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The Paul Trap Simulator Experiment is a compact laboratory Paul trap that simulates a long,
thin charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG)
transport system by putting the physicist in the beam’s frame-of-reference. The transverse dynamics
of particles in both systems are described by similar equations, including all nonlinear space-charge
effects. The time-dependent quadrupolar electric fields created by the confinement electrodes of
a linear Paul trap correspond to the axially-dependent magnetic fields applied in the AG system.
Results are presented for experiments in which the lattice period and strength are changed over
the course of the experiment to transversely compress a beam with an initial depressed-tune of
0.9. Instantaneous and smooth changes are considered. Emphasis is placed on determining the
conditions that minimize the emittance growth and the number of halo particles produced by the
beam compression process. Both the results of particle-in-cell simulations performed with the warp
code and envelope equation solutions agree well with the experimental data.
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I. INTRODUCTION

The transverse compression of intense charged-particle
beams after acceleration and transport allows for the de-
livery of large numbers of particles and large amounts of
energy to small target spot sizes in applications such as
high energy and nuclear physics, ion-beam-driven high
energy density physics, heavy ion fusion, and spalla-
tion neutron sources [1–6]. The transverse compression
should ideally be executed over as few lattice periods of
the transport system as possible in order keep the overall
system length, and cost, minimized. However, transverse
compression cannot be applied so rapidly as to drastically
reduce the beam quality, excite collective-mode oscilla-
tions, or generate unwanted halo particles [7–11].

The Paul Trap Simulator Experiment (PTSX) is
a compact and flexible laboratory facility that simu-
lates the propagation of intense charged-particle beams
over thousands of lattice periods through magnetic
alternating-gradient (AG) quadrupole transport systems
[12–20]. The simulation makes use of the isomorphism
between the transverse equations of motion for particles
in the two systems [12, 21–23]. In the work described in
this paper, the PTSX facility has been used to perform
transverse plasma compression experiments in order to
develop a better understanding of the physics of trans-
verse compression of intense beams.

The PTSX device is a linear Paul trap [24] confining a
one-component plasma of particles with charge eb, where
the ebEext

⊥ forces that the PTSX electrodes exert on the
trapped plasma particles are analogous to the ebvz×Bext

⊥
forces that the AG system exert on the beam particles
in the beam frame provided that long, coasting beams
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that are thin relative to the AG system magnet spacing
are considered. Specifically, the amplitude and frequency
of the voltage waveform applied to the PTSX electrodes
correspond to the quadrupole magnet strength and lat-
tice spacing in the AG system. In addition to the equiv-
alence of the applied forces, the self-field forces in both
systems can be described by scalar potentials that obey
Poisson’s equation. In Ref. [12], it was shown that the
self-consistent transverse Hamiltonians and the resulting
Vlasov equations for the AG system and the PTSX sys-
tem are equivalent, neglecting end effects. Thus, the very
good confinement properties of ions in PTSX and the ar-
bitrary form of the voltage waveform applied to the con-
fining electrodes make PTSX a useful laboratory facility
in which to simulate transverse beam compression in an
AG system.

II. PTSX APPARATUS

As shown in Fig. 1, the PTSX device is a linear Paul

FIG. 1: The PTSX device consists of three cylindrical elec-
trodes with radius rw = 0.1 m, each divided into four 90◦ sec-
tors. An oscillating voltage ±V0(t) confines the charge bunch
in the transverse plane to a radius rp. Static voltages +V̂
on the end electrodes confine the ions axially within a length
2L = 2 m.

trap constructed from a 2.8 m-long, rw = 10 cm-radius
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cylinder. The cylinder is divided into two 40 cm-long
end cylinders and a 2L = 2 m-long central cylinder. All
cylinders are azimuthally divided into four 90◦ segments
so that when an oscillating voltage V0(t) is applied with
alternating polarity on adjacent segments, the resulting
oscillating transverse quadrupole electric field exerts a
ponderomotive force that confines the plasma radially.
To trap the plasma axially, the two end cylinders are
biased to a constant voltage V̂ . Voltage waveforms with
amplitudes up to 400 V and frequencies up to 100 kHz can
be used. The trapping voltage is nominally V̂ = 36 V.
The vacuum pressure of 5 × 10−9 Torr prevents neutral
collisions from playing an important role in the plasma
behavior.

The plasma source is a 1.5 cm-diameter aluminosilicate
cesium emitter. Singly-charged cesium ions are extracted
by applying a bias of less than 10 volts between the emit-
ter and an acceleration grid. The ions then pass through
a separately biased deceleration grid. The ion source is
situated in the middle of one of the 40 cm-long cylinders,
and to inject a pure cesium ion plasma into the trap, the
segments on this 40 cm-long cylinder are temporarily set
to oscillate with the voltage ±V0(t). The injection time
ti is several milliseconds in order to allow cesium ions
with several eV of kinetic energy to fill the trap. The
injection process is optimized by briefly suppressing ion
emission to allow ions to vacate the vicinity of the 40
cm-long trapping electrodes to ensure that the trapped
plasma is as quiescent and cool as possible [19].

After trapping the plasma for a time tt, that can be
up to 300 ms but is actually 1 ms for the experimental
results presented here, the 40 cm-long cylinder on the op-
posite end of the PTSX device from the ion source is set
to oscillate with voltage ±V0(t), and the plasma streams
out of the trap. Part of the exiting plasma is collected
on a moveable 5 mm-diameter collector disk. The inject-
trap-dump cycle is repeated to reduce the uncertainty
in the data. The collector is moved along a null in the
applied potential in the transverse plane in order to col-
lect a radial charge profile of the trapped plasma. The
radial density profile is then computed using the mea-
sured radial charge profile and knowledge of the area of
the collector and the length of the plasma column [14].
Note that since the plasma ions can take several millisec-
onds to leave the trap, the measurements are necessarily
averaged over hundreds of lattice periods.

III. TRAPPED PLASMA PROPERTIES

The circular cross section of the PTSX electrodes al-
lows the time-dependent electric potential to be cal-
culated analytically. Near the axis, the potential is
quadrupolar and the average smooth focusing frequency
[1] of particles’ transverse oscillations can be expressed
for an applied voltage V (t) = V0 max sin(2πft) as [1, 12]

ωq =
8ebV0 max

mbr2
wπf

ξ, (1)

where mb = 133 amu for Cs+ ions in PTSX. The fac-
tor ξ depends on the shape of the voltage waveform
and ξ = 1/2

√
2π for the sinusoidal waveform used

herein. Note that ξ = 4
√

3/(η
√

3− 2η) for a periodic
step-function waveform with fill-factor η (the so-called
Focusing–Off–Defocusing–Off, or FODO lattice). In ad-
dition, the smooth-focusing vacuum phase advance σsf

v
is given by σsf

v = ωq/f [1, 13, 15]. In order for the par-
ticles to be confined radially, the normalized beam in-
tensity s ≡ ω2

p(0)/2ω2
q must be less than unity, where

ωp(0) = [nb(0)e2
b/mbε0]1/2 is the on-axis plasma fre-

quency. The limit of low s corresponds to the regime
where the plasma’s space-charge effects are small, while
the limit s→ 1 corresponds to the limit of space-charge-
dominated beams. For a flat-top density profile, the nor-
malized beam intensity parameter s is related to the de-
pressed tune ν/νo as ν/ν0 =

√
1− s.

Under quasi-steady-state conditions, for a thermal
equilibrium distribution of particles, the average density
profile nb(r) is given by [1, 2]

nb(r) = nb(r = 0) exp

[
−mbω2

qr2 + 2ebφs(r)
2kT

]
. (2)

Here, k is Boltzmann’s constant, T = const. is the ef-
fective transverse temperature, and the space-charge po-
tential φs(r) is determined self-consistently from numer-
ical integration of Poisson’s equation r−1∂r(r∂rφs) =
−nb(r)eb/ε0. For kT → 0 (s → 1), the numera-
tor in the exponential must also approach zero in or-
der for the density to remain finite, and this implies
a nearly uniform density plasma. In the case of low
space-charge density (s → 0), the electrostatic poten-
tial term in the exponential can be neglected and the
radial density profile is nearly Gaussian. As the nor-
malized beam intensity s varies between 0 and 1, the
radial density profile smoothly changes from a flat-top
distribution, to a bell-curve shape, and finally to a Gaus-
sian. If Nb =

∫ rw

0 nb(r)2πr dr is the line density, and
R2

b = (1/Nb)
∫ rw

0 nb(r)2πr3 dr is the mean-square radius
of the plasma column, then the parameter ζ, defined
through the equation Nb = nb(0)πR2

bζ, is 1 when s = 0
and ζ = 2 when s = 1. For intermediate values of s,
ζ must be determined from the numerically integrated
solutions of Poisson’s equation (see Fig. 2).

Integration of Eq. (2) over the radial distribution gives
the global radial force balance equation [1]

mbω
2
qR2

b = 2kT +
Nbe2

b

4πε0
, (3)

which states that the applied confining force must bal-
ance both the thermal pressure and the repulsive space-
charge force. In the analysis of PTSX results, R2

b and Nb

are calculated as moments of the measured plasma den-
sity profiles; kT is the only parameter not known a priori
and is inferred from Eq. (3). The transverse emittance ε⊥
of a beam is the phase-space area that the beam particle
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FIG. 2: The average radial density profile nb(r) is determined
self-consistently from numerical integration of Poisson’s equa-
tion and Eq. 2. The parameter ζ = Nb/[nb(0)πR2

b)] is plotted
versus the normalized beam intensity parameter s. The pro-
file is Gaussian in the limit of weak space-charge, s → 0 and
ζ = 1. The profile is uniform when s → 1 and ζ = 2, corre-
sponding to a space-charge-dominated beam.

distribution occupies. Although the equivalent emittance
of the trapped plasma in PTSX is not directly measured,
relative changes in emittance can be inferred by noting
that the emittance scales as ε⊥ ∝ Rb

√
kT (Nb, Rb).

IV. TRANSVERSE COMPRESSION

Transverse compression of the beam can be achieved,
in accordance with the global force balance equation
[Eq. (3)], by increasing the transverse focusing frequency
ωq using the flexibility of the PTSX device to apply ar-
bitrary voltage waveforms to the transverse confinement
electrodes. Assuming that the line density Nb does not
change during the increase in ωq, the beam will be com-
pressed as long as any increase in the effective perpen-
dicular temperature kT is not too great. Analytical and
simulation work by Dorf et al. has explored the effects
of adiabatic changes in ωq on the transverse density pro-
file of the beam [11]. In the present work, the effects of
changing ωq are explored experimentally. The transverse
focusing frequency is proportional to V0 maxf−1 on PTSX
so that there are two experimental parameters that can
be changed to implement a variation in ωq. It is expected
that only the change in ωq is relevant, and not whether
the change is due to changes in V0 max or f .

Experiments on the transverse compression of plasmas
in PTSX due to changes in V0 max have been discussed by
Chung et al. [20] and those results will be summarized
here and discussed further in a broader context where
they are part of a more complete discussion of varia-
tions in ωq. Experiments in which f is varied in order
to adiabatically compress the beam demonstrate that de-

creases in f are equally well suited as increases in V0 max

for compressing the radial density profile and increasing
the peak density of the plasma. For the plasmas used
in these experiments with a normalized beam intensity
s = 0.2, Rb = 0.85 cm., and kT = 0.13 eV, the trans-
verse compression may still be considered adiabatic even
if the transition is made over only 4 lattice periods. Fur-
ther, the peak density scales with the transverse focus-
ing frequency as nb(0) ∝ ωq as expected. However, the
normalized beam intensity parameter decreases because
s ∝ ω−1

q due to the dependence of nb(0) on ωq. Instan-
taneous changes in ωq may still transversely compress
the plasma, but there is substantial emittance growth
(transverse heating) associated with this type of tran-
sition. Finally, slow changes in the average frequency
can be implemented as an example to demonstrate the
flexibility of the PTSX facility and emphasize basic key
points about beam stability.

V. CHANGES IN LATTICE AMPLITUDE V0 max

Adiabatic changes in ωq are made by letting ωq vary
according to

ωq(t) = ωq1 +
ωq0 − ωq1

2

[
tanh

−(t− τ1/2)
τ/2

+ 1
]

, (4)

where ωq0 is the initial value of ωq, ωq1 is the final value of
ωq, τ1/2 is the time where the transition is half complete,
and τ is the timescale over which the transition is made.
The product τf is then approximately equal to the num-
ber of lattice periods over which the transition is made.
When τ = 0, the transition is made instantaneously.

In Refs. [17, 18, 20], both adiabatic and instantaneous
changes in ωq of up to factor of 2.2 are made by increas-
ing the voltage waveform amplitude V0 max. Figure 6 of
Ref. [20] is reproduced here as Fig. 3 to demonstrate the
difference between instantaneous and adiabatic changes
in ωq and also demonstrate the good agreement between
the experimental results and the theoretical models. For
example, the results in Fig. 3 show that for increases in
ωq of 50%, instantaneous changes compress the plasma,
but the peak density increases by only 30%. The trans-
verse emittance increases by 25%. Further, the radial
density profile shows that a large number of particles are
transferred to a large radius forming a super-Gaussian
tail, corresponding to excitation of a halo particle popu-
lation. However, for an adiabatic increase in ωq of 50%
caused by an increase in V0 max, Fig. 3 shows that the
peak density increases by 40%. The emittance increases
by only a few percent. In this case, the radial density
profile remains approximately Gaussian. Over the range
0.6 < Vf/Vi < 1.6, the agreement between the experi-
mental data and the analytical estimates is particularly
good, confirming the scaling nb(0) ∝ ωq. Most inter-
estingly, it was also shown in Refs. [18, 20] that the
transition may be considered adiabatic when made over
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FIG. 3: Plots of the ratio of final to initial on-axis beam
density nbf (0)/nbi(0) for different values of Vf/Vi with f =
60 kHz [20]. The values nbf (0)/nbi(0) are either (a) estimated
from analytical theory, or (b) measured experimentally. Here,
the initial exact vacuum phase advance σvi is 52◦, which cor-
responds to σsf

v = 49.8◦. Both instantaneous (solid circles)
and adiabatic (open circles) transitions are presented.

more than about four lattice periods. Making the tran-
sition any more gradual than four lattice periods does
not compress the charge bunch any further. Finally, it
should be pointed out that particle-in-cell simulations
made with the warp code [25] are in excellent agree-
ment with the amplitude-change experiments described
here [11, 18, 20].

VI. CHANGES IN LATTICE PERIOD f = 1/T

In this section, increases in ωq created by decreas-
ing the frequency f = 1/T are considered. It is im-
portant to note here that voltage waveforms are ap-
plied to the PTSX electrodes by generating the waveform
V0 max sinφ(t), where φ is an arbitrary function of time,
so that once the functional form of the instantaneous
frequency φ̇(t)/2π is specified, it must be integrated to
obtain φ(t). To obtain a hyperbolic tangent transition of
the instantaneous frequency, the required phase function

is,

φ(t) = 2π
f1 + f0

2
t

+ 2π
f1 − f0

2
τ

2
ln

[
cosh

(−(t− t1/2)
τ/2

)]
. (5)

In Fig. 4, the final measured on-axis charge Q(0),

FIG. 4: The measured on-axis charge Q(0), which is propor-
tional to the peak plasma density, varies with the number of
initial lattice periods over which the increase in ωq is made.
Q(0) increases when the instantaneous frequency φ̇(t)/2π is
is decreased from 60 khz to 45 kHz. An instantaneous change
compresses the beam less and increases the emittance as com-
pared to an adiabatic change that is made over two or more
lattice periods.

which is proportional to the peak plasma density, is plot-
ted versus the number of initial lattice periods over which
the increase in ωq is made. The on-axis charge is 0.48 pC
corresponding to normalized beam intensity s = 0.2, the
rms radius is 0.85 cm and the temperature is 0.13 eV
before the charge bunch is compressed. Note that be-
cause the smooth-focusing vacuum phase σsf

v advance
scales like V 1

0 maxf
−2, σsf

v increases more rapidly when
the frequency is changed in order to compress the plasma
than when the amplitude is changed. Given the operat-
ing parameters of the baseline case (V0 max = 150 V,
f = 60 kHz), ωq cannot be increased as much compared
to when V0 max is increased, or else σsf

v will exceed the
single-particle orbit stability limit σsf

v critical = 115.6◦ [14].
Therefore, a maximum increase in ωq of 33% is used.

An instantaneous decrease (τ = 0) in the frequency
from 60 kHz to 45 kHz compresses the plasma and raises
the peak density by 17% while increasing the emittance
by 24%. If instead the transition is made over two or
more lattice periods, the peak density is raised by 30%
while the emittance does not change discernably. The ra-
dial density profiles in Fig. 5 show that an instantaneous
change causes the creation of a distortion of the original
Gaussian radial density profile, corresponding to exci-
tation of a halo particle population. The radial density



5

FIG. 5: The average radial density profile plotted versus r2 is
linear when the density profile is Gaussian. Both the baseline
case and the adiabatically compressed case have radial density
profiles that are Gaussian. In contrast, the instantaneously
compressed case has a radial density profile in which some
particles have been transferred to a larger radius, thereby
producing a super-Gaussian tail.

profile of the plasma after an adiabatic transition remains
Gaussian. That the peak density scales linearly with ωq

and that there is minimal emittance growth when ωq is
increased adiabatically agree well with the case where
V0 max is changed while f is held fixed. This confirms
the notion that ωq is the important control parameter in
characterizing beam compression, as opposed to either
V0 max or f separately. In both cases, the transition may
be considered adiabatic when the transition is made over
more than about four lattice periods. Note, however,
that the change in the smooth-focusing phase advance is
different in the two cases.

VII. ENVELOPE EQUATION MODEL
COMPARISON

It is informative to compare the experimental results to
the solutions of the coupled transverse envelope equations
where the initial condition is taken to be a KV-equivalent
matched-beam solution that has the same line density
Nb, rms radius Rb, and effective transverse temperature
T as those measured [1]. This KV-equivalent beam rep-
resents a uniform-density charge distribution that has an
elliptical cross-section with radii a and b in the trans-
verse x and y directions. If the frequency f is changed
instantaneously from 60 kHz to 45 kHz, then the mean
radius

√
ab decreases on average, but only by about 8%,

and the mean radius exhibits large oscillations as shown
in Fig. 6. Further, the oscillations are not characteristic
of a matched-beam solution. Note that the compression
agrees well with the observation of a 17% increase in peak
density in the experimental data since nb(0)R2

b = const.

FIG. 6: The mean radius
√

ab undergoes large-amplitude os-
cillations that do not correspond to a matched-beam solution
of the coupled envelope equations when an instantaneous de-
crease in the frequency φ̇(t)/2π from 60 kHz to 45 kHz to
compress the charge bunch is made.

It is important to note that the emittance was taken to
be constant in this calculation despite the fact that the
emittance is expected to, and indeed is observed to, in-
crease in the experiment itself.

If the same KV-equivalent beam is then subjected to
a transverse compression administered over 5 initial lat-
tice periods, then Fig. 7 shows that the final mean ra-

FIG. 7: The mean radius
√

ab decreases as an adiabatic de-
crease in the frequency φ̇(t)/2π from 60 kHz to 45 kHz made
over 5 initial lattice periods, τ = 5× (60 kHz)−1, compresses
the charge bunch. The compression is more than in the in-
stantaneous change case, and the mean radius oscillations cor-
respond to a beam that is still well-matched.

dius is smaller by 12% which is consistent with the ob-
served increase in peak density of 30% mentioned above,
since 1.122 = 1.25. After the compression, the oscilla-
tions in the mean radius are much smaller than in the
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instantaneous-change case, and the beam remains well
matched after the adiabatic transition.

VIII. NON-MONOTONIC VARIATION OF ωq

Having demonstrated that adiabatic, monotonic
changes in the transverse focusing frequency ωq can
transversely compress the plasma when applied over as
few as four lattice periods, regardless of whether the
change is made by changing the lattice field-strength or
the periodicity, non-monotonic changes in ωq are now
considered. The applied voltage waveforms considered
in this section allow the effects of varying ωq(t) to be
explored. The experimental results presented here pro-
vide a good example of the flexibility that the PTSX fa-
cility possesses, through the arbitrary voltage waveform
V (t), to simulate a wide variety of magnetic alternating-
gradient transport system configurations.

The specific form of ωq(t) that is considered is moti-
vated by noting the difference between the instantaneous,
or actual frequency φ̇(t)/2π of the applied voltage wave-
form V (t) = V0 max sinφ(t) and the average frequency
φ/2πt. In contrast to what was considered in the pre-
vious sections, if it is now required that the average fre-
quency be prescribed by a hyperbolic tangent function in
time, then the instantaneous frequency acquires a non-
monotonic form; therefore, so do ωq(t) and σsf

v (t). The
phase function assumes the form,

φ(t) = 2πf1t + π(f0 − f1)t
[
tanh

−(t− t1/2)
τ/2

+ 1
]

. (6)

Both φ/2πt and φ̇(t)/2π are plotted in Fig. 8 for the case
where the initial frequency is 60 kHz, the final frequency
is 50 kHz, and the transition is made over 1 ms. In this
case, τ = 21.35f−1

0 and τ1/2 = 0.5 ms.
Figure 9 shows the results of several experiments where

the initial frequency f0 is 60 kHz, and the final frequency
f1 ranges from 55 kHz to 47 kHz. The on-axis charge is
plotted versus the number of initial lattice periods over
which the frequency change is applied. Depending on
the final frequency, there is a threshold value τc(f1) of
the transition rate below which transverse confinement
is lost. For the cases where f1 is 55 kHz and 50 kHz,
data were also taken for τ = 0, where the transitions
are instantaneous and it is found that the plasma is not
lost. Finally, when τ > τc so that the transition is suffi-
ciently gradual, the long-time value of the on-axis charge
scales linearly with f1/f0 as expected. It is found that
the plasma will adjust its shape to maintain global force
balance as long as ωq is varied sufficiently slowly. For
completeness, a data set is displayed in Fig. 10 in which
f1 = 90 kHz so that the charge bunch is allowed to ex-
pand. In this case, the transverse confinement is never
completely lost, in contrast with the results shown in
Fig. 9. Although, when the transition is made more
rapidly than approximately 15 initial lattice periods, the

FIG. 8: If the average frequency φ(t)/2πt (solid) decreases like
the hyperbolic tangent from 60 kHz to 50 kHz, then the in-
stantaneous frequency φ̇(t)/2π (dashed) also transitions from
f0 to f1, but undershoots. In this case, both the transverse
focusing frequency and the phase advance overshoot.

FIG. 9: The measured on-axis charge Q(0), which is propor-
tional to the peak plasma density, varies with the number of
initial lattice periods over which the increase in ωq is made.
Adiabatic decreases in the average frequency φ(t)/2πt com-
press the plasma and raise the on-axis charge Q(0) only if the
transition time τ is greater than some critical time τc. Oth-
erwise, plasma confinement is lost. The exception is if the
decrease in frequency is made instantaneously.

final on-axis charge is smaller than when the transition
is made more gradually.

These results can be understood by considering what
is happening to the instantaneous frequency during the
transition. Figure 8 shows how both the instantaneous
and average frequencies vary during the transition to a
lower frequency. When the average frequency assumes
the form of the hyperbolic tangent function, the instanta-
neous frequency undershoots by an amount that depends
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FIG. 10: The measured on-axis charge Q(0), which is pro-
portional to the peak plasma density, is plotted versus the
number of initial lattice periods over which the decrease in
ωq is made. If the average frequency φ(t)/2πt is increased
from 60 kHz to 90 kHz, then the plasma is allowed to expand,
thus reducing the on-axis charge Q(0). If the transition rate
τ is less than about 15 initial lattice periods, then there is a
further expansion of the plasma. As the transition rate ap-
proaches zero and the transition becomes instantaneous, the
increased expansion disappears.

on the difference between the initial and final frequencies
and the transition rate. If the minimum instantaneous
frequency is small enough so that the smooth-focusing
vacuum phase advance exceeds the single-particle orbit
stability limit, then transverse confinement will be lost.
The transcendental equation that results from writing
down the condition that the maximum smooth-focusing
vacuum phase advance equals σsf

v critical can be solved nu-
merically to find τc for a given f0 and f1. For the data
in Fig. 9 f0 = 60 kHz and so τc(f1) can be computed
and compared to the measured values of τc as in Fig. 11.
The excellent agreement confirms that transverse con-
finement of the charge bunch is indeed lost because the
single-particle orbits become unstable.

In the case where the average frequency is changed
instantaneously, the smooth-focusing vacuum phase ad-
vance does not exceed σsf

v critical at any time, and the
charge bunch remains confined. Transverse compres-
sion is achieved, but with substantial emittance growth.
When ωq is decreased by increasing the final frequency as
in Fig. 10, ωq and σsf

v undershoot during the transition
and the single-particle orbits remain stable. However,
when the transition is too rapid, the undershoot in ωq al-
lows the charge bunch to expand and the particles to be
lost to the wall, resulting in a decreased on-axis charge
after the transition in complete.

These results are also confirmed by the solutions of
the coupled transverse envelope equations. For the case
where f0 = 60 kHz, f1 = 50 kHz and τ = τc = 21.35f−1

0 ,
the mean radius is observed to momentarily increase be-

FIG. 11: The values of τc extracted from the data in Fig. 9 are
plotted together with a curve derived from solving the equa-
tion that results from demanding that the maximum smooth-
focusing vacuum phase advance that occurs during the tran-
sition equal the maximum value for single-particle orbit sta-
bility 115.6◦.

fore settling to an un-matched oscillation about a larger
mean radius [Fig. 12(a)]. It is not until τ = 26f−1

0
that the long-time oscillations in the mean radius cor-
respond to a matched-beam solution [Fig. 12(b)]. Con-
versely, once τ < 19.9f−1

0 , the mean radius exceeds the
10 cm wall radius of the machine during a portion of the
transition [Fig. 12(c)]. Finally, in good agreement with
the experimental data, an instantaneous decrease in the
frequency causes the mean radius to oscillate about a
smaller long-time value, demonstrating transverse com-
pression, albeit with an increase in emittance [Fig. 12(d)].

IX. CONCLUSIONS

The transverse compression of a charged particle beam
moving through a magnetic alternating-gradient trans-
port system can focus the beam to a small spot size in
order to deliver more particle flux and energy to the tar-
get. It is important to determine how few lattice peri-
ods are needed to make such a transverse compression
while maintaining a reasonably well-matched beam en-
velope. The results of experiments performed with the
flexible PTSX facility show that for moderately intense
beams with normalized beam intensity parameter s = 0.2
(ν/ν0 ∼ 0.9), transverse compression can be affected by
changes in the smooth-focusing frequency ωq over only
four lattice periods. The changes in ωq can be made by
using the arbitrary waveform voltage V (t) to change ei-
ther the field-strength or the lattice periodicity, although
the final smooth-focusing vacuum phase advance depends
on whether V0 max or f is changed. As long as the tran-
sition is made sufficiently gradual, even non-monotonic
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FIG. 12: The evolution of the mean radius
√

ab is plotted
for four different values of the transition timescale τ . (a)
When τ = τc, the mean radius undergoes large-amplitude os-
cillations and the final beam is not well-matched. (b) When
τ " τc (26f−1

0 here), the charge bunch is able to follow the
changing transverse focusing frequency and the final state is
well-matched. (c) As τ is decreased further from τc, the mean
radius grows to the wall radius rw = 10 cm. (d) Instantaneous
changes compress the plasma, but leave large residual oscilla-
tions of the mean radius.

changes in ωq can be made.
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