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The classical electrostatic Harris instability and the electromagnetic Weibel instability, both driven
by a large temperature anisotropy �T�b /T�b�1� that develops naturally in accelerators, are
generalized to the case of a one-component intense charged particle beam with anisotropic
temperature, including the important effects of finite transverse geometry and beam space-charge.
Such instabilities may lead to an increase in the longitudinal velocity spread, which makes focusing
the beam difficult, and may impose a limit on the beam luminosity and the minimum spot size
achievable in focusing experiments. This paper describes recent advances in the theory and
simulation of collective instabilities in intense charged particle beams caused by large temperature
anisotropy. The new simulation tools that have been developed to study these instabilities are also
described. Results of the investigations that identify the instability growth rates, levels of
saturations, and conditions for quiescent beam propagation are also discussed. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2436847�

I. INTRODUCTION

Periodic focusing accelerators, transport systems, and
storage rings1–3 have a wide range of applications ranging
from basic scientific research in high energy and nuclear
physics, to applications such as ion-beam-driven high energy
density physics and fusion, and spallation neutron sources.
Of particular importance at the high beam currents and
charge densities of practical interest are the effects of the
intense self-fields produced by the beam space charge and
current on determining the detailed equilibrium, stability, and
transport properties. Charged particle beams confined by ex-
ternal focusing fields represent an example of non-neutral
plasma.4 A characteristic feature of such plasmas is the non-
uniformity of the equilibrium density profiles and the nonlin-
earity of the self-fields, which makes detailed analytical in-
vestigation difficult. The development and application of
advanced numerical tools such as eigenmode codes5–7 and
Monte-Carlo particle simulation methods8–13 are often the
only tractable approach to understand the underlying physics
of different instabilities familiar in electrically neutral plas-
mas. Two such instabilities are the electrostatic Harris
instability5,6,8,9,11,14 and the electromagnetic Weibel
instability,7,15 both driven by a large temperature anisotropy
that develops naturally in accelerators. The beam accelera-
tion causes a large reduction in the longitudinal temperature.
Indeed, for particles with charge eb and mass mb accelerated
by a voltage V �here i denotes the initial state before accel-
eration, and f denotes the state after acceleration�, the energy
spread of particles in the beam does not change, and �non-
relativistically� �Ebi=mb�vbi

2 /2=�Ebf =mbVb�vbf, where
Vb= �2ebV /mb�1/2 is the average beam velocity after accelera-
tion. Therefore, the velocity spread-squared, or equivalently,
the effective temperature, changes according to �for a non-

relativistic beam� T�bf =T�bi�T�bi /2ebV�. For particles acceler-
ated to highly relativistic energies ��b�1�, T�bi

= ��p�b�i
2 /2mb=c��p�b

L � f =c�b��p�b
B � f, where L and B denote

laboratory and beam-frame quantities, respectively. The lon-
gitudinal temperature is proportional to momentum-spread-
squared in the beam frame, T�bf = �T�bi /mbc2�b

2�T�bi, whereas
the transverse temperature remains the same, T�bf =T�bi

=T�bi=Tbi. As a result, the temperature anisotropy ratio after
acceleration, T�bf /T�bf =Tbi /2ebV �nonrelativistic� or
T�bf /T�bf = �Tbi /mbc2�b

2� �relativistic�, can become very
small. This reduction in longitudinal temperature provides
the free energy to drive collective temperature anisotropy
instabilities. Such instabilities may lead to a deterioration of
the beam quality �emittance growth, halo particle production,
etc.�. These instabilities may also lead to an increase in the
longitudinal velocity spread, which will make focusing the
beam difficult, and may impose a limit on the beam luminos-
ity and the minimum spot size achievable in focusing
experiments.

There is a significant amount of literature dedicated to
the study of collective instabilities due to temperature aniso-
tropy in intense charged particle beams. The electrostatic
Harris instability has been studied theoretically for beams
with a Kapchinskij-Vladimirskij �KV� distribution,16,17 and
for a two-temperature Maxwellian distribution,8,9 and also
computationally using particle-in-cell simulations.18–22 The
early numerical studies of this instability used the electro-
static particle-in-cell �PIC� code WARP, which is sufficiently
noisy that resolving the linear stage of the instability with
sufficient accuracy is difficult. Our previous numerical stud-
ies of the Harris instability used the eigenmode code
bEASt,5,6 and the �f particle-in-cell code BEST,8,9,11 and al-
lowed us to investigate both the linear and nonlinear stages
of the Harris instability in considerable detail. The eigen-
mode code bEASt has also been used to study the linear
stage of the electromagnetic Weibel instability.7
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This paper reviews recent advances in the theory and
simulation of collective instabilities in intense charged par-
ticle beams caused by large temperature anisotropy. We also
describe new simulation tools that have been developed to
study these instabilities. Results of the investigations that
identify the instability growth rates, levels of saturations, and
conditions for quiescent beam propagation are also
discussed.

The organization of this paper is the following. In Sec. II
and III, we discuss the physical mechanism for the electro-
static Harris and electromagnetic Weibel instabilities in in-
tense charged particle beams with large temperature aniso-
tropy. The beam eigenmode and spectra �bEASt� code5–7

developed to study linear properties of these instabilities is
described in Sec. IV. The nonlinear �f beam equilibrium,
stability, and transport �BEST� code8–13 has recently been
updated to include the electromagnetic Darwin model,23 and
is briefly described in Sec. V. In Sec. VI, we summarize
several important simulation results obtained using the linear
code bEASt and the nonlinear �f code BEST. Finally, con-
clusions are summarized in Sec. VII.

II. THE ELECTROSTATIC HARRIS INSTABILITY

For simplicity, the subsequent analysis is carried out in
the beam frame �Vb=0�. The laboratory frame expressions
for frequencies and growth rates and their dependence on
wave number can be readily obtained by applying the Lor-
entz transformation to the frequencies and wave numbers in
the beam frame.24 In what follows, it is convenient to
introduce the effective depressed betatron frequency ��� de-
fined by9

���
2 =

2T�b

mbrb
2 = � f

2 − �̄pb
2 /2, �1�

where T�b is the transverse beam temperature, rb is the root-
mean-square beam radius, eb and mb are the charge and mass
of a beam particle, and

�̄pb
2 =

4�eb
2

mbrb
2�

0

rw

drrnb�r� �2�

is the average beam plasma frequency-squared, where nb�r�
is the radial density profile of the beam particles and rw is the
radius of the perfectly conducting wall. The normalized tune
depression 	̄ /	0 is defined by

	̄

	0
�

���

� f
, �3�

where � f =const is the transverse frequency associated with
the applied focusing field in the smooth-focusing
approximation.

We now briefly illustrate the physical mechanism for the
electrostatic Harris instability in intense particle beams. As
shown in previous studies,5,6,8,9,11 the dipole mode has the
highest growth rate, and for T�b=0 the growth rate is an
increasing function of kzrb and approaches a maximum value
for kz

2rb
2�1. Therefore, we consider dipole-mode perturba-

tions with kz
2rb

2�1, which in lowest order correspond to a

displacement of the beam charge mainly along the beam
propagation direction, arranged as a dipole-mode perturba-
tion as shown in Fig. 1. One can distinguish three possibili-
ties: �̄pb����, �̄pb����, and �̄pb����. If �̄pb����, the
charge oscillation will be mostly along the beam propagation
direction due to the electrostatic restoring force, and as a
result, the mode frequency will be close to the plasma fre-
quency �� �̄pb. In the opposite limit, when �̄pb����, the
charge perturbations will oscillate with the frequency ���,
mainly in the direction transverse to the beam propagation
direction due to the restoring betatron force. In this case, the
mode frequency will be close to the average betatron fre-
quency ���. Finally, if �̄pb����, the charge perturbation,
moved longitudinally by the electrostatic restoring force, will
at the same time traverse the beam transversely. In this case,
the arrangement of the charge perturbation does not change,
and the mode will have approximately zero frequency with
Re �=0. If one now examines the motion of an individual
particle in this unchanging dipole electric field Ez	x�, with
longitudinal acceleration d2z /dt2	Ez	x�	cos����t�, one
finds that during one-half period of oscillation each particle
will acquire a longitudinal displacement �z that is opposite
to the direction of the electric field at this point in space. This
means that the particle will move toward the excess charge,
and therefore the charge perturbation will be enhanced,
which will result in instability with Im �
0. One can also
see the effects that longitudinal temperature has on the insta-
bility. If, during one-half period of transverse oscillation
� /���, a particle with average speed v�b

th travels a distance
larger than the half-wavelength of the perturbation �z /2, then
the perturbation enhancement shown in Fig. 1 will not occur,
and the instability is absent. This provides the threshold con-
dition for the onset of instability, i.e.,

�z � v�b
th 2�

���

⇒
T�b

T�b



2

kz
2rb

2 , �4�

where use has been made of Eq. �1�. Since we have assumed
kz

2rb
2�1, Eq. �4� implies that the threshold for instability sat-

isfies T�b /T�b�1. We can now summarize the necessary

FIG. 1. Physical mechanism for the electrostatic Harris instability in intense
particle beams for the case of a dipole-mode perturbation. Three possibilities
are illustrated: �a� for �̄pb����, the mode frequency is �� �̄pb; �b� for
�̄pb����, the mode frequency is �����; and �c� for �̄pb����, the mode
is purely growing with Re �=0 and Im �	���.
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conditions for instability as follows. The instability exists for
sufficiently intense beams ��̄pb����� with large tempera-
ture anisotropy �T�b /T�b�1�. Moreover, unstable modes
have short wavelengths with kz

2rb
2�1. A more quantitative

description of the instability mechanism following the physi-
cal picture described above can be found in Refs. 5 and 6.

III. THE ELECTROMAGNETIC WEIBEL
INSTABILITY

Another instability known from the study of electrically
neutral plasmas that is also driven by temperature anisotropy
is the electromagnetic Weibel instability.15,25–28 The filamen-
tation instability of intense charged particle beams propagat-
ing in neutralizing background plasma is a similar instability,
and is also often called the Weibel instability. The mecha-
nism for the Weibel instability7,15 is illustrated in Fig. 2. An
initial current perturbation creates a magnetic-field perturba-
tion that in turn acts through the v�B /c force on particles
moving with characteristic thermal velocity to displace them
in the direction shown in Fig. 2, which enhances the initial
current perturbation. This results in a purely growing pertur-
bation with real frequency Re �=0. Since the driving force
is magnetic, the instability is weak, with growth rate propor-
tional to vth /c. For the case of a one-component beam, the
finite transverse geometry of the beam makes a detailed ana-
lytical description difficult. We provide here a simple physi-
cal model based mainly on the results of simulations, which
will be presented later.

We consider a charged particle beam confined inside a
circular conducting pipe of radius rw by an external linear
force F=−mb� f

2x� in the smooth-focusing approximation.
For simplicity, the analysis is carried out in the beam frame
�Vb=0�. The beam is confined in the transverse direction
provided �̂pb

2 /2� f
2�1. Here, �̂pb

2 =4�eb
2n̂b /mb is the on-axis

�r=0� plasma frequency-squared, and � f is the average os-
cillation frequency of a beam particle with mass mb and
charge eb in the applied focusing field. It follows from the
numerical studies presented later in this paper that the fastest
growing modes correspond to rigid rotations of the beams
slices with �J�	r for �̂pb

2 /2� f
2→1. The growth rate is an

increasing function of kzrb and approaches a maximum value

for kz
2rb

2�1. Therefore, in leading order, the perturbed mag-
netic field is given approximately by �B
 ikz�A�er for kz

2rb
2

�1. From Maxwell’s equations it follows that

�A��x,t� = Â�

r

rb
exp�i�kzz − �t�� . �5�

The longitudinal equation of motion for a beam particle
becomes

z̈ = −
eb

mb

v�

c
�Br = − ikz

eb

mb
Â�

r�t�v��t�
crb

exp�i�kzz0 − �t�� .

�6�

In the smooth-focusing approximation, the unperturbed mo-
tion is in a cylindrically symmetric potential U�r�, and there-
fore the angular momentum is conserved, i.e., r�t�v��t�
=const. Integrating Eq. �6� with respect to time t, we obtain

z�t� = i
kz

�2

eb

mb
Â�

r�t�v��t�
crb

exp�i�kzz0 − �t�� =
v�

�2

eb�Br

mbc
.

�7�

The average axial displacement is given by �z�	�v��=0, and
therefore the density perturbation �nb=−n̄b��z� /�z is zero.
Therefore, for the current perturbation, we obtain

��J�

�t
+

�

�z

ebn̄b

��v�z�
�t

� = 0,

�8�

�J� = − ebn̄b
��v�z�

�z
= −

eb
2n̄b

mbc

�v�
2�

�2

��Br

�z
.

Substituting Eq. �8� into Maxwell’s equation ��Br /�z
=4��J� /c, we obtain the simple dispersion relation

1 = −
�̄pb

2

�2

�v�
2�

c2 , �9�

where �̄pb
2 =4�eb

2n̄b /mb is the average beam plasma fre-
quency squared. Noting that T�b=mb�v�

2+vr
2� /2=mb�v�

2�, we
can express the growth rate in this simple model of the Wei-
bel instability as

� = �̄pb� T�b

mbc2 =
�̄pb

�2

v�b
th

c
� 0.71�̄pb

v�b
th

c
, �10�

where v�b
th =�2T�b /mb is the transverse thermal velocity.

IV. DESCRIPTION OF BEAM EIGENMODE
AND SPECTRA „BEAST… CODE

For an arbitrary equilibrium distribution, one cannot
solve the stability problem analytically and must employ nu-
merical techniques. To investigate stability properties nu-
merically, we make use of the linear eigenmode method,
which searches for the roots of the matrix dispersion relation,
as implemented in the beam eigenmode and spectra �bEASt�
code.5–7

The bEASt code assumes small-amplitude electrostatic
perturbations of the form

FIG. 2. Mechanism for Weibel instability.
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���x,t� = ��̂�r�exp�im� + ikzz − i�t� , �11�

where ���x , t� is the perturbed electrostatic potential, kz is
the axial wave number, m is the azimuthal mode number, and
� is the complex oscillation frequency, with Im �
0 corre-
sponding to instability �temporal growth�. We also assume
that the beam is located inside a perfectly conducting cylin-
drical pipe with radius rw. Electromagnetic perturbations are
assumed to be of the form

�A��x,t� = �Â�r�exp�i�kzz − �t�� . �12�

All perturbations are about the thermal equilibrium distribu-
tion with temperature anisotropy �T�b
T�b� described in the
beam frame �Vb=0 and �b=1� by the self-consistent axisym-
metric Vlasov equilibrium

fb
0�r,p� =

n̂b

�2�mb�3/2T�bT�b
1/2 exp
−

H�

T�b
−

pz
2

2mbT�b
� . �13�

Here, H�= p�
2 /2mb+ �1/2�mb� f

2�x2+y2�+eb�0�r� is the
single-particle Hamiltonian for transverse particle motion,
and � f =const is the transverse focusing frequency.

The electrostatic perturbation amplitude is expressed as

��̂�r�=�n�n�n�r�, where ��n� are constants, and the com-
plete set of vacuum eigenfunctions ��n�r�� is defined by
�n�r�=AnJm��n

mr /rw�. Here, �n
m is the nth zero of Jm��n

m�=0,

and An=�2/ �rwJm+1��n�� is a normalization constant such
that �0

rwdrr�n�r��n��r�=�n,n�. Electromagnetic perturbations
are also expanded in terms of the complete set of vacuum

eigenfunctions �Â�r�=�n�nAn�r�, where An�r�
=AnJ1��n

1r /rw� and J1��n
1�=0. Using the method of charac-

teristics, analysis of the linearized Vlasov-Maxwell equa-
tions leads to an infinite-dimension matrix dispersion
equation,5–9,11,15

� �nDn,m��� = 0, �14�

where the elements of the dispersion matrix Dn,n���� are de-
fined by

Dn,n�
el ��� =

Jm+1
2 ��n

m�
2

��n
m2

+ kz
2rw

2 ��n,n� + �n,n�
el ��� �15�

for electrostatic perturbations, and by

Dn,n�
em ��� =

J2
2��n

1�
2


�n
12

+ kz
2rw

2 − rw
2 �2

c2 ��n,n� + �n,n�
em ���

�16�

for electromagnetic perturbations. Here, �n,n� is the beam-
induced susceptibility and is defined by

�n,n�
el ��� =

rw
2

�d
2qn,n� + �

0

�

ds exp
is� −
s2kz

2T�

2mb
�

��i� + 
1 −
T�

T�

� skz
2T�

2mb
�Qn,n�

el �s� �17�

for electrostatic perturbations,5,6,8,9,11 where

Qn,n�
el �s� =

1

mb�d
2�

p
� dP�

�r

dH�

T�b
exp�−

H�

T�b
�

��In
p,m�*In�

p,m exp�− is�p�r + m���� . �18�

In Eqs. �17� and �18�, qn,n� and In
p,m are defined by

qn,n� = �
0

1

dxxN�x�Jm��n
mx�Jm��n�

m x� , �19�

and the orbit integral In
p,m is defined by

In
p,m�H�,P�� = �

0

Tr d�

Tr
Jm��nr���

rw
�

�exp�− ip�r� + im����� − ����� . �20�

The beam-induced susceptibility for low-frequency elec-
tromagnetic modes with ��� f is defined by7,15

�n,n�
em ��� =

�̂pb
2

c2 �1 −
T�

T�
�1 +

�

kzv�
thZ
 �

kzv�
th���Qn,n�

em ,

�21�

where

Qn,n�
em =� dP�P�

2

mb
2�r

dH�

T�b
2 exp�−

H�

T�b
��In�*In�. �22�

The orbit integral In is defined by

In�H�,P�� = �
0

Tr d�

Tr
J1��n

1r���
r��� � . �23�

Here, P� is the canonical angular momentum, �̂pb
2

=4�eb
2n̂b /mb is the on-axis plasma frequency-squared, �d

2

=T�b /4�eb
2n̂b is the perpendicular Debye length-squared,

and v�b
th =�2T�b /mb. In the orbit integrals in Eqs. �20� and

�23�, r��� and ���� are the transverse orbits in the equilibrium
field configuration such that ��0�=0, r�0�=rmin�H� , P�� is
the minimum radial excursion of the particle trajectory un-
dergoing periodic motion with frequency �r�H� , P��
=2� /Tr, and ���H� , P��=��Tr� /Tr is the average frequency
of angular rotation. In Eq. �18�, � �* denotes complex conju-
gate, and N�x�=nb

0�xrw� / n̂b is the normalized density profile,
where nb

0�r�=�d3pfb
0�r ,p�.

The beam eigenmode and spectra �bEASt� code solves
Eq. �14� in several steps. First, the particle orbits r��� and
���� in the equilibrium field configuration are calculated for
one complete oscillation period Tr, and the frequencies
�r�H� , P�� and ���H� , P�� are obtained. Next, a fast Fourier
transform �FFT� is used to calculate the orbit integrals in
Eqs. �20� and �23�. Then, in the next step, the matrices
Qn,n��s� �Eqs. �18� and �22�� and qn,n� �Eq. �19�� are calcu-
lated, stored, and then used repeatedly to recalculate the
beam-induced susceptibility �Eqs. �17� and �21�� and disper-
sion matrix �Eqs. �15� and �16�� during the search for the
eigenvector of the dispersion matrix Dn,n���� �Eq. �14�� with
zero eigenvalue. Note that the matrices Qn,n��s� and qn,n� are
calculated only once, thanks to the separation of the particle
variables �H� , P� ,r ,�� from the dispersion equation
variables � and kz in Eq. �17�. The typical number of particle
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trajectories used in the calculations is 300, with 16 time steps
during one oscillation period Tr, which is significantly less
than the number of particles and time steps used in PIC
simulations.8,9,11 The method described here works well for
finding the unstable modes, or slightly damped modes. For
highly damped modes, an accurate integration in Eq. �17�
requires calculation of the matrix Qn,n�

el �s� for values of s

 �Im �� / �kz

2T� /mb�, which can be demanding
computationally.

V. DESCRIPTION OF BEAM EQUILIBRIUM, STABILITY,
AND TRANSPORT „BEST… CODE

To investigate the nonlinear stage of instability, we make
use of the nonlinear �f method29 described below, as imple-
mented in the beam equilibrium, stability, and transport
�BEST� code.1,10,13 This code has recently been extended to
include electromagnetic Darwin model equations, as we now
describe. The Darwin model has a long history. It was origi-
nally proposed by Darwin to study relativistic corrections to
atomic energy levels. He found a particle Lagrangian that
described the electromagnetic interaction of charged particles
accurate up to second order in v /c, where v is the particle
velocity and c is the speed of light. The Lagrangian Darwin
model was later reformulated as a model with its own set of
field equations and applied to study low-frequency electro-
magnetic phenomena in electrically neutral plasmas. As it
turns out, the original Lagrangian Darwin model is equiva-
lent to neglecting the transverse part of the displacement cur-
rent in Ampere’s law. As a key consequence, high-frequency
light waves are eliminated from the Maxwell-Vlasov system.
This greatly relaxes the time-step restrictions for numerical
simulations, and it avoids the Courant condition �x /c�t
�1. The resulting Maxwell equations are elliptic and depend
only on instantaneous particle quantities. Also, since high-
frequency light waves are eliminated, the simulation noise is
greatly reduced. The reduced Maxwell equations for the
Darwin model used in the modified BEST code can be ex-
pressed as

� · EL = 4�� , �24�

� � B = �4�/c�JT, �25�

� � ET = − �1/c��B/�t , �26�

� · B = 0, �27�

where

EL = − �� , �28�

JT = J −
1

4�

� � �

�t
, �29�

and

� � EL = 0, � · ET = 0, � · JT = 0. �30�

Expressing B=��A, and using the Coulomb gauge with
� ·A=0, Ampere’s equation takes the form

�2A = −
4�

c
JT, �31�

where

ET = −
1

c

�A

�t
. �32�

For comparison, the original Ampere’s law takes the form
�2A− �1/c2��2A /�t2=−4� /cJT. However, as noted
previously,30 the presence of the time derivative of the vector
potential in the equations of motion dp /dt=−�q /c��A /�t
+¯ can cause numerical instabilities in particle simulations
because of the time-centering problem in particle pushing.
These difficulties are avoidable if we introduce the canonical
momentum P=p+ �q /c�A.30 Specifically, the equations of
motion become

dx

dt
= v , �33�

dP

dt
=

q

c
� �v · A� − q � � − m��

2x�. �34�

Here

v = p/m�, � = �1 + �p/mc�2�1/2, p = P −
q

c
A . �35�

Thus, by transforming variables from mechanical momentum
p to canonical momentum P, the time derivative of A con-
veniently disappears from the equations of motion. To calcu-
late the particle trajectories in Eqs. �33� and �34�, one needs
to calculate only the electrostatic potential � and the electro-
magnetic vector potential A. The Vlasov equation in the new
variables can be expressed as

dF

dt
�

�F

�t
+

dx

dt
·
�F

�x
+

dP

dt
·
�F

�P
= 0, �36�

where the characteristics are defined by Eqs. �33� and �34�.
The electrostatic potential � is determined from Poisson’s
equation

�2� = − 4�� , �37�

and the electromagnetic vector-potential A is determined by
solving a system of coupled equations of the Helmholtz type,
i.e.,


�2 −
�p

2

c2 �A + �� = −
4�

c
Jp, �38�

� · A = 0. �39�

Here the factor �p
2 /c2= �4�q2 /mc2��d3PF /� arises from in-

troducing the canonical momentum, the potential � formally
solves �2�=−�4� /c�� ·J, which removes the longitudinal
part of the current, and the current Jp occurring in Eq. �38� is
defined by
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Jp = q� d3P
P

�m
F . �40�

For the case of heavy ions with rb
2�p

2 /c2�1, the skin term
can be neglected in Eq. �38�, and the above system of equa-
tions is linear. For electrons, the skin term is not generally
negligible, and the system is nonlinear and is solved by it-
eration. For a perfectly conducting cylindrical wall of radius
rw, the boundary conditions for �, A, and � are especially
simple, i.e.,

�rw
= Arw

= �rw
= 0. �41�

The boundary condition for � follows from the fact that �
=−�1/c��� /�t.

In the corresponding �f formalism, the solutions to the
nonlinear Vlasov-Maxwell equations are expressed as F
=F0+�f , �=�0+��, A=A0+�A, where �F0 ,�0 ,A0� are
known equilibrium solutions �� /�t=0�. The perturbed distri-
bution is determined from

d�f

dt
= � −

dx

dt
�

�

·
�F0

�x
� −

dP

dt
�

�

·
�F0

�P
, �42�

where �� denotes the perturbed particle trajectories obtained
by using the perturbed potentials �� and �A. In the particle
simulations using the modified BEST code, the perturbed
�f�x ,p , t� is given by the weighted Klimontovich
representation,

�f = �
i=1

N

wi��x − xi���P − Pi� . �43�

Here, N is total number of particles in the simulation. The
weight function w, defined by w=�f /F, evolves according to

dw

dt
= �1 − w�

1

F0

d�f

dt
. �44�

In the modified BEST code, the nonlinear particle simu-
lations are carried out by iteratively advancing the particle
motion, including the weights they carry, and updating the
fields by solving the perturbed Maxwell’s equations with ap-
propriate boundary conditions at the cylindrical, perfectly
conducting wall at radius rw.

The �f approach is fully equivalent to the original non-
linear Vlasov-Maxwell equations, but the noise associated
with representation of the background distribution F0 in con-
ventional particle-in-cell �PIC� simulations is removed. In
the �f approach, the simulation particles are used to repre-
sent only a small part of the entire distribution �f =F−F0,
and therefore the statistical error in the simulations is propor-
tional to ��f 	 w̄ /�N, whereas the error in PIC simulations is
proportional to �PIC	1/�N. Therefore, the typical gain in
accuracy in �f simulations compared to PIC simulations with
the same number of particles is ��f /�PIC= w̄.10 This fact al-
lows much more accurate simulations of the nonlinear dy-
namics and instability thresholds when �w̄��1. In addition,
the �f method can be used to study linear stability properties,
provided all nonlinear terms in the dynamical equations of
motion are neglected. This corresponds to replacing the term

1−w with 1 in Eq. �44� for the weights, and moving the
particles along the trajectories calculated in the unperturbed
fields �0 and A0.

The �f method described above has been implemented
in the three-dimensional electromagnetic particle-in-cell
code �BEST� in cylindrical geometry with a perfectly con-
ducting cylindrical wall at radius rw. Maxwell’s equations
�37�–�39� are solved using fast Fourier transform �FFT� tech-
niques in the longitudinal and azimuthal directions. The par-
ticle positions �Eqs. �33� and �34�� and weights �Eq. �44�� are
advanced using a second-order predictor-corrector algorithm.
The BEST code is parallelized using the message passing
interface �MPI� with domain decomposition in the direction
of beam propagation. The NetCDF data format is used for
large-scale diagnostics and visualization. Typical simulation
runs consist of 107 simulation particles and are performed on
the IBM SP/RS 6000 at NERSC.

VI. NUMERICAL SIMULATIONS OF THE HARRIS
AND WEIBEL INSTABILITIES

Detailed simulations of the electrostatic Harris instability
using the eignemode code bEASt and the nonlinear �f code
BEST have been performed, and results can be found in
Refs. 5, 6, 8, 9, and 11. Here, for completeness, we summa-
rize some of the most important results.

Figure 3 shows plots of the normalized growth rate
�Im ��max/� f at maximum growth versus normalized tune
depression 	̄ /	0 for T�b /T�b=0 and azimuthal mode number
m=1 �dotted curve�. Here wall radius rw=3rb. The results are
obtained using the eigenmode code bEASt.5,6 The thick solid
curve corresponds to the simple estimate obtained in Ref. 6.
Only the m=1 results are shown since it has the largest
growth rate. The m=1 dipole mode is purely growing with
Re �=0 and �Im ��max/� f 
0.34 for 	̄ /	0
0.62. Here, � f is
the betatron frequency due to the applied focusing field. Note
that the instability is absent for 	̄ /	0
0.82. Therefore, the
Harris instability is absent for beams with sufficiently small
tune shift �	 /	0= �	̄−	0� /	0. Figure 4 shows the threshold
value of the anisotropy T�b /T�b as a function of the normal-

FIG. 3. Plots of the normalized growth rate �Im ��max/� f at maximum
growth versus normalized tune depression 	̄ /	0 for T�b /T�b=0 and azi-
muthal mode number m=1 �dotted curve�. Results are obtained using the
eigenmode code bEASt �Refs. 5 and 6�. The thick solid curve corresponds to
the simple theoretical estimate from Ref. 6.
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ized tune depression 	̄ /	0 obtained using the eigenmode
code bEASt.5,6 Note from Fig. 4 that the maximum threshold
value, T�b

th /T�b=0.11, is achieved for moderately intense
beams with 	̄ /	0=0.4. The curves in Fig. 4 are results ob-
tained with the bEASt code, and the dots correspond to the
longitudinal beam temperature T�b�mb�v�

2� obtained with
the nonlinear �f code BEST after the instability saturates. As
shown in Refs. 5 and 6, the Harris instability saturates non-
linearly by particle trapping and quasilinear relaxation.

We now present typical numerical results for the Weibel
instability obtained using the eigenmode code bEASt, and
the linearized version of the �f code BEST, for the case in
which rw=3rb, T�b /T�b=0, � /��=0. Figure 5 shows plots of
the normalized growth rate �Im �� / ��̂pbv�b

th /c� versus kzrb

obtained for normalized skin depth c /rb�̂pb=100 and several
values of the normalized depressed tune 	̄ /	0

=0.09�4� ,0.4�3� ,0.72�2�. Also shown are the results of a lin-
ear simulation using the Darwin BEST code for 	̄ /	0

=0.88,0.92,0.95,0.97�1�, c /rb�̂pb=10, and T�b /T�b=10−4.

Numerical studies using the eigenmode code bEASt have
shown7 that the results are insensitive to the normalized skin
depth provided c /rb�̂pb�1. As evident from Fig. 5, the re-
sults obtained with the �f code BEST are consistent with the
results obtained using the eigenmode code bEASt. Plots of
the normalized maximum growth rate �Im��max/ �� f

2rw /c�
versus the average depressed tune 	̄ /	0 for T�b /T�b=0 and
c /rb�̂pb=100 obtained using the bEASt code are shown in
Fig. 6. The maximum growth rate is achieved for moderately
intense beams with 	̄ /	0�0.73. The dots are results of linear
runs using the Darwin BEST code for T�b /T�b=10−4 and
c /rb�̂pb=10. Again, the results obtained using both codes are
in good agreement. Figure 7 shows the normalized longitu-
dinal threshold temperature �T�b

th /T�b�c2 /rb
2�̂pb

2 for the onset
of instability plotted versus the normalized tune depression
	̄ /	0 for normalized skin depth c /rb�̂pb=100.

The nonlinear stage of the Weibel instability is illustrated
in Figs. 8–11 for a beam with 	̄ /	0=0.88 and initial tempera-
ture ratio T�b /T�b=10−4 and c /rb�̂pb=10. Figure 8 shows a
plot of the effective longitudinal temperature T�b�mb�v�

2�
normalized to the initial longitudinal temperature T�b

0 as a
function of time. The initial linear stage is followed by a
stage where the temperature grows superexponentially due to
particle trapping. At later stages, the temperature varies

FIG. 4. The longitudinal threshold temperature T�b
th for the onset of the

Harris instability normalized to the transverse temperature T�b is plotted
versus normalized tune depression 	̄ /	0 for two values of the azimuthal
mode number, m=0 �solid line� and m=1 �dotted line�. The large dots cor-
respond to the longitudinal beam temperature T�b�mb�v�

2� obtained with the
nonlinear �f BEST code after the instability saturates.

FIG. 5. The normalized growth rate �Im �� / ��̂pbv�b
th /c� of the Weibel insta-

bility is plotted versus kzrb for normalized skin depth c /rb�̂pb=100 and
several values of the normalized depressed tune 	̄ /	0

=0.09�4� ,0.4�3� ,0.72�2�. Also shown are the results of linear runs using the
Darwin BEST code for 	̄ /	0=0.88,0.92,0.95,0.97�1�, c /rb�̂pb=10, and
T�b /T�b=10−4.

FIG. 6. Plot of the normalized maximum growth rate �Im ��max/ �� f
2rw /c� of

the Weibel instability versus the average depressed tune 	̄ /	0 for
T�b /T�b=0.

FIG. 7. The normalized longitudinal threshold temperature
�T�b

th /T�b�c2 /rb
2�̂pb

2 for the onset of the Weibel instability is plotted versus the
normalized tune depression 	̄ /	0 for normalized skin depth c /rb�̂pb=100.
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slightly due to quasilinear mixing. Figure 9 shows plots of
the z-averaged longitudinal velocity distribution at t=0, and
at a time after saturation. After saturation, the longitudinal
velocity distribution remains nearly Maxwellian. Figure 10
shows the time history of the electrostatic potential eb�� /mb

and the azimuthal component of the vector potential
ebv�

th�A� /mbc. At saturation, both have similar normalized
amplitudes, and the particles become trapped both electro-
statically and electromagnetically. This is a particular feature
of the Weibel instability in intense non-neutral beams. Figure
11 shows the normalized parallel velocity v� /v�b

th of an indi-
vidual test particle as a function of time. One can see clearly
that the particle motion becomes trapped when the instability
saturates.

VII. CONCLUSIONS

To summarize, we have generalized the analysis of the
classical Harris and Weibel instabilities to the case of a one-
component intense charged particle beam with anisotropic
temperature. For a long, coasting beam, the delta-f particle-
in-cell code BEST and the eigenmode code bEASt have been
used to determine the detailed 3D stability properties over a
wide range of temperature anisotropy and beam intensity. It
has been shown that intense beams with 	̄ /	0�0.82 and
T�b /T�b�0.11 are linearly unstable to electrostatic perturba-
tions �Harris-type instability�. The instability is kinetic in
nature and is due to the coupling of the particles’ transverse
betatron motion with the longitudinal plasma oscillations ex-
cited by the perturbation. It has also been shown that finite
transverse geometry introduces the Weibel instability thresh-
old T�b

th /T�b�10−0.7rb
2�̂pb

2 /c2	�v�b
th /c�2. This makes the

Weibel instability much less dangerous for intense beams
with normalized tune 	̄ /	0�0.82. This is because such in-
tense beams are unstable due to the electrostatic Harris in-
stability, which saturates at much larger longitudinal tem-
perature, �T�b

th /T�b�Weibel� �T�b
th /T�b�Harris�0.1, and has

FIG. 8. Plot of the effective longitudinal temperature T�b�mb�v�
2� normal-

ized to the initial longitudinal temperature T�b
0 as a function of time for a

beam with 	̄ /	0=0.88 and initial temperature ratio T�b /T�b=10−4 and
c /rb�̂pb=10.

FIG. 9. Plots of z-averaged longitudinal velocity distribution. The dashed
curve is for � ft=550 and the solid curve is for � ft=0.

FIG. 10. Time history of the electrostatic potential eb�� /mb and azimuthal
component of the vector potential ebv�

th�A� /mbc are plotted versus time for
a beam with 	̄ /	0=0.88 and initial temperature ratio T�b /T�b=10−4 and
c /rb�̂pb=10.

FIG. 11. The normalized parallel velocity v� /v�b
th of a test particle is plotted

as a function of time.
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much larger growth rate, �Weibel /�Harris	v�
th /c�1. There-

fore, the electromagnetic Weibel instability is likely to be an
important instability mechanism in relativistic one-
component charged particle beams with 	̄ /	0
0.82, but not
in intense beams with 	̄ /	0�0.82. To study the nonlinear
stage of the Weibel instability, the electromagnetic Darwin
model has been implemented in the �f particle-in-cell code
BEST. The results of the nonlinear simulations show that the
nonlinear saturation is governed by longitudinal particle trap-
ping �electrostatic trapping for the Harris instability and elec-
tromagnetic trapping for the Weibel instability�. Even though
in Secs. IV–VI we have chosen the initial longitudinal mo-
mentum distribution to be Maxwellian, the conclusions that
we have drawn from the simulations remain qualitatively
valid for other distributions, as long as one treats the average
of the longitudinal kinetic energy spread in the beam frame
as the effective longitudinal temperature.
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