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Abstract

Collective effects with strong coupling between the longitudinal and transverse dynamics are of fundamental importance for
applications of high-intensity bunched beams. The self-consistent Vlasov–Maxwell equations are applied to high-intensity bunched
beams, and a generalized df particle simulation algorithm is developed for bunched beams with or without energy anisotropy.
Numerically, the distribution function is spit into a reference distribution and a perturbed part. The perturbed distribution function is
represented as a weighted summation over discrete particles, where the particle orbits are advanced by the equations of motion in the
focusing field and self-generated fields, and the particle weights are advanced by an equation equivalent to the nonlinear Vlasov equation.
The nonlinear df method exhibits minimal noise and accuracy problems in comparison with standard particle-in-cell simulations.
Systematic studies are carried out for the particle dynamics under conditions corresponding to strong 3D nonlinear space-charge force.
The simulations showed that finite bunch-length effects on the collective excitations become insignificant when the aspect ratio ðzb=rbÞ is
larger than 10 for a moderately intense beam with normalized intensity sb ¼ o2

pb=2o
2
b ¼ 0:27. For bunched beams with energy anisotropy

ðTk=T?o1Þ, a reference state has been constructed and a dynamic equilibrium is established in the simulations. Collective excitations
relative to the dynamic equilibrium have also been successfully simulated by the generalized df algorithm.
Published by Elsevier B.V.
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1. Introduction

Collective effects in high-intensity charged particle
beams are often manifested as collective excitations with
certain important dynamical properties such as instabilities
and Landau damping. The self-consistent theoretical
framework for studying the collective effects is provided
by the nonlinear Vlasov–Maxwell equations [1]. A corre-
sponding numerical method, the df particle simulation
method, has been developed [2] to solve the nonlinear
Vlasov–Maxwell equations with significantly reduced
noise. This theoretical and numerical framework has been
successfully applied to study stable beam propagation [3],
electron–ion two-stream (electron cloud) instabilities [4–6],

and energy anisotropy instabilities [7,8]. However, previous
studies were carried out for long coasting beams with
arbitrary nonlinear space-charge intensity in the transverse
direction. In this paper, we further develop the Vlasov–
Maxwell equations and the df simulation method to study
collective effects for bunched beams with nonlinear space-
charge fields in both the longitudinal and transverse
directions.
Collective effects with strong coupling between the

longitudinal and transverse dynamics are of fundamental
importance for the applications of high-intensity bunched
beams. For example, present accelerator research and
development in the US Heavy Ion Fusion Science Virtual
National Laboratory is focused on the capability of
compressing an ion charge bunch both longitudinally and
transversely to reach the high-intensity and short-pulse
length required for creating high energy density matter and
heavy ion fusion conditions in the laboratory. Collective
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effects associated with the longitudinal compression of
bunched beams have not been systematically explored. For
bunched beams, the equilibrium and collective excitation
properties are qualitatively different from those for coast-
ing beams. Especially, when the bunch length is com-
pressed by a large factor, the coupling between the
longitudinal and transverse dynamics induced by the 3D
nonlinear space-charge fields become significant. A direct
consequence of this coupling effect is that the particle
dynamics does not conserve transverse energy and long-
itudinal energy separately, and there exists no exact kinetic
equilibrium which has an anisotropic energy in the
transverse and longitudinal directions. In this paper, we
develop a reference state for beams with anisotropic
energy, which is not an exact equilibrium solution of the
Vlasov–Maxwell equation system. The difference between
the exact solution and the reference state is simulated by a
generalized df particle simulation algorithm. If the beam is
a thermal equilibrium distribution with isotropic energy,
the reference state becomes an exact equilibrium solution,
and the generalized df particle simulation algorithm
reduces to the conventional one. Even in this case, the
particle trajectories on constant energy surfaces are
nonintegrable [9,10], which implies that it is impossible to
perform an integration along unperturbed orbits to
analytically calculate the linear eigenmodes.

The paper is organized as follows. After the development
of the generalized df particle simulation algorithm in
Section 2, the nonintegrability of the particle dynamics and
collective excitations in bunched beams with energy
isotropy are studied in Section 3. Then, in Section 4, the
reference state and collective excitations for bunched beam
with energy anisotropy are investigated.

2. Theoretical model and the generalized df simulation
method

To simplify the problem, in the present study we
consider a single-species, bunched beam confined in both
the r- and z-directions by an external smooth focusing force
in the beam frame

Ffoc ¼ $mo2
bx? $mo2

zzez. (1)

Here, ob and oz are the constant transverse and long-
itudinal focusing frequencies in the smooth-focusing
approximation. In the beam frame, the dynamics of the
bunched beam is described by the nonlinear Vlasov–Max-
well equations [1]
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where e and m are the particle charge and rest mass,
respectively.
This set of equations is a simplified version of the

nonlinear Vlasov–Maxwell equations in the general case
[1,6]. For the boundary conditions, a perfectly conducting
cylindrical pipe is located at radius r ¼ rw. To numerically
solve the Vlasov–Maxwell equations, we use the low-noise
df method [2,4,5], where the total distribution function is
divided into two parts, f ¼ f 0 þ df . Here, f 0 is a known
reference distribution function and the numerical simula-
tion is carried out to determine the detailed nonlinear
evolution of the perturbed distribution function df . This is
accomplished by advancing the weight function defined by
w ' df =f , together with the particles’ positions and
momenta. The dynamical equation for w is given by
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where df ' f$ f0, and dAz ' Az $ Az0. For the per-
turbed fields, Maxwell’s equations are

r2df ¼ $4pe
Z

d3pwf ðx; p; tÞ (8)

r2dAz ¼ $
4p
c
e

Z
d3pvzwf ðx; p; tÞ. (9)

Here, the reference potentials ðf0;Az0Þ are chosen to satisfy

r2f0 ¼ $4pe
Z

d3pf 0ðx; p; tÞ (10)

r2Az0 ¼ $
4p
c
e

Z
d3pvzf 0ðx; p; tÞ. (11)

Of course, it is desirable to pick (f0, Az0, f 0) as self-
consistent solutions to the Vlasov–Maxwell equations
(2)–(4), such that the ðdf 0=dtÞ0 term in Eq. (5) vanishes.
For most applications, (f0, Az0, f 0) are chosen to
correspond to an equilibrium solution with q=qt ¼ 0.
However, for beams with energy anisotropy, exact
equilibrium solutions do not exist due to the lack of
invariants of the particle dynamics. Therefore, we can only
choose a reference distribution f 0 that is close to an
equilibrium solution. If the beam is isotropic in energy, the
reference state can be chosen to be an exact equilibrium
solution, and the generalized df particle simulation
algorithm reduces to the conventional nonlinear df method
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[5]. For a single-species beam, we neglect Az in the beam
frame because jAzj5jfj.

3. Collective excitations for bunched beams with isotropic
energy

Since the conventional concept of collective excitations
or eigenmodes of charged particle beams refers to
perturbations around a self-consistent equilibrium, the first
step in this investigation is to identify possible equilibrium
solution (f0, f 0) with q=qt ¼ 0 satisfying

v &
q
qx

$ ½mðo2
bx? þ o2

zzezÞ
!

þerf0) &
q
qp

$
f 0ðx; pÞ ¼ 0 ð12Þ

r2f0 ¼ $4pe
Z

d3pf 0ðx; pÞ. (13)

Eq. (12) implies that f 0 is an invariant of the particle
dynamics in the equilibrium space-charge potential f0 and
the external focusing field. Therefore, f 0 is a function of all
of the independent invariants. Even for the simple model
adopted here for bunched beams, there are only two
invariants of the single particle dynamics in the equilibrium
field, the total energy H and canonical angular momentum
Py defined by

H ¼
p2

2m
þ ef0 þ

1

2
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br
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zz
2Þ (14)

Py ¼ rmvy. (15)

In this section, we choose f 0 to be a function of H only
according to

f 0 ¼ f 0ðHÞ ¼
n̂

ð2pmTÞ3=2
exp

$H

T

% &
(16)

which gives an isotropic temperature T ¼ const. Here, n̂ is
the beam number density at ðr; zÞ ¼ ð0; 0Þ. Under this
assumption, the equilibrium Poisson equation (13) be-
comes
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which can be solved numerically for f0 in a perfect
cylindrical conducting pipe with wall radius r ¼ rw. It can
be shown [1] that the condition for the beam being confined
by the focusing field is

sbp1þ
o2

z

2o2
b

. (18)

Here, sb ' 4pn̂e2=2mo2
b measures the relative strength of

the space-charge force compared with the applied focusing
force in the transverse direction. Even though the kinetic
equilibrium is taken to be the well-behaved thermal
equilibrium in Eq. (16), the dynamics of a single particle
on the constant energy surface is nonintegrable due to the

coupling between the transverse and longitudinal dynamics
induced by the 3D nonlinear space-charge force [10]. The
coupling is a function of the space-charge strength and the
bunch length. When the space charge intensity is reduced
to zero, or the bunch length is increased to infinity, the
transverse and longitudinal space-charge forces decouple
and the particle dynamics is integrable.
As an example, we consider a bunched beam with sb ¼

1:1 and oz=ob ¼ 0:50. Eq. (17) is numerically solved for
f0. Plotted in Fig. 1 is the normalized equilibrium density
as a function of ðr; zÞ,

n0
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" #
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Fig. 2shows the r2vr Poincaré plot at z ¼ 0 for particles
with normalized energy H=T ¼ 1 and normalized canoni-
cal angular momentum Pyob=T ¼ 0:25. The formation
of multiple islands of different scale-length in the
r2vr Poincaré plot indicates the coupling between the
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Fig. 1. Equilibrium beam density at a function of ðr; zÞ for a bunched
beam with sb ¼ 1:1.

0 1 2

-1

0

1

rω!/ T / m

v r
 /

T
/m

0.5

-0.5

2.51.50.5

Fig. 2. The r2vr Poincaré plot at z ¼ 0 with constant energy and
canonical angular momentum in a bunched beam with sb ¼ 1:1.
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longitudinal and transverse dynamics. The points on the
plot are not curve-forming. The chaotic regions are located
near the two heteroclinic fixed points where the unstable
manifold and stable manifold intersect many times. This is
clearly demonstrated in Fig. 3 for a local region near the
upper heteroclinic point with higher resolution. Previous
studies on this subject can be found in Refs. [9,10]. If the
space-charge parameter is reduced to sb ¼ 0:6, and the
bunch length is kept the same, the particle dynamics for
particles with the same energy and canonical angular
momentum becomes much more regular. From the
Poincaré plot shown in Fig. 4, there are no detectable
islands or chaotic regions over scale lengths comparable to
the bunch size and particles’ thermal velocity. Chaotic
regions with smaller scale-length may still exist, because the
particle dynamics is nonintegrable for sb40. However, the
result in Fig. 4 indicates that for moderately high-intensity
beams, a good approximate invariant exists in addition to
the exact invariants of energy and canonical angular
momentum. This approximate invariant can be used to
construct approximate kinetic equilibria with anisotropic
energy.

Once the equilibrium is determined, we can apply the df
particle simulation method to examine the linear and
nonlinear evolution of perturbations in the system. In the
present paper, we focus only on linear (small-amplitude)
perturbations. Because the particles’ unperturbed orbits are
nonintegrable, it is impossible to carry out the conven-
tional analytical procedure of integrating along unper-
turbed orbits in an eigenmode calculation. From the point
of view of particle simulations, the nonintegrability does
not present any difficulty. Linear perturbations can be
simulated in the same way as for coasting beams, where the
particles’ unperturbed orbits are integrable. Numerically, a
small-amplitude initial perturbation is imposed at t ¼ 0,
and the system is evolved using the df method.
As a demonstration, let’s consider a beam with sb ¼ 0:27

and vth=c ¼ 1:6* 10$3, and rwob=c ¼ 6:75* 10$3. Shown
in Figs. 5–7 is the oscillation spectrum of the perturbed
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momentum in a bunched beam with sb ¼ 0:6.
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Fig. 5. Spectrum of perturbations at ðr=rb; z=rbÞ ¼ ð0:2; 0Þ for zb=rb ¼ 100.
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Fig. 6. Spectrum of perturbations at ðr=rb; z=rbÞ ¼ ð0:2; 0Þ for zb=rb ¼ 10.
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potential df at ðr=rb; z=rbÞ ¼ ð0:2; 0Þ for different bunch
length. Here, rb and zb are rms beam size in the transverse
and longitudinal directions defined as

r2b ¼
R rw
0 r3nðr; 0ÞdrR rw
0 rnðr; 0Þdr

(20)

z2b ¼
R1
0 z2nð0; zÞdzR1
0 nð0; zÞdz

. (21)

The distinguished eigenfrequencies located near or ¼ 2ob,
4ob, 6ob; . . . are the transverse body modes, which are
relatively insensitive to the bunch lengths. For the case
where zb=rb ¼ 100, the spectrum is essentially identical to
that of a coasting beam, which has been previously studied
both numerically and analytically [1]. As the bunch length
decreases, we observe collective mode excitations at
additional frequencies (see Figs. 6 and 7). These modes
are generated by the coupling of the transverse and
longitudinal dynamics, and are most prominent for the
case where zb=rb ¼ 3. For long bunched beams, there is a
clear separation of time scales for the transverse and
longitudinal dynamics and the coupling becomes less
significant. The finite width of the peaks in the spectra
that are plotted corresponds to the fact that the eigenmodes
are damped. From Figs. 5–7, the eigenmode near or ¼ 2ob
is more heavily damped for the case with zb=rb ¼ 100.

4. Collective excitations for bunched beams with energy
isotropy

To model bunched beams in accelerators, it is desirable
to consider equilibria with anisotropic energy in the
transverse and longitudinal directions. However, as dis-
cussed previously, such exact kinetic equilibria do not exist
for bunched beams because of the fact that the transverse
energy and longitudinal energy are not conserved sepa-

rately due to the coupling induced by the space-charge
field. Approximate kinetic equilibria with anisotropic
energy can be constructed for long bunches, or other cases
where the coupling induced by the nonlinear space-charge
field is weak. For these cases, the transverse energy H? and
longitudinal energy Hz defined by
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2m

þ
m

2
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p2z
2m

þ
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2
o2

zz
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are approximately conserved. Here, hf0i, ff0, and f0 are
defined by

hf0iðzÞ ¼ f0ðzÞ $ f0ð0Þ (24)

ff0ðr; zÞ ¼ f0ðr; zÞ $ hf0iðzÞ (25)

f0ðzÞ ¼
R rw
0 rf0ðr; zÞdr

r2w=2
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As an example, we choose the reference distribution
function f 0 to be

f 0 ¼
n̂

ð2pmT?Þð2pmTzÞ1=2
exp $

H?

T?
$

Hz

Tz

% &
. (27)

Here, T? and Tz are the transverse and longitudinal
temperatures, respectively. In the present study, we assume
that T? and Tz are time-independent when the reference
state is slowly evolving. Of course, the temperature
anisotropy is a source of instability [8], which is not being
considered in this model. The reference density profile n0
and reference potential f0 are determined self-consistently
from Eq. (10).
There are two terms that determine the dynamics of w in

Eq. (5). The ðdf 0=dtÞd term is explicitly related to the
perturbed fields, and the second ðdf 0=dtÞ0 term is related to
the fact that the reference state f 0 is not an exact solution
of the Vlasov–Maxwell equations. To carry out the df
particle simulations, we need to calculate the ðdf 0=dtÞ0
term first. Some straightforward algebra gives

1

f 0

df 0
dt

% &

0

¼ $
_H?

T?
$

_Hz

Tz
¼ _Hz

1

T?
$

1

Tz

% &
(28)

_Hz ¼ e_z
qff0ðr; zÞ

qz
. (29)

When the simulation is carried out without an initial
perturbation relative to the reference state, the perturbed
dynamics simulated gives the beam evolution relative to the
reference state. Typical results are shown in Fig. 8 for the
perturbed potential at a fixed location in a charge bunch
with sb ¼ 0:27,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T?=mc2

p
¼ 1:6* 10$3, Tz=T? ¼ 0:1, and

zb=rb ¼ 10. The perturbed quantities (df , df) can be
viewed as the leading-order description of a quiescent
beam, which is referred as a dynamic equilibrium in the
present study. Because the perturbed fields are generated
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by both the ðdf 0=dtÞ0 term and the initial perturbation, the
perturbed fields will be dominated by ðdf 0=dtÞ0 when the
initial perturbation is small. To utilize the low noise
advantage provided by the df -method, we need to
construct a reference state which is a relatively good
approximation to an equilibrium such that the perturbed
field produced by ðdf 0=dtÞ0 is small. In the examples
demonstrated in this paper, the typical fluctuation level
generated by ðdf 0=dtÞ0 is less than 5%. When an initial
perturbation is introduced relative to the dynamic equili-
brium, we observe collective excitations relative to the
dynamic equilibrium, which is illustrated in Fig. 9. The
spectrum of the perturbed potential df is shown in Fig. 10,
from which we conclude that the high-frequency compo-
nent of the perturbed potential is almost identical to that
shown in Fig. 6. By comparing Figs. 9 and 8, it is evident
that the perturbed fields for these two cases have similar
low-frequency components. Clearly, there is a natural
separation of scale-lengths in time for the collective
excitation and the dynamic equilibrium. For the collective
excitations, the dynamic equilibrium provides a slowly
evolving background. Another phenomena demonstrated
in Fig. 9 is that the high-frequency component of df is
damped, which is consistent with the result shown in Fig. 6
as discussed in Section 3.

5. Conclusions

Collective effects with strong coupling between the
longitudinal and transverse dynamics are of fundamental
importance for applications of high-intensity bunched
beams. In the present study, we have applied the nonlinear
Vlasov–Maxwell equations to this interesting topic, and
developed a generalized df particle simulation method for
high-intensity bunched beams with or without energy
anisotropy. Systematic studies were carried out for the

particle dynamics under strong 3D nonlinear space-charge
forces. The simulations showed that finite-bunch-length
effects on collective excitations are not significant when the
aspect ratio ðzb=rbÞ is larger than 10 for a moderately
intense beam with space charge intensity sb ¼ 0:27. For
bunched beams with energy anisotropy, a reference state
was constructed and the dynamical equilibrium was
established in the simulations. Collective excitations
relative to the dynamic equilibrium have also been
successfully simulated by the generalized df algorithm.
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