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Abstract

The electrostatic two-stream instability for a cold, longitudinally-compressing intense ion beam propagating through a background
plasma has been investigated both analytically and numerically. The linear development of the instability and its saturation are examined
from the point of view of wave dynamics, where the plasma waves are represented as quasi-particles characterized by their position xðtÞ,
wavenumber kðtÞ and energy (or frequency) oðtÞ. It is found that the longitudinal beam compression strongly modifies the space-time
development of the instability. In particular, the dynamic compression leads to a significant reduction in the growth rate of the two-
stream instability compared to the case without an initial velocity tilt.
r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

To achieve the high focal spot intensities necessary for
high energy density physics and heavy ion fusion applica-
tions, the ion beam pulse must be compressed long-
itudinally by factors of one hundred or more before it is
focused onto the target. The longitudinal compression is
achieved by imposing an initial velocity profile tilt on the
drifting beam in vacuum [1–8]. To achieve maximum
longitudinal compression, the space charge of the beam is
neutralized by propagation of the beam pulse through a
dense neutralizing background plasma [6–11]. If the space
charge is fully neutralized by the plasma, the final
compression is limited only by the initial longitudinal
temperature of the beam ions and possible collective
processes (such as the two-stream instability [6,12–15])
which may prevent full neutralization of the beam space
charge. The beam’s longitudinal thermal spread which can
stabilize the instability [16] also inhibits full longitudinal

compression. In a recent paper, we made use of macro-
scopic fluid model [6,17] to investigate both analytically
and numerically the electrostatic two-stream instability for
a cold, longitudinally-compressing charged particle beam
propagating through a background plasma. It was found
that the longitudinal beam compression strongly modifies
the space-time development of the two-stream instability.
In particular, it is found that the dynamic compression
leads to a significant reduction in the growth rate of the
two-stream instability compared to the case without an
initial velocity tilt.
The analysis presented here employs a geometrical optics

approach to the wave dynamics [18]. This type of analysis
has been used to study the effects of possible density
gradients on the two-stream instability [19]. In the case
considered here, the instability growth is limited by the
velocity tilt. Indeed, for small beam density, the instability
between beam ions and the background plasma electrons
requires that the resonance condition o ’ kVb ’ ope be
satisfied for continuous growth. Here, ope is the electron
plasma frequency associated with the plasma electrons, k is
the axial wavenumber of the perturbation, and Vb is the
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beam velocity. As shown in Section 4, the perturbation
frequency changes with time due to the time-dependent beam
velocity and beam density profile, and the mode eventually
detunes out of resonance and the instability ceases. The
present analysis takes into account the effects of the velocity
tilt and allows the level of saturation to be determined.
Numerical simulations using the particle-in-cell code LSP
have recently appeared in the literature that address the
practical requirements for neutralized propagation of heavy-
ion beams for cases with and without longitudinal compres-
sion [8–10]. Some preliminary numerical simulations of the
possible effects of longitudinal compression on the two-
stream instability for longitudinally-compressing heavy-ion
beams have also been reported [8]. This paper is organized as
follows. In Section 2, we consider the unperturbed propaga-
tion of the ion beam in the background plasma. In Section 3
we describe the quasi-particles model which is used to analyze
the instability, where the plasma waves are represented as
quasi-particles characterized by their position xðtÞ, wavenum-
ber kðtÞ and energy (or frequency) oðtÞ. In Section 4, we
apply this model to analyze the two-stream instability
between the beam ions and background plasma electrons,
and in Section 5 we use the quasi-particle model to analyze
the two-stream instability between the neutralizing plasma
electrons and the plasma ions. Finally, the results are
summarized in Section 6.

2. Unperturbed propagation

It is assumed that a semi-infinite cold ion beam with a
sharp leading edge enters the region containing cold
background plasma at time t ¼ 0 and x ¼ 0 with velocity
V0

b and density n0b. The beam is uniformly compressing in
the longitudinal direction as it propagates inside the
chamber and reaches the maximum compression at time
t ¼ Tf at the point x ¼ Xf ¼ TfV

0
b away from the beam

entry point x ¼ 0 into the chamber. The unperturbed beam
propagation is illustrated in Fig. 1, where the beam phase
space is plotted at different times during the compression.

The transition from the solid to dashed lines in Fig. 1
identifies the end of the real beam pulse with finite initial
length L0

b. The frequently used parameter, the longitudinal
‘‘velocity tilt’’ DV0

b=V
0
b, is related to the compression

distance Xf and the initial beam pulse length L0
b by

DV 0
b=V

0
b ¼ L0

b=Xf . (1)

It is also assumed that the ion beam propagation in the
background plasma is both charge neutralized and current
neutralized, where the quasi-neutrality conditions are given by

ne ¼ Zbnb þ n0 ð2Þ

neVe ¼ ZbnbVb. ð3Þ

Here, nj and Vj denote the dynamically changing
unperturbed density and flow velocity of the beam ions
ðj ¼ bÞ and background plasma electrons ðj ¼ eÞ, and n0 ¼
const: (independent of x and t) is the uniform density of
the background plasma ions (assumed singly-ionized). In
Eqs. (2) and (3), Zb is the charge state of the beam ions.
The quasi-neutrality condition is slightly violated due to
the finite electron mass in the force balance equation for
the plasma electrons [6]

eE ¼ %me
qVe

qt
þ Ve

qVe

qx

! "
. (4)

The zero-order solution (full neutralization) of the cold
fluid equations for the beam density and velocity are given
by [6]

nbðtÞ ¼
n0bTf

Tf % t
ð5Þ

Vbðt; xÞ ¼
V0

bTf % x

Tf % t
. ð6Þ

Substituting Eqs. (2), (3) and (6) into Eq. (4), we obtain for
the unneutralized electric field

eE ¼ %2me
Zbn

0
b

n0

ðXf % xÞ
½ð1% t=Tf Þ þ ðZbn

0
b=n0Þ'

2Tf ðTf % tÞ
.

(7)

Using Poisson’s equation qE=qx ¼ 4pedn ¼ 4peðZbdnb%
dneÞ, we obtain for the unneutralized charge density

dnðx; tÞ
ZbnbðtÞ

¼
2

o2
peT

2
f

1

½ð1% t=Tf Þ þ Zbn0b=n0'
2

(8)

where o2
pe ( 4pn0e2=me is the plasma frequency-squared of

the background plasma electrons and dne and dnb are the
differences between the actual charge densities of the beam
and neutralizing background electrons and the zero-order
neutralized solutions of the cold fluid equations. In what
follows we make use of the parameter

! ( 1=ðopeTf Þ51. (9)

It will be shown that the resonant two-stream instability
develops and saturates everywhere in the background plasma
region except close to the compression point x ¼ Xf during
the time interval when 1% t=Tf)1. It follows from Eq. (8)
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Fig. 1. Plot of the ion beam phase space at different times during the
compression (lines 1, 2, and 3). Line 1 corresponds to t ¼ 0.
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that dnðx; tÞ=ZbnbðtÞ ’ 2!2 during this time interval, and
therefore for perturbations with amplitude jd ~nðx; tÞj=
ZbnbðtÞb!2, the beam can be considered as fully neutralized
by the background plasma.

In what follows, we consider the case of a semi-infinite
beam (see Fig. 1). For a beam with finite initial length L0

b,
the trailing beam end will trace the trajectory xendðtÞ ¼
V 0

btð1þ L0
b=Xf Þ % L0

b. In this case, the present analysis is
applicable everywhere between the leading and trailing
edges of the beam, maxf0; xendðtÞgpxpxheadðtÞ ¼ V0

bt,
where the beam can drive the background plasma unstable.
Behind the beam, for 0pxoxendðtÞ, the plasma will be left
with remnant collective oscillations with constant ampli-
tude, which are excited by the propagating beam.

The full neutralization assumptions in Eqs. (2) and (3)
are also violated at the beam head, where the time-
changing magnetic field induces a longitudinal electric field
which acts on the plasma electrons to cause a flow of return
current opposite to the injected current. The distance from
the beam head, where the current and charge neutrality
conditions are violated, depends on the smoothness of the
beam head density profile [11]. Generally, if the density
profile of the beam increases from zero to its maximum
value over a distance larger than Vb0=ope, then the beam
charge is fully neutralized. In addition, the beam current
will be neutralized if the beam diameter is much larger than
the collisionless skin-depth c=ope.

In what follows, we considered the case of a low-density
ion beam propagating through a background plasma with
d̄ ( Zbn

0
b= n051. In this case, one can identify two separate

stages (the fast and the slow stages) of the two-stream
instability. During the fast stage, the instability is between
the neutralizing plasma electrons, flowing with the velocity
)ðnb=neÞVb, and the background plasma ions. During this
initial stage, the beam ions are relatively unaffected. We
consider this stage of the instability in Section 5. At later
times, a two-stream instability between the beam ions and
the neutralizing background electrons may develop. This
later stage of instability, which directly affects the beam
particles, is analyzed in Section 4.

3. Space-time dynamical description of the instability

In what follows we examine the development of the
instability and its saturation from the point of view of wave
dynamics [6] where the plasma waves are represented as
quasi-particles characterized by their position xðtÞ, wave-
number kðtÞ and energy (or frequency) oðtÞ. The quasi-
particle dynamics are described by the equations of motion

dx

dt
¼

qo
qk

¼ %
qD=qk
qD=qw

ð10Þ

dk

dt
¼ %

qo
qx

¼
qD=qx
qD=qw

ð11Þ

do
dt

¼
qo
qt

¼ %
qD=qt
qD=qw

ð12Þ

and the quasi-particle dynamics takes place on the surface
D ¼ 0. Here D is the linear dispersion function.

4. Instability between the beam ions and plasma electrons

In this section we consider the instability between the
beam ions and the neutralizing plasma electrons. In this
case, the dispersion function D is defined by

D ¼ 1%
o2

pe

o2
%

o2
pbðtÞ

½o% kVbðx; tÞ'2
(13)

and the quasi-particle dynamics takes place on the surface
D ¼ 0. In Eq. (13) o2

pbðtÞ ¼ 4pZ2
be

2nbðtÞ=mb is the beam
plasma-frequency squared with the beam density nbðtÞ
changing with time according to Eq. (5). We have also
neglected the directed velocity of the background electrons,
which is small compared to the beam velocity provided
Zbnb=ne51. Substituting Eq. (13) into Eqs. (10)–(12),
we obtain the closed system of equations for xðtÞ and
pðtÞ ¼ kðtÞVbðx; tÞ=oðtÞ given by

dx

dt
¼

Vbðx; tÞ
1þ ð1% pÞ3=dðtÞ

(14)

dp

dt
¼ p%

p2

1þ ð1% pÞ3=dðtÞ

" #
1

Vbðx; tÞ
qVbðx; tÞ

qt

%
pð1% pÞ=2

1þ ð1% pÞ3=dðtÞ

" #
1

dðtÞ
qdðtÞ
qt

. ð15Þ

Here dðtÞ ¼ o2
pbðtÞ=o

2
pe, and

o
ope

¼ 1þ
1

ð1% pÞ2=dðtÞ

" #1=2

. (16)

It follows from Eq. (16) that for d51 the maximum growth
rate occurs for p)1, which corresponds to perfect
resonance. Eq. (15) describes the detuning from resonance
for the particular quasi-particle under consideration. For
a uniform non-compressing ion beam with Vb ¼ const:,
Eqs. (14) and (15) are easily solved to give

p ¼ p0 ð17Þ

x%
Vbt

1þ ð1% pÞ3=d
¼ x0 ð18Þ

with general solution for pðx; tÞ given by

x%
Vbt

1þ ð1% pÞ3=d
¼ f ðpÞ (19)

where f ðpÞ is a function dependent on initial conditions.
We are interested in obtaining an asymptotic solution [6]
for the instability independent of the initial conditions.
Only then can one determine the exponential growth
rates of the instability. Such a solution corresponds to the
self-similar solution (independent of initial conditions) in
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Eq. (19) and is given by

ð1% pÞ3 ¼ d
Vbt% x

x

# $
. (20)

For d1=3½x=ðVbt% xÞ'2=351, we obtain from Eq. (16)

o
ope

¼ 1þ
ði

ffiffiffi
3

p
% 1Þ
2

d1=3

2

x

Vbt% x

# $2=3
(21)

where only the unstable solution with positive imaginary
part of the frequency is retained. From Eq. (21), we obtain
the gain function

Gðx; tÞ (
Z t

x=Vb

Imoðx; tÞdt

¼
3

ffiffiffi
3

p

4

ope

Vb

d1=3x2=3ðVbt% xÞ1=3. ð22Þ

The gain function in Eq. (22) coincides with the gain
function obtained by direct solution of the linearized fluid
equations [12]. It follows from Eq. (22) that the gain
function never saturates. This is because the quasi-
particle’s detuning factor p% 1 does not change with time
(see Eq. (17)), and quasi-particles which were initially in
resonance will stay in resonance indefinitely.

For the case where the beam velocity Vbðx; tÞ changes
dynamically according to Eq. (6), it follows that Eqs. (14)
and (15) can be expressed as

dp

dY
¼ p%

pð1þ pÞ=2
1þ ð1% pÞ3=d

ð23Þ

dY

dY
¼

1

1þ ð1% pÞ3=d
ð24Þ

where Y ¼ log½1=ð1% x=Xf Þ' and Y ¼ log½1=ð1% t=Tf Þ'.
Introducing the quantity q defined by p ¼ 1þ qd1=3 in
Eq. (15), we obtain equations for q valid to leading order in
the small parameter d, i.e.,

d1=3
dq

dY
þ

5

6
q

! "
¼ %q3 ð25Þ

dx
dY

¼ %q3 ð26Þ

o
ope

¼ ô ¼ 1þ
d1=3

q2

" #1=2

ð27Þ

where x ¼ Y% Y . As shown below, the instability in this
case saturates when q)d1=651, which justifies retaining
only leading-order terms in Eqs. (25) and (26). The solution
to Eqs. (25) and (26) is given by

expð%2YÞ
d1=3ðYÞ

q2
þ 1

" #

¼ I ð28Þ

x ¼ x0 % dðYÞ1=2
Z Y

0
dȲ

exp½ðȲ%YÞ=2'
½I expð2ȲÞ % 1Þ'3=2

ð29Þ

where I and x0 are invariants of the motion. Making use
of Eqs. (27)–(29), we obtain the asymptotic solution for
ôðx;YÞ ¼ o=ope, which is independent of the initial

conditions, i.e.,

x ¼ %2dðYÞ1=2
Z 1

expð%Y=2Þ

dZ
½Z4ô2 % 1Þ'3=2

. (30)

The corresponding gain function Gðx; tÞ is given by

Gðx; tÞ (
Z t

x=V0
b

Imoðx; t̄Þdt̄

¼ opeTf expð%Y Þ Im
Z x

0
dx̄ expð%x̄Þôðx̄;Y Þ. ð31Þ

It can be shown from Eq. (30) that Im ô)ðdÞ3=2=x3 for
x=d1=2b1 so that we can neglect the exponential contribu-
tion in Eq. (31) to the integral, and also extend the upper
integration limit to infinity for xbd1=2. In addition, we can
also replace Y ! Y on the right-hand side of Eq. (30).
Integrating Eq. (31) by parts, and taking into account that
Im½ôðxÞ'x)1=x2 ! 0 for x ! 1, and Im½ôðxÞ'x)x2=3 ! 0
for x ! 0, we obtain

G ¼ opeTf expð%Y Þ Im
Z1

0

dx ôðx;Y Þ

¼ % opeTf expð%Y Þ Im
Z ôð1;Y Þ

ôð0;Y Þ
dô xðô;Y Þ

¼ % 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1% X

p
Im

Z 1

ffiffiffiffiffiffiffiffi
1%X

p
dZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z4 % 1=ô2
q

&&&&&&&

ôð1;Y Þ

ôð0;Y Þ

ð32Þ

where a ¼ d1=20 opeTf ¼ o0
pbTf . Eq. (30) has several solu-

tions. The solution with positive imaginary part to the
frequency, which corresponds to instability, corresponds
to ô2ð1;Y Þ ¼ 1 and ô2ð0;Y Þ ¼ 1. Therefore, using
Eq. (32), we obtain

GðX Þ ¼ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1% X

p Z 1

ffiffiffiffiffiffiffiffi
1%X

p
dZffiffiffiffiffiffiffiffiffiffiffiffiffi
1% Z4

p

¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1% X Þ

p
F ½arccosð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1% X

p
Þj1=2' ð33Þ

where X ¼ x=Xf and F ðxjaÞ (
R x
0 dy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1% a sin2 y

p
is an

elliptic integral of the first kind. The gain function in
Eq. (33) is identical to the gain function obtained by finding
the asymptotic solution of the linearized fluid equations [6].
The region where it is valid, xbd1=2 or t ¼ opeðt% x=V0

bÞb
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1% x=Xf

p
, also coincides with region where the asymp-

totic solution is valid [6]. The fact that we have obtained
identical expressions for the gain function, demonstrates
the consistency of the approximations used in the deriva-
tions. The method of quasi-particles also clarifies the
dynamics of the instability in a physically intuitive way.
Fig. 2 shows the normalized instability gain function
Gðx; tÞ=a plotted as a function of distance x=Xf at different
times t=Tf ¼ 0:15 ð1Þ; 0:25 ð2Þ; 0:35 ð3Þ; 0:45 ð4Þ; 0:55 ð5Þ;
0:65 ð6Þ, and 0:75 ð7Þ obtained numerically by solving
Eqs. (14)–(16) (solid curves) and compared with the
analytical result in Eq. (33) (dashed curve). Fig. 3 shows
a comparison of the gain function in Eq. (33) with the gain
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function for a beam with zero velocity tilt (Eq. (22)) at
t ¼ Tf for d0 ¼ ðo0

pb=opeÞ2 ¼ 10%3 and a2 ¼ ðo0
pbTf Þ2 ¼

1000, i.e.,

GnotiltðX ; t ¼ Tf Þ ¼ a
3

ffiffiffi
3

p

4

X 2=3ð1% X Þ1=3

d1=60

. (34)

As evident from Fig. 3, for d1=651 the velocity tilt
significantly reduces the growth rate compared to the case
of a beam with zero initial velocity tilt.

5. Instability between the plasma ions and the neutralizing
plasma electrons

In this section we consider the two-stream instability due
to the flow of the neutralizing plasma electrons though the
background plasma ions. In this case, the dispersion
function D is defined by

D ¼ 1%
o2

pi

o2
%

o2
peðtÞ

½o% kVeðx; tÞ'2
. (35)

Here,

o2
peðtÞ ¼ o2

peðt ¼ 0Þ½1þ d̄ðtÞ' (36)

Veðx; tÞ ¼ d̄ðtÞVbðx; tÞ (37)

are the background electron plasma frequency-squared and
the electron flow velocity, respectively. In Eqs. (36) and
(37), d̄ðtÞ ¼ ZbnbðtÞ=n051. Substituting Eqs. (36) and (37)
into Eqs. (10)–(35), we obtain the closed system of
equations for Y ðYÞ and pðYÞ ¼ ðkVe % oÞ=ope given by

dY

dY
¼

d̄ðYÞ
1%m1=2½p2 % 1'3=2

(38)

dp

dY
¼ 2p

1þm%1=2½p2 % 1'%1=2

1%m%1=2½p2 % 1'%3=2

" #

(39)

where

o
opi

¼
p

½p2 % 1'1=2
ð40Þ

which follows from D ¼ 0. Here, we have made use of
Eqs. (36) and (37) together with Eqs. (5) and (6), and
introduced the new variables Y ¼ log½1=ð1% x=Xf Þ',
Y ¼ log½1=ð1% t=Tf Þ', and ô ¼ o=opi. In Eqs. (39) and
(40), the parameter m is defined as m ( mi=meb1, and
d̄ ðYÞ ¼ d̄0 expðYÞ51.
It follows from Eqs. (38)–(40) that for mb1 the

perturbations propagate only for p% 1t1=m1=3, which
corresponds to a resonance in Eq. (35). If this condition is
not satisfied, the perturbations are unstable but they do not
propagate. Since the perturbations are introduced by the
beam at the beam entrance into the plasma, these
perturbations will not propagate into the plasma, and
therefore will not contribute to the dynamics of the
instability anywhere inside the plasma. Near the resonance,
Eqs. (38)–(40) can be rewritten as

dô
dY

¼ %
2ô3

1% ô3=m1=2
ð41Þ

dY

dY
¼ %

d̄ðTÞ
m1=2

ô3

1% ô3=m1=2
. ð42Þ

The validity condition p% 1tm%1=3 corresponds to
m1=6tô. Eqs. (41) and (42) can be easily solved if we
neglect the time dependence of d̄ ðYÞ ¼ d̄0 expðYÞ. As
shown later, this assumption is justified for sufficiently
small velocity tilt. With this approximation in mind, the
solution to Eqs. (41) and (42) is given by

ôðYÞ % ô0 ¼
2m1=2

d̄
½Y ðYÞ % Y 0' ð43Þ

1

ô2ðYÞ
%

1

ô2
0

¼ 4fY% ½Y ðYÞ % Y 0'=d̄g ð44Þ

where the index 0 denotes the initial value at Y ¼ 0. Since
the quasi-particles (perturbations) enter into the plasma
at the boundary, we set Y 0 ¼ 0 in Eqs. (43) and (44).
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Fig. 2. The normalized instability gain function Gðx; tÞ=a is plotted as a
function of distance x=Xf at different times t=Tf ¼ 0:15 ð1Þ; 0:25 ð2Þ;
0:35 ð3Þ; 0:45 ð4Þ; 0:55 ð5Þ; 0:65 ð6Þ, and 0:75 ð7Þ obtained numerically
(solid curve) and compared with the analytical result in Eq. (33) (dashed
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Combining Eqs. (43) and (44) we obtain the frequency
ôðY;Y Þ as a function of time and space, i.e.,

1

ô2
%

1

ðô% 2Ym1=2=d̄Þ2
¼ 4ðY% Y=d̄Þ: ð45Þ

We are mainly interested at the dynamics of the instability
at time Y)1. By analyzing Eq. (45) one can distinguish
several unstable regions with ô\m1=6. This gives

Im ô ¼ %m1=6

ffiffiffi
3

p

2

Y=d̄
jY% Y=d̄j

# $1=3

for jY% Y=d̄j51=m ð46Þ

Im ô ¼ %
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4jY% Y=d̄j
q for jY% Y=d̄jb1=m

Y=d̄%Ytm%1=3tY=d̄. ð47Þ

The gain function GðY ;YÞ is given by

Gðx; tÞ (
Z t

x=V0
b

Imoðx; t̄Þdt̄. (48)

For Y)1, the gain function GðY ;YÞ is zero everywhere
except in the region near the plasma entry, where
0oYoYd̄. Substituting Eqs. (46) and (47) into Eq. (48)
one finds that the resonant region in Eq. (46) gives a
contribution which is m1=2 times smaller than the contribu-
tion from the region in Eq. (47). Up to this small factor, the
gain function can be approximated by

GðY ;YÞ * opiTf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y% Y=d̄

q
(49)

for Yod̄Y. Some portion of the beam will be present in
this region close to the beam entrance up to the time

tmax ¼ L0
b=ðV

0
b þ DV0

bÞ ¼ Tf
DV 0

b=V
0
b

1þ DV 0
b=V

0
b

(50)

which corresponds to a value of the normalized time
variable given by Ymax ¼ logð1þ DV0

b=V
0
bÞ. For suffi-

ciently small value of the velocity tilt, Ymax * DV0
b=

V0
b51, and the approximation d̄ðYÞ ¼ d̄0 expðYÞ * d̄0 that

was made in the derivation of Eq. (49) is justified.
Therefore the maximum value of the gain function, which
is reached near the beam entrance, is given by

Gmax * opiTf ðDV 0
b=V

0
bÞ

1=2. (51)

6. Conclusions

The electrostatic two-stream instability for a cold,
longitudinally-compressing ion beam propagating through
a background plasma has been investigated analytically
from the point of view of wave dynamics, where the plasma
waves are represented as quasi-particles characterized
by their position xðtÞ, wavenumber kðtÞ and energy
(or frequency) oðtÞ. For a low-density ion beam propaga-
tion in a background plasma with d̄ ( Zbn

0
b=n051 we

identified two separate stages (the fast and the slow stages)

of the two-stream instability. During the fast stage, the
instability is between the neutralizing plasma electrons,
flowing with the velocity )ðnb=neÞVb, and the background
plasma ions. During this initial stage, the beam ions are
relatively unaffected. We find that due to the small velocity
of the neutralizing background electrons, the quasi-particles
do not propagate far from the plasma boundary, and the
instability is limited to the region xoðnb=neÞXf5Xf . The
rate of the instability growth and the number of e-folding
are significantly affected by the velocity tilt (Eq. (51)).
At later times, a two-stream instability between the beam
ions and the neutralizing background plasma electrons may
develop. During this later stage of instability, which directly
affects the beam ions, it is found that the longitudinal beam
compression strongly modifies the space-time development
of the instability. In particular, the dynamic compression
leads to a significant reduction in the growth rate of the two-
stream instability compared to the case without an initial
velocity tilt by a factor Gmax=G

notilt
max )ðopb=opeÞ1=351. The

number of e-foldings is proportional to the number of
beam–plasma periods 1=opb during the compression time
Tf . The two-stream instability is completely mitigated by
the effects of dynamical beam compression when opbTft1.
Finally, it should be pointed out that we are currently
examining the combined stabilizing effects of finite long-
itudinal temperature and dynamical compression on the
two-stream instability. The analysis is generally complex,
and the results will be reported in a future publication.
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