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Streaming instabilities of intense charged particle beams propagating along a solenoidal magnetic
field in a background plasma are studied analytically and numerically. It is shown that the growth
rate of the electromagnetic Weibel instability is modified by a relatively weak solenoidal magnetic
field such that !ce"#b!pe, where !ce is the electron gyrofrequency, !pe is the electron plasma
frequency, and #b is the ion-beam velocity relative to the speed of light. Moreover, the Weibel
instability is limited to very small propagation angles and long longitudinal wavelengths satisfying
k#

2$k!
2 and c2k#

2$!pb
2 !pi

2 / !!pb
2 +!pi

2 ", where !pb and !pi are the plasma frequencies of the beam
ions and the background plasma ions, respectively. For shorter longitudinal wavelengths, the
electrostatic lower-hybrid instability becomes dominant. In this paper, the growth rates of various
electrostatic beam-plasma instabilities and the electromagnetic Weibel instability are compared, and
the space-time development of the modified two-stream instability is studied in detail and compared
with numerical simulations. © 2008 American Institute of Physics. $DOI: 10.1063/1.2918673%

I. INTRODUCTION

To achieve the high focal spot intensities necessary for
high energy density physics and heavy ion fusion applica-
tions, the ion beam pulse1–4 must be compressed transversely
by a factor of 10 or more before it is focused onto the target.
To achieve maximum compression, the space charge of the
ion beam is neutralized by propagation of the beam pulse
through a dense neutralizing background plasma.5–10 If the
space charge is fully neutralized by the plasma, the final
compression is limited only by the initial temperature of the
beam ions and possible collective processes11–14 !such as the
two-stream and filamentation instabilities" which may pre-
vent full neutralization of the beam space charge. In one
scenario,5–10 transverse compression of the beam ions is fa-
cilitated by using solenoidal focusing magnets. Fields from
the magnets can extend a large distance away from the sole-
noid into the neutralizing plasma and can change the nature
of collective instabilities experienced by the compressing
beam when it propagates through the neutralizing back-
ground plasma. Recent studies of the beam’s charge and cur-
rent neutralization in plasma with solenoidal magnetic field
have shown that when the magnetic field is strong enough
that !ce&#b!pe, the electron dynamics becomes strongly af-
fected by the magnetic field. Specifically, as shown in Ref.
15, if the condition !ce&#b!pe is satisfied, the magnetic
field causes the plasma electrons to start rotating about the
solenoid axis as they flow into the ion beam pulse to neutral-
ize its charge and current. Because the magnetic field is fro-
zen into the electron fluid, the electron rotation generates an
azimuthal self-magnetic field B%, which is much larger than
in the case with no applied magnetic field. To balance the
v%&Bz Lorentz force on an electron fluid element due to its
azimuthal rotation, the plasma is polarized to set up a radial
electric field Er. By applying an external magnetic field such
that !ce /#b!pe&1, the total pinching force Fr

=eZb!Er−vzbB%" can be made much smaller than in the case
with no applied field, which can be beneficial for beam trans-
port. Also, the same rotation generates a solenoidal self-
magnetic field which enhances the applied magnetic field,
and makes the plasma have paramagnetic properties.

If !ce"#b!pe, low-frequency helicon waves propagat-
ing almost transversely to the beam propagation direction
can now be resonantly excited by the beam,15 drastically
changing the way current is being neutralized by the back-
ground plasma. Coupling to the helicon waves will also
modify the electromagnetic filamentation !Weibel"
instability.16–19 In this paper we study in more detail the low-
frequency electromagnetic and electrostatic streaming
instabilities20,21 of an intense ion beam propagating through
background plasma along a solenoidal magnetic field. Be-
cause of the large ion mass, instabilities involving the ion
cyclotron motion are very slow and will not be considered
here. Therefore, in what follows we neglect the effect of the
magnetic field on the beam and plasma ions, and only in-
clude its effects on the plasma electrons. In the analysis, we
also treat all charged particle species in the cold-plasma ap-
proximation. One can neglect electron thermal effects if the
directed ion beam velocity is much larger than the electron
thermal speed Vb'vth

e , and if the electron thermal speed is
sufficiently small that '!−k#Ve'' 'k#'vth

e , and 'k!'vth
e $ '!ce'.

One can typically neglect ion thermal effects if the directed
ion beam velocity is much larger than the thermal speed of
the beam ions and the background ions, Vs'vth

s , and if
'!−k#Vs'' 'k'vth

s , where s= !i ,b" denotes the ions species. In
the analysis that follows, these conditions are assumed to be
satisfied.

The organization of this paper is the following. In Sec.
II, the full electromagnetic linear dispersion relation is pre-
sented for an intense ion beam propagating through neutral-
izing background plasma along a solenoidal magnetic field.
Conditions for the electromagnetic Weibel instability and the

1070-664X/2008/15!6"/062107/9/$23.00 © 2008 American Institute of Physics15, 062107-1



electrostatic modified two-stream instabilities for nearly
transverse propagation to the applied magnetic field are iden-
tified, and the growth rate of the Weibel instability modified
by the solenoidal magnetic field is obtained. In Sec. III a
detailed analysis of electrostatic modified two-stream insta-
bilities is presented, and the unstable modes are identified
and their frequency and growth rates are determined. De-
tailed numerical solutions to the dispersion relations are pre-
sented in Sec. IV. In Sec. V the space-time development of
the modified two-stream instability is investigated, and the
results are compared with numerical simulations using the
particle-in-cell code LSP.22,23 Finally, conclusions are sum-
marized in Sec. VI.

II. GENERAL DISPERSION RELATION
AND THE ELECTROMAGNETIC FILAMENTATION
„WEIBEL… INSTABILITY FOR B0Å0

For definiteness we assume that the beam velocity Vb
and externally applied magnetic field B0=B0êz are directed
along the z-direction. The wavenumber k=k!êx+k#êz of the
field perturbation is taken to be in the !x ,z" plane. We also
assume that initially the background plasma electrons pro-
vide full charge and current neutralization, which requires
the density of electrons to be ne=Zini+Zbnb, and the electron
drift velocity to be Ve=ZbVbnb /ne, where ns and Zs are the
number density and charge state for the background ions !s
= i" and beam ions !s=b". For simplicity, the subsequent
analysis is carried out in a reference frame moving axially
with the electrons. In this frame, V̄b=Vb−Ve, V̄e=0, and V̄i
=−Ve. Neglecting the cyclotron motion of the beam ions and
plasma ions, the full cold-plasma dispersion relation for an
ion beam propagating with velocity Vb along the magnetic
field B0 can be expressed as20

AN4 + BN2 + C = 0, !1"

where N=kc /! is the index of refraction, and A, B, and C
are defined by

A = (11 sin2 % + 2(13 sin % cos % + (33 cos2 % , !2"

B = (13
2 − (11(33 − (11(33 cos2 % − !(11

2 + (12
2 "sin2 %

− 2(13(11 sin % cos % , !3"

C = (33!(11
2 + (12

2 " − (11(13
2 . !4"

Here, % is the angle between k and B0=B0êz, and (ij are the
dielectric tensor elements defined by

(11 = 1 −
!pe

2

!2 − !ce
2 −

!pi
2 + !pb

2

!2 , !5"

(12 = i
!ce!pe

2

!!!2 − !ce
2 "

, !6"

(13 = −
!pi

2

!2

k!V̄i

!! − k#V̄i"
−

!pb
2

!2

k!V̄b

!! − k#V̄b"
, !7"

(33 = 1 −
!pe

2

!2 −
!pi

2

!2 (!2 + !k!V̄i"2

!! − k#V̄i"2 ) −
!pb

2

!2 (!2 + !k!V̄b"2

!! − k#V̄b"2 ) ,

!8"

where k!=k sin %, k# =k cos %, !ps
2 =4)qs

2ns /ms is the plasma
frequency-squared for charge species s= !e , i ,b" with charge
qs and mass ms, and !ce=eB0 /mec is the electron cyclotron
frequency.

For present purposes, we are interested in the regime
corresponding to nearly transverse propagation with cos2 %
$1, and low-frequency perturbations with '!'$!pe ,!ce.
Even in this case the dispersion relation !1" is quite compli-
cated. In what follows we analyze Eq. !1" in the short wave-
length limit with k2c2 /!pe

2 '1.
Making use of approximations enumerated in the previ-

ous paragraph, the dispersion relation !1" can be approxi-
mated by

1 +
!pe

2

!ce
2 (1 +

#̄i
2!pi

2

!! − k#V̄i"2
+

#̄b
2!pb

2

!! − k#V̄b"2
) −

!pe
2 cos2 %

!2

−
!pb

2

!! − k#V̄b"2
−

!pi
2

!! − k#V̄i"2
=

!pi
2 !pb

2 !#̄b − #̄i"2

!! − k#V̄b"2!! − k#V̄i"2
,

!9"

where #̄s= V̄s /c !s= i ,b". The terms proportional to #̄s
2 in Eq.

!9" describe transverse electromagnetic contributions that
drive the so-called filamentation !Weibel" instability, whereas
the rest of the terms in Eq. !9" represent electrostatic contri-
butions. In the limit of sufficiently small solenoidal magnetic
field that #̄b

2!pe
2 /!ce

2 '1, Eq. !9" reduces to

1 +
#̄i

2!pi
2

!! − k#V̄i"2
+

#̄b
2!pb

2

!! − k#V̄b"2
= 0. !10"

Equation !10" corresponds to the dispersion relation for the
Weibel instability in the absence of applied magnetic field.
For k# =0, note that Eq. !10" has a purely growing solution
determined from14

!2 = − #̄i
2!pi

2 − #̄b
2!pb

2 . !11"

In the opposite limit with strong magnetic field
#̄b

2!pe
2 /!ce

2 $1, it is readily shown that Eq. !9" reduces to

1 +
!pe

2

!ce
2 −

!pe
2 cos2 %

!2 −
!pb

2

!! − k#V̄b"2
−

!pi
2

!! − k#V̄i"2

=
!pi

2 !pb
2 !#̄b − #̄i"2

!! − k#V̄b"2!! − k#V̄i"2
. !12"

For angles satisfying cos2 %'max!!pb
2 /!pe

2 ,!pi
2 /!pe

2 ", one
can neglect the term on the right-hand side of Eq. !12", and
the resulting dispersion relation becomes



1 +
!pe

2

!ce
2 −

!pe
2 cos2 %

!2 −
!pb

2

!! − k#V̄b"2
−

!pi
2

!! − k#V̄i"2
= 0. !13"

Equation !13" describes the electrostatic modified two-
stream instability between the plasma electrons and the beam
ions or the plasma ions. In the opposite case of nearly trans-
verse propagation such that cos2 %*max!!pb

2 /!pe
2 ,!pi

2 /!pe
2 ",

and sufficiently large longitudinal wavenumbers that c2k#
2

'!pb
2 !pi

2 / !!pb
2 +!pi

2 ", Eq. !12" reduces to the equation de-
scribing an instability due to the interaction with lower-
hybrid plasma oscillations, i.e.,

1 +
!pe

2

!ce
2 −

!pb
2

!! − k#V̄b"2
−

!pi
2

!! − k#V̄i"2
= 0. !14"

Electrostatic instabilities described by Eqs. !13" and !14" will
be considered in more detail in Sec. III.

In the opposite case when c2k#
2$!pb

2 !pi
2 / !!pb

2 +!pi
2 ",

Eq. !12" reduces to

−
!pb

2

!! − k#V̄b"2
−

!pi
2

!! − k#V̄i"2
=

!pi
2 !pb

2 !#̄b − #̄i"2

!! − k#V̄b"2!! − k#V̄i"2
, !15"

which has an unstable solution

! = i!#̄b − #̄i"
!pb!pi

*!pb
2 + !pi

2
+ ck#( #̄b!pi

2 + #̄i!pb
2

!pb
2 + !pi

2 ) !16"

describing a Weibel-type instability with finite k##0. The
growth rate in Eq. !16" is modified compared to the case with
weak magnetic field in Eq. !11" because the electrons are
now magnetized, and the instability is between the beam ions
and the background plasma ions. For arbitrary magnetic field
strength, the normalized growth rate of the Weibel instability
+B=Im ! /*!pb

2 +!pi
2 calculated from Eq. !9" for k# =0 is

given by

+B
2 =

1

2!1 + !pe
2 /!ce

2 "+!pe
2

!ce
2 +0

2 − 1 + (4,1 +
!pe

2

!ce
2 -+,

2

+ ,!pe
2

!ce
2 +0

2 − 1-2)1/2. , !17"

where +B=+0 for #̄b
2!pe

2 /!ce
2 '1, and +0/ Im ! /*!pb

2 +!pi
2

with Im ! given by Eq. !11". Also, +B=+, for #̄b
2!pe

2 /!ce
2

$1, and +,/ Im ! /*!pb
2 +!pi

2 with Im ! given by Eq. !16"
with k# =0.

Here we examine stability properties only for the case of
cold beam and plasma species. Thermal effects become im-
portant and can reduce the instability growth rate when the
conditions summarized in Sec. I are not satisfied. For the
Weibel instability these conditions imply that the electron
thermal speed is small enough that vth

e $Vb and 'k!'vth
e

$ '!ce', and the thermal speeds of the ion species are small

enough that 'k!'vth
s $*!pb

2 +!pi
2 +B, where s= !i ,b" and +B is

given by Eq. !17".

III. ELECTROSTATIC MODIFIED TWO-STREAM
INSTABILITY

As was shown in the previous section, the filamentation
instability is limited to longitudinal wavenumbers c2k#

2

$!pb
2 !pi

2 / !!pb
2 +!pi

2 ". For large wavenumbers c2k#
2

'!pb
2 !pi

2 / !!pb
2 +!pi

2 " and c2k!
2 /!pe

2 '1, the instability is
nearly electrostatic and is described by the approximate dis-
persion relation20

1 −
!pe

2 sin2 %

!2 − !ce
2 −

!pe
2 cos2 %

!2 −
!pb

2

!! − k#V̄b"2
−

!pi
2

!! − k#V̄i"2
= 0.

!18"

In Eq. !18", we have removed the small frequency assump-
tion. When the beam density is zero !!pb=0" and cos2 %
"!pi

2 /!pe
2 , Eq. !18" describes two types of waves with fre-

quencies !=!-!cos %" given by

!-
2 = 1

2 $!ce
2 + !pe

2 - *!!pe
2 + !ce

2 "2 − 4 cos2 %!ce
2 !pe

2 % . !19"

The “.” sign corresponds to high-frequency oscillations
with the frequency min!!ce ,!pe"*!+!cos %"
*max!!ce ,!pe", and the “/” sign corresponds to lower fre-
quency oscillations. For nearly transverse propagation
!%0) /2", it follows that

!+ = *!pe
2 + !ce

2 , !20"

which is called the upper-hybrid frequency. On the other
hand for %0) /2, the lower frequency !− can be approxi-
mated by

!− =
!pe cos %

*1 + !pe
2 /!ce

2
. !21"

For angles such that cos2 %*!pi
2 /!pe

2 one also needs to take
into account the background ion response in Eq. !21". For
these angles, the low-frequency oscillation is near the lower-
hybrid frequency !LH defined by

!LH =
!pi

*1 + !pe
2 /!ce

2
. !22"

If the beam density is nonzero !pb#0, Eq. !18" de-
scribes two-stream instabilities where either the beam ions or
the background plasma ions, streaming relative to the back-
ground electrons, can cause the instability. For cos2 %

"!pi
2 /!pe

2 , expressing !=k#V̄s+0s !s= 1i ,b2", we obtain from
Eq. !18",20

!0s"- = - !ps( k#
2V̄s

2!k#
2V̄s

2 − !ce
2 "

!k#
2V̄s

2 − !+
2"!k#

2V̄s
2 − !−

2"
)1/2

, !23"

where instability exists for k#
2V̄s

2*!−
2 or for !ce

2 *k#
2V̄s

2*!+
2.

When the instability is resonant with k#
2V̄s

20!-
2 , we obtain20

!0s"-
res = 1(!ps

2 !-!!-
2 − !ce

2 "
2!!+

2 − !−
2" )1/3

, !24"

where



1 = !− 1 + i*3"/2. !25"

For present purposes, we refer to the instability with !
0!+ as the upper-hybrid instability, and the instability with
!0!− as the modified two-stream instability.

For %0) /2 the low-frequency oscillation is at fre-
quency !2!−$!ce where !− is given by Eq. !21". In this
case Eqs. !23" and !24" are simplified to become

!0s"− = - !ps( k#
2V̄s

2!ce
2

!!pe
2 + !ce

2 "!k#
2V̄s

2 − !−
2"
)1/2

,

!26"

!0s"−
res = 1( !ps

2 !ce
2 !−

2!!pe
2 + !ce

2 ")1/3

= 1!LH, !ps
2

2!pi
2 -1/3(cos %,!pe

!pi
-)1/3

,

where !− is given by Eq. !21", and the resonance condition is
ck /!pe01 /3s, where 3s/ #̄s

*1+!pe
2 /!ce

2 .
When !pe

2 '!ce
2 , the lower frequency branch becomes a

short-wavelength !k2c2 /!pe
2 '1" helicon wave with !2!−

0!ce cos % for all angles with cos2 %"!pi
2 /!pe

2 . In this case,
expressing !=k#V̄s+ !0s"−, we obtain

!0s"− = - i!ce,!ps

!pe
-krc

s(1 − cos2 %!krc
s"2

1 − !krc
s"2 )1/2

,

!27"

!0s"−
res = 1!ce, !ps

2

2!pe
2 -1/3

!sin2 % cos %"1/3,

where rc
s / V̄s /!ce, and the resonance condition is k2!rc

s"2

01. The growth rate is a maximum at angle %

=cos−1!1 /*3"=54.7°, and

Im!0s"−
max =

1
2

!ce,!ps
2

!pe
2 -1/3

. !28"

For the high frequency branch, !ce*!2!+0!pe. Express-
ing !=k#V̄s+ !0s"+ we obtain

!0s"+ = - i!pe,!ps

!pe
- k#rp

s

$1 − !k#rp
s "2%1/2 ,

!29"

!0s"+
res = 1!pe, !ps

2

2!pe
2 -1/3

,

where the resonance condition is k#
2!rp

s "201. Note that this
instability is independent of transverse wavenumber k!, and
has the same frequency and growth rate as in the absence of
applied magnetic field !!ce=0".

In the opposite limit with !pe
2 $!ce

2 , the lower frequency
branch becomes !−=!pe cos % for all angles satisfying
cos2 %"!pi

2 /!pe
2 . In this case, expressing !=k#V̄s+ !0s"− with

k#V̄s4!−, we obtain

!0s"− = - i!pe,!ps

!pe
- krp

s

$1 − !krp
s "2%1/2 ,

!30"

!0s"−
res = 1!pe,!ps

2 cos %

2!pe
2 -1/3

,

where rp
s / V̄s /!pe and the resonance condition is k2!rp

s "2

01. The growth rate is a maximum at angle %=0, and is
given by

Im!0s"−
max =

*3
2

!pe, !ps
2

2!pe
2 -1/3

. !31"

Note that in the case where !pe
2 $!ce

2 , it is the instability for
the lower frequency branch !− which has the same fre-
quency and growth rate as the two-stream instability in the
absence of an applied magnetic field, but only for %=0.

For the high frequency branch with !0!+0!ce, we
find that !+

2 −!ce
2 0!pe

2 sin2 % and

!0s"+ = - i!pe,!ps

!pe
-3 !k#rc

s"2 − 1

1 + ,!pe

!ce
-2

sin2 % − !k#rc
s"24

1/2

,

!32"

!0s"+
res = 1!pe,!ps

2 sin2 %

2!pe!ce
-1/3

,

where the resonance condition is !k#rc
s"201

+ !!pe /!ce"2 sin2 %. As one can see from Eq. !32", the insta-
bility has a very narrow bandwidth with 1* !k#rc

s"2*1
+ !!pe /!ce"2 sin2 %. Thermal effects can be neglected pro-
vided V̄s'vth

e , 'k!'vth
e $ '!ce'. For the modified two-stream

instability, the additional requirement is !ps /!pe'vth
s / V̄s.

For the case of the upper-hybrid instability, the additional
requirement is cos2 %' !!+ /!ps"2!vth

s / V̄s"2.
So far we have examined electrostatic instabilities for

sufficiently large propagation angles that cos2 %'!pi
2 /!pe

2

where we can neglect the contribution from the background
plasma ions. In the opposite case, for sufficiently small
angles of propagation that cos2 %4!pi

2 /!pe
2 and !pi5!pb,

we estimate that

Re ! & Im ! & k#V̄b & !LH, !33"

where the lower-hybrid frequency !LH is defined in Eq. !22".
For !pb$!pi, we express the solution to the dispersion rela-
tion as !=k#V̄b+ !0b"LH, where !0b"LH is defined by

!0b"LH = - i!LH
!pb

!pi

k#rLH
b

(1 +
!pe

2

!pi
2 cos2 % − !k#rLH

b "2)1/2 ,

!34"

!0b"LH
res = 1!LH, !pb

2

2!pi
2 -1/3,1 +

!pe
2

!pi
2 cos2 %-1/6

$ !LH.

Here, !rLH
b "2/ V̄b

2 /!LH
2 and the resonance condition is

!k#rLH
b "201+ !!pe

2 /!pi
2 "cos2 %. Thermal effects can be ne-



glected for this mode if V̄b'vth
e , 'k!'vth

e $ '!ce' and cos2 %

' !vth
b / V̄b"2!1+!pi

2 /!pb
2 ".

For cos2 %4!pi
2 /!pe

2 , there is also an instability due to
the relative motion of the plasma ions and electrons. For
cos2 %5!pi

2 /!pe
2 , we estimate that

Re ! & Im ! & k#V̄i & !LH. !35"

For cos2 %$!pi
2 /!pe

2 , we can express != !0i"LH, where
!0i"LH is given by

!0i"LH = - i!LH,!pe cos %

!pi
- k#rLH

i

$1 − !k#rLH
i "2%1/2 ,

!36"

!0i"LH
res = 1!LH,!pe

2 cos2 %

2!pi
2 -1/3

$ !LH.

Here, rLH
i = V̄i /!LH and the resonance condition is !k#rLH

i "2

01. We refer to the instability with !&!LH as the lower-
hybrid instability. Thermal effects can be neglected for this
mode if V̄i'vth

e , 'k!'vth
e $ '!ce', and cos2 %

'max$!vth
i / V̄i"2 , !vth

e / V̄i"2!!pi /!pe"2%.
Using Eq. !16", and Eqs. !26"–!32", we compare the

maximum growth rates 5s
max of the instabilities that we have

considered. To summarize, the ratio of the maximum growth
rate of the lower-hybrid instability to the growth rate of the
Weibel instability is

5LH
max

5W
&

1

#̄b

,1 + !pi
2 /!pb

2

1 + !pe
2 /!ce

2 -1/2

. !37"

Similarly, the ratio of the maximum growth rate of the modi-
fied two-stream instability to the maximum growth rate of
the lower-hybrid instability is

!5s"−
max

5LH
max & ,!ps

2

!pi
2 -1/3,!pe

!pi
-1/3

. !38"

Finally, the ratio of the maximum growth rate of the modi-
fied two-stream instability to the maximum growth rate of
the upper-hybrid instability is

!5s"−
max

!5s"+
max &6,!ce

!pe
-1/3

, !ce ' !pe,

,!ce

!pe
- , !ce $ !pe.7 !39"

IV. NUMERICAL SOLUTIONS TO DISPERSION
RELATIONS

The growth rates of these instabilities have also been
obtained by solving numerically the full electromagnetic dis-
persion relation in Eq. !1". Typical results are illustrated in
Figs. 1–4 for #̄b= V̄b /c=0.1, !pb /!pe=0.01, !pi /!pb=1, and
nb /ni=0.2. In Fig. 1, !pe /!ce=2, and in Fig. 2, !pe /!ce
=0.5. Figures 1!a" and 2!a" show growth rate contour plots in
the regions of large propagation angle with cos2 %
'!pi

2 /!pe
2 . One can clearly see the instabilities due to the

interaction of the beam ions and the background ions with
lower frequency !− plasma oscillations 1curved regions cor-
responding to krc

s 01, $s= !i ,b"% in Fig. 1!a" and krp
s 01 in

Fig. 2!a"2, and with higher frequency !+ plasma oscillations
1vertically straight regions corresponding to k#rp

s 01, $s
= !i ,b"% in Fig. 1!a", and k#rc

s 01 in Fig. 2!a"2. Figures 1!b"
and 2!b" show growth rate contour plots in the regions of
small propagation angle with cos2 %4!pi

2 /!pe
2 . One can
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FIG. 1. !Color online" Contour plots of the normalized growth rate Im ! /!pe of the electrostatic modified two-stream instability obtained from Eq. !1" plotted
as a function of the normalized wavenumbers ck# /!pe and ck! /!pe for the choice of system parameters #̄b= V̄b /c=0.1, !pb /!pe=0.01, !pi /!pb=1, !pe /!ce=2,
and nb /ni=0.2. !b" is an expanded view of !a" for k#
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clearly see the instabilities due to the interaction of the beam
ions !k#rLH

b 01" and background ions !k#rLH
i 01" with lower-

hybrid plasma oscillations !!0!LH". The regions of validity
of the approximate analytical estimates obtained in Sec. III
are illustrated by the arrows in Figs. 1 and 2.

Figure 3 shows the normalized growth rate Im ! /!pe
plotted as a function of the normalized wavenumber ck# /!pe
for ck! /!pe=20 and !pe /!ce=2. The dotted line is the nu-
merical solution of the full electromagnetic dispersion rela-
tion in Eq. !1", and the solid line is the solution of the !ap-
proximate" electrostatic dispersion relation in Eq. !18". As
stated previously, for sufficiently strong magnetic field that

#̄b!pe /!ce$1 and for transverse wavenumbers c2k!
2 /!pe

2

'1, the electrostatic dispersion relation is valid everywhere
except for c2k#

2$!pb
2 !pi

2 / !!pb
2 +!pi

2 ". In the region c2k#
2

$!pb
2 !pi

2 / !!pb
2 +!pi

2 ", the instability becomes an electromag-
netic Weibel instability with growth rate given by Eq. !17".
Figure 4 shows the normalized growth rate of the Weibel
instability, Im ! /*!pb

2 +!pi
2 , plotted as a function of

#̄b!pe /!ce. Figure 4 has been obtained by the solving the full
electromagnetic dispersion relation in Eq. !1" !dotted line",
and by using Eq. !17" !solid line" for the choice of system
parameters k# =0, ck! /!pe=20, #̄b= V̄b /c=0.1, !pb /!pe
=0.01, !pi /!pb=1, and nb /ni=0.2.
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FIG. 2. !Color online" Contour plots of the normalized growth rate Im ! /!pe of the electrostatic modified two-stream instability obtained from Eq. !1" plotted
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2 /k!
2 *!pi

2 /!pe
2 .

0 0.05 0.1 0.15 0.2
0

0.0005

0.001

0.0015

0.002

Im
!

/!
p
e

ck /!pe||

ck /! "#$
pe

T
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FIG. 4. Normalized growth rate of the Weibel instability Im ! /*!pb
2 +!pi

2

plotted as a function of #̄b!pe /!ce for k# =0, ck! /!pe=20, #̄b= V̄b /c=0.1,
!pb /!pe=0.01, !pi /!pb=1, and nb /ni=0.2. The dotted line is the solution of
the full electromagnetic dispersion relation in Eq. !1", and the solid line is
obtained from Eq. !17".



V. SPACE-TIME DEVELOPMENT OF ELECTROSTATIC
MODIFIED TWO-STREAM INSTABILITY

In Secs. III and IV we provided a classification of pos-
sible electrostatic streaming instabilities. Because the fre-
quency of the unstable perturbation is a function of wave-
number, an initial perturbation will grow and convect at the
same time. The resulting shape of the phase-fronts can
change with time and become quite complex. To illustrate
the space-time development of the electrostatic modified
two-stream instability, we consider here the instability due to
the interaction of the beam ions with the lower frequency
!=!− electrostatic oscillation given by Eq. !21" for small
angles of propagation such that

!pi
2

!pe
2 $

k#
2

k2 $ 1. !40"

The asymptotic behavior of an initial perturbation can be
studied using the Wentzel–Kramers–Brillouin !WKB"
method24 by extremizing the phase 6=!t−k#z−k!x! over
all k# and k!, where !! ,k# ,k!" are related by the dispersion
relation

1 +
!pe

2

!ce
2 =

k#
2

k!
2 + k#

2

!pe
2

!2 +
!pb

2

!! − k#Vb"2 . !41"

The asymptotic form of the initial perturbation amplitude a
can be expressed through the extremum phase as a
&exp!Im 6"exp!−i Re 6".

By expressing k! in terms of k# and y=! /k#Vb, and us-
ing $6 /$k# =0 and $6 /$y=0, we obtain the extremum phase
as a function of the normalized space-time coordinates T
=!*t, 7=!*!t−z /Vb" and x=x!!* /Vb. We obtain

6 = ((T −
7

!y − 1"2)*1 + , x

7
-2, y − 1

y
-4

, !42"

where y satisfies

, y − 1
y

-5

$T!y − 1" + 7% = − (27, 7

x
-2

. !43"

The angle of propagation is determined from

cos % =
k#

k!

= , y − 1
y

-, x

7
- . !44"

Here, (/!pb /!pe and !*/!pe!ce /*!ce
2 +!pe

2 . For suffi-
ciently large times that T&x /( and 7&x, the approximate
solution for the angle % is given by

cos % & (1/2( x2/3

!(T"1/671/2) , !45"

which remains small so that !pi
2 /!pe

2 &(2$cos2 %$1. This
justifies using the dispersion relation for nearly transverse
propagation %&) /2 in Eq. !41", and neglecting the contri-
bution of the background ions. For the same T&x /( and
7&x, the approximate solution for the phase 6 is given by

Re 6 = (T −
3
4

x2/3!(T"1/3 −
3
16

x4/3

!(T"1/3

− (1/2*3x1/371/2!(T"1/6, !46"

Im 6 =
3*3

4
x2/3!(T"1/3 −

3*3
16

x4/3

!(T"1/3

+ (1/2x1/371/2!(T"1/6. !47"

Figure 5 shows contour plots of Re 6 $Fig. 5!a"% and Im 6
$Fig. 5!b"% of the extremal phase 6 at time t= !!pe /!pb"lb
plotted for #b=0.2, nb /ne0=0.5, !ce /!pe=1.4, bunch radius
rb=1.5c /!pe, and bunch length lb=10rb, where ne0 is the
ambient electron density. In Figs. 5!a" and 5!b", the approxi-
mate analytical solutions in Eqs. !46" and !47" are super-
posed on the numerical solution of Eqs. !42" and !43". The
amplitude a of the unstable perturbation is proportional to
a&exp!Im 6"exp!−i Re 6". Therefore, the perturbation
phase-fronts correspond to curves of constant phase Re 6
=const $see Fig. 5!a"%. The instability exists only inside the
beam. Further shaping of the phase-fronts takes place outside
of the pulse where the perturbation amplified by the instabil-
ity inside of the pulse propagates away with group velocity
vg=$! /$k satisfying

$!

$k
· k = 0. !48"

Equation !48" is valid for both electrostatic oscillation
branches !=!-!cos %".

Figure 6 shows the results of simulations obtained using
the particle-in-cell !PIC" simulation code LSP for a potassium
K+ ion beam propagating through neutralizing background
plasma !upward direction" along a solenoidal magnetic field
pointing in the y-direction for several values of magnetic
field strength corresponding to !ce /!pe=0,0.7,1.4.8 The
simulations using the LSP code were carried out for the fol-
lowing parameters: ambient electron density ne0=1011 cm−3;
grid size along the direction of beam propagation !pe8y /c
=0.12; grid size transverse to the direction of beam propaga-
tion !pe8x /c=0.06; time step !pe8t=0.05; and with nine
particles per cell for every species.

Figure 6 shows contour plots of the normalized electron
density ne /ne0 including collective excitations for #b=0.2,
nb /ne0=0.5, bunch radius rb=1.5c /!pe, and bunch length lb
=10rb. Here, ne0 is the ambient electron density. The charac-

FIG. 5. Contour plots of !a" Re 6 and !b" Im 6 of the extremal phase 6 at
time t= !!pe /!pb"lb plotted for #b=0.2, nb /ne0=0.5, !ce /!pe=1.4, bunch
radius rb=1.5c /!pe, and bunch length lb=10rb.



teristic shape of the phase-fronts !curves of maximum den-
sity" is similar to what is found using an asymptotic analysis
of the instability $compare Figs. 5!a" and 6%.

VI. CONCLUSIONS

To summarize, in the present paper we have studied
electromagnetic !Weibel" and electrostatic !two-stream" in-
stabilities of an intense charged particle beam propagating
along a solenoidal magnetic field in a background plasma in
the limit c2k2 /!pe

2 '1. It has been shown that the growth rate
of the electromagnetic Weibel instability is modified by a
small-amplitude solenoidal magnetic field such that !ce

2

"#b
2!pe

2 , and the instability becomes limited to very small
propagation angles with c2k#

24!pb
2 !pi

2 / !!pb
2 +!pi

2 ". For large
longitudinal wavenumbers, the instability becomes the low-
frequency electrostatic lower-hybrid instability with a growth
rate that is !ce /#b!pe times larger than the growth rate of the
Weibel instability. For larger angles with cos2 %"!pi

2 /!pe
2 ,

the instability growth rate is proportional to
$cos %!!pe /!pi"%1/3.

We have also studied the asymptotic space-time devel-
opment of the modified two-stream instability using a WKB
analysis. The results of the analysis have shown that the
phase-fronts of the unstable perturbation have a somewhat
peculiar shape shown in Fig. 5, which is similar to what is
found in numerical simulations using the LSP code !Fig. 6".

Even though electrostatic streaming instabilities typi-
cally have much larger growth rates than the Weibel instabil-
ity, they require that a resonance condition be satisfied for
maximum growth. If the ion beam is being compressed
transversely by an external magnetic field while the instabil-
ity is developing, the compression of the ion beam can cause
changes in the unstable perturbation wavenumbers !trans-
verse k! and longitudinal k#".25,26 This in turn can result in a
detuning of the resonant electrostatic two-stream instabili-
ties, thereby making them much less dangerous. The study of
these detuning effects on the modified two-stream instabili-
ties is underway, and will be reported in future publications.
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