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Abstract. The values of ion–atom ionization and stripping cross-sections are
frequently needed for many applications that utilize the propagation of fast
ions through matter. When experimental data and theoretical calculations are
not available, approximate formulae are frequently used. This paper briefly
summarizes the most important theoretical results and approaches to cross-
section calculations in order to place the discussion in historical perspective
and offer a concise introduction to the topic. Based on experimental data and
theoretical predictions, a new fit for ionization cross-sections is proposed. The
range of validity and accuracy of several frequently used approximations (classical
trajectory, the Born approximation, and so forth) are discussed using, as examples,
the ionization cross-sections of hydrogen and helium atoms by various fully
stripped ions. A formulary of analytical approximations for cross-sections is
presented.
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1. Introduction

Ion–atom ionizing collisions play an important role in many applications such as heavy ion
inertial fusion [1], collisional and radiative processes in the Earth’s upper atmosphere [2], ion-
beam lifetimes in accelerators [3], atomic spectroscopy [4], and ion stopping in matter [5], and
are of considerable interest in atomic physics [6]. The recent resurgence of interest in charged
particle beam transport in background plasma is brought about by the recognition that plasma
can be used as a magnetic lens. Applications of the plasma lens ranging from heavy ion fusion
to high energy lepton colliders are discussed in [6]–[10]. In particular, both heavy ion fusion
and high energy physics applications involve the ion transport in plasmas and gases: partially
stripped heavy elements for heavy ion fusion; positrons for electron–positron colliders [9]; and
high-density laser-produced proton beams for the fast ignition of inertial confinement fusion
targets [11].

To estimate the ionization and stripping rates of fast ions propagating through gas or plasma,
the values of ion–atom ionization cross-sections are necessary. In contrast to the electron [12] and
proton [13]–[15] ionization cross-sections, where experimental data or theoretical calculations
exist for practically any ion and atom, the knowledge of ionization cross-sections by fast complex
ions and atoms is far from complete [16]–[19], [20]. When experimental data and theoretical
calculations are not available, approximate formulae are frequently used.

The raison d’etre of this paper are the frequent requests that we have had from colleagues
for a paper describing the regions of validity of different approximations and scaling laws

New Journal of Physics 8 (2006) 278 (http://www.njp.org/)

http://www.njp.org/


3 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

in the calculation of ion–atom ionization and stripping cross-sections. The experimental data
on stripping cross-sections at low projectile energy were collected in the late 1980s, while
comprehensive quantum-mechanical simulations were performed in the late 1990s. Having in
hand both new experimental data and simulation results enabled us to identify regions of validity
of different approximations and propose a new scaling law, which is the subject of the present
paper.

The most popular formula for ionization cross-sections was proposed by Gryzinski [21].
The web of science search engine [22] shows 457 citations of the paper, and most of the citing
papers use Gryzinski’s formula to evaluate the cross-sections. In this approach, the cross-section
is specified by multiplication of a scaling factor and the unique function of the projectile velocity
normalized to the orbital electron velocity. The popularity of Gryzinski’s formula is based on the
simplicity of the calculation, notwithstanding the fact that his formula is not accurate at small
energies.

Another fit, proposed by Gillespie, gives results close to Gryzinski’s formula at large
energies, and makes corrections to Gryzinski’s formula at small energies [23]. Although more
accurate, Gillespie’s fit is not frequently used in applications, because it requires a knowledge
of fitting parameters not always known a priori.

In [24], we have proposed a new fit formula for ionization cross-section which has no
fitting parameters. The formula is checked against available experimental data and theoretical
predictions. In the present paper, we compare this scaling formula for impact-ionization cross-
sections with a much broader selection of experimental results. Note that previous scaling laws
either used fitting parameters or actually did not match experiments for a wide range of projectile
velocities. We also briefly review the most important theoretical results and approaches to
cross-section calculations in order to place the discussion in historical perspective and offer
non-specialists a concise introduction to the topic. The advantages and limitations of two most
widely used approximations—the classical mechanical calculations and the Born approximation
of quantum mechanics—are reviewed.

The organization of this paper is as follows. In section 2 we give a brief overview of key
theoretical results and experimental data. Further details of the theoretical models are presented
in appendices. The new proposed fit formula for ionization cross-section is presented at the end
of section 2, including a detailed comparison with experimental data, and in section 3 a short
summary of theoretical approaches and their limitations is presented. Finally, a formulary of
analytical approximations for cross-sections and their limitations is presented in section 4 for
reference purposes.

2. Overview of experimental data and proposed scaling laws for ionization cross-sections

There are several theoretical approaches to cross-section calculations. These include: classical
calculations that make use of a classical trajectory and the atomic electron velocity distribution
functions (EVDFs) given by quantum mechanics (this approach is frequently referred to as
classical trajectory Monte Carlo (CTMC)); quantum-mechanical calculations based on Born,
eikonal or quasi-classical approximations, and so forth [16]–[19], [20]. All approaches are
computationally intensive and the error and range of validity are difficult to estimate in most
cases. Therefore, different fittings and scalings for cross-sections are frequently used in practical
applications.
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Most scalings were developed using theories and simulations based on classical mechanics.
Classical trajectory calculations are easier to perform compared with quantum-mechanical
calculations. Moreover, in some cases the CTMC calculations yield results very close to the
quantum-mechanical calculations [25]–[28]. The reason for similar results lies in the fact that
the Rutherford scattering cross-section is identical in both classical and quantum-mechanical
derivations [29]. Moreover, the ionization probabilities for hydrogen-like orbitals calculated
in the quantum mechanical and classical mechanical approaches are very similar, as shown
in appendix B (see figure B.2). Therefore, when an ionizing collision is predominantly a
consequence of the electron scattering at small impact parameters close to the nucleus, the
quantum mechanical uncertainty in the scattering angle is small compared with the angle itself,
and the classical calculation can yield an accurate description [30]–[32]. Whereas in the opposite
limit, when an ionizing collision is predominantly a consequence of the electron scattering at large
impact parameters far from the nucleus, the quantum-mechanical uncertainty in the scattering
angle is large compared with the angle itself, and the classical calculation can remarkably fail in
computing the ionization and stripping cross-section [33, 34]. Similarly, the Born approximation
can grossly overestimate the cross-sections if the transition probability is not small and the Born
approximation is not valid.

In the present analysis, we consider first the ionization cross-section of the hydrogen-like
electron orbitals (for example one-electron ions), with nucleus of charge ZT , colliding with a
fully stripped ion of charge Zp. Subsequently, we show that the approach can be generalized
with reasonable accuracy for any electron orbital, making use of the ionization potential of the
electron orbitals. Because different terminology is used in the literature, we call a stripping
collision a collision in which the fast ion loses an electron in a collision with a stationary target
ion or atom (in the laboratory frame); and we call an ionizing collision a collision in which a
fast ion ionizes a stationary target ion or atom [16]. Both cases are physically equivalent to each
other by changing the frame of reference, and further consideration can be given in the frame
of the atom or ion being ionized. In accelerator applications, the electron stripping from the
accelerated ions usually occurs due to collisions with neutral atoms of residual gas, because the
gas density is larger than the plasma density. However, in heavy ion fusion or high energy density
physics applications, the interaction of intense ion beams with a background plasma is becoming
increasingly important, where electron stripping occurs due to collisions with the ions.

Atomic units are used throughout this paper with e = h̄ = me = 1, which corresponds to
length normalized to a0 = h̄2/(mee

2) = 0.529 × 10−8 cm, velocity normalized to v0 = e2/h̄ =
2.19 × 108 cm s−1, energy normalized toE0 = mev

2
0 = 2 Ry = 27.2 eV, where Ry is the Rydberg

energy. The normalizing coefficients are kept in all equations for robust application of the
formulae. For efficient manipulation of the formulae it is worth noting that the normalized
projectile ion velocity is v/v0 = 0.2

√
E[keV amu−1], where E is energy per nucleon in

keV amu−1. Therefore, 25 keV amu−1 corresponds to the atomic velocity scale. Some papers
express the normalized velocity v/v0 as βα, where β = v/c, and v0/c = α = 1/137. Here, c is
the speed of light, and α is the fine structure constant.

For a one-electron ion, the typical scale for the electron orbital velocity is vnl = v0ZT . Here,
n, l is the standard notation for the main quantum number and the orbital angular momentum
[29]. The collision dynamics is very different depending on whether v is smaller or larger
than vnl.

If v � vnl, the electron interaction with the projectile ion occurs for a very short time and
the interaction time decreases as the velocity increases. Therefore, the ionization cross-section
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also decreases as the velocity increases. In the opposite case v � vnl, the electron circulation
around the target nucleus is much faster than the interaction time, and the momentum transfer
from the projectile ion to the electron averages out due to the fast circulation. Thus, the cross-
section decreases as the projectile velocity decreases. This is why the cross-section typically
has a maximum at v = vmax∼vnl, but as we shall see below, vmax also depends on the charge of
the projectile. The description of cross-sections in the limiting cases of very high and very low
velocities can be significantly simplified. Historically, the study of cross-sections started in the
beginning of 20th century and proceeded with refinements until the present as can be seen in the
following historical overview.

2.1. Behaviour of cross-sections at large projectile velocities v � vnt

2.1.1. Thompson’s treatment. In the first treatment, Thompson calculated the ionization cross-
section in the limit v � vnl [35]. This treatment neglected completely the orbital motion of the
target electrons and assumed a straight-line trajectory of the projectile. In this approximation, the
velocity kick acquired by the electron during the collision is entirely in the direction perpendicular
to the ion trajectory, because the final action of the force along the trajectory cancels out due to
symmetry, i.e., the electron velocity change during the approaching phase is equal to minus the
electron velocity change during the departing phase. The momentum acquired by the electron
(me�v) from passing-by projectile moving with the speed v and impact parameter ρ is given
by the integral over time of the force perpendicular to ion trajectory F⊥ = e2Zpρ/(ρ2 + v2t2)3/2,
where t = 0 corresponds to the distance of the closest approach. Time integration of the force
yields

�v(ρ) = 2e2Zp

mevρ
. (1)

From equation (1) it follows that only collisions with sufficiently small impact parameters result in
ionization. The minimum impact parameter for ionization of an initially stationary electron (ρmin)
is me�v(ρmin)

2/2 = Inl. During a collision with impact parameter ρmin the energy transfer from
the projectile to the electron is equal to the ionization potential Inl = Z2

T E0/2, or �v(ρmin) = vnl.
Substitution of equation (1) gives the total ionization cross-section πρ2

min [30, 35]

σBohr(v, Inl, Zp) = 2πZ2
pa

2
0

v2
0E0

v2Inl

. (2)

Similarly, equation (2) can be derived by averaging the Rutherford cross-section over all
scattering angles leading to ionization. Although the first derivation of equation (2) was done by
Thompson [35] the formula is frequently referred to as the Bohr formula [16].

As shown in following, taking finite orbital electron velocity into account gives a cross-
section which is about 5/3 times larger than the Bohr formula in equation (2). This is a
consequence of the fact that for an electron with nonzero velocity less energy transfer is required
for ionization.

2.1.2. Gerjuoy’s treatment. The following treatments account for the effect of finite electron
orbital velocity. The most complete and accurate calculations were done by Gerjuoy [36].
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He calculated the differential cross-section dσ/d�E(ve, v, �E) of energy transfer �E in the
collision between the projectile ion and a free electron (the target atomic potential was neglected)
with given initial speed ve (and arbitrary direction), by averaging the Rutherford cross-section
over all orientations of electron orbital velocity ve. The total cross-section is then calculated by
integration over the energy transfer for energies larger than the ionization potential, and weighted
by the EVDF f (ve). This gives

σ(v, Inl, Zp) = Z2
p

∫ ∞

0
σInl

(v, ve)f (ve) dve, (3)

where

σInl
(v, ve) =

∫ ∞

Inl

dσ

d�E
(v, ve, �E) d�E. (4)

A rather complicated analytical expression for dσ/d�E(ve, v, �E) is given in appendix A. For
large projectile ion velocities (v � vnl), the differential cross-section can be expressed as [36]

dσ
high−energy
classical

d�E
(v, ve, �E) = 2πa2

0

E2
0

�E3mev2

(
2mev

2
e

3
+ �E

)
. (5)

Substituting equation (5) into equations (3) and (4) gives

σ
high−energy
classical (v, Inl, Zp) = 5

3Bnlσ
Bohr(v, Inl, Zp), (6)

Bnl ≡ 3

5

(
2Knl

3Inl

+ 1

)
, (7)

where σBohr is given by equation (2), and Knl ≡ 〈mev
2
e/2〉nl is the average orbital electron

kinetic energy. For hydrogen-like electron orbitals, the average electron kinetic energy is
equal to the ionization potential Knl = Inl [29], and Bnl = 1. The Bnl factors are introduced
to account for the difference in the EVDFs from the EVDF of the hydrogen-like electron
orbitals. The data for Knl are calculated for many atoms in [37]. For example, the average kinetic
energy for the helium atom is Knl ≡ 〈mev

2
e/2〉 = 1.43E0, whereas Inl = 0.91E0, and therefore

BHe = 1.22.
Taking finite orbital electron velocity into account gives a cross-section which is about 5/3

times larger than the Bohr formula in equation (2). This is a consequence of the fact that for an
electron with nonzero velocity less energy transfer is required for ionization. To calculate Knl

the EVDF can be obtained from a microcanonical ensemble.
Classical mechanics gives the EVDF as a microcanonical ensemble, where

f (ve) = Cv2
e

∫
δ

(
mev

2
e

2
− ZT

r
+ Inl

)
r2 dr. (8)

Here, C is a normalization constant defined so that
∫

f (ve) dve = 1, and δ(. . .) denotes the
Dirac delta-function. Interestingly, the EVDF for a one-electron ion is identical in both the
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quantum-mechanical and classical calculations [29, 37] with

f (ve) = 32v5
nl

π

v2
e

[v2
e + v2

nl]
4
, (9)

where vnl is the scale of electron orbital velocity

vnl = v0

√
2Inl/E0. (10)

Although a microcanonical distribution provides the same velocity distribution as in quantum
theory for hydrogen-like shells, this is not the case for other electron shells. Moreover, the spatial
distribution of the charge density is poorly approximated even for hydrogen, vanishing identically
for r > 2a0 rather than decreasing exponentially [18]. Substituting the general differential cross-
section dσ/d�E(ve, v, �E) from equation (A.3) of appendix A and the EVDF in equation (9)
into equation (3) yields

σGGV(v, Inl, Zp) = πa2
0Z

2
p

E2
0

I2
nl

GGGV

(
v

vnl

)
. (11)

Here, the scaling function GGGV(x) is given by equation (A.10) in appendix A. Approximate
formulae are presented in equation (66) using the tabulation of the function G(x) presented
in [38] for x > 1, and in [39] for x < 1. The notation GGV stands for the classical trajectory
calculation in equation (66) due to Gerjuoy [36] using the fit of Garcia and Vriens [38].

2.1.3. Bethe’s treatment. The classical calculations underestimate the cross-sections for very
high projectile velocities v � vnl. The scattering angle of the projectile due to collision with the
target atom is of order θc = �p/Mv, where �p is the momentum transfer in the collision, and M is
the mass of the projectile particle. The minimum energy transfer from the projectile is determined
by the ionization potential, with�E = v�p > Inl and�p > �pmin ≡ Inl/v. Here, we use the fact
that the momentum transfer �p is predominantly in the direction perpendicular to the projectile
velocity. The projectile particle with wave vector k = Mv/h̄ undergoes diffraction on the object
of the target atomic size anl with the diffraction angle of order θd = 1/(kanl) = h̄/(Mvanl)

[30]. At large projectile velocities v � vnl, it follows that �pmin ≡ Inl/v � h̄/anl, because
vnl = Inlanl/h̄ for hydrogen-like electron orbitals. And for small �p ∼ �pmin, it follows that
θc = �p/Mv � θd = h̄/(Mvanl). Therefore, the collision cannot be described by classical
mechanics in the limit v � vnl.

Bethe made use of the Born approximation of quantum mechanics to calculate cross-sections
[40] (see appendix B for details). This yields for v � vnl

σBethe = σBohr(v, Inl, Zp)

[
0.566 ln

(
v

vnl

)
+ 1.261

]
. (12)

If the projectile speed is much larger than the electron orbital velocity v � vnl, the logarithmic
term on the right-hand side of equation (12) contributes substantially to the cross-section, and as
a result the quantum-mechanical calculation in equation (12) gives a larger cross-section than the
classical trajectory treatment in equation (6). The quantum-mechanical cross-section is larger
than the classical trajectory cross-section due to the contribution of large impact parameters (ρ) to
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the quantum-mechanical cross-section, where the ionization is forbidden in classical mechanics
because the energy transfer calculated by classical mechanics is less than the ionization potential
(�E = v�pc(ρ) < Inl, where �pc is the momentum transfer given by classical mechanics in
equation (1)). However, ionization is possible due to diffraction in quantum mechanics [41].
Moreover, integration over these large impact parameters where the ionization is forbidden in
classical mechanics, contributes considerably to the total ionization cross-section (see appendix
B for further details).

2.1.4. Gryzinski’s treatment. Gryzinski attempted to obtain the ionization cross-sections using
only classical mechanics similarly to Gerjuoy. But in order to match the asymptotic behaviour of
the Bethe formula in equation (12) at large projectile velocities, Gryzinski assumed an artificial
EVDF instead of the correct EVDF in equation (9) [21], i.e.,

f Gryz (ve) = 1

vnl

(
vnl

ve

)3

exp

(
−vnl

ve

)
. (13)

The ionization cross-section was calculated by averaging the Rutherford cross-section over all
possible electron velocities, similar to the Gerjuoy calculation in equation (3), but was less
accurate for small velocities v < vnl. The effect of using the EVDF in equation (13) is to populate
the EVDF tail with a much larger fraction of high-energy electrons with ve � vnl, which gives
f Gryz (ve) ∼ v−3

e instead of f (ve) ∼ v−6
e for the correct EVDF in equation (9). As a result, the

average electron kinetic energy 〈mev
2
e/2〉 diverges, which leads to a considerable enhancement

of the ionization cross-section at high projectile velocities. For v � vnl, Gerjuoy’s calculation of
the differential cross-section dσ/d�E(ve, v, �E) of energy transfer �E is similar to Gryzinski’s.
Therefore, we can substitute equation (13) into equations (5) and (4). Because in the limit v � vnl

the ionization cross-section is proportional to the average electron kinetic energy 〈mev
2
e/2〉

(equation (6)), and the average kinetic energy diverges, it follows that a small population of
high-speed electrons contributes considerably to the cross-section. Using the general expression
for dσ/d�E(ve, v, �E) avoids singularity and yields the logarithmic term in the ionization cross-
section similar to the Bethe formula in equation (12).After a number of additional simplifications
and assumptions, Gryzinski suggested an approximation for the cross-section in the form given
by equation (11) with [21]

σGryz(v, Inl, Zp) = πa2
0Z

2
p

E2
0

I2
nl

GGryz

(
v

vnl

)
. (14)

Here, the function GGryz(x) is specified by equation (70) of Formulary. In equation (14), the
function GGryz(x) has the following limit

GGryz(x) → [1 + 0.667 ln(2.7 + x)]/x2 as x → ∞, (15)

which is close to Bethe’s result in equation (12),

GBethe(x) → [1.261 + 0.566 ln(x)]/x2 as x → ∞. (16)

For 10 < x < 40, it follows that

GGryz(x)/GBethe(x) � 1.04. (17)

Therefore, the Gryzinski formula can be viewed as a fit to the Bethe formula at large velocities
v � vnl with some rather arbitrary continuation to small velocities v � vnl.
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Figure 1. Ionization cross-sections of hydrogen by fully stripped ions showing
both experimental data and theoretical fits. GGV stands for the classical
calculation in equation (11) due to Gerjuoy using the fit of Garcia andVriens. Gryz
denotes the Gryzinski approximation in equation (14). Bethe stands for Bethe’s
quantum-mechanical calculation in the Born approximation, limited to v > vnl

in equation (12). Finally, BA denotes the Born approximation in the general
case in equation (22). All values are in atomic units. For hydrogen, the ionization
potential is Inl = 1/2E0, vnl = v0 = 2.19 × 108 cm s−1, and the cross-section is
normalized to πa2

0/I
2
nl = 3.51 × 10−16 cm2. Symbols show experimental data.

2.1.5. Experimental verification of approximate formulae. Figure 1 shows the experimental
data for the cross-section for ionizing collisions of fully stripped ions colliding with a hydrogen
atom,

Xq+ + H(1s) → Xq+ + H+ + e, (18)

where Xq+ denotes fully stripped ions of H, He, Li atoms, and (1s) symbolizes the ground state
of a hydrogen atom. The experimental data for H+ ions were taken from [42, 43] (note that
authors of this reference concluded that the previous measurements of the cross-sections were
inaccurate); from [44] for He2+; and from [45] for Li3+ ions. These data were compared to
theoretical approximate formulae in [24]. In addition to fully stripped ions, multiple charged
ions C4+, N5+ and O5+ were added from [46]. For these highly charged ions the ionization occurs
at large impact parameters, large compared with the electron orbit radius of ions; at these large
impact parameters, the force acting on target electron is described by the Coulomb potential,
therefore analytical formulae based on the Rutherford scattering should be valid.

From figure 1 it is evident that the Bethe formula describes well the cross-sections for
projectile velocities larger than the orbital velocities v � vnl.At large energies, the GGV formula
underestimates the cross-sections as discussed before, whereas Gryzinski’s formula gives results
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close to the Bethe formula and the experimental data. Both the GGV and Gryzinski formulae
disagree with the experimental data at small energies.

2.2. Behaviour of cross-sections at small projectile velocities v � vnl

The Bethe, GGV and Gryzinski’s formulae fail at small velocities because they assume free
electrons, neglecting the influence of the target atom potential on the electron motion during
the collision. Apparently the assumption of free electron motion fails if the circulation period
of the electron around the atom’s nucleus is comparable with the interaction time of an ion with
the electron [30]. Let us now estimate the projectile velocities at which the electron circulation
needs to be taken into account. The typical impact parameter leading to ionization is

ρioniz �
√

σBohr

π
= 2a0v

2
0Zp

vvnl

, (19)

and the interaction time is of the order ρioniz/v. The electron circulation time is τnl � anl/vnl,
where vnl is the electron orbital velocity, which scales as vnl = ZT v0, and anl is the ion radius
anl = a0/ZT [41]. Therefore the condition τnl > ρioniz/v holds for v > vmax, where

vmax = vnl

√
2Zp/ZT . (20)

Here,Zp is the charge of the fully stripped projectile andZT is the nuclear charge of the target atom
or ion for one electron ions. For general atoms ZT can be estimated from the ionization potential
as ZT ≈ √

2Inl/E0. For velocities larger than vmax, the ionization cross-section decreases as the
velocity increases (see equation (12)) due to the decreasing interaction time with an increase in
velocity. On the other hand, for velocities less thanvmax, the collision becomes more adiabatic. The
influence of the projectile is averaged out due to the slower motion of the projectile compared
with the electron orbital velocity, and the ionization cross-section decreases with decreasing
projectile velocity. Thus, the cross-section has a maximum at v � vmax (equation (20)).

Note that if the projectile speed is comparable with or smaller than the electron
orbital velocity v < vnl, the Born approximation of quantum-mechanical theory is not valid.
Cumbersome quantum-mechanical simulations are necessary for an exact calculation of the
cross-sections, as for example in [48]. Nevertheless for the case 2Zp ∼ ZT the maximum of the
cross-section calculated from the Born approximation is similar to the experimental results. To
describe the behaviour of the cross-section near the maximum, the second-order correction in
the parameter vnl/v has been calculated in [49, 50], yielding the cross-section in the form

σBethe
mod (ṽ) = πa2

0

E2
0

I2
nl

Z2
p

ṽ2

[
0.566 ln

(
ṽ
)

+ 1.26 − 0.66
1

ṽ2

]
, (21)

where ṽ = v/vnl. Equation (21) agrees with the exact calculation in the Born approximation
(equation (B.1)) as described in appendix B (the agreement is within 10% for ṽ > 1.1). We have
developed the following fit for the cross-section in the Born approximation in the general case,

σBA
fit (ṽ) = πa2

0

E2
0

I2
nl

Z2
p

ṽ2

[
0.283 ln

(
ṽ2 + 1
)

+ 1.26
]

exp

[
− 1.95

ṽ(1 + 1.2ṽ2)

]
. (22)
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Equation (22) agrees with the exact calculation (equation (B.1)) within 2% for ṽ > 1, and within
20% for 0.2 < ṽ < 1.

Equations (21) and (22) were derived in the plane wave approximation, i.e., using the
unperturbed atomic electron wavefunctions for calculation of matrix elements. This implicitly
assumes that the projectile particle transfers momentum to the electron to be ionized quickly at
large distances. The electron wavefunction of ionized electron can therefore be described as a
continuous spectrum of the target atomic electron, not affected by the projectile.

This assumption breaks down at low projectile velocities when the projectile velocity is
comparable with the electron orbital velocity. Indeed, the electron kinetic energy in the frame
of the projectile is of order mev

2/2 and the potential energy Zpe
2/ρioniz, where ρioniz is the

impact parameter leading to ionization, given by equation (19). Substituting ρioniz from equation
(19) into electron potential energy Zpe

2/ρioniz gives that potential energy is larger than kinetic
energy if

v < vnl. (23)

Therefore, under the condition in equation (23), an electron can be effectively captured by the
projectile after the collision instead of leading to ionization. As a result, the ionization cross-
section is small compared with the charge exchange cross-section at low projectile velocities. The
assumption of the unperturbed electron wavefunction results in grossly overestimated ionization
cross-sections as can be seen in figure 1.

The ionization cross-sections are also difficult to measure at small projectile energies,
because careful separation between the large charge exchange cross-section and the
small ionization cross-section is necessary for the correct measurement [42]. Therefore,
early measurements of the ionization cross-section at small velocities were not always
accurate [16, 42].

2.2.1. Knudsen’s treatment. Knudsen modified the Bohr result for ionization to the following
form, as discussed, for example, in [47]

σKnud(v) = 2πa2
0

v2
0

v2

Z2
pE0

Inl


,

where


 =
⌊⌊

Zpv0vnl

v2

⌋−1

+ 2δs ln

⌊
2v

vnl

⌊
2Zpv0

v

⌋−2
⌋

−
(

2v

vnl

)−2

+ 1

⌋
− 1. (24)

Here, the brackets 
. . .� denote the function


x� =
{
x, for x > 1,

1 for x � 1.

Equation (24) was compared with experimental data in [46], where it was shown that
equation (24) overestimates the cross-section for v > vnl, and gives even larger disagreement
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with the experimental results for v < vnl. Another approach, proposed by Gillespie, yielded a
good fit to the experimental data.

2.2.2. Gillespie’s treatment. To account for the difference between the Born approximation
results and the experimental data for v < vmax, Gillespie proposed to fit the cross-sections to the
following function [23],

σGill(v) = exp


−λnl

(
v0

√
Zp

v

)2

 σBethe

mod (v). (25)

Here, λnl is a constant, which characterizes the ionized atom or ion (for example, for the ground
state of H, λnl = 0.76), and σBethe

mod is the cross-section in the Born approximation in the form
of equation (21). Gillespie’s equation (25) proved to fit very well existing experimental cross-
sections for hydrogen atom ionization by H+, He+2, Li2+, Li3+, C4+, N5+, N+4, O5+ ions, and less
well for He and H molecules with the same ions [23, 46]. Because σBethe

mod (v) becomes negative
for v < 0.7, Gillespie’s equation (25) cannot be applied to these low projectile velocities. In
principle, the general fit σBA

fit in equation (22) can be used instead of σBethe
mod in equation (21).

However, because the two formulae differ about 20% in the range of interest, 0.7 < v < 1, the
fitting coefficients λnl may have to be updated for better fit for use with σBA

fit .
Although Gillespie’s fit proved to be very useful, there are a number of reasons to look for

another fit, mostly because fitting coefficients λnl are not known prior measurements for any
target atoms. For example, Gryzinski’s equation (14) is frequently used, because it requires only
knowledge of one function for calculations of cross-sections, notwithstanding the fact that it
overestimates the cross-sections at low energies.

2.2.3. v2/zp scaling. For v � vnl, a universal curve is expected if both the cross-sections and
the square of impact velocity are divided by Zp [53]. This scaling was established for the total
electron loss cross-section σel, which includes both the charge exchange cross-section σce and
the ionization cross-section. Based on the results of CTMC calculations, Olson proposed the
following fit [54],

σel(v, Zp) = ZpAnlπa2
0f

Olson

(
v

v0γnl

√
Zp

)
, (26)

where f(x) describes the scaled cross-sections

f Olson(x) = 1

x2
[1 − exp(−x2)]. (27)

Here, γnl and Anl are constants, for example, γH = √5/4 = 1.12 and AH = 16/3 for atomic
hydrogen, and γHe = 1.44 and AHe = 3.57 for helium. The scaling in equation (26) was
also demonstrated analytically by Janev [56]. For v � v0

√
Zp, σel is dominated by charge

exchange, σce ≈ σel, and equation (26) gives a constant cross-section for charge exchange,
σce ≈ σel = 16πZp/3a2

0. For v � v0

√
Zp, σel is dominated by the ionization cross-section, and

σce ≈ σ
high−energy
classical (equation (6)). Note that the scaling in equation (26) does not reproduce the
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logarithmic term in the Bethe formula (equation (12)) for v � v0

√
Zp because it is based on

classical trajectory calculations. To make equation (26) agree with equation (6), the coefficients
γnl should be proportional to

√
Inl. For example, the ionization potential for hydrogen is

IH = 13.6 eV, and for helium IHe = 24.6 eV. The ratio of γH = 1.12 to γHe = 1.44 differs from√
IH/

√
IHe by only 5%, i.e., γH/

√
IH/(γHe/

√
IHe) = 1.05. Therefore, as was shown by Janev [56],

the scaling in equation (26) can be rewritten in a form similar to equation (11) by normalizing
the velocity to vnl, equation (10), i.e.,

σel(v, Inl, Zp) = πa2
0ZpNnl

E2
0

I2
nl

BnlG
el

(
v

vnl

√
Zp

)
, (28)

where

Gel (x) = 4
3f

Olson (x/γH) . (29)

Here, Nnl is the number of electrons in the orbital nl, and the Bnl factors equation (7) are
introduced to account for the difference of the orbital EVDFs with the hydrogen-like EVDF
function in equation (9). By construction, equation (28) coincides with equation (6) in the limit
v � vnl

√
Zp.

Because the scaling in equation (26) is based on classical trajectory calculations, it is valid
only for intermediate velocities where the underbarrier transitions allowed in the quantum-
mechanical calculations do not contribute significantly (see appendix B for details). Experimental
data [45, 56] confirm the scaling in equation (26) for 1.2 < v/(vnl

√
Zp) < 3, or equivalently, for

the projectile energy in the range E = 30–200 × ZpInl/IH in units of keV amu−1.
A similar scaling to equation (26) was derived in [80] based on quantum-mechanical

calculations making use of the quasi-classical approach developed originally by Keldysh for
multi-photon ionization of atoms in a strong electromagnetic field. These calculations give
scaling similar to equation (26), but with a different function f(x) given in [80]. The quantum-
mechanical calculation results for the charge exchange cross-section in [80] are a factor of
3 larger than Olson’s cross-section in equation (26) for v/(v0

√
Zp) < 0.2. Experimental data

presented in [44] show that equation (28) underestimates the charge exchange cross-section in the
velocity range 0.2 < v/(v0

√
Zp) < 0.5 by about 40%, see figure 2. To mitigate the discrepancy,

the authors of [55] modified the representation of the electron energy distribution function:
instead of making use of the classical microcanonical ensemble with a single value of the total
electron energy corresponding to the binding energy, they used several values of binding energy
for a better representation of the radial electron distribution functions by adding a spread in
the binding energy. This resulted in enhanced cross-section values (by about 40%) and better
matching with the experimental data. However, the additional tunnelling effect, not accounted
for in the classically trajectory method, can be important for very small velocities [80] and leads
to a logarithmic dependence of the cross-sections at low ion velocities v/(v0

√
Zp) � 0.2, as

seen in experimental data [19], see figure 2.
Direct application of the scaling in equation (28) for the ionization cross-section instead of

the total electron removal cross-section does not produce a single scaled function (see figure 3
for hydrogen and figure 5.(b) for helium). Furthermore, the data are considerably scattered near
the maxima of the cross-sections.
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Figure 2. Electron capture and total electron loss cross-sections of hydrogen by
protons showing both the experimental data presented in [44] and the theoretical
fits. CTMC calculations are shown together with the fit formula for CTMC
calculations equation (28) and quantum-mechanical calculation of [80].

2.2.4. Adiabatic scaling. In the region of projectile velocitiesv � vnl, several authors developed
adiabatic theories of electron ionization [83, 84, 86, 87]. If the projectile velocity is small
compared with the orbital velocity, the collision is adiabatic and the electron circulates many
times near both nuclei. The electronic energy states need to be determined in such a ‘quasi-
molecule’ as a function of the internuclear distance R. The ionization is determined from the
singularities of the energy surfaces as a function of distance between the nuclei. It has been
shown that these nonadiabatic regions are associated with the branching points of the adiabatic
potential energy of the system, analytically continued in the complex R plane, the so-called
‘hidden crossing’. Based on this theory, a scaling for the cross-section was proposed in [87]

σ(v, Zp) = ZpAπa2
0

v

vnl

fz(Zp) exp

[
− cvnl

vfz(Zp)

]
, (30)

where fz(Zp) = (1 + λ)/(1 + λZ1/4
p ), and A, c and λ are constants. For example, for hydrogen

ionization, A = 0.96, c = 1.71 and λ = 0.275. The scaling was verified experimentally for
H+–H collisions for 0.2 < v < 0.5 in [43], and additional details are given in section 3. In
[64, 65], it was shown that the experimental data for the ionization of hydrogen and helium can
be described by the scaling law in the range 0.6 < v/vnlZ

1/4
p < 1.5 for Zp � 1

σ(v, Zp)/Zp = Aπa2
0

(
v

vnlZ
1/4
p

)
exp

[
−cvnlZ

1/4
p

v

]
, (31)

where vnl = √
2Inl/E0, A = 115 and c = 7.9 for helium.

New Journal of Physics 8 (2006) 278 (http://www.njp.org/)

http://www.njp.org/


15 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 3. Ionization cross-sections of hydrogen by fully stripped ions. The scaled
experimental data are from figure 1. Note that the data do not merge into a single
curve.

2.3. Scaling of ionization cross-sections over a wide velocity range

To describe the ionization cross-sections over a wide velocity range it is necessary to predict the
location of the cross-section maximum as a function of projectile velocity. This was performed
in [89].

2.3.1. Saddle-point scaling for cross-section maximum. If the value of projectile velocity is
in the region near the maximum of the cross-section, the classical mechanical description
should yield an accurate result. In this range of velocities v/vnlZ

1/2
p ≈ 1.5, see figure 3, the

collision time is comparable with the electron circulation time, and an ejected electron in
the ionizing collisions moves in the combined field of the nuclei. Because this electron is
attracted by both the projectile and target nuclei, the ‘easiest’ way to escape from the nuclei
corresponds to electron ejection into a region where the attracting forces cancel each other, i.e.,
near the saddle point (although not exactly at the saddle point). The saddle point moves with
velocity [82]

vsp = v

1 +
√

Zp/ZT

. (32)

Therefore the maximum of the cross-section should correspond to conditions where vsp � avnl,
where a is a coefficient of order unity. Substituting this condition into equation (32) gives for the
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position of the cross-section maximum [89]

vmax = avnl

(
1 +
√

Zp/ZT

)
. (33)

A fit of the experimental data gives a = 0.7 for the ionization of hydrogen [89]. To eliminate the
numerical coefficient, another scaling was proposed for neutral targets with ZT ∼ 1 in [24]

vmax = vnl

√
1 + Zp. (34)

Equations (33) and (34) give similar estimates (within 10% for ZT = 1 and Zp � 7).

2.4. Fit formula for the ionization cross-section in wide velocity range

Analysis of the experimental data in figure 1 shows that the maxima of the experimentally
measured cross-sections occur at

√
Zp/ZT + 1, not at

√
Zp/ZT as would be the case according

to scaling in equation (28). Therefore, it is natural to plot cross-sections as a function of the
normalized velocity v/(vnl

√
Zp/ZT + 1). Note that at large velocities, according to equation

(6) σ ∼ Z2
p/v

2. Therefore, making use of the normalized velocity v/(vnl

√
Zp/ZT + 1) requires

normalization of the cross-sections according to σ/[Z2
p/(Zp/ZT + 1)]. As a consequence, instead

of equation (28), the following scaling was proposed in [24]

σ ion(v, Inl, Zp) = πa2
0

Z2
p

(Zp/ZT + 1)
Nnl

E2
0

I2
nl

Gnew

(
v

vnl

√
Zp/ZT + 1

)
. (35)

Resulting plots of the scaled cross-sections are shown in figure 4. Comparing figures 3 and 4
one can clearly see that all of the experimental data merge close to each other on the scaled plot
based on equation (35).

The resulting universal function can be fitted with various functions, but the simplest fit was
proposed by Rost and Pattard [58]. They showed that if both the cross-section and the projectile
velocity are normalized to the values of cross-section and projectile velocity at the cross-section
maximum, then the scaled cross-section σ/σmax is well described by the fitting function

σ(v) = σmax
exp(−v2

max/v
2 + 1)

v2/v2
max

. (36)

Here, σmax is the maximum of the cross-section, which occurs at velocity vmax. For the case of
the ionization cross-section by the bare projectile, it was shown in [24] that

σmax = πa2
0Bnl

Z2
p

(Zp/ZT + 1)

E2
0

I2
nl

, (37)

vmax = vnl

√
Zp/ZT + 1, (38)

where the coefficients Bnl depend only weakly on the projectile charge. From figure 4 one can
estimate Bnl = 0.8 for the ionization of hydrogen by protons, while for ionization of hydrogen
by bare nuclei of helium and lithium, we find Bnl = 0.93. As can be seen from figure 4, the
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Figure 4. Ionization cross-sections of hydrogen by fully stripped ions showing
the scaled experimental data and the theoretical fits. BA denotes the Born
approximation (equation (22)) for Zp = 1, 5 . ‘Gillespie’ denotes Gillespie’s
fit according to equation (25) combined with equation (21) for Zp = 1, 5 and
equation (25) combined with σBA

fit in equation (22) for Zp = 1 . R & P symbolizes
the fit proposed by Rost and Pattard [58] in equation (36). ‘New’ denotes the new
fit given by equation (38).

function in equation (36) with σmax and vmax defined in equation (37) describes well the cross-
sections at small and intermediate energies, but underestimates the cross-section at high energies.
The reason is that the function in equation (36) does not reproduce the logarithmic term in
the Bethe formula in equation (12). To improve the agreement with the experimental data and the
Bethe formula we propose a new scaling for the fitting function in equation (35) defined by

Gnew(x) = exp(−1/x2)

x2
[1.26 + 0.283 ln(2x2 + 25)]. (39)

At large x � 1, equation (39) approaches the Bethe formula in equation (16), and at small x < 1,
equation (39) approaches the result in equation (36). The function Gnew(x) has a maximum at
x � 1, with Gnew(1) � 0.86. Because 0.86 is in between the maxima of the scaled cross-section of
hydrogen by protons (Bnl = 0.8) and the cross-section for ionization of hydrogen by bare nuclei
of helium and lithium (Bnl = 0.93), we did not incorporate the coefficients Bnl in equation (39).
This gives it a general form and introduces small errors of less than 8%.

The fit in equation (39) predicts an extremely small cross-section at very low
velocity σ

low−energy
fit (v) ∼ exp [ − (Zp/ZT + 1)v2

nl/v
2], whereas equation (30) gives σ(v) ∼

exp [ − cvnlfz(Zp)/v]. Therefore, the numerical fit in equation (39) underestimates the cross-
section for v < 0.5 (more details are given in section 3).

We have applied the new fit in equations (35) and (39) to the ionization cross-sections
of helium and lithium, in addition to hydrogen, assuming ZT = 1 and vnl = v0

√
2Inl/E0. The

symbols in figure 5(a) denote the experimental data for H+, He+2, Li3+ [59, 60], for C6+ and
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Figure 5. Ionization cross-sections of helium by various stripped ions. The solid
curves correspond to the CDW-EIS theoretical calculation, and the symbols label
the experimental data (see text for details). Shown in the figures are: (a) the raw
data; (b) the scaled data from figure 4(a), making use of equation (28); (c) the
scaled data making use of equation (35); and (d) the experimental data scaled
using only equation (35) together with the fit function. The notation ‘new fit’
denotes equation (39).

O8+ [47], [61]–[65]. These data were shown in [24]. In addition, we have added to the plot
experimental data for IZp+ and UZp+ [66], and for AuZp+ [67], where Zp = 10–40. We have
included partially stripped ions with large Zp, because as shown in [68] the ionization cross-
sections near the maximum depends only on projectile charge and is independent of internal
structure of the projectile. This is likely because the ionization occurs at impact parameters
larger than the radius of the inner structure of the projectile.
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The solid curves correspond to the continuum-distorted-wave-eikonal initial state (CDW-
EIS) theoretical calculation from [69], which is a generalization of the Born approximation.
The CDW-EIS theory accounts for the distortion of the electron wavefunction by the projectile.
From figure 5(a) it is evident that the CDW-EIS theory overestimates the cross-section near the
maximum, and underestimates the cross-section at small energies. Note also from figure 5(a)
the large scatter of the data for C6+ and O8+ ions, compared with the recommended data in [44]
(based on Gillespie’s fit) not shown in the plots. This is likely because the data were assembled
from many different sources, [47], [61]–[65], and may be attributed to an unsatisfactory absolute
calibration of the cross-sections in some of the data.

Direct application of the scaling formula in equation (28) to the ionization of helium does
not produce similar good results to the hydrogen case (see figure 5(b)). But after applying the
new scaling in equation (35), all of the experimental and theoretical results merge close together
on the scaled plot, as is clearly evident in figure 5(c). Moreover, if we use the fit function of
velocity normalized to the orbital velocity vnl estimated from the ionization potential of helium
(IHe = 24.6 eV) making use of equation (10), the cross-section is given by the same scaling as
in equation (35) with the same function as in equation (39), as evident from figure 5(d). (The
number of electrons in the helium atom is Nnl = 2, and therefore the scaled cross-section is twice
that of hydrogen.) From figure 5(d) it is clear that the new proposed fit in equation (35) using the
function in equation (39) gives very good results for both hydrogen and helium. The discrepancy
between the new fit and the helium data at very small velocities is discussed in the next section.

Note that one experimental point in figure 5 for C6+ projectiles is located far away from the fit.
The error bar for this point is about 30% [61]. These data may be inaccurate, as the experimental
point is higher than the predictions of CDW-EIS theory, which overestimates the cross-section
near the maxima of the cross-sections for all other ions. The reason for the large scatter in the
uranium data on the scaled plot at small energies is not clear, because the experimental data for
all other projectiles are located much closer to the fit line. This may be due to the contribution
of autoionization when the projectile velocity is low [68]. The other reason is that the ionization
cross-section is larger (about 10−15 cm−2) than the helium atom size. Therefore, two electrons are
most likely to be removed during the collisions, and simple one-electron scaling must be corrected
by the larger effective ionization potential needed to remove two electrons simultaneously. (The
uranium ions had energies and charges: 250 keV, Zp = 17, 24, 31; 500 keV, Zp = 23, 27; and
1 MeV, Zp = 32, 42 respectively.)

We have also performed a comparison of the scaling with available experimental data for
the ionization of the lithium atoms [70, 71], as shown in figure 6. From figure 6, it is evident that
the fit describes the cross-section well, except for values of the cross-section near the maximum.
It is surprising that the Bethe formula in equation (12) describes the cross-sections well up to
the maximum. The calculation in [72] also leads to much smaller values than the experimental
data. Reference [71] quotes 50% uncertainty in the experimental data, whereas [70] claims only
10% uncertainty.

Further verification of the scaling is difficult because reliable experimental data and
numerical simulations for a broad range of projectile velocities are absent for other atoms.

A number of other semi-empirical models have been developed for the ejected electron
velocity distributions. They typically use up to ten fitting parameters to describe the differential
ionization cross-sections as a function of ejected electron velocity, projectile velocity and
charge [19].
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Figure 6. Ionization cross-sections of lithium by H+ and He+2. The symbols show
experimental data (see text for details). Shown in the figures are: (a) the raw data
and the Bethe formula, equation (12); (b) the scaled data making use of equation
(35) together with the fit function. The notation ‘new fit’ denotes equation (39).

Scaling laws for single and multiple electron loss from projectiles in collisions with a many
electron target were proposed in [27, 90].

3. Brief survey of theoretical approaches and their limitations for ionization cross-section

In this section, we present a brief survey of the theoretical approaches to cross-section calculations
and their limitations. Theoretical justifications are also given for the fit formulae in equations
(35) and (39). We begin with an analysis for high projectile velocities.

3.1. Behaviour of cross-sections at large projectile velocities v > vnl

At high projectile velocity v � vnl, the Born approximation can be applied for the cross-
section calculation. The applicability of the Born theory and the Bethe formula in equation
(12) was studied by comparison with available experimental data in [34, 61, 67], [73]–[75].
It was confirmed that the necessary condition for the validity of the Bethe formula is given
by [29, 30]

v > max(2Zpv0, vnl). (40)

The first condition in equation (40) assures that the projectile potential is taken into account in the
Born approximation; the second condition allows use of the unperturbed atomic wavefunction.

The failure of the Bethe formula for large Zp is apparent from the experimental data for
gold ions shown in figure 5(a). The ion velocity corresponds to v = 12v0 or v = 8.9vnl, whereas
Zp = 24, 43 and 54, and does not satisfy the condition in equation (40). As a result, the cross-
sections are much smaller than given by the Bethe formula, as evident from figure 5(a). At large
projectile energies, all data merge to the Bethe formula, which corresponds to a straight line in
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Figure 7. Scaled ionization cross-sections (σv2/4πa2
0Z

2
pv

2
0 ) of helium by fast

fully stripped ions as a function of charge for ion energies (a) 2.31 MeV amu−1,
and experimental data from [73]; and (b) 6 MeV experimental data from [34].
Shown in the figures are the raw data, the calculation making use of the Bethe
formula (equation (12)), the Bohr formula (equation (24)), and the theoretical fit
(equation (35)).

a logarithmic plot, similar to figure 1. For uranium and iodine data, the velocity is few times
the electron orbital velocity, but the charge for uranium varies from 17 to 42, and for iodine
from 5 to 25. As a result, the condition in equation (40) is not satisfied, and the cross-section is
considerably smaller than predicted by the Bethe formula.

In the region of high projectile velocities the new fit predicts the ionization cross-section

σ
high−energy
fit (v) = 4πa2

0

v4
0

v2
nl

Z2
p

v2

[
0.566 ln

(
v

vnl

√
(Zp + 1)/2

)
+ 1.26

]
, (41)

which differs from the Bethe formula in equation (12). (The factor
√

(Zp + 1)/2 appears in the
denominator under the logarithm in the first term on the right-hand side of equation (41).) We
claim that incorporating this factor gives a better cross-section estimate than the Bethe formula.
The authors of [34, 61, 67, 73] have studied the ionization cross-section at a given velocity as
a function of charge state. The comparison of the experimental data with the Bohr formula was
performed in [73] for the ionization of helium by fast ions with charge varying from one to six
at ion energies of 0.64, 1.44 and 2.31 MeV. A comparison of the experimental data from [34, 73]
with the Bethe (equation (12)), Bohr (equation (24)), and fit (equation (35)) formulae is shown
in figure 7.

From figure 7 it is evident that equation (35) describes the experimental data within an
experimental uncertainty of about 8% [34].

A comparison of the experimental data for ionization of hydrogen from figure 1 with the
Bethe formula in equation (12) and the fit formula in equation (41) is shown in figure 8. The
experimentally estimated uncertainty of 5.5% [45] is shown by the error bar. Figure 8 shows
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Figure 8. Ratio of ionization cross-sections of hydrogen by fully stripped ions
to the Bethe formula in equation (12) and the fit formula in equation (41) at high
velocities. The experimentally estimated uncertainty of 5.5% [45] is shown by
the error bar.

that the Bethe formula describes the experimental data for ionization of hydrogen by protons
within the error bar only for v > 6v0. Application of the fit formula instead of the Bethe formula
reduces discrepancy with the data.

The applicability of the Bethe formula is limited by the validity of the Born approximation.
One of the easiest ways to correct it was suggested in [80]. Firstly, the Born approximation is
considered, making use of a classical trajectory for the projectile and a quantum-mechanical
description in the Born approximation for the electron. In this approximation, the probability
of ionization or excitation is a function of the impact parameter ρ. Here, for brevity, we
shall consider only ionization of the hydrogen atom. The projectile particle interacts with
the atomic electron with a potential energy V(R, re) = −Zpe

2/|R − re|, where R(t) = ρ + vt

is the classical trajectory of the projectile particle, and re describes the position of the electron
relative to the nucleus of the atom. For any impact parameter ρ, the probability of ionization is
given by the square of the transition amplitude

PBA(ρ) = 1

h̄2

∣∣∣∣
∫

dre
i(re)

[∫
dt ei�Et/ h̄V(R, re)

]

∗

f (re)

∣∣∣∣
2

. (42)

Here, �E is the transferred energy in the transition, and 
i and 
f are the initial and final
electron wavefunctions, respectively. It can be shown that the calculations of ion–atom ionization
cross-sections using the conventional Born approximation describing the collision making use of
momentum transfer (outlined in appendix B) and the semiclassical Born approximation making
use of the assumption of the straight line classical projectile trajectory (equation (42)) are
equivalent [41].
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For large impact parameters ρ � a0, we can expand V(R, re) in powers of renl/R

according to

V(R, re) = Zpe
2

(
− 1

R
+

R · re

R3

)
. (43)

The first term does not contribute to the matrix element in equation (42) due to the orthogonality
of the final and initial states. Substituting equation (43) into equation (42) and integrating in time
yields [41]

PBA(ρ) =
(

2Zpv0

ρv

)2 ∣∣∣∣
∫

dre 
i(re)

∗
f (re)
[ωρ

v
xeK1

(ωρ

v

)
+ ize

ωρ

v
K0

(ωρ

v

)]∣∣∣∣
2

, (44)

where ω = �E/ h̄, and Kn is the modified Bessel function. Expanding the Bessel functions for
small and large arguments, or simply evaluating the integrand in equation (44) approximately,
we can approximate

ωρ

v
K1

(ωρ

v

)
=
{

1, ωρ/v < 1
0, ωρ/v > 1

}
, (45)

and neglect the second term on the right-hand side in equation (44), which is small compared
with the first term. The probability of ionization vanishes for ρ > ρmax � v/ω = 2a0v/v0,
corresponding to the adiabatic limit. For ρ > ρmax, the collision time ρmax/v > a0/v0 is much
longer than the electron circulation time around the nucleus, and the collision is adiabatic.
Consequently, the ionization probability is exponentially small for ρ > 2a0v/v0.

The square of electron dipole matrix element averaged over all possible momenta of the
ionized electron is [40]

∑
f

∫
dre

∣∣
i(re)xe

∗
f (re)
∣∣2 = 0.283a2

nl. (46)

Note that the sum over all final states including both ionization and excitation gives∑
f

〈0|xe|f 〉〈f |xe|0〉 = 〈0|x2
e |0〉 = 1

3〈0|r2
e |0〉 = a2

nl. (47)

In this sum, 0.717 corresponds to excitation, and 0.283 corresponds to ionization [40].
For large impact parameters the momentum transfer to the electron is small and we can

neglect the electron kinetic energy of the ejected electron compared with the ionization potential.
As a result, �E ≈ Inl and ω = v0Inl/a0E0 = v2

nl/v0a0 (in atomic units). Finally for ρ > anl, the
ionization probability is

PBA(ρ) ≈ 0.283

(
2anlv0Zp

ρv

)2 {
1, ρ < a0vv0/v

2
nl

0, ρ > a0vv0/v
2
nl

}
. (48)

The ionization cross-section is given by the integral

σ = 2π

∫ ∞

0
PBA(ρ)ρ dρ. (49)
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For ρ > anl, we can use equation (48) to estimate PBA(ρ). For ρ < anl, the dipole approximation
in equation (43) is not valid. To evaluate PBA(ρ) approximately for ρ < a0, we can utilize the fact
that
∫

dt ei�Et/ h̄V(R, re) is a weak function of ρ for ρ < anl, and therefore PBA(ρ) ≈ PBA(anl).
Substituting PBA(ρ) ≈ PBA(anl) for ρ < anl, and PBA(ρ) from equation (48) for ρ > anl, into
equation (49) gives

σ = 8πa2
nl · 0.283

v2
0Z

2
p

v2

[
1
2 + ln

(
a0vv0

anlv
2
nl

)]
. (50)

The first term in equation (50) comes fromcontributions of impact parameters ρ < anl, and
the second term originates from contributions of large impact parameters ρ > anl, respectively.
Comparison with the exact result in the Born approximation in equation (12) shows that the
contribution of impact parameters ρ < anl is underestimated, and 1/2 should be replaced by
2.23. The above considerations are valid if the total probability of ionization and excitation
(P tot

BA(ρ) = (2Zpanlv0/ρv)2, for ρ > anl ) for the entire region of impact parameters is less than
unity, which requires 2Zpv0/v < 1. Hence, the condition for the Born approximation validity
equation (40). (Note that the total probability of ionization and excitation is about four times
larger for ionization only.)

For 2Zpv0/v > 1, the total probability of the ionization and excitation P tot
BA(ρ) calculated

using the Born approximation is more than unity, P tot
BA(ρ) > 1, for impact parameters ρ <

ρbreak = 2Zpa0v0/v, indicating the breakdown of the Born approximation [80]. Similar to
the previous case, we can estimate the ionization probability PBA(ρ) from equation (48) for
ρ > ρbreak > a0 and assume PBA(ρ) ≈ PBA(ρbreak) = 0.283 for ρ < ρbreak. These considerations
result in a cross-section estimate similar to the Bethe formula but with the logarithmic term in
the form ln(ρmax/ρmin) = ln(v2/v2

nl2Zp), which gives

σ = 8πa2
0 · 0.283

v2
0Z

2
p

v2

[
1

2
+ ln

(
v2

2v2
nlZp

)]
. (51)

This calculation results in a smaller cross-section than the Bethe formula for 2Zpv0/v > 1, if
anl ∼ a0. Note that in the above analysis we have used unperturbed electron wavefunctions,
which is valid only for v � v0.

While a number of smart semi-empirical ways to improve the first Born approximation were
developed [76]–[78], the rigorous approaches to improve the Bethe formula are based on the
eikonal approximation instead of the Born approximation [79]. The eikonal approximation is
justified if kanl > 1, where k is the projectile particle wave vector k = Mv/ h̄, and the projectile
kinetic energy is large compared to the potential energy interaction with the target. For heavy
projectile particles with mass much larger than the electron mass, these conditions are well
satisfied. The ionization cross-section in the eikonal approximation is given by [29]

σ = 2π

∫
q dq

k2
|f(q)|2, (52)

where f(q) is the amplitude of ionization with momentum transfer q

f(q) = k

2πi

∫
ρ dρ〈final| exp

(
i
∫

V dz

h̄
− iq · ρ

)
|initial〉. (53)
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The eikonal approximation in equations (52) and (53) accounts approximately for all orders of
the perturbation series, whereas the Born approximation only make use of the first order. The
calculations in the eikonal approximation yield a formula similar to equation (51) [81]. Note
that the validity of the eikonal approximation in equation (53) is limited to v � v0, because
the electron wavefunctions 
i and 
f are assumed to be unperturbed atomic functions. The
influence of the projectile on the electron wavefunctions has to be taken into account for v � v0.
This is typically performed in the distorted wave approximation [16].

Therefore, the correction to the Born approximation in equation (51) and the eikonal
approximation give a formula similar to equation (41) but with a factor α

√
Zp (α is a

coefficient of order unity), instead of
√

(Zp + 1)/2.At large velocities, both formulae give similar
results.

3.2. Behaviour of cross-sections at small projectile velocities v < vnl

If the projectile velocity is small compared with the orbital velocity, the collision is adiabatic and
the electron circulates many times around both nuclei. The electronic energy states need to be
determined in such a quasi-molecule as a function of the positions of both nuclei at a particular
time. In both the quantum mechanical and the classical approaches, ionization is only possible
if during the collision the initial and final electronic terms cross at some instant. In classical
mechanics this corresponds to the so-called ‘v/2 mechanism’. In a collisional system comprised
of two nuclei of equal charges (say ionization of hydrogen by a proton), an electron which is
exactly in between the two nuclei experiences a very small electric field because the electric
fields from both nuclei exactly cancel for all times at this point. The electron can ‘ride’ this
saddle point of the potential if its velocity is equal to one-half the velocity of the projectile. The
collision dynamics is illustrated in figure 9.

From figure 9 one can see that the electron is stranded in between the protons at t = 15a0/v0

and its velocity projection on the x-axis is one-half of the projectile velocity. A small variation
of the initial condition from z = −1.606756a0 (solid line) to z = −1.606751a0 (dotted line)
completely changes the result of the collision. After the collision the electron stays near the first
nucleus and does not become ionized. As a result, the probability of ionization is extremely
small even though the projectile velocity is not small (for the conditions in figure 9, v = 1/2 in
atomic units). The mechanism for ionization described above is also so-called T-promotion in
quantum-mechanical descriptions [83].

Another mechanism for ionization is attributed to the so-called S-promotion mechanism
[83]. It is associated with the special type of trajectory of the electron in the field of two positive
charges, shown in figure 9(c). Figure 9(c) shows that an electron with particular initial conditions
tends to spiral with a large number of turns enclosing a segment of the straight line joining the
nuclei figure 9(c) [84]. Such a trajectory is unstable—a small variation of initial conditions results
in a completely different trajectory as shown in figure 9(c). Analysis of the electron motion in the
field of two positive charges, ZT and ZP , which are separated by a distance R is best described
in elliptical coordinates

ξ = rp + rT

R
, η = rp − rT

R
, (54)
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Figure 9. The trajectory of a v/2 collision is shown in (a) and (b). The initial
conditions correspond to a hydrogen atom with total energy −1/2, and at t = −60
x = 0 = y, vx = 0 = vy, z = −1.606756 (———) and z = −1.606751 (· · · · · ·).
The projectile moves along z = 1 with velocity = 1/2. Atomic units are used:
velocity is normalized to v0; distance is normalized to a0; and time is normalized
to a0/v0. Panel (b) shows the position [x(t), z(t)] of the electron as a function
of time, and the distance between the electron and the first (ρ1) and the second
proton (ρ2) for the same conditions as in figure (a). The trajectory of a S-promotion
is shown in figure (c) for fixed positive charges (v → 0). The initial conditions
correspond to an internuclear separation 2a0 (in atomic units); initial position of
the electron z = 0, x = 1; and initial velocity vx = 0, vz = 1.155 (———), and
vz = 1.165 (· · · · · ·).

where rp and rT are the distances from the electron to the projectile and target nuclei, respectively.
Making use of atomic units, the classical trajectory in terms of the variables ξ and η can be
expressed as [84]

dξ

dt
= 4(ξ2 − 1)Pξ

R2(ξ2 − η2)
,

dη

dt
= −4(η2 − 1)Pη

R2(ξ2 − η2)
, (55)
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where the canonical momentums Pξ and Pη are

Pξ =
(

− 1
2R

2|E| +
(ZP + ZT )Rξ − λ

ξ2 − 1
− P2

φ

(ξ2 − 1)2

)1/2

, (56)

Pη =
(

− 1
2R

2|E| +
(ZP − ZT )Rη + λ

1 − η2
− P2

φ

(1 − η2)2

)1/2

. (57)

Here E < 0 is the total energy of the electron, Pφ = ξη dφ/dt is the rotational momentum around
the straight line joining the nuclei, and λ is the integral of motion (for stationary nuclei)

λ = M2 − R2

4

(
P2

ζ +
P2

φ

ζ2

)
+ R(ZP cos θP + ZT cos θT ). (58)

Here, ζ is the closest distance from the electron to the straight line joining the nuclei; Pζ is the
vector dot product of the electron momentum with the ζ-axis; M2 = (r × p)2 is the total rotational
momentum; and θP and θT are the angles between rp and R, and rT and −R, respectively.
Moreover, rp is the radius vector from the projectile to the electron; rT is the radius vector from
the target nucleus to the electron; and R is the radius vector from the projectile to the target
nucleus. The canonical momentum Pξ in equation (56) tends to infinity if ξ → 1, preventing
the electron from approaching a segment of the straight line joining the nuclei, ξ = 1. In the
special case

(ZP + ZT )R = λ, Pφ = 0, (59)

the singularity vanishes at the point ξ = 1 in equation (56). As a result, for initial conditions
satisfying the condition in equation (59), Pξ is finite for ξ = 1. From equation (55), ξ approach
unity exponentially with time—the limiting electron trajectory lies on the internuclear axis—as
shown in figure 9(c), where the initial conditions for the solid line correspond to the condition
in equation (59). A small departure from the condition in equation (59) shown by the dotted
line in figure 9(c) prevents the trajectory from approaching ξ = 1. Thus the internuclear axis
ξ = 1, represents the locus of points of unstable equilibria. In a quantum-mechanical treatment,
such periodic unstable trajectories is responsible for S-promotion of electron to the continuum
(ionization) when the nuclei approach each other [85]. The potential barrier in equation (56)
increases when R decreases. As a result, an electron near the top of the barrier slows down and
is then collected and promoted to the continuum as the top of the barrier further rises. Due to the
strong instability of the locus, a numerical simulation of the corresponding classical trajectory
is extremely difficult. (We could not present the classical analogue of the ionization scenario for
S-promotion, in contrast to the T-promotion as shown in figure 9(a) and (b).)

The probability of ionization is greatly enhanced in quantum mechanics due to tunnelling
into classically forbidden regions of phase space. The cross-sections can be calculated using the
quasi-classical method, where the probability of transition is given by

P(ρ) = exp

(
− 2

h̄
Im(S)

)
, (60)
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where

S(ρ, ε) =
∑

n

∫
c

p dR. (61)

Here, S(ρ, ε) is the classical action of the projectile ion, and p = √
2M(ε − U(R, ρ) − Ei) is

the projectile momentum, generalized to classically forbidden regions of phase space where p

is complex [29]. The integration contour in equation (60) is in the complex R plane around
the branch points (Rc

n) where the initial and final electronic terms cross [Ef(Rc
n) = Ei(R

c
n)].

Moreover, n numerates different branch points or channels of ionization for S and T-promotions.
The resulting cross-section for hydrogen ionization by collision with a proton is [83]

σadiabatic(v) = πv
∑

n

R2
ne−2�n/v, (62)

where n labels many different channels, and the coefficients �n and Rn are of order unity in
atomic units (Rn is determined by the branch points Rcn). In the range of projectile velocities
v = 0.4–1, we find that equation (62) can be approximated to within 10% accuracy by only two
exponents with R1 = 1.9, �1 = 0.53 (corresponding to S-promotion) and R2 = 6.7, �2 = 1.8
(corresponding to T-promotion). Because �1 � �2, primarily the S-promotion determines the
ionization cross-section at small velocities (v < 0.5), while both mechanisms contribute to
ionization for v in the range v = 0.5–1. Recent experimental study and quantum-mechanical
calculations using the CDW-EIS model [88] show that a electron emission spectrum is dominated
by a well-defined electron capture to continuum (S-promotion) peak although existence of saddle-
point electron emission (T-promotion) is not confirmed.

The new fit predicts an extremely small cross-section at very low velocity σ
low−energy
fit (v) ∼

exp(−1/v2), whereas equation (62) gives σadiabatic(v) ∼ e−1.0/v. The comparison of experimental
data for ionization of hydrogen from [43] at low projectile velocity is shown in figure 10. At
low velocity v < 0.5, experimental data can be fitted by σ(v) ≈ 0.26π exp(−0.92/v) (in atomic
units). As evident from figure 10, the numerical fit in equation (39) underestimates the cross-
section for v < 0.5, but gives a result close to the sum in equation (62) for v in the range
v = 0.5–1.

Numerical fit is compared with the experimental data for the ionization of He shown
in figures 5(c) and (d). Adiabatic theory results are absent for helium, but the experimental
ionization cross-section of He by protons can be described by equation (62) with different
coefficients �n and Rn. The behaviour of the experimental ionization cross-section of He by He2+

is somewhat puzzling because of the very slow decrease of the cross-section for small projectile
velocity.

In view of these observations, the applicability of the new fit is limited to v/[vnl

√
(Zp + 1)] >

0.5. Note that for small projectile velocity the ionization cross-section is ten times smaller
than the maximum of the cross-section, σmax, and the ionization cross-section is completely
dominated by charge exchange, whose cross-section is comparable to σmax. Consequently, both
experimental measurements and theoretical simulations are very difficult for very small projectile
velocity.
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–

Figure 10. Comparison of experimental data for ionization of hydrogen by
protons (symbols) with exponential fit σ = A exp(−2�/v) (dashed line) and
general fit formula in equation (39) (solid red line).

4. Formulary for ionization cross-section

For reference purposes a formulary of ionization cross-sections has been prepared and is
presented in this section. In the high energy limit of fast projectile motion v � vnl, the classical
mechanical calculation can be readily carried out (see appendix A).

4.1. Calculations based on classical mechanics

4.1.1. The Bohr formula. The Bohr formula [35] neglects the electron velocity in the atom
completely and is based on v � vnl limit, which gives

σBohr(v, Inl, Zp) = 2πZ2
pa

2
0

v2
0E0

v2Inl

. (63)

4.1.2. Modification of the Bohr formula due to taking into account a finite electron velocity in the
target. Accounting for the electron velocity gives an additional factor of 5/3 compared with the
Bohr formula. This gives the classical mechanical ionization cross-section in the limit of high
projectile velocity v � vnl

σ
high−energy
classical (v, Inl, Zp) = 5

32πZ2
pa

2
0

v2
0E0

v2Inl

. (64)

4.1.3. General case v ∼ vnl. In the general case with v ∼ vnl, the classical mechanical
calculation accounting for the finite electron velocity in the atom, but neglecting the influence
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of the target nucleus on the electron has been performed by Gerjuoy [36] (see appendix A).
This gives

σGGV(v, Inl, Zp) = πa2
0E

2
0

Z2
p

I2
nl

GGGV

(
v√

2Inl/me

)
. (65)

The tabulation of the function GGGV(x) is presented in [38] for x > 1, and in [39] for x < 1,
which gives

GGGV(x) =




g(x)/4x2 for x > 1,
0.696

exp

(
0.585 − x

0.096

)
+ 1

for x < 1


 , (66)

where

g(x) =




35

6
+

35

3π
arctan c +

128
(
x3b3 − b3/2

)
9π

+
bc

3π

(
35 − 58b

3
− 8b2

3

)

+
2abx

3π
[
(
5 − 4x2

) (
3a2 + 1.5ab + b2

)− cx (7.5 + 9a + 5b)]

−16

π
xa4 ln(4x2 + 1) − ax2

(
1 +

2 arctan c

π

) (
2.5 + 3a + 4a2 + 8a3

)




, (67)

and

a = 1/(1 + x2), c = 3x/4, b = 1/(1 + c2). (68)

This calculation does not account for electron circulation around the nucleus and grossly
overestimates the cross-sections for v <

√
Zpvnl. At large projectile velocities, quantum-

mechanical effects become important, because ionization occurs mainly at large impact
parameters with small momentum transfer, where ionization cannot occur according to classical
mechanics.As a result, equation (65) underestimates the cross-section at large projectile velocities
v > 5vnl.

4.1.4. The Gryzinski formula. Gryzinski’s approximation for the ionization cross-section [21]
expressed in the form of equation (65) is given by

σGryz(v, Inl, Zp) = πa2
0E

2
0

Z2
p

I2
nl

GGryz

(
v√

2Inl/me

)
, (69)

where

GGryz(x) =




α3/2

x2
[α +

2

3
(1 + β) ln(2.7 + x)](1 − β)(1 + β1+x2

), for x > 0.206,

4
15x

4, for x < 0.206,

(70)
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and α = x2/(1 + x2) and β = 1/[4x(1 + x)]. Gryzinski made use of an artificial electron
distribution function to enhance the cross-section value at large projectile velocity. Therefore
for v > vnl the Gryzinski formula can be viewed as a fit to the Bethe formula. For v < vnl, this
formula uses a rather arbitrary behaviour ∼v4. Similar to Gerjuoy’s calculation, the Gryzinski
formula does not account for electron circulation around the nucleus and grossly overestimates
cross-sections for v <

√
Zpvnl.

4.2. Quantum-mechanical calculation in the Born approximation

In the general case with v ∼ vnl, the ionization cross-section in the Born approximation was first
calculated in [52]. We have developed the following fit formula for the Bates and Griffing result

σBA
fit

(
ṽ = v

vnl

)
= 4πa2

nl

v2
0

v2
nl

Z2
p

ṽ2
[0.283 ln(ṽ2 + 1) + 1.26] exp

[
− 1.95

ṽ(1 + 1.2ṽ2)

]
. (71)

This formula does not account correctly for electron circulation around the nucleus and grossly
overestimates the cross-sections for v <

√
Zpvnl.

4.2.1. Bethe’s asymptotic quantum-mechanical calculation in the Born approximation
for v � vnl. Bethe’s asymptotic quantum-mechanical calculation in the Born approximation
can be expressed as [40]

σBethe = 4πa2
0

v4
0Z

2
p

v2v2
nl

·
[

0.57 ln

(
v

vnl

)
+ 1.26

]
. (72)

The region of validity of the Born approximation and, hence, the Bethe formula is [29, 30]

v > max(2Zpv0, vnl). (73)

The first inequality in equation (73) assures that the projectile potential is taken into account
in the Born approximation; the second inequality allows use of the unperturbed atomic
wavefunction.

To describe the behaviour of the cross-section near the maximum value, the second-order
correction in the parameter vnl/v has been calculated in [49], yielding the cross-section in the
form

σBethe
mod (ṽ) = 4πa2

nl

v2
0

v2
nl

Z2
p

ṽ2

[
0.566 ln

(
ṽ
)

+ 1.26 − 0.66
1

ṽ2

]
, (74)

where

ṽ = v

vnl

= v√
2Inl/me

, a2
nl = a2

0

E0

2Inl

. (75)

This modification slightly improves the Bethe formula near the maximum of cross-section, but
has the same region of validity as the Bethe formula.
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4.2.2. The Bethe formula for relativistic particles. The Bethe cross-section valid for relativistic
particles [41] is given by

σBethe
rel = 4πa2

nl

v2
0

v2
nl

v2
nlZ

2
p

v2

{
M2

ion[2 ln(γpβp) − β2] + Cion

}
, (76)

where βp = vp/c, c is the speed of light, γp = 1
/√

1 − β2
p, and M2

ion and Cion are characteristic

constants depending on the ionized atom or ion. For the hydrogen atom, M2
ion = 0.283 and

Cion = 4.04.

4.3. Semi-empirical fits

4.3.1. Gillespie’s fit. Gillespie’s fit for the ionization cross-sections [51] is given by

σGill = exp

[
−λnl

(
v0

√
Zp/v
)2]

σBethe
mod , (77)

where λnl is a characteristic constant of the ionized atom or ion (for example, for the
ground state of atomic hydrogen, λnl = 0.76), and σBethe

mod is the modified Bethe cross-section
defined in equation (74). This formula requires a knowledge of the fitting coefficients λnl, and
underestimates the cross-section in the adiabatic region v < 0.5vnl.

4.3.2. The Olson scaling. The Olson scaling [54] for the total electron loss cross-section σel,
which includes both the charge exchange cross-section σce and the ionization cross-section, is
given by

σel(v, Zp) = πa2
0ZpAnlf

Olson

(
v

v0γnl

√
Zp

)
, (78)

where f(x) describes the scaled cross-sections

f Olson(x) = 1

x2

[
1 − exp

(−x2
)]

,

and γnl and Anl are constants. For example, γH = √5/4 = 1.12 and AH = 16/3 for atomic
hydrogen, whereas γHe = 1.44 and AHe = 3.57 for helium. However, the additional tunnelling
effect not accounted in classically trajectory method can be important for very small velocities
[80] and leads to a logarithmic dependence of the electron capture cross-sections at low ion
velocities v/(v0

√
Zp) � 0.2.

4.3.3. Rost and Pattard fit formula. Rost and Pattard [58] proposed a fit for the ionization cross-
section, which utilizes two fitting parameters, namely the maximum value of the cross-section
and the projectile energy corresponding to the maximum value of the cross-section. They showed
that if both the cross-section and the projectile velocity are normalized to the values of the cross-
section and the projectile velocity at the cross-section is maximum, then the scaled cross-section
σ/σmax is well described by the fitting function [58]

σ(v) = σmax
exp(−v2

max/v
2 + 1)

v2/v2
max

, (79)

where σmax is the maximum cross-section, which occurs at the velocity vmax.
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4.3.4. New scaling and fit formula. A scaling has been developed in [24], where it is shown
that for ionization by a bare projectile, the values σmax and vmax are well defined by the projectile
charge Zp, with

σmax = πa2
0Bnl

Z2
p

(Zp + 1)

E2
0

I2
nl

, (80)

vmax = vnl

√
Zp + 1, (81)

where the coefficient Bnl depends weakly on the projectile charge. For example, for the ionization
of hydrogen by protons, Bnl = 0.8, and for the ionization of hydrogen by bare nuclei of helium
or lithium, Bnl = 0.93.

Equation (79) describes well the cross-sections at small and intermediate energies, but
underestimates the cross-section at high energies, because it does not reproduce the logarithmic
term of the Bethe formula in equation (72). To improve the agreement with the experimental
data and the Bethe formula, we propose the new scaling

σ ion(v, Inl, Zp) = πa2
0

Z2
p

(Zp + 1)

E2
0

I2
nl

Gnew

(
v

vnl

√
Zp + 1

)
, (82)

where

Gnew(x) = exp(−1/x2)

x2
[1.26 + 0.283 ln(2x2 + 25)]. (83)

In all previous equations, the cross-section are given per electron in the orbital. If Nnl is the number
of electrons in the orbital, the ionization cross-section of any electron in the orbital should be
increased by the factor Nnl. This formula underestimates the cross-section in the adiabatic region
v < 0.5vnl, where the ionization cross-sections are exponentially small ∼ exp(−2�v0/v).

4.3.5. Adiabatic scaling for cross-section for v � vnl. In the region of projectile velocities
v � vnl, an adiabatic scaling for the cross-section was proposed in [87]

σ(v, Zp) = ZpAπa2
0

v

vnl

fz(Zp) exp

[
− cvnl

vfz(Zp)

]
, (84)

where fz(Zp) = (1 + λ)/(1 + λZ1/4
p ), and A, c and λ are constants. For example, for hydrogen

ionization A = 0.96, c = 1.71 and λ = 0.275. In [64, 65] it was shown that experimental data
for the ionization of hydrogen and helium can be described by the scaling law in the range
0.6 < v/vnlZ

1/4
p < 1.5 for Zp � 1

σ(v, Zp)/Zp = Aπa2
0

(
v

vnlZ
1/4
p

)
exp

[
−cvnlZ

1/4
p

v

]
, (85)

where vnl = √
2Inl/E0, and A = 115, c = 7.9 for helium.

Finally, it should be noted that a number of other semi-empirical models have been
developed, which use up to ten fitting parameters to describe the ionization cross-sections over
the entire projectile energy range [19].
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5. Conclusions

A formulary of ionization cross-sections has been presented and widely used approximations
have been tested against available experimental data for the ionization cross-sections of hydrogen,
helium and lithium by numerous highly charged ion species. The limitations of the theoretical
approaches have been discussed, and the regions of validity of different formulae and fits have
been identified.

It was shown that scaling of [24] for the ionization cross-sections of atoms and ions by fully
stripped projectiles describes well available experimental data. This scaling does not have any
fitting parameters and describes the shape of the cross-section as a single function of the scaled
projectile velocity (equation (39)). Note that previous scaling laws either used fitting parameters
[51, 58] or actually did not match experiments in a wide range of projectile velocities [36, 21]. The
proposed scaling formula agrees well with theoretical predictions in the limit of large projectile
velocities. The new scaling has been verified by comparison with available experimental data
and theoretical simulations for the ionization cross-sections of hydrogen, helium and lithium by
numerous highly charged ion species. The agreement between the new proposed scaling and
experimental data is very good. The difference between the proposed fit and the experimental
data is within 15% accuracy, which is similar to the estimated uncertainty in the measurements.
The validity of the fit is limited at very small velocities, where the ionization cross-section is very
small, about one-tenth of the maximum cross-section σmax, and the ionization cross-section is
completely dominated by charge exchange, whose cross-section is comparable to σmax. Finally,
the fit is valid for scaled projectile velocity v > 0.5vnl

√
Zp + 1, where vnl = v0

√
2Inl/E0 is the

orbital velocity of the electron estimated from the ionization potential Inl, where E0 = 27.2 eV
(twice the hydrogen ionization potential). Similarly, the fit is valid for E > 12.5(Zp + 1)Inl/E0

in units of keV amu−1, where E is the projectile kinetic energy per nucleon.
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Appendix A. Classical cross-section averaged over atomic electron velocity directions

Gerjuoy averaged the Rutherford cross-section over all orientations of the electron velocity ve

(for a fixed electron speed ve) and derived the differential cross-section dσ/d�E(ve, v, �E) for
energy transfer �E in the collision between a free electron and the projectile [36]. The total
cross-section is calculated by integrating over values of energy transfer larger than the ionization
potential (�E > Inl) and averaging over the EVDF f(ve). This gives

σ(v, Inl, Zp) = Z2
p

∫ ∞

0
σInl

(v, ve)f(ve) dve, (A.1)

where

σInl
(v, ve) =

∫ ∞

Inl

dσ

d�E
(v, ve, �E) d�E, (A.2)
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and dσ/d�E(ve, v, �E) is defined by [36]

dσ

d�E
(v, ve, �E) = πa2

0

4

E2
0

�E3

S(v, ve, �E)

v2ve

, (A.3)

where

S(v, ve, �E) =



(
v2 − v2

e

) (
v2

e − v2 − 2�E/me

) (
v−1

low − v−1
up

)
+2
(
v2

e + v2 + �E/me

) (
vup − vlow

)− 1/3
(
v3

up − v3
low

)

 . (A.4)

Here, vup and vlow are defined by

vup = ve + v, (A.5)

vlow = max

(
|ve − v| ,

√
v2

e − 2�E/me − v

)
. (A.6)

For very large projectile velocities v � ve, it follows that S ≈ 8ve

(
2v2

e/3 + �E/me

)
, and

equation (A.3) yields

dσ
high−energy
classical

d�E
(v, ve, �E) = 2πa2

0

E2
0

�E3mev2

(
2mev

2
e

3
+ �E

)
. (A.7)

Substitution of equation (A.9) into equation (A.2), and subsequent substitution of equation (A.2)
and the EVDF equation (9) into equation (A.1) give

σ
high−energy
classical (v, Inl, Zp) = 10

3 πZ2
pa

2
0

v2
0E0

v2Inl
. (A.8)

In the general case with v ∼ ve, substituting the EVDF equation (9) into equations (A.2) and
(A.1) yields

σclassical(v, Inl, Zp) = πa2
0E

2
0

Z2
p

I2
nl

Gclassical

(
v√

2Inl/me

)
, (A.9)

where

Gclassical(x) = 1

x2

∫ ∞

0

∫ ∞

1/2

S(x
√

2Inl/me, ve, �E)f (ve)

�E3ve

d�Edve. (A.10)

The approximate formula for Gclassical(x) is given above in equation (66).

Appendix B. The Born approximation

Although the Born approximation is valid only for large projectile velocities v � Zpv0 [29], the
Born approximation does give results close to the experimental data even outside its validity
range [52]. Therefore, we have studied cross-sections in the Born approximation for the entire
velocity range.
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In the Born approximation, the ionization cross-section for hydrogen atoms by impact of
fully stripped projectile atoms with charge Zp is given by [16, 40, 41],

σBA
nl (v) = 8πa2

0Z
2
p

v2
0

v2

∫ ∞

0

PInl
(q, v)

q3
dq, (B.1)

where PInl
(q, ṽ) is the probability of ionization, and qmev0 is the momentum transfer during

the collision. We introduce the velocity in atomic units ṽ ≡ v/v0, and PInl
(q, ṽ) is determined

by [40]

PInl
(q, ṽ) =

∫ ∞

0

dP(q, κ)

dκ
�

(
q −
(

Inl

E0
+ 1

2κ
2

)
/ṽ

)
dκ. (B.2)

Here, �(x) is the Heaviside function, and dP(q, κ)/dκ is the differential probability of
ejecting an electron with momentum κmev0 when the momentum transfer from the projectile
is qmev0,

dP(q, κ)

dκ
= ∣∣〈
∗

κ(p)
0(p + q)
〉∣∣2 = ∣∣〈
∗

κ(r)e
iqr
0(r)

〉∣∣2 . (B.3)

In equation (B.3), 
∗
κ(p) and 
∗

κ(r) are the wavefunctions of the continuous spectrum
(ionized electron) in momentum space and coordinate space, respectively; 
0(p) and 
0(r)
are the wavefunctions of the ground state, and star (∗) denotes complex conjugate. According
to [40],

dP(q, κ)

dκ
= 28κq2 [q2 + 1

3(1 + κ2)] exp{−2/κ arctan [2κ/(1 + q2 − κ2)]}
[(q + κ)2 + 1]3[(q − κ)2 + 1]3(1 − e−2π/κ)

. (B.4)

For q � 1, the function dP(q, κ)/dκ has a sharp maximum at κ = q [29]

dP(q, κ)

dκ
= 8

3π

1

[(q − k)2 + 1]3
, (B.5)

which simply means that the entire momentum q is transferred to the ionized electron momentum
κ. At small q < 1, dP(q, κ)/dκ ∼ κq2 and the width of the function P(q, κ) as a function of κ is
of order unity in atomic units.

For large projectile velocity v � v0, considerable simplification can be made by neglecting
the electron kinetic energy (1/2)κ2 in the argument of the Heaviside function in equation (B.2).
The approximation

�

(
q −
(

Inl

E0
+ 1

2κ
2

)
/(vv0)

)
→ �

(
q − Inl/E0

v/v0

)
(B.6)

is referred to as the close-coupling approximation. In this case, P(q, v) can be characterized by
a function of one argument, Sinh(q), with

PInl
(q, ṽ) = Sinh(q)�

(
q − v0Inl

vE0

)
, (B.7)
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where

Sinh(q) =
∫ ∞

0

dP(q, κ)

dκ
dκ. (B.8)

The function Sinh(q) is referred to as the total ionization transition strength [51]. Substituting
equation (B.6) results in artificial, additional contributions to the integral in equation (B.2) for κ >

κadd = √
2(qv/v0 − Inl/E0). For large projectile velocities v � v0 and q � 1, κadd � √

2qv/v0.

The function dP(q, κ)/dκ has a sharp maximum at κ = q (see equation (B.5)). Therefore the
artificial additions for κ > κadd do not contribute to the integral if κadd > q, which corresponds
to q < 2v, and the substitution in equation (B.6) is valid. In the opposite case of large projectile
velocities v � v0 but small q, it follows that q ∼ v0Inl/(vE0) � 1, for the range of q κadd ∼ 1,

and the function dP(q, κ)/dκ decreases rapidly for κ > 1. Therefore, the artificial additions for
κ > κadd do not contribute to the integral if κadd > 1. Hence, the substitution in equation (B.2)
is valid for v � v0. Figure B.1 shows plots of PInl

(q, ṽ) (equation (B.2)) and Sinh(q) (equation
(B.8)) for ṽ = 1 and ṽ = 3. At small projectile velocities v < v0, the substitution in equation
(B.6) produces a considerable error (see figure B.1). For repetitive calculations, the function
Sinh(q) in equation (B.8) can be approximated to within 3% accuracy by

S
app
inh (q) =


 0.545q2

(q − 0.9)2 + 1.21
q < 2

tanh(0.8q) q � 2


 . (B.9)

The functions Sinh(q) (equation (B.8)) and S
app
inh (q) (equation (B.9)) are shown in figure B.1.

Having estimated the function PInl
(q, ṽ), the total cross-section can be evaluated analytically

for large v � v0. The region of small q contributes significantly to the cross-section (see equation
(B.1)). Therefore, we split the integration in equation (B.1) into the two regions q < qup and q >

qup, where qup = 1/2. In the first region q < qup, it follows that PInl
(q, v) ≈ S

app
inh (q) ≈ 0.283q2,

and the integration in equation (B.1) gives

∫ qup

0
dq

PInl
(q, v)

q3
≈
∫ qup

qmin

dq
0.283

q
= 0.283 ln(qup/qmin), (B.10)

where qmin = v0Inl/vE0. In the second region, only the range of qup < q < 2 contributes to the
integral, because at large q � 1, PInl

(q, v)/q3 ≈ 1/q3 and the contribution to the integral for
large q quickly decreases to zero. At very large q > 2v, PInl

(q, v) became smaller than unity,
but this region does not contribute to the integral and can be neglected. As a result, the integral∫∞

qup
dq PInl

(q, v)/q3 does not depend on v (for the large v under consideration). The integration

from qup to infinity gives
∫∞

qup
dq PInl

(q, v)/q3 ≈ 0.666, and finally the result is similar to the
Bethe formula in equation (12) with

σBethe(ṽ) = 8πa2
0

Z2
p

ṽ2
[0.283 ln

(
ṽ
)

+ 0.666]. (B.11)

The small differences from the Bethe formula are due to utilization of the close-coupled
approximation in equation (B.10), which overestimates PInl

(q, v) at small q, see figure B.1.
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Figure B.1. Total ionization transition strength for atomic hydrogen as a function
of transferred momentum q. The exact function P(q, v) (equation (B.2)) for ṽ = 1
and ṽ = 3 is compared with the approximate function Sinh(q) (equation (B.8))
(which is independent of v) and the fit S

app
inh (q) in equation (B.9).

Comparison with the exact calculation (figure 1) shows that the Bethe asymptotic result is
close to the exact calculation in equation (B.1) for ṽ > 2. To extend the Bethe formula to lower
velocities, the second-order correction in the parameter v0/v has been calculated in [49], yielding
the cross-section in the form

σBethe
mod (ṽ) = 4πa2

0

Z2
p

ṽ2

[
0.57 ln

(
ṽ
)

+ 1.26 − 0.66
1

ṽ2

]
, (B.12)

where ṽ = v/v0. Equation (B.12) agrees with the exact calculation in equation (B.1) to within
10% for ṽ > 1.1. We have developed the following fit for the cross-section in the Born
approximation,

σBA
fit (ṽ) = 4πa2

0

Z2
p

ṽ2
[0.283 ln(ṽ2 + 1) + 1.26] exp

[
− 1.95

ṽ(1 + 1.2ṽ2)

]
, (B.13)

which agrees with the exact calculation in equation (B.1) to within 2% for ṽ > 1, and to within
20% for 0.2 < ṽ < 1.

The previous analysis was performed for the hydrogen atom. In the case of hydrogen-like
electron orbitals, the similarity principle can be used. The quantity dP(q, κ)/dκ is identical
for different electron orbitals if q, κ are scaled with the factor 1/ZT = v0/vnl [29]. Therefore,
Pnl(q, v) = PH(qv0/vnl, v/vnl), where H denotes the hydrogen atom, and

σBA
fit

(
ṽ = v

vnl

)
= 4πa2

0

v4
0

v4
nl

Z2
p

ṽ2
[0.283 ln(ṽ2 + 1) + 1.26] exp

[
− 1.95

ṽ(1 + 1.2ṽ2)

]
, (B.14)
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where

ṽ = v

vnl

= v√
2Inl/me

. (B.15)

As we have noted for helium, most scalings can be used even for non-hydrogen-like electron
orbitals, provided the relationship in equation (B.15) is used.

B.1. Comparison between the quantum-mechanical and classical trajectory
calculations for v � vnl

We have previously noted that the classical trajectory calculation underestimates the ionization
cross-section at large velocities v � vnl. To compare the ionization cross-section calculated in
the classical trajectory and Born approximations, we present both cross-sections in the form of
equation (B.1). In the limit v � vnl, the momentum transferred to the electron during a collision
with impact parameter ρ is given by equation (1), i.e.,

qx(ρ) ≡ me�vx(ρ) = 2e2Zp

vρ
, (B.16)

where x-axis is chosen in the direction perpendicular to the projectile ion trajectory along the
momentum transfer. Because v � vnl, the electron velocity is neglected in equation (B.16). In
classical mechanics, ionization occurs if the energy transfer to the electron is more than the
ionization potential, [(meve + q)2 − m2

ev
2]/2me > Inl.

A small momentum transfer to the electron along the projectile trajectory qz(ρ) can be
determined making use of the energy conservation. Due to conservation of the momentum, the
momentum transferred from the projectile particle is −qz(ρ). The projectile energy change is
[(Mv − q)2 − M2v2]/2M = −vqz. Conservation of energy gives

vqz ≡ 1

2me

[(meve + q)2 − m2
ev

2
e]. (B.17)

In the limit v � ve, it follows that qz � qx, and consequently the total transferred momentum
to the electron is q = √q2

x + q2
z � qx. The momentum of the ejected electron can be determined

from the energy conservation relation

κ2/2me = [(meve + q)2 − m2
ev

2
e]/2me − Inl. (B.18)

In classical mechanics, the ionization probability of the ejected electron with momentum κ in a
collision with total momentum transfer q is given by the integral over the electron distribution
function,

dPc(q, κ)

dκ
= κ

me

∫
f (ve) dveδ

(
κ2

2me

− qxvx − q2

2me

− Inl

)
. (B.19)

Introducing the one-dimensional electron distribution function

fx(vex) =
∫

f(ve) dvy dvz, (B.20)
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Figure B.2. Probability of ionization of atomic hydrogen as a function of
transferred momentum; Pc(q) is given by classical mechanics (equation (B.30)),
and Pq(q, v) is given by quantum mechanics (equation (B.2)). The plots
correspond to (a) ṽ = 5 and (b) ṽ = 15.

and substituting q � qx, equation (B.19) simplifies to become

dPc(q, κ)

dκ
= κ

qme

fx

(
κ2 − q2 − 2meInl

2qme

)
. (B.21)
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For hydrogen-like electron orbitals given by equation (9), fx(vex) can be readily calculated to be

fx (vex) = 8

3π

v5
nl

[v2
ex + v2

nl]
3
. (B.22)

Substituting the hydrogen-like electron distribution function equation (B.22) into equation (B.29)
gives in atomic units

dPc(q, κ)

dκ
= 16κ

3π

(2qme)
5v5

nl

[(κ2 − q2 − 2meInl)2 + (2qmevnl)2]3
. (B.23)

Let us compare equation (B.23) with the quantum-mechanical result equation (B.5). In the
limit q � 1, κ ≈ q and the two functions are equivalent. Both functions dP(q, κ)/dκ have a
maximum at κ = q, and the width of the maximum is of order 1, which simply means that the
entire momentum q is transferred to the ionized electron momentum κ.

Moreover, it is possible to prove that the classical mechanical dPc(q, κ)/dκ is equivalent
to the quantum-mechanical function dPq(q, κ)/dκ for any s-electron orbital (spherically
symmetrical wavefunction). Indeed, for large k � 1, the ejected electron can be described as a
sum over plane waves 
∗

κ(r) ≈ eikr, and substituting 
∗
κ(r) into equation (B.3) gives

dPq(q, κ)

dκ
= 1

(2π h̄)3

∫ ∣∣〈ei(q−k)r/ h̄
0(r)
〉∣∣2 k2dok = 1

m3
e

∫
f

(
q − k
me

)
k2dok, (B.24)

where integral over dok = 2π sin ϑdϑ designates averaging over all directions of the k-vector,
ϑ is the angle between q and k, and f(ve) is the electron distribution function in velocity space.
Note that |q − k|2= q2 + k2 − 2q · k = (q − k)2 + 4qk sin ϑ/22. In the limit q � 1, k ≈ q and
only small ϑ contribute to the integral in equation (B.24). Therefore, averaging over all directions
of the k-vector gives

1

m2
e

∫
f

(
q − k
me

)
k2dok = 1

m2
e

∫
f

(√
(q − k)2 + qkϑ2

me

)
2πk2ϑ dϑ. (B.25)

Introducing v⊥ = kϑ/me, the integral in equation (B.25) takes form

∫
f



√(

q − k

me

)2

+ v2
⊥


 d2v⊥ = fx

(
q − k

me

)
, (B.26)

where fx is the one-dimensional EVDF. Substituting equations (B.26) and (B.25) into equation
(B.24) yields

dPq(q, κ)

dκ
= 1

me

fx

(
q − k

me

)
. (B.27)

Note that in the limit q � mevnl, it follows that κ ≈ q, and equation (B.21) becomes

dPc(q, κ)

dκ
= 1

me

fx

(
q − k

me

)
. (B.28)
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Finally, comparing equations (B.27) and (B.28) we arrive at the equivalence of functions
dP(q, κ)/dκ in quantum mechanics and classical mechanics in the limit q � mevnl.

The situation is completely different for small q � mevnl. From equation (B.23) it follows
that dPc(q, κ)/dκ ∼ κq5, and dPc(q, κ)/dκ is much smaller than dPq(q, κ)/dκ ∼ κq2. Therefore,
classical mechanics strongly underestimates the probability of ionization for small transferred
momentum q < mevnl.

The total probability of ionization in classical mechanics is

Pc(q) =
∫ ∞

0
dκ

dPq(q, κ)

dκ
=
∫

�

(
qvex +

q2

2me

− Inl

)
f(ve) dve. (B.29)

Equation (B.29) simplifies to become

Pc(q) =
∫

�

(
qvex +

q2

2me

− Inl

)
fx(vex) dvex. (B.30)

The differential cross-section for momentum transfer q is given by

dσc(q) = 2πρ(q)dρ(q), (B.31)

where ρ(q) is given by equation (B.16). Substituting ρ(q) from equation (B.16) into equation
(B.31) gives

dσc(q) = 8πe4Z2
p

v2q3
dq, (B.32)

which is the Rutherford differential cross-section for scattering at small angles. Finally, the total
ionization cross-section is

σc = 8πa2
0Z

2
p

v2
0

v2

∫ ∞

Inl/v

Pc(q)

q3
dq. (B.33)

In equation (B.33), we accounted for the fact that the minimum q is q = Inl/v. Note that in the
regionq = [1 − 3]Inl/v ionization occurs due the collisions with very fast electronsve ∼ v � vnl,
and qx ∼ qz. The previous analysis which assumed ve � v and qx � qz is not valid in this region
of extremely small q. However, because Pc(q)/q3 → 0 as q → 0, this region of q = [1 − 3]Inl/v

does not contribute to the integral in equation (B.33) and can be neglected. Moreover such
small momentum transfers correspond to very large impact parameter ρ/v ∼ anl/vnl, where the
collision becomes adiabatic. Therefore, accurate calculations yield even smaller Pc(q) than in
equation (B.30).

Equation (B.33) is identical to equation (B.1), where the quantum-mechanical ionization
probability Pq(q, v) is replaced by the classical mechanical ionization probability Pc(q) in
equation (B.30). The functions Pq(q, v) (equation (B.2)) and Pc(q) (equation (B.30)) are shown
in figure B.2. Figure B.2 shows that the functions PInl

(q, v) and Pc(q) are nearly identical for
q > 0.6. The classical probability of ionization Pc(q) rapidly tends to zero for q < 0.6, while the
quantum probability of ionization, Pq(q) ≈ 0.283q2, is much larger than Pc(q) at small q. The
cross-section is determined by Pq(q)/q3. Therefore the region of small q contributes considerably
to the quantum-mechanical cross-section. Note that Pq(q)/q3 → 0 as q → Inl/ṽ. It follows that
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the region of small q contributes most to the cross-section (compare figure B.2(a) for ṽ = 5, and
figure B.2(b) for ṽ = 15). For ṽ = 5, the classical mechanical ionization cross-section in atomic
units is σc = 0.23, and the quantum-mechanical ionization cross-section is σq = 0.30, which is
30% larger than the classical mechanical cross-section. For ṽ = 15, σc = 0.025 and σq = 0.043,
which is 70% larger.
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