrium state, the two dimensionless parameters
are related by ν/ν0 = [1− ŝζ(ŝ)/2]1/2. Here, ζ(ŝ) is the form factor introduced in
Chapter 2.

intensity parameter ŝ. Here, s̄ ≈ ŝζ(ŝ)/2 is the normalized intensity parameter for

a uniform equivalent beam, and ζ(ŝ) is the form factor introduced in Chapter 2 of

this thesis. For example, the newly commissioned Spallation Neutron Source (SNS)

is expected to be operated at ν/ν0 & 0.6 in the linac section (total length ∼ 331

m), and ν/ν0 & 0.9 in the accumulator ring (circumference ∼ 248 m) [Franchetti

and Hofmann, 2002a; Henderson et al., 2005], which correspond to ŝ . 0.9 and

ŝ . 0.35 respectively (see Fig. 6.9). In the linac section, space-charge effects play a

more important role for the noise effect to be significant. In the accumulator ring,

however, the long propagation distances associated with the long beam lifetime can

have a larger impact on noise-induced beam degradation. Since the PTSX device

covers the operating range of 0 ≤ ŝ ≤ 0.8, and can confine the plasma up to 300 ms,

which is equivalent to nearly 20 km-long beam propagation distances [Gilson et al.,
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2004], effects of the quadrupole focusing gradient errors in SNS-like high-intensity

accelerators can be effectively studied. The typical error limits of the quadrupole

focusing gradients in the various components of the SNS are given in Table 6.2.

In performing the actual experiments in PTSX, however, it is quite important to

minimize any other sources of beam state change that might be comparable to the

random noise effect, such as injection mismatch, two-stream interactions, collision

with background neutral gas, or drift in the ion source conditions. Hence, for the

initial experiments presented in this chapter, we use a moderately low space-charge-

density beam (ŝ ∼ 0.2) that has been carefully optimized through the experimental

campaign summarized in the Chapter 4 of this thesis [Chung et al., 2007c]. In

addition, the number of error samples (independent set of time series of random

numbers) is also an important factor for obtaining good statistics in the experimental

data. In multiparticle simulations, the number of error samples has been chosen as

small as 20 [Ikegami et al., 2004] or as large as 500 [Gerigk, 2004] depending on

the computation time and required accuracy for the quantitative analysis. For the

experimental studies reported in this chapter, we use 20 error samples for a given

error limit and trapping time (which is equivalent to a given propagation distance

in the actual AG lattice). In this way, we can reduce the overall experimental time,

avoiding any possible drift in the experimental conditions (mostly in the ion source)

during the course of scanning the entire parameter range.

6.2.1 A Smooth-Focusing Model

As introduced in Chapter 2 of this thesis, the evolution of the rms radius Rb(t) of

an equivalent KV beam with self-field perveance K and average transverse emittance
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Component Limit on error
MEBT (Medium Energy Beam Transport) 1.732%
DTL (Drift Tube Linac) 0.5%
CCDTL (Coupled-Cavity DTL) 0.25%
CCL (Coupled-Cavity Linac) 0.25%
Accumulator ring 0.01%

Table 6.2: Values of quadruple gradient error limits for various components of the
SNS linac and accumulator ring [Jeon, 1999; Henderson et al., 2005].

ε is described effectively by

d2Rb

dt2
+ ω2

q0Rb −
K

2Rb

− ε2

4R3
b

= 0, (6.6)

in the smooth-focusing approximation [Davidson and Qin, 2001]. When there

are random errors in voltage amplitudes V̂0 in every half focusing period T/2, the

trapped plasma encounters a time series in the smooth-focusing frequencies given by

ωq0(1 + δ1), . . . , ωq0(1 + δi), . . . , ωq0(1 + δN1/2
). Here, δi is a random number which

belongs to a uniform distribution in the range −∆max ≤ δi ≤ ∆max, and i and N1/2

are the index and the total number of half-periods of the noise duration, respec-

tively. Hence, an error sample is composed of N1/2 statistically-independent random

numbers, representing white noise in the present analysis.

An example of the numerical solution of Eq. (6.6), having an error sample with

∆max = 1%, shows that irregular oscillations of the beam envelopes are excited and

grow continuously according to the duration of the noise [Fig. 6.10(a)]. Since the en-

velope equation itself cannot self-consistently describe the emittance growth resulting

from the envelope oscillations, the center of the oscillations remains nearly the same

as the initial equilibrium radius Rb0. To describe the time evolution of the transverse

emittance self-consistently, we need to solve the nonlinear Vlasov-Maxwell equations

numerically. A result of WARP 2D PIC simulations with the same error sample used
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(a) From the envelope equation. (b) From the PIC simulation.

Figure 6.10: Evolution of the rms radius Rb(t) calculated (a) from the envelope
equation with constant emittance, and (b) from 2D WARP simulations with emittance
growth. Note that the same error sample with ∆max = 1% is used for (a) and (b).

in the envelope equation demonstrates that the oscillation amplitudes are saturated

to some extent, and the oscillation center increases linearly with the noise duration

[Fig. 6.10(b)], implying the conversion of the free energy available from the envelope

oscillations into emittance growth [Reiser, 1991]. Even though there are as many

negative energy kicks as positive kicks on the average, the simulation results sug-

gest that the random noise has a cumulative effect [Gerigk, 2004], which ends up

producing overall increase in the beam energy.

Since the error limit ∆max in the focusing force is typically only a few percent,

any possible changes due to the random noise in the global quantities such as the

line density N , the effective transverse temperature T̄⊥, and the average transverse

emittance ε will take place quite slowly. In this case, we can still assume that the

beam is in a quasi-equilibrium state, which means that the the average focusing force

balances both the thermal pressure force of the plasma and the space-charge force

over a slow time scale (i.e., many breathing mode periods). Therefore, the global
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force balance equation can be expressed as

mω2
q0R

2
b ≈ 2T̄⊥ +

Nq2

4πε0
, (6.7)

and the evolution of the average transverse emittance can be approximated by

ε(t) ≈ 2Rb

(
ω2
q0R

2
b −

Nq2

4πε0m

)1/2

. (6.8)

This equation allows us to estimate the emittance growth due to the random noise

simply by using the N and Rb measured from the experiments. However, when

there exists a significant population of low-density halo particles below the detec-

tion limit (. 1 fC) of the charge collector, then the emittance calculated from

Eq. (6.8) necessarily underestimates the actual mean transverse emittance ε =

4
[
〈x2〉 〈ẋ2〉 − 〈xẋ〉2

]1/2
×
[
〈y2〉 〈ẏ2〉 − 〈yẏ〉2

]1/2
. Particles far away from the beam core

(>
√

2Rb) will be weighted heavily in calculating the emittance in the simulations

[Yoon et al., 2005; Friedman et al., 1992].

6.2.2 Experimental Results

To characterize the statistical properties of the beam response to the random noise,

we make use of the on-axis charge, which is the most easily and accurately measurable

quantity in the present experimental setup. Figure 6.11 represents the time history of

the statistical average [E {Q(r = 0)}] and the standard deviation [square root of the

variance Var {Q(r = 0)} = σ2] of the on-axis charge computed over an ensemble of 20

random error samples. The average of the on-axis charge decays almost linearly with

the amplitude and the duration of the noise up to 25 ms. After 25 ms, the decay rate

becomes somewhat rapid, which is likely related to the the evolution of halo particles

[see also Figs. 6.12(a) and 6.14] and the resultant enhanced particle loss. Because of
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(a) E {Q(0)}. (b)
√

Var {Q(0)}

Figure 6.11: Time history of the statistical average (a) and the standard deviation
(b) of the on-axis charge computed over an ensemble of 20 random error samples.

the intrinsic noise present in the PTSX device (either physics-originated or device-

originated) such as two-stream interactions, collisions with residual gas, drift in the

ion source conditions, jitter in the voltage waveform, or mechanical vibration of the

vacuum pumps, the on-axis charge for the case with no applied noise also decreases

slightly over the 30 ms of trapping with a finite variance that is comparable to the

case with 0.5% applied noise. Due to the relatively small number of error samples,

it is not clear if the beam response is a random-walk-like diffusion process (σ ∝ t1/2)

[Stoltzfus-Dueck and Krommes, 2006]. However, the general tendency is that

the standard deviation of the the on-axis charge increases with time, which strongly

suggests that the fluctuations in the on-axis charge measurements originate from the

applied noise rather than from the instrumental uncertainties (i.e., σ ≈ const.) or the

statistical fluctuations (i.e., σ ∝
√

E {Q(0)}) [Bevington and Robinson, 1992].

As mentioned previously, when the beam is in a quasi-equilibrium state, the on-

axis charge (or equivalently ŝ) can be a single parameter that effectively characterizes

the equilibrium density profile [Davidson and Qin, 1999]. Hence, except for the
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(a) Measured radial profiles. (b) Evolution of the rms radius.

Figure 6.12: Evolution of (a) the measured radial profile, and (b) the corresponding
rms radius under the influence of 1% uniform white noise.

case where there is a significant departure from the equilibrium state (such as the

formation of a broad halo), we can infer the statistical characteristics of the radial

density profile from those of the on-axis charge. Furthermore, when the normalized

intensity parameter ŝ is moderately low (for example, ŝ ∼ 0.2 in this study), the

equilibrium density profile of the beam is nearly Gaussian. In this case, we can relate

N and Rb in terms of the on-axis density n̂ = n(r = 0) by N ≈ n̂πR2
b . Since, N is

usually constant unless beam particles are lost to the wall, we can further consider Rb

to be a function of the single parameter n̂ according to Rb(n̂) ≈
√
N/πn̂. Therefore,

for small changes in n̂ due to random noise, we obtain the following simple expressions

for the average of the rms radius E(Rb) and its variance Var(Rb):

E(Rb) ≈
√

N

πE(n̂)
, (6.9)

Var(Rb) ≈
N

4π

Var(n̂)

E3(n̂)
. (6.10)

The above approximate expressions provide a simple way to perform the experiments

on random noise effects. By measuring a single density profile for a certain random

error sample that gives n̂ ≈ E(n̂), we can effectively obtain the statistical information
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(a) Experiments. (b) Simulations.

Figure 6.13: The emittance growth is estimated from (a) radial profile measurements
and (b) WARP 2D PIC simulations. For the WARP simulations, 20 random error
samples are used to calculate the ensemble-averaged emittance.

on rms radius. Otherwise, we would have to measure n(r) for every error sample to

calculate the ensemble averaged quantities. This process would be very demanding

for the present diagnostic setup, and is vulnerable to any drift in the experimental

conditions.

The typical evolution of the measured radial profiles under the influence of uniform

white noise (with ∆max = 1%) is shown in Fig. 6.12(a). It is clear that low-density

tails are developing in the radial profiles, and the corresponding rms radius Rb grows

almost linearly with noise duration [see Fig. 6.12(b)]. Note that there is good agree-

ment between the rms radius obtained in the WARP 2D simulations presented in

Fig. 6.10(b) and the experimental results presented in Fig. 6.12(b). The evolution

of the average transverse emittance given in Eq. (6.8) is estimated from the radial

profile measurements for a given noise amplitude and duration, using a total of 19

independent radial profiles. Consistent with the WARP 2D simulations, we observe

a continuous emittance growth which is approximately linear with the duration and

the amplitude of the noise (Fig. 6.13). For the case where ∆max = 1.5%, however,
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(a) ∆max = 0.5%. (b) ∆max = 1.5%.

Figure 6.14: Measured radial profiles with different noise amplitudes and duration.
Initially, the trapped plasma is in a thermal equilibrium state, for which the radial
density profile is a straight line in the log versus r2 plot.

the experimentally-determined emittance is somewhat underestimated after a noise

duration of 15 ms. This is most likely due to the formation of a significant halo pop-

ulation under the detection limit (∼ 1 fC) of the charge collector, which is too low to

be measured in the experiment but contributes considerably in the simulations. The

formation of a significant halo population is apparent in Fig. 6.14(b). On the other

hand, for the case with ∆max = 0.5%, the experimentally estimated emittance has

a slightly larger value than the simulation results, which is likely due to the intrin-

sic noise present in the PTSX device. For the WARP 2D PIC simulation presented

in Fig. 6.13(b), 40000 macroparticles are used, which is comparable to the number

of macroparticles adopted for other noise simulations [Franchetti and Hofmann,

2002b]. The time step for the PIC simulation is ∆t = 0.05/f0 � 2π/ωp.

6.2.3 Effects of Colored Noise

So far, we have used uniform white noise to model random errors in the quadrupole

focusing gradient. In an actual accelerator system, a power supply usually drives
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(b) A scan of the noise duration.

Figure 6.15: Dependence of the on-axis charge signal on (a) noise amplitude and (b)
noise duration for white (τac = 0) and colored noise (τac > 0).

several magnets in series which are mounted on a common mechanical structure.

Thus, any ripples in the driven currents or ground vibration can comprise a colored

noise in the quadrupole focusing gradient with a finite autocorrelation time (e.g.,

several focusing periods) [Lee, 2004]. In recent papers [Bohn and Sideris, 2003;

Sideris and Bohn, 2004], Bohn and Sideris pointed out that the presence of colored

noise can boost a small number of particles to much larger amplitudes than inferred

from a parametric resonance alone [Gluckstern, 1994], by continually kicking halo

particles back into the right phase with the core envelope oscillation. Hence, in this

section, we present a preliminary experimental study that investigates the possible

synergistic effect between colored noise and the collective modes indicated by Bohn

and Sideris.

To modify the voltage amplitude with colored noise in every half focusing period

T/2, we use a numerical algorithm generating Gaussian colored noise based on the

integration of the Langevin equation as [Stoltzfus-Dueck and Krommes, 2006]

δi+1 = δie
−T/(2τac) + wi∆max

(
1− e−T/τac

)1/2
. (6.11)
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Here, wi is a Gaussian random number generated anew at each step i with zero

mean and unit variance, τac is the autocorrelation time which measures the memory

of randomness, and ∆max is the amplitude of the desired colored noise. To excite

collective modes, the results of Sec. 6.1 have been applied. We perturb the initial

quiescent plasma (ŝ ∼ 0.2 and ωq = 52.2 × 103 s−1 for this case) by instantaneously

increasing the voltage amplitude by 1.5 times, and switching back to the original

value after one focusing period T . In this way, it is expected that a mixed mode with

breathing mode period 2π/ωB ≈ 3.70T and quadrupole mode period 2π/ωQ ≈ 3.65T

is excited similar to the case in Fig. 6.6(a).

For a matched beam where there is no mismatch oscillation, scans of the noise

amplitude and duration in Fig. 6.15 demonstrate that white noise is more detrimental

than colored noise. Indeed, when the autocorrelation time of colored noise is greater

than 2.5T , there is no significant change in the on-axis signal even for large amplitude

and long duration of the colored noise. This can be understood because the energy

kicks introduced by the white noise transfer maximum external energy into the system

by compressing the beam most abruptly. As we saw in Chapter 5 of this thesis, a

gradual change in the focusing field strength tends to compress (or expand) the beam

with less emittance growth.

The simulation results in Fig. 6.16(a) also indicate that the colored noise (τac = 5T

for this case) perturbs the initial matched beam only slightly and leaves the average

on-axis density nearly unchanged as expected from the experimental results in Fig.

6.15(b). Here, we have chosen the autocorrelation time to be τac = 5T so that the

colored noise itself will not affect the initial beam too much (when τac > 2.5T ),

and have a time scale comparable to the collective modes (for instance, 2π/ωB ≈

3.70T ). From the beam mismatch case presented in Fig. 6.16(b), consistent with the
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Figure 6.16: WARP 2D PIC simulation results for the beam responses to (a) colored
noise with τac = 5T and ∆max = 1%, (b) beam mismatch introduced by the incor-
rect (1.5 times stronger in this case) focusing field strength for one FODO lattice
period, and (c) the combination of colored noise and beam mismatch. The mean

radius [a(t)b(t)]1/2 (top), the on-axis density n(0) (middle), and the mean transverse

emittance [εxεy]
1/2 (bottom) are normalized to their initial values, respectively, and

perturbation starts at t = 0 ms. For a fair comparison, the same colored noise sample
has been applied to the cases (a) and (c).
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(a) Experiments. (b) Simulations.

Figure 6.17: Radial profiles are either (a) measured from the experiments, or (b)
obtained from the PIC simulations. Three different external perturbation scenarios
are considered: no perturbation at all (red curves); instantaneous mismatch only
(green curves); and both instantaneous mismatch, and colored noise with τac = 5T
and ∆max = 1% (blue curves).

discussion made in Sec. 6.1, we observe the excitation of collective modes, resulting

in a 200% emittance growth. The envelope oscillations last for about 5 ∼ 10 ms

and eventually damp away. The most interesting case is the beam response in the

presence of both the collective modes and the colored noise [Fig. 6.16(c)]. Even

though the colored noise itself cannot excite significant envelope oscillations, when

combined with the collective modes, it gives rise to continuous emittance growth

and an increase in the mean radius with much higher oscillation amplitudes. These

simulation results can also be interpreted as indicating enhanced halo formation.

One possible underlying mechanism for enhanced halo formation has been recently

proposed by Bohn and Sideris [Bohn and Sideris, 2003; Sideris and Bohn, 2004].

By extending the particle-core model [Gluckstern, 1994; Wangler et al., 1998],

they showed that the combination of colored noise and core envelope oscillations

(breathing modes in their case) can eject particles to a much larger degree than

would be achieved in the absence of noise.
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To experimentally explore the synergistic effect between collective modes and

colored noise, and the resultant enhanced halo formation predicted in the simulations,

we measured the radial charge profiles corresponding to cases (b) and (c) of Fig.

6.16. In case there is neither induced mismatch nor applied noise, the initial matched

beam remains nearly in a quasi-equilibrium state (with Rb = 0.916 cm) even after

20 ms of trapping [red curve in Fig. 6.17(a)]. On the other hand, when the beam is

instantaneously mismatched in the same manner as in the previous simulation, a large

non-thermal ion tail is measured at r >
√

2Rb ≈ 1.29 cm [green curve in Fig. 6.17(a)].

More interestingly, in the experiment with both instantaneous mismatch and applied

colored noise, we observe a development of a small bump around ≈ (3 ∼ 4)Rb [blue

curve and arrow in Fig. 6.17(a)]. The error bars are determined primarily from the

offset errors (∼ 1 fC) in constructing the radial profiles. Although the accuracy is not

adequate to cover the range below . 1 fC, it still gives enough precision to resolve

the small bump illustrated in Fig. 6.17(a). Therefore, the experimentally observed

bump might be attributed to the effect of the enhanced halo formation expected for

the case of combined perturbations. To check the size and the location of the bump,

we also perform WARP 2D PIC simulations for similar experimental parameters.

Despite the difference in their absolute values, the relative sizes and locations of the

bumps illustrate very good agreement between the experiments and simulations [see

Fig. 6.17(b)].

In summary, we have presented experimental verification of the random noise-

induced beam degradation theoretically expected in high-intensity accelerators. Externally-

driven noise continuously increases the rms radius, transverse emittance, and non-

thermal tail of the trapped plasma almost linearly with the amplitude and duration

of the noise. In particular, we have observed the combined effects of collective modes
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and colored noise, which are consistent with theoretical predictions and numerical

simulations.

6.3 Summary and Discussion

In this chapter, we have investigated the transverse beam dynamics in response to

various machine imperfection effects present in high-intensity accelerators. This was

possible because the PTSX device is a compact experimental setup with flexible

control over the external focusing fields that can simulate the nonlinear transverse

dynamics of an intense beam propagating through an actual AG focusing system.

In Sec. 6.1, we studied faulty magnet effects by spoiling the voltage waveform for

short times, i.e., a few or several lattice periods. We observed non-trivial oscillatory

behavior in the on-axis signal, which can be effectively explained in terms of collective

mode excitation and beam mismatch in a KV-equivalent beam. In Sec. 6.2, we

studied random noise effects by adding a small random ripple on top of the applied

voltage waveform. We demonstrated a noise-enhanced emittance growth that could

affect intense beam transport over long propagation distances in linacs, or long beam

lifetime in storage rings. The degree of mismatch (50% increase in the quadrupole

focusing gradient) and the amplitude of the noise (∆max ≈ 1%) used to emulate

machine imperfection effects in this study may seem somewhat larger than the actual

tolerance limits adopted in daily accelerator operations. This is a compromise to

overcome the difficulty of measuring small changes in charge signals (10−3 ∼ 1 pC)

in the PTSX device (particularly for the distribution tail or halo particles in the off-

axis regions). Nonetheless, in modern high-intensity accelerators, loss of only a few

particles per meter can cause radioactivation that would preclude routine hands-on
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maintenance [Bohn and Sideris, 2003]. Therefore, it is highly relevant to verify the

validity of numerical tools and to test the physics models for beam loss in experiments

with parameters even somewhat beyond the actual tolerance limits.



Chapter 7

Conclusions and Future Research

Studies of charged particle beam dynamics on the Paul Trap Simulator Experiment

(PTSX) pure ion plasma have been presented in this thesis. A radially scanning

charge collector diagnostic has been newly installed, and the ion injection process

has been carefully optimized in order to characterize minute changes in beam equi-

libria in response to transverse beam compression and machine imperfection effects.

It is demonstrated that adiabatic changes in the smooth-focusing frequency com-

press the beam quiescently, minimizing mismatch oscillations and emittance growth.

Excitation of collective modes has been observed as a result of focusing field er-

rors, and noise-induced beam degradation has been experimentally verified. As a

non-destructive diagnostic, a laser-induced fluorescence (LIF) diagnostic system with

accompanying barium ion source has been developed, which is expected to give more

detailed information on the trapped plasma properties.

192
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7.1 Conclusions

In this thesis, several important beam physics topics related to the applications of

present- and next-generation high-intensity accelerators have been investigated in the

PTSX device. This was possible because the PTSX device is a compact and versatile

experimental setup with flexible control over the external focusing fields that can

simulate the nonlinear transverse dynamics of intense beam propagation through the

alternating-gradient (AG) focusing channel.

In Chapter 3 of this thesis, implementation of the new charge collector system

has been described, which is an improvement over the previous Faraday cup con-

figuration. The new charge collector system permits detailed measurements of the

radial ion density profile that can be compared with the smooth-focusing beam equi-

librium model. To further improve our basic understanding on the trapped plasma

in a non-destructive way, a laser-induced fluorescence (LIF) diagnostic system with

accompanying barium ion source has also been developed. Initial LIF measurements

show that the radial density profile reconstruction is hampered by a low signal-to-noise

ratio, which is mainly a consequence of the low initial target metastable population

and significant background light from the ion source.

In Chapter 4 of this thesis, various beam physics phenomena present during

the ion injection stage of the PTSX operation have been characterized in order to

achieve a well-behaved initial quasi-equilibrium beam. Injection beam mismatch,

which gives rise to a shoulder structure in the measured radial density profile, has

been identified as a result of the imbalance between the applied focusing force, and

the defocusing space-charge and pressure forces (Sec. 4.1). It is demonstrated that

injection beam mismatch can be minimized either by increasing the smooth-focusing

frequency or by decreasing the extraction voltage. Fast ions, a small number of
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particles with considerably larger axial kinetic energy than the main beam of ions,

have been detected (Sec. 4.2.1). Fast ions produce a broad non-thermal tail in

the radial density profile, compounding the accurate measurements of the emittance

growth and halo particle production in the subsequent beam physics experiments.

The optimal timing of the inject-trap-dump-rest cycle turned out to be an effective

method to resolve this issue. Noting that fast ions are detected without being averaged

over focusing periods, a time-resolved diagnostic method based on fast ions has been

proposed, together with initial measurements of the envelope oscillations (Sec. 4.2.2).

Possible two-stream interactions have been discussed in terms of analytical estimates

and 3D PIC simulations (Sec. 4.3). For the nominal injection condition in the PTSX

device, effects of two-stream interactions on the transverse beam dynamics turn out

to be weak, allowing stable confinement of the trapped plasma for more than 3000

applied focusing periods. Formation of a virtual cathode near the source region is

found to set the lower limit of the axial beam velocity available in the trap (Sec. 4.4).

In Chapter 5 of this thesis, transverse beam compression, which has practi-

cal applications in areas such as heavy ion fusion and ion-beam-driven high-energy

density physics, has been investigated. Based on energy balance for instantaneous

transitions and emittance conservation for adiabatic transitions, simple analytical

models for transverse beam compression have been developed, showing good agree-

ment with experimental results, particularly for the adiabatic transition cases (Sec.

5.1.1). Both the experimental results (Sec. 5.2.1) and numerical simulations (Sec.

5.3.1) indicated that the suppression of mismatch oscillations is a key physics issue in

transverse beam compression. Adiabatic changes in the smooth-focusing frequency

for several lattice transition periods turn out to be an effective method to compress

the beam quiescently, minimizing emittance growth and halo particle production. On
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the other hand, instantaneous changes induce significant mismatch oscillations which

are accompanied by broad halo formation around the beam core. Making use of

the flexibility of PTSX operation, experiments on frequency changes have also been

performed. Consistent with the smooth-focusing approximation, the instantaneous

frequency turned out to be an important parameter for the description of the beam

equilibria during the frequency change experiments (Sec. 5.1.2). Onset of the single-

particle orbit instability and beam expansion due to the collective mode excitation

have been observed during nonmonotonic changes in the instantaneous frequency

(Sec. 5.2.2), which is consistent with the Kapchinskij-Vladimirskij (KV) envelope

model calculations (Sec. 5.3.2).

In Chapter 6 of this thesis, machine imperfection effects, which are practically

unavoidable during the operation of high-intensity accelerators, are investigated. Mal-

functioning of the finite number of magnet sets and randomly distributed small errors

in focusing gradients are considered. It is demonstrated that a direct consequence

of faulty magnets is an irregular mismatch oscillation of the intense beam, which

eventually leads to significant emittance growth and beam degradation (Sec. 6.1.1).

In particular, it is found that the amplitude of such a mismatch oscillation depends

rather non-trivially on the number of the adjacent faulty magnets, which can be ex-

plained either by a smooth-focusing model (Sec. 6.1.2), or more quantitatively by a

KV envelope model (Sec. 6.1.3). Noise-induced beam degradation, which has been

expected from several previous theoretical and numerical studies, is experimentally

verified in the context of the smooth-focusing approximation (Sec. 6.2.1). A contin-

uous increase in emittance proportional to the amplitude and duration of the noise

has been observed, consistent with the PIC simulations (Sec. 6.2.2). Enhanced halo
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formation due to the combined effects of the collective modes and colored noise has

also been investigated (Sec. 6.2.3).

7.2 Future Research

Having demonstrated the flexibility and effectiveness of the PTSX device as a ded-

icated experimental setup for the study of intense beam dynamics, several future

research tasks can be suggested as follows.

Throughout this thesis research, only a sinusoidal waveform has been considered

for the quadruple focusing coefficient, mainly because the sinusoidal waveform is least

taxing on the bandwidth limit of the PTSX electronics. Use of a periodic step-function

or a periodic trapezoidal waveform is expected to give more realistic prediction of

intense beam dynamics in an actual FODO (Focusing-Off-Defocusing-Off) lattice,

provided that the slew rate and ringing effects on the non-sinusoidal waveform are

negligible. In synchrotrons and storage rings, instead of a simple FODO lattice, a

double bend achromat (DBA or Chasman-Green) lattice or a triple bend achromat

(TBA) lattice are often used to suppress the effects of longitudinal momentum spread

(dispersion effect) [Wiedemann, 1999; Lee, 2004]. In the limit of small dispersion,

it is also possible to study intense beam propagation through the DBA or TBA lattice

channel by applying the appropriate voltage waveform in the PTSX device.

The initial beam state used in this thesis work has been limited to normalized beam

intensity ŝ ∼ 0.2, which corresponds to the intense beam characteristic of proton

accumulator rings or booster synchrotrons. In high-intensity linacs, however, the

space-charge effect is more significant and the normalized beam intensity is typically

much higher than in rings. Hence, it is recommended to develop an ion injection
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scheme to obtain an initial stable beam equilibrium with higher space-charge intensity

(for example, ŝ & 0.6).

Once we have developed an excitation method for collective modes (instantaneous

change of the focusing strength) and a monitoring tool for them (oscillatory behavior

in the on-axis charge) in the PTSX device, several research topics on collective modes

can be proposed as follows.

• In the small-angle approximation [Lee, 2004; Minty and Zimmermann, 2003],

where the effects of dipole bending magnets can be neglected in the detailed

beam dynamics description of large-curvature circular accelerators, it would be

possible to investigate some key physics issues in storage rings using the PTSX

device. In storage rings, it is well known that if the betatron tune∗(denoted

by ν or Q), which is defined as the number of the betatron oscillation period

(≈ 2π/ωq in the smooth-focusing approximation) per revolution, is a half inte-

ger, then the perturbations from the quadrupole magnet imperfections accumu-

late and eventually lead to orbit distortion and beam degradation, particularly

when there are nonnegligible space-charge effects [Lee, 2004]. If we perturb

the trapped plasma in the PTSX device periodically with time step `/f0 and

scan the integer ` over several envelope oscillation periods, it should be possible

to observe half-integer resonances modified by space-charge effects (so called

space-charge tune shift).

• From the PIC simulation results presented in this thesis, we note that the

damping rate of the mismatch oscillation amplitude is directly related to the

growth rate of the transverse emittance. The time scale of the emittance growth

induced by the rms mismatch is typically & 10(2π/ωp) [Wangler, 1998]. If
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we extend the scan range of the number of half-focusing period N1/2 used in

Sec. 6.1 until the oscillatory behavior in the on-axis charge signal disappears,

we may obtain useful information on the damping of the mismatch oscillations,

or equivalently the growth of the transverse emittance.

• In Sec. 6.2, the combined effect of collective modes and colored noise has

been investigated with a fixed autocorrelation time τac = 5T . By measur-

ing radial profiles with several different autocorrelation times, for example

2π/τac ≈ ωq, ωB, ωQ, (ωQ+ωB)/2, (ωQ−ωB)/2, . . ., we may be able to develop a

more detailed understanding on noise-enhanced halo formation. Improving the

accuracy of the charge collector diagnostic will also facilitate a more detailed

resolution of the small changes expected in this type of experiment.

• In Sec. 4.2, we have demonstrated that the fast ion signal can be used to investi-

gate the mismatch oscillations in the injection phase of the PTSX operation. To

obtain more quantitative information on characteristic frequencies, future ex-

periments should be performed with higher sample frequency and longer time

interval for the collection of the fast ion signal. Optimization of the recently in-

stalled collective mode diagnostic system [Gilson et al., 2007b] is also desirable

to make comparisons with the fast ion signal.

To resolve the low signal-to-noise ratio (SNR) issue of the present LIF diagnostic,

two alternative schemes are proposed. One is to change the dye of the current CW

ring-dye laser system so that it can excite the ground state ions directly, and the other

is use of a second dye laser to populate the target metastable ions. Both schemes

are expected to give at least an order-of-magnitude improvement in the LIF signal.

Possible technical issues associated with the new LIF schemes are discussed here.
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• The first scheme considers the use of Coumarin 102 dye, for which the lifetime,

gain, and solubility are drastically reduced compared with current DCM dye.

Changing the optics set of the dye laser system is also required. The image

intensifier of the present CCD camera is Gen-II type. Hence, the quantum

efficiency (QE) for detecting 649 nm transition from the new scheme is about

50% less than for the 493 nm transition in the original scheme. The bandpass

filter should be replaced as well.

• The second scheme involves operation of the high-power excimer laser for pump-

ing. One of the working gases for the excimer laser, HCl, is particularly toxic

and corrosive, and needs special safety consideration. The pulse length and

repetition rate of the second dye laser will be 10 nsec and 10 Hz, respectively.

Hence, to maximize SNR, synchronization of the laser injection, CCD gating,

and PTSX operation is essential. The second dye laser will be injected axially

along the center of the trap through the entrance window made in the diagnostic

end.

In addition to the improvement of the LIF signal itself, further efforts to decrease

the background light level should be made as well. As indicated in Chapter 3,

the dominant contribution to the background light is the glowing barium ion source.

Precise control and monitoring of the ion source temperatures are required to perform

background subtraction with minimal shot-to-shot variations. Installation of the light

baffle in front of the exit nozzle of the ion source will collimate the background light

emission, reducing reflection from the gold-plated electrodes.

∗It is quite interesting that the betatron tune (ν or Q) is a similar concept to the

safety factor q used in the toroidal magnetic confinement devices.



Appendix A

End Effects in the PTSX Device

We consider an applied potential φa(r, θ, z, t) that satisfies boundary conditions at

r = rw depicted in Fig. 2.1

φa =


+V0(t), −L < z < +L, 0 < θ < π
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+V̂ , −∞ < z < −L,+L < z < +∞.

(A.1)

Here, we assume that the scale length of the potential leaking into the trap is small

compared to the length of the end electrodes, and extend the boundary condition

to z = ±∞ for analytical simplicity. The general solution to ∇2φa = 0, which is

symmetric in z about z = 0, is given by

• For 0 < z < +L:

φa(r, θ, z, t) = φq(r, θ, t) +
∞∑

m=0,n=1

AmnJm(µmnr/rw) cos(mθ) cosh(−µmnz/rw),

(A.2)

and
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• For +L < z < +∞:

φa(r, θ, z, t) = V̂ +
∞∑

m=0,n=1

BmnJm(µmnr/rw) cos(mθ) exp(−µmnz/rw). (A.3)

Here, µmn is the n-th zero of the Bessel function of the first kind of order m, i.e.,

Jm(µmn) = 0, and φq(r, θ, t) is the solution without end effects given in Eq. (2.14).

The boundary conditions at z = +L can be expressed as

• For continuity of φa:

φq(r, θ, t) +
∞∑

m=0,n=1

AmnJm(µmnr/rw) cos(mθ) cosh(−µmnL/rw)

= V̂ +
∞∑

m=0,n=1

BmnJm(µmnr/rw) cos(mθ) exp(−µmnL/rw), (A.4)

and

• For continuity of ∂φa/∂z:

∞∑
m=0,n=1

AmnJm(µmnr/rw) cos(mθ) sinh(−µmnL/rw)

=
∞∑

m=0,n=1

BmnJm(µmnr/rw) cos(mθ) exp(−µmnL/rw). (A.5)

Solving for the coefficients Amn from Eqs. (A.4) and (A.5) readily gives φa inside the

trap (−L < z < L). We obtain

φa(r, θ, z, t) =
4V0(t)

π

∞∑
l=1

sin(lπ/2)

l

(
r

rw

)2l

cos(2lθ)

+ V̂
∞∑
n=1

J0(µ0nr/rw)

µ0nJ1(µ0n)

[
exp

{
−µ0n(L+ z)

rw

}
+ exp

{
−µ0n(L− z)

rw

}]

− 4V0(t)

π

∞∑
l=1,n=1

sin(lπ/2)

l

J2l(µ2l,nr/rw)

µ2l,nJ2l+1(µ2l,n)
cos(2lθ)

×
[
exp

{
−µ2l,n(L+ z)

rw

}
+ exp

{
−µ2l,n(L− z)

rw

}]
. (A.6)
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Figure A.1: On-axis potential distributions near z = +L calculated from Eqs. (A.7)
(solid line) and (A.8) (dotted line).

For r � rw � L, to the lowest order, we find

φa(r, θ, z, t) ' 4V0(t)

π

(
r

rw

)2

cos(2θ)

[
1− µ21

8J3(µ21)
exp

{
−µ21(L− |z|)

rw

}]

+ V̂
J0(µ01r/rw)

µ01J1(µ01)
exp

{
−µ01(L− |z|)

rw

}
. (A.7)

Here, use has been made of J2(µ21r/rw) ≈
(
r
rw

)2 µ2
21

8
for r � rw. The potential leaks

from the end electrodes at z = ±L fall off exponentially with e-folding length rw/µ01,

which is 4.2 cm for the PTSX device. The potential distribution along the axis, V (z),

is known analytically by the expression [Grivet, 1965; Reiser, 1994]

V (z) =
V̂

2

[
1− tanh

{
1.318(L− |z|)

rw

}]
. (A.8)

Figure A.1 indicates good agreement between Eqs. (A.7) and (A.8) for axial beam

energy Eb . 9 eV and DC bias voltage V̂ = 36 V.
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(a) Eb = 3 eV and x0 = 1 cm. (b) Eb = 9 eV and x0 = 1 cm.

(c) Eb = 9 eV and x0 = 5 cm. (d) Eb = 18 eV and x0 = 1 cm.

Figure A.2: Time evolutions of the axial velocity vz and x position of the single-
particle motion including end effects in the PTSX. Here, vb is the initial axial beam
velocity given by vb = (2Eb/m)1/2, and rw = 10 cm is the wall radius. Initially, the
test particle is located at (x, y, z)0 = (x0, 0, 0) with (ẋ, ẏ, ż)0 = (0, 0, vb) and Φ = π/2.
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Therefore, with the good accuracy given by the approximate solution (A.7), the

integration of the single-particle equations of motion including both the radial and

axial electric fields produced by end effects can be easily performed. Figure A.2(a)

shows that end effects are negligible when Eb = 3 eV, which is the nominal operating

condition of the PTSX device. However, for the case where Eb = 9 eV [Fig. A.2(b)],

the radial electric fields associated with the DC potential near z = ±L transfer axial

energy into perpendicular energy, and eventually increase the radial excursion of the

particle motion. Since the radial force produced by the DC potential barrier increases

with the radial position and axial velocity of the beam particles, this end effect can

be troublesome for non-thermal particles present in the PTSX device, such as halo

particles [Fig. A.2(c)] and fast ions [Fig. A.2(d)]. Here, halo particles refer to a small

number of particles with considerably larger radial excursion than the beam core, and

fast ions refer to a small number of particles with considerably larger axial velocity

than the main beam of ions. In particular, the fast ions are lost almost immediately

after several bounces in the trap.



Appendix B

Condition for Two-Stream

Interactions in the PTSX Device

For a non-relativistic beam-plasma system, the dispersion relation that determines the

complex eigenfrequency ω of the perturbations about the Kapchinskij-Vladimirskij

(KV) beam equilibrium with radius rbj is given by

0 = Dl(kz, ω) = 1 +
∑
j

ω̂2
pj

2lν2
bj

[
1−

(
rbj
rw

)2l
]

Γlj(ω) (B.1)

for axial wavenumber kz, and azimuthal mode number l = 1, 2, 3, · · ·. Here, ω̂2
pj =

n̂jq
2
j/ε0mj is the plasma frequency-squared, ν2

bj = ω2
q −

∑
j ω̂

2
pj/2 is the depressed

betatron frequency-squared, and the response function Γlj(ω) is defined by [Davidson

et al., 1999; Davidson and Qin, 2001]

Γlj(ω) = − 1

2l

l∑
ml=0

l!

ml!(l −ml)!

(l − 2ml)νbj
[(ω − kzvbj + i|kz|vT‖j)− (l − 2ml)νbj]

. (B.2)

All the beam components j are assumed to have Lorentzian distributions with axial

drift velocity vbj and effective thermal speed vT‖j =
(
2T‖j/mj

)1/2
.
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If we consider a uniform density ion beam j = + with charge q, mass m, axial

drift velocity +vb, and number density n̂/2, which is propagating through another

symmetric, counter-streaming ion beam j = − with axial drift velocity −vb and

number density n̂/2, then

ω̂2
p+ = ω̂2

p− =
1

2

n̂q2

ε0m
=

1

2
ω̂2
p, (B.3)

and

ν2
b+ = ν2

b− = ω2
q −

1

2

(
ω̂2
p+ + ω̂2

p−

)
= ω2

q −
1

2
ω̂2
p = ν2

b . (B.4)

If we further consider the strongest (largest growth rate) perturbation with l = 1

which corresponds to a simple (dipole) transverse displacement of the two counter-

streaming ion beams [Davidson et al., 1999], then the dispersion relation becomes

1 =
ω̂2
p/4[

(ω − kzvb + i|kz|vT‖)2 − ν2
b

] +
ω̂2
p/4[

(ω + kzvb + i|kz|vT‖)2 − ν2
b

] . (B.5)

Here, we neglect the effects of finite radial geometry by considering the typical oper-

ating condition for the PTSX device (rb � rw).

Before giving the general solution to Eq. (B.5), we briefly summarize the solutions

for several limiting cases.

• For vb = 0 and vT‖ = 0:

ω2 = ω2
q . (B.6)

This solution corresponds to a dipole-mode oscillation at the applied focusing

frequency. It is one of the stable surface oscillations in a KV beam.

• For vb = 0, vT‖ = 0, and ŝ = ω̂2
p/2ω

2
q = 1:

ω2 =
ω̂2
p

2
. (B.7)
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This solution corresponds to stable plasma oscillations in the space-charge-

dominated limit. The external focusing force provides the necessary restoring

force for the oscillations.

• For vb = 0, vT‖ = 0, and ω2
q = 0:

ω2 = ω̂2
p. (B.8)

This solution corresponds to plasma oscillations in an infinite plasma.

• For vb = 0 and vT‖ 6= 0:

Reω = ±ωq,

Imω = − |kz| vT‖. (B.9)

This solution corresponds to damped dipole-mode oscillations. The damping

mechanism is well-known collisionless Landau damping [Landau, 1946].

• For vb = 0, vT‖ 6= 0, and ŝ = ω̂2
p/2ω

2
q = 1:

Reω = ±ω̂p/
√

2,

Imω = − |kz| vT‖. (B.10)

This solution corresponds to damped plasma oscillations in the space-charge-

dominated limit.

• For n+ = n̂ and n− = 0 (no counter-streaming beam):

Reω = kzvb ± ωq,

Imω = − |kz| vT‖. (B.11)

This solution corresponds to a damped sideband oscillation.
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Figure B.1: Plot of threshold value of normalized intensity ŝth for unstable two-stream
interactions as a function of vb/vT‖. The nominal injection condition is indicated by
the symbol (star).

In general, solving Eq. (B.5) for the imaginary frequency of the unstable mode

readily gives

Reω = 0,

Imω = − |kz| vT‖ +

(
ν2
b +

ω̂2
p

4

)1/2
{ ω̂4

p/16

(ν2
b + ω̂2

p/4)2
+ 8

k2
z

k2
0

}1/2

−
(

1 + 2
k2
z

k2
0

)1/2

,

(B.12)

where we define k2
0 = 2(ν2

b + ω̂2
p/4)/v2

b . The necessary condition for instability (Imω >

0) is [Stix, 1992]

1

2

(
ν2
b

ν2
b + ω̂2

p/4

)
<
k2
z

k2
0

<
1

2

(
ν2
b + ω̂2

p/2

ν2
b + ω̂2

p/4

)
. (B.13)
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Finally, the condition for instability (Imω > 0) can be expressed in terms of the

threshold value of normalized intensity ŝth as

ŝ > ŝth = 4
vb/vT‖(

1 + vb/vT‖
)2 , (B.14)

for vb > vT‖. Note that if vb < vT‖, then ŝth > 1, and instability does not exist because

ŝ < 1 is required for transverse confinement of the beam ions. For nominal injection

conditions in PTSX, ŝ ∼ 0.2, vb ≈
√

2Eb/m for axial beam energy Eb ∼ 3 eV, and

vT‖ ≈
√

2Ts/m with source temperature Ts ∼ 0.1 eV, we obtain ŝth ≈ 0.52 > ŝ.

Hence, it is estimated that two-stream interactions are linearly stable for the nominal

injection conditions in PTSX operation.



Appendix C

Doppler Broadening in the PTSX

Device

Compared to a stationary observer, ions with thermal (random) or drift motion expe-

rience a Doppler shift in absorbing or emitting electromagnetic radiation [Demtroder,

2002]. For example, an ion can absorb laser radiation only when the Doppler-shifted

frequency coincides with its resonance absorption frequency ω0, i.e.,

ωL − kLvξ = ω0. (C.1)

Here, ωL(= ckL) and kL are the angular frequency and wavenumber of the laser in

vacuum, and vξ is the ion’s velocity component along the laser propagation direction

êξ. We assume perpendicular laser injection into the PTSX device, in which êξ is nor-

mal to the axial direction êz. When the ions have a thermal equilibrium distribution

in the ξ-direction with constant transverse temperature T̂⊥ according to

fξ(vξ) = fξ(0) exp

[
−

1
2
mv2

ξ

T̂⊥

]
, (C.2)
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then the Doppler width (full width half maximum of a Gaussian profile) becomes

[Demtroder, 2002]

∆νD =
ω0

2π

√
8T̂⊥ ln 2

mc2
(C.3)

in frequency units. Here, the transverse temperature T̂⊥ can be independently esti-

mated from the radial density profile measurement.

In the PTSX device, we measure the radial density profile n(r) averaged over many

focusing periods T = 1/f0. Hence, the rms radius Rb = [(2π/N)
∫ rw
0 drrr2n(r)]

1/2
cal-

culated from the measurement can be interpreted as the statistical average of the

effective radial coordinate of the beam Rsf = (x2
sf + y2

sf )
1/2 in the smooth-focusing

approximation. Here, xsf and ysf are slow variables in the smooth-focusing approx-

imation [Davidson and Qin, 2001]. In particular, when beam is in equilibrium

(∂/∂t = 0), we have global force balance according to

mω2
qR

2
b = 2T̄⊥ +

Nq2

4πε0
, (C.4)

where

Rb =
〈
R2
sf

〉1/2

0
=
〈
x2
sf + y2

sf

〉1/2

0
(C.5)

is the (equilibrium) rms radius, and

T̄⊥ =
1

2
m
〈
ẋ2
sf + ẏ2

sf

〉
0

(C.6)

is the effective transverse temperature. Here, 〈· · ·〉0 denotes the statistical average

over the equilibrium distribution function in the smooth-focusing approximation. The

effective transverse temperature T̄⊥, which measures the average kinetic energy of a

beam particle, can be inferred from Eq. (C.4) using the rms radius Rb and line density

N calculated from the radial density profile measurement. Note that in T̄⊥, the fast

micromotion associated with quadrupole focusing frequency f0 has been averaged.
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If we further assume that the beam is in a thermal equilibrium state, then we can

approximate T̂⊥ = T̄⊥. Hence, the Doppler width is estimated to be

∆νD ≈
ω0

2π

√
8T̄⊥ ln 2

mc2
. (C.7)

However, this estimation does not include possible effect of ion’s fast micromotion.

To estimate the Doppler width including the fast micromotion, we adopt Hamil-

tonian averaging techniques [Davidson and Qin, 2001]. To third order in the small

dimensionless parameter ε defined by

ε =
σsfv
π
√

2
< 1 (C.8)

for a periodic quadrupole lattice with κq(t) = κ̂q sin(2πf0t) with κ̂q = (8q/πmr2
w)V̂0,

we obtain statistical averages of the mean-squared velocity components in the labo-

ratory frame as follows:

〈
ẋ2
〉

(t) = [1− 2βq(t)]
〈
ẋ2
sf

〉
0
+
[
αq(t)− 〈αq〉T

]2 〈
x2
sf

〉
0
, (C.9)〈

ẏ2
〉

(t) = [1 + 2βq(t)]
〈
ẏ2
sf

〉
0
+
[
αq(t)− 〈αq〉T

]2 〈
y2
sf

〉
0
. (C.10)

Here, the lattice functions are defined by αq(t) − 〈αq〉T = −ωq
√

2 cos(2πf0t), and

βq(t) = −ε sin(2πf0t). Using the symmetry of the smooth-focusing equilibrium,〈
ẋ2
sf

〉
0

=
〈
ẏ2
sf

〉
0

= 1
2

〈
ẋ2
sf + ẏ2

sf

〉
0

and
〈
x2
sf

〉
0

=
〈
y2
sf

〉
0

= 1
2
R2
b , we obtain

〈
ẋ2 + ẏ2

〉
(t) =

〈
ẋ2
sf + ẏ2

sf

〉
0
+ 2ω2

qR
2
b cos2(2πf0t) (C.11)

after adding Eqs. (C.9) and (C.10). Moreover, if we assume that the beam has

a thermal equilibrium distribution in the smooth-focusing approximation, we can

further express 1
2
m
〈
ẋ2
sf + ẏ2

sf

〉
0

= T̄⊥ = T̂⊥ and 1
2
mω2

qR
2
b = T̂⊥(1 + δb). Here, δb =

(1/4πε0)(Nq
2/2T̂⊥) is the thermal beam intensity parameter defined in Chapter 2

of this thesis. Finally, we readily obtain an expression for the statistically-averaged
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kinetic energy of a beam particle with micromotion [≡ K⊥(t)] in terms of the thermal

temperature as

1

2
m
〈
ẋ2 + ẏ2

〉
(t) = K⊥(t) = T̂⊥ + 2T̂⊥(1 + δb) cos2(2πf0t). (C.12)

Note that the total statistically-averaged kinetic energy K⊥(t) fluctuates rapidly at

the focusing frequency (higher in the focusing or defocusing phases and lower in drift

phases). Strictly speaking, the second term in Eq. (C.12) is not a random motion

term, and will not contribute significantly to the Doppler broadening when the pulsed-

laser is used (pulse length � 1/f0). It will rather give rise to a shift of the resonance

line. On the other hand, when a continuous-wave (CW) laser is used, the second term

in Eq. (C.12) is averaged over many focusing periods and will effectively contribute

to the Doppler broadening. The time-averaged K⊥(t) is then given by

〈K⊥(t)〉T = T̂⊥ + T̂⊥(1 + δb). (C.13)

Here, the first term represents the thermal energy, whereas the second term represents

the average oscillatory energy 1
2
mω2

qR
2
b . The resultant Doppler broadening can be

estimated as

∆νD ≈
ω0

2π

√
8T̂⊥(2 + δb) ln 2

mc2
. (C.14)

Note that at high beam intensities (δb � 1), the Doppler broadening becomes more

significant. This can be understood as follows. As the beam intensity increases, a

stronger focusing field is required to achieve equilibrium, which in turn leads to a

faster fluttering of the beam envelope.

In the PTSX device, the thermal temperature is in the range of 0.1 ∼ 1 eV. As a

result, the Doppler linewidth is normally two orders of magnitude broader than the

natural linewidth of the resonance line. In addition, the absence of magnetic field,
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and negligible effects of time-averaged electric field and collision in PTSX allow us

to neglect Zeemann, Stark, and collisional broadening effects as well [Muraoka and

Maeda, 2001]. Therefore, the Doppler broadening including the fast micromotion

estimated in Eq. (C.14) will be the dominant effect for spectral line broadening in the

PTSX device. For example, to facilitate the laser-induced fluorescence (LIF) diag-

nostic, it is desirable to select laser linewidth or scan range according to Eq. (C.14),

particularly when the beam intensity is high. For the typical operating condition,

ŝ ∼ 0.2 and T̄⊥ ∼ 0.1 eV, we obtain ∆νD ≈ 1.4 GHz, which is matched to the laser

linewidth in the broadband operation (∼ 2 GHz).
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