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Transverse compression of an intense ion beam propagating through an alternating-gradient
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The transverse compression and dynamics of an intense beam propagating through an alternating-
gradient quadrupole lattice, plays an important role in many accelerator physics applications. Typically,
the compression can be achieved by means of increasing the focusing strength of the lattice along the
beam propagation direction. However, beam propagation through the lattice transition region inevitably
leads to a certain level of beam mismatch and halo formation. In this work we present a detailed analysis
of these phenomena using the envelope equations in the smooth-focusing approximation, which describe
the average effects of an alternating-gradient lattice, and full particle-in-cell numerical simulations using
the WARP code, taking into account the effects of the alternating-gradient quadrupole field. Simulations are
presented for both space-charge—dominated beams, and beams with a moderate space-charge strength.
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L. INTRODUCTION

Alternating-gradient accelerators and transport systems
have a wide range of applications ranging from basic
scientific research to industrial applications [1-3]. Of con-
siderable practical importance for heavy ion beam appli-
cations to high energy density physics and fusion is the
axial compression and transverse focusing of the (initially
long) charge bunch to a small spot size at the target
location. One of the modern approaches to the compression
process is to use dense background plasma which charge
neutralizes the ion charge bunch, and hence facilitates
compression of the bunch against strong space-charge
forces [4—7]. On the other hand, the transverse focusing
can also be achieved by means of increasing the focusing
strength of the alternating-gradient lattice along the
beam propagation direction. Although lattice compression
significantly facilitates the technical realization of the
process, uncompensated, high-intensity charge bunch
propagation through the lattice transition region inevitably
leads to a certain level of beam mismatch and emittance
growth. Furthermore, it is well known that a beam mis-
match can produce halo particles [8—10] that have much
higher transverse energy than the core particles and may
cause a degradation of beam quality.

It is evident that the beam mismatch will decrease as the
length of the transition region is increased, assuming that
the lattice amplitude is constant outside the transition
region. Hence, it is a matter of considerable practical
interest to determine how smooth (adiabatic) the lattice
transition should be to assure that matching is maintained
during the compression. In Sec. II, a detailed investigation
of this problem is performed for a long, coasting beam
using the envelope equations and full particle-in-cell nu-
merical simulations with the WARP code [11] in the
smooth-focusing approximation, which describe the aver-
age effects of a periodic lattice. In Sec. III the effects of the
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alternating-gradient quadrupole field are taken into ac-
count. It is found that even a strong mismatch, produced
during the compression process, can be consistent with
moderate emittance growth. Nonetheless a certain fraction
of the beam particles experience resonant interaction with
the mismatch oscillations and populate the halo region. In
Sec. IV, the details of halo formation are investigated self-
consistently for the case of an alternating-gradient quad-
rupole lattice, and the results are shown to agree well with
the particle-core model developed by Ikegami [12].

In the analysis performed in this paper, a stable transport
regime is assumed during the compression. Hence, the
characteristic features of the beam compression that are
described in Secs. I and IIT will be similar for a wide range
of intense beams with similar dimensionless parameters
satisfying the stable transport condition o2, — 02 <
(120%)2/2 [13,14]. Here, o and o, [2,15] (both measured
in degrees per lattice period) denote the phase advance of
particles oscillating in a periodic focusing lattice in the
presence and absence of beam space charge, respectively.
The undepressed phase advance o,. measures the strength
of the applied focusing force of the lattice and is relatively
insensitive to the details of the lattice waveform. The ratio
0/0y is a normalized measure of the space-charge
strength with o/ ,. — 1 corresponding to an emittance-
dominated beam with negligible space-charge force, and
o/, — 0 corresponding to a space-charge—dominated
beam with negligible emittance.

The transverse compression of a long axially-stationary
charge bunch is currently being investigated in the Paul
Trap Simulator Experiment (PTSX) [16] that simulates the
nonlinear transverse dynamics of intense beam propaga-
tion over large distances through an alternating-gradient
transport lattice. Since we study only transverse beam
dynamics in the present analysis, it is convenient to per-
form the analysis in the axial rest frame of the charge
bunch. In this frame axial ion velocity is equal to zero,
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V, = 0, and the relativistic mass factor is equal to unity
(yp = 1). It should be noted that the axial rest frame of the
charge bunch, described above, is the laboratory frame for
the experiments carried out on PTSX.

II. SMOOTH-FOCUSING APPROXIMATION

In this section we make use of the so-called smooth-
focusing approximation [1-3] to study the nonlinear re-
sponse of long charge bunches to alternating-gradient
waveforms with time-varying amplitude. This model is
used to describe the average effects of a quadrupole focus-
ing field. Within this approximation, the external focusing
potential has the form

. 1m
e, 1) = 5 —L (0, (1)
€p

where w,(t) is the smooth-focusing frequency, r is the
radial distance from the beam axis, and e, and m, are
the particle mass and charge, respectively. For present
purposes, it is convenient to introduce the normalized
intensity ~ parameter s = w3/2w3, where w, =
(4mnge} /my)"/? is the plasma frequency, and ny = n(r =
0) is the on-axis number density.

The initial quasistationary distribution, which is used in
the simulations later in this section, is assumed to corre-
spond to a thermal equilibrium distribution [1], and the
corresponding density profile n(r) is given by

2

€ Proc(r, 0) + €b<0s(”)}
T )

n(r) = ny exp|: -

Here, 7 = const is the transverse temperature, and
the space-charge potential ¢*(r) is determined self-
consistently from Poisson’s equation VZ¢*(r) =
—4re,n(r). Except for space-charge—dominated beams
(s — 1), numerical solutions of Poisson’s equation show
that the radial density profile is bell shaped, and is nearly
Gaussian even for moderate values of s. Regardless of the
detailed shape of the density profile, the mean-square
radius R3 of the charge bunch is determined from the
global radial force balance constraint [1]

mba)éR%7 = 2T + Nye3, 3)

where N, = 27 [* drra(r) is the line density, r,, is the
wall radius, and R} = 27N, [(* drr’n(r) is the mean-
square beam radius.

A. Rate equation for rms beam radius

From the fully nonlinear Vlasov-Maxwell equations
describing a long charge bunch when the external focusing
force has cylindrical symmetry [Eq. (1)], one can derive
the following equation that describes the evolution of the
rms radius of the charge bunch [1]

d2 2 Kb 82(t)
DRy + (w2() — 22 )R, =2 4
a" (“"’() 2R,2,> " TR “

Here, K, = 2N, ei /my, s the effective self-field perveance,
and & = (4R[(#* + y?) — R2])'/? is the unnormalized
transverse emittance defined in the beam frame. The super-
dot () denotes time derivative and {...) denotes the statis-
tical average over the particle distribution function
fp(x, y, X, ¥, 1) in the transverse phase space (x,y, X, y).
Although the emittance will vary due to nonuniformities
in charge density, for present purposes we assume that &(r)
is approximately constant if the focusing frequency (1)
changes adiabatically. More detailed studies of the emit-
tance behavior are presented in Sec. IIB. Assuming that
e(t) = const we can use Eq. (4) to analyze the evolution of
the rms beam radius during the compression process. To
describe the compression, we adopt a simple model in
which w(7) varies according to [17]

Tip — t -1
w, (1) = 0, — (0y — wqi)|:exp<l/72_> + 1} , (5
q
where 27, is the characteristic transition time, and 7, is
the characteristic time scale for variation of w,(¢) from the
constant value w,; to the constant value w ;.

Here, we consider long charge bunches, which are ini-
tially matched. This readily gives for the smooth-focusing
model that [R,],—o = 0 and [R,],—, = 0. Using the sim-
plified Eq. (4), we now estimate the transition time 27 )
that is consistent with adiabatic compression. For a quan-
titative description of the adiabaticity of the compression
process we introduce the beam mismatch parameter 1 =
AR/R, where AR is the amplitude of the mismatch oscil-
lations, and R(¢) is the quasiequilibrium radius, which is
determined from the instantaneous value of wq(t). Here,
note that AR + Ry = R,,. Assuming that 17 << 1 during the
adiabatic compression, we linearize Eq. (4) around the
quasiequilibrium radius R (z), which gives

AR + &@*(t)AR = —R,, (6)

where @ = (K,,/R} + £2/R3)'/? is the frequency of small-
amplitude linear oscillations. It is evident from Eq. (6) that
for adiabatic compression the inverse transition time
(2712)7" has to be much smaller than @. Note, that the
frequency @ depends on Rj, and hence the inverse tran-
sition time needs to be much smaller than its minimum
value, ie., (27,)"" < @(Ry;), where Ry; is the initial
quasiequilibrium beam radius. For more detailed studies
of the adiabaticity of the process we make use of the Van
Der Pol method and introduce the following variables: z =
AR + i@(1)AR and a = (1//@)zexp(—i [} @dr). Note
that |z]?/2 = (AR*> + @>AR?)/2 = E is the energy of
the oscillator, and |a|?> = |z|*>/@ is a well-known adiabatic
invariant for the pendulum Eq. (6). The physical interpre-
tation of this adiabatic invariant corresponds to the area of
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the ellipse in the phase space (AR, AR). After some
straightforward algebra, we obtain the following equation
for the evolution of the adiabatic invariant:

o . 1 R, 1
1= ——a"exp| —2i odt | — — exp| —i odt ),
a CDa p( z]oa) > = p( zﬁw >

)

where star (*) denotes complex conjugate. Recall that
before compression the beam is matched, with a(0) = 0.
Furthermore, the transition time should be large enough to
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FIG. 1. Numerical solutions to envelope Eq. (4) for € = const.

Plots of normalized rms beam radius R,/R; versus t/7,. The
cases shown correspond to: (a) Space-charge—dominated beam
with s = 0.9999; broken line: adiabatic compression with
7,@(R;) = 1.74; solid line: nonadiabatic compression with
7,@(Ry;) = 0.87. (b) Moderate space-charge strength with s =
0.7; broken line: adiabatic compression with TqE(Rol-) = 1.28;
solid line: nonadiabatic compression with 7,@(R;) = 0.64.

assure 17 << 1. Hence we can neglect the first term on the
right-hand side of Eq. (7). As a result, we obtain

a(t) = — ﬁ '% exp<—i ﬁ ' a’)dt’)dt. )

It is evident from Eq. (8) that the inverse transition time
(271,)”" must be much smaller than the frequency of
linear oscillations @ to assure that matching is maintained
during compression. In this case |al? « exp(—(@)7,),
where (@) is a certain value @ of between @(R,;) and
@(Ryy), and Ry;, R are the initial and final quasiequili-
brium beam radii, respectively.

Ilustrative numerical solutions to Eq. (4) are presented
in Fig. 1. To model a warm beam with moderate space-
charge strength, and a space-charge—dominated beam, we
consider the cases s = 0.7 and s = 0.9999, respectively.
For the compression, we take 71/,/7, = 5 and 0,/ w,; =
2.3 in Eq. (5). Figure 1 shows that a relatively fast com-
pression, 7,0(Ry;) =0.87 for s=10.9999, and
7,0(Ry;) = 0.64 for s = 0.7, leads to a significant mis-
match in the final state, whereas a more adiabatic com-
pression, 7,@(Ry;) = 1.74 for s=0.9999, and
7,@(Ry;) = 1.28 for s = 0.7, provides a nearly matched
beam envelope in the final stage. Figure 2 shows how the
characteristic time scale for variation of w q(t) depends on
the ratio of the final to initial beam radius, for adiabatic
compression, and for several values of s. To estimate
the transition time, we use the condition that the
final mismatch parameter, 7, = AR/Ryy, is equal to or
less than 2%. To describe the change of the intensity
parameter during the compression process, the ratio of
the phase advances o°//oVi. = [1 + (K,/2ew,)*]"/? —
(K,/2€ew,), calculated in the smooth-focusing approxima-
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FIG. 2. Plot of 7,®(Ry,) versus R;/R; for adiabatic compres-
sion with 1y = 2%. The two cases correspond to normalized
intensity s = 0.9999 (broken curve) and s = 0.7 (solid curve).
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FIG. 3. Plots of /0y, versus R;/R; for adiabatic compres-
sion with 1y = 2%. The two cases correspond to normalized
intensity s = 0.9999 (broken curve) and s = 0.7 (solid curve).

tion [1] for different values of the final beam radius, is
plotted in Fig. 3.

It should be noted from Fig. 3 that the relative space-
charge strength as measured by o/ / oif. decreases during
the adiabatic compression process. This result can be ex-
plained by recalling that &(r) = const is assumed during
the adiabatic process. Since (&> + y2) > R? for slow
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(adiabatic) compression, we obtain the following relation
between the beam radius and effective transverse tempera-
ture, R,T'/? =~ const. Therefore, decreasing the beam ra-
dius results in an increase in the effective transverse beam
temperature, and hence a decrease in the relative space-
charge strength, which can also be measured by the pa-
rameter 8 = Nye7/2T in Eq. (3) [1].

B. Numerical simulations of beam compression with the
WARP code

The analysis of beam compression presented in Sec. II A
was made under the assumption that the transverse emit-
tance remains approximately constant during the adiabatic
compression process. To elucidate the details of the emit-
tance behavior, the fully nonlinear Vlasov-Maxwell equa-
tions should be solved. In this section, we employ a
two-dimensional transverse slice model using the WARP
electrostatic particle-in-cell (PIC) code [11] for this pur-
pose. Results of the numerical simulations for the illustra-
tive parameters used in Sec. I A are shown in Fig. 4.
Evidently, there is no significant emittance change during
the adiabatic compression process. For a space-charge—
dominated beam with s = 0.9999, the emittance decreases
by 4% from its initial value, and for moderate space-charge
strength with s = (0.7, the emittance variations are less than
1%. Such a small emittance change during the adiabatic
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FIG. 4. Evolution of the normalized beam radius R, /R; (solid line) and normalized transverse emittance &/&; (broken line) during
the compression process. (a),(b) Correspond to an adiabatic compression for s =0.9999, 7,@(R(;) = 1.74, and for s = 0.7,
TqE(ROi) = 1.28, respectively. (c),(d) Correspond to a nonadiabatic compression for s = 0.9999, TqE(ROi) = 0.87, and for s =
0.7, 7,@(Ry;) = 0.64, respectively. Results are obtained using the WARP code for a smooth-focusing field.

034202-4



TRANSVERSE COMPRESSION OF AN INTENSE ION ...

Phys. Rev. ST Accel. Beams 9, 034202 (2006)

compression process validates the assumptions made in
Sec. ITA. For the case of nonadiabatic compression,
when the transition time is small compared to the inverse
frequency of beam radius oscillations, @ !, the emittance
variations are nearly 6% in both cases.

Despite such a moderate emittance change, an important
qualitative difference is evident for the time evolution of
the beam radius, when comparing results from the PIC
code simulations and from the constant-emittance model.
To describe this phenomenon, it is convenient to introduce
two stages of the compression process. The transition stage
takes place during the transition phase of the smooth-
focusing frequency, w, (1), i.e., 0 <t <27, and the re-
laxation stage for t > 27, represents the mismatched
beam behavior in the final focusing field with constant
smooth-focusing frequency w,, . The largest difference
in behavior is observed in the relaxation stage, during the
nonadiabatic process when the beam is strongly mis-
matched after the transition. Figure 1 shows that the
constant-emittance model exhibits oscillations in beam
radius with a constant amplitude, whereas the fully non-
linear Vlasov-Maxwell description gives a slight damping
of the oscillations for a space-charge—dominated beam
with s = 0.9999 [Fig. 4(c)], and an almost complete mix-
ing of the oscillations for the moderate space-charge
strength with s = 0.7 [Fig. 4(d)].

A plausible description of the damping mechanism
of the mismatched oscillations is the following.
Nonuniformities in the density profile produce nonlinear
self-fields. Therefore, particles move with energy-
dependent betatron frequency and affect the oscillations
of moments of the distribution function due to phase-
mixing. References [18,19] give a detailed explanation of
these phenomena by means of Landau damping. In
Ref. [18] the particles are considered as an ensemble of
betatron oscillators coupled to the collective mismatch
oscillations (mismatch mode). The damping of the mis-
match mode occurs due to the energy transfer from collec-
tive oscillations to the oscillators (beam particles) which
are close to resonance with the mismatch mode. The
relaxation time is determined by the phase mixing of the
trapped particles (resonant betatron oscillators). In the
same work [18] it is shown that for the case of a space-
charge—dominated beam most of the betatron oscillators
are far from resonance, providing a slight damping of the
collective oscillations. As the beam space-charge intensity
decreases, the mismatch frequency approaches the fre-
quency distribution of the betatron oscillators, providing
an increased mixing of the collective oscillations. This
coincides well with the results obtained in the present
paper. Here, we also emphasize that the present simula-
tions show (Fig. 5) that a large mismatch for a space-
charge—dominated beam tends to relax to a state with a
nonuniform density profile, and to a distribution function
which is periodic in time. This state corresponds qualita-
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FIG. 5. Relaxation of the large mismatch in a space-charge—
dominated beam with s = 0.9999 during the compression pro-
cess using the smooth-focusing approximation. (a) Plot of R, /R;
verses normalized time #/7,;, where 7, is the period of the
mismatched oscillations in the final state. (b) Time dependence
of R,/R; in the final state (solid line) can be fitted with a cosine
function (crosses) with high accuracy. The ratio of the first and
second harmonic amplitudes in the spectrum of the R,(¢) depen-
dence (obtained by applying fast-Fourier-transform techniques)
is equal to 2.5 X 10*. Results are obtained using the WARP code.

tively to the nonlinear saturation of Landau damping and
has a significant number of trapped particles (see Sec. IV
for details). Future studies of this state may provide im-
portant insights for the construction of ‘“‘equilibrium”
states for intense beam propagation in a periodic lattice.
The relaxation process described above transfers energy
from the collective oscillations to the transverse motion of
the resonant particles, thereby increasing the transverse
phase-space area (emittance growth). Figure 4(d) (for the
beam radius) indicates that the phase-mixing time is about
30 times larger than the transition time. Hence, it is ex-
pected that there will be negligible emittance variations
during the transition stage even during nonadiabatic com-
pression. Indeed, Fig. 4(d) (for the emittance) shows that
the emittance decrease during the initial transition of the
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smooth-focusing frequency is less than 0.5%, whereas the
overall emittance growth is 6%. A theoretical model pro-
viding the estimate of the emittance growth due to the
mismatch relaxation can be found in [2]. The detailed
behavior of the emittance validates the use of Eq. (4)
with the & = const assumption to model the transition
stage, even for nonadiabatic compression. Comparing
Figs. 1 and 4 indicates that the constant-emittance model
and the PIC simulations give approximately the same
initial amplitude of the mismatched oscillations.

Another interesting feature of the compression process
is the emittance decrease during the initial transition stage.
Examining Fig. 4 shows that the emittance decrease de-
pends weakly on the transition time, and it is much larger
for a space-charge—dominated beam than for a moderate
intensity beam. To explain this phenomenon, we make use
of the rate equation for the transverse emittance [1,2],

1d d

§dt8 = —R} —(Ep — Egy). 9

bt
Here, Er = (2K,)™" [¢* drr|V | |* is the normalized self-
field energy, ¢ solves V2§ = —(Q2wK,/N,) [[ didyfy,
and Exy = (1/2)K,(1/4 + In[r, /(2'/2R})]) is the self-
field energy of the equivalent cold (T = 0) beam, having
the same rms radius R, and line density N,. It can be
shown that the self-field energy of the thermal equilibrium
beam [Eq. (2)] with fixed rms radius and line density
decreases with decreasing temperature and reaches its
minimum value for a cold distribution (7 = 0) with the
flattop density profile. During the transition stage, the
effective beam temperature increases [see Sec. IIB for
details], thereby increasing the difference between Ep
and Exy and leading to a decrease in the emittance.

III. ALTERNATING-GRADIENT QUADRUPOLE
FIELD

In this section, we present numerical studies using the
WARP code [11] describing the beam response to an
alternating-gradient quadrupole focusing field with time-
varying amplitude. One of the major challenges in per-
forming such simulations is to load the particles in such a
way as to provide an initial “‘quasiequilibrium’ of the
beam. Within the smooth-focusing model used in Sec. II,
the oscillating strength of the lattice was replaced with a
constant focusing force. This simplification makes the
external focusing potential time independent. Therefore
any distribution function f,(x, y, %, y, t) that depends only
on the particle’s Hamiltonian, f, = F(H), provides a
steady-state beam equilibrium with df,/dt = 0. For the
numerical simulations performed in Sec. IIB we consid-
ered a thermal equilibrium beam with F = (ny/27m,T) X
exp[—H/T], where H = (m,/2)(> + ¥?) + e, Proc(r) +
e, ©*(r). In this section, the external focusing potential is
periodic in time, and the condition df,/dt =0 is not
satisfied. Therefore, we define a beam ‘“‘equilibrium* as

a state in which the beam is “matched®, i.e., the distribu-
tion function is periodic with the lattice period 7,
oy, 59,0 = fp(x,y, %y, ¢t + 7). The only known
distribution function that provides an exact beam equilib-
rium in an alternating-gradient quadrupole field is
the Kapchinskij-Vladimirskij (KV) distribution [1], but
this distribution is unstable for sufficiently high beam
intensities.

In the present simulations, the following scheme is used
to load the initial distribution function. First, for a specified
intensity parameter s, effective temperature 7, and on-axis
number density ny, we apply the smooth-focusing model to
construct the initial equilibrium. Then, using the corre-
sponding values for the emittance & and perveance K,
we determine the matched solutions of the envelope
Egs. (10) for a periodic focusing quadruple field [1],

i+ ky()a — 2K, /(a + b) = &%/a’,

. (10)

b — k, ()b — 2K, /(a + b) = &}/b>.
Here a(¢) and b(¢) are the half-widths of the transverse
beam dimensions in the x and y directions, respectively,
g, = &, = ¢ are the transverse emittances, and k,(7) is the
alternating-gradient lattice function [1,2]. Matched solu-
tions to Eq. (10) correspond to solutions that satisfy a(t) =
a(t + 7;),and b(r) = b(t + 7). The final stage of forming
the initial quasiequilibrium is to load the particles with a
Gaussian distribution in ¥ and y and a uniform (step-
function) density profile, into the matched envelope.
Although the initial distribution described above does not
provide an exact beam equilibrium, it still can be consid-
ered to provide a good approximation for a matched beam
for present purposes. Moreover, to get rid of the possible
effects induced by any initial mismatch, the beam is al-
lowed to relax during 100 periods of the focusing lattice
before compressing the lattice amplitude. The time depen-
dence of the rms beam radius and the transverse emittance
during the adiabatic and nonadiabatic processes including
the first 100 lattice periods are shown in Fig. 6. For a
nonaxysimmetric beam, which is studied in this section,
we define the average beam radius as R, = (a2 + b*)!/2,
where @ = (x2)!/2 and b = (y*)!/2 are the rms envelope
dimensions. The average transverse emittance & is de-
fined as & = (sxsy)'/z, where e, = ((x2)(x2) — (xx)?)!/2
and &, = ()% — ()2,

To model the lattice we take Kk (1) =
2227w, 7, sin(2art/7;). All other parameters are the
same as in Sec. II. It should be noted that even for non-
adiabatic compression the transition time is sufficiently
large so that the smooth-focusing approximation is valid
during the transition phase. Comparing Figs. 4 and 6, we
note that the smooth-focusing approximation and the full
alternating-gradient quadrupole field model give remark-
ably similar results. The differences are evident in the
emittance behavior during the initial stage (before beam

034202-6



TRANSVERSE COMPRESSION OF AN INTENSE ION ...

Phys. Rev. ST Accel. Beams 9, 034202 (2006)

0 1 1 1 1 IVU\I ‘l 0.94
0 25 50 75 100 125 150 175 200

/T

1 e

(c)

0 50 100 150 200 250
70

1.02
(b)
B -4 1.01
J w
L
- 0.99
o Lo L1 J ogg
0 25 50 75 100 125 150 175 200
/T
1 114
(d 1.12
08 1.1
L 1.08
-
1.065
B ] 1.04
B =4 1.02
o " T 1
A R L | L 0.98
0 50 100 150 200 250 300 350

/T

FIG. 6. Evolution of the normalized beam radius R, /R; (solid line) and normalized transverse emittance &/&; (broken line) during
the compression process. (a),(b) Correspond to an adiabatic compression for s = 0.9999, 7, /71 = 20 [corresponding to TqE(ROi) =
1.74],and s = 0.7, 7, /71 = 10 [corresponding to TqE(ROi) = 1.28], respectively. (c),(d) Correspond to a nonadiabatic compression
for s = 0.9999, 7,/,/7;, = 10 [corresponding to 7,@(R,;) = 0.87], and s = 0.7, 7y,,/7, = 5 [corresponding to 7,@(R,;) = 0.64],
respectively. Results are obtained using the WARP code for an alternating-gradient quadrupole lattice.

propagation through the lattice transition region) which is
due to the initial beam mismatch in the quadrupole field
model. Furthermore, the smooth-focusing model shows a
complete mixing of the oscillations in beam radius for a
beam with moderate space-charge strength, s = 0.7, dur-
ing nonadiabatic compression, whereas in the quadrupole
field model the amplitude of the oscillations only decreases
to 30% of its initial value. However, contrary to the
smooth-focusing approximation, the oscillations in aver-
age beam radius cannot be considered as a measure of the
final-state mismatch. In fact, even for a perfectly matched
beam (KV distribution), the sum of the rms envelope
dimensions is nearly constant, a(f) + b(r) = const, but
R, = [@2(t) + b*(1)]'/* # const. Therefore, to estimate
the mismatch of the final state, it is important to analyze
the behavior of the rms envelope dimensions @ and b,
which are illustrated in Figs. 7 and 8. It is evident from
Fig. 7(b), which shows the time dependence of a and
b for the nonadiabatic compression of a beam with
s = 0.7, that the beam is only slightly mismatched in
the final state. The particle phase advances, defined
as o=c¢ [ " dt/a*(t) = e [} dt/b(t), and o, =
limg, e [ ™7L dt/a?(t) [1], are shown for the initial and
final stages of compression process in Figs. 7 and 8. In
Ref. [1] it was shown that the smooth-focusing estimate of
O yqc 18 the approximately valid provided o,. = 72°. Note

in Figs. 7 and 8 that the lattice still satisfies this condition
by the end of the transition region.

As mentioned earlier, for the parameters used in the
simulations, the smooth-focusing approximation is valid
during the transition phase even for a nonadiabatic process.
This means that the perturbations introduced to the beam in
the transition region of the quadrupole lattice can be aver-
aged and the averaged perturbation has azimuthal symme-
try. Therefore, as shown in Figs. 7 and 8, only the breathing
mode (x and y envelope dimensions oscillate with zero
relative phase shift) is excited during the compression
process.

IV. DETAILED STUDIES OF THE BEAM
DISTRIBUTION FUNCTION DURING THE
COMPRESSION PROCESS: HALO FORMATION

In previous sections, the evolution of low-order mo-
ments of the distribution function (such as the rms enve-
lope dimensions and transverse emittance) was studied.
The results show that even nonadiabatic compression,
which leads to significant beam mismatch by the end of
the transition stage, does not result in large emittance
growth (Ae < 6%). Nevertheless, it is well known that a
beam mismatch produces halo particles that have much
higher transverse energies than the core particles and may
cause a deterioration in beam quality during the subsequent
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FIG. 7. WARP simulations of the beam compression in an
alternating-gradient quadrupole lattice. Evolution of the rms
envelope dimensions @/d, (solid line) and b/b, (broken line)
are plotted during (a) adiabatic compression with 7, /,/7, = 10,
and during (b) nonadiabatic compression with 7y,,/7;, = 5, for a
beam with moderate space-charge intensity, s = 0.7.

beam transport. In this section, we present a detailed
analysis of halo formation during the compression process
using the WARP code for an alternating-gradient quadrupole
lattice.

The main mechanism for halo formation, when a stable
transport regime is maintained, is the resonance between
the particle motion and a mismatch in the core oscillations.
It is believed, for the case of a uniform density profile, that
only particles that are outside the core and experience
nonlinear forces can populate the halo. Other particles
oscillate in the quadratic potential well and are trapped
inside the core. During the compression process, due to the
lack of adiabaticity and also due to nonuniformities in the
density profile at the beam edge, some particles can leave
the core and become highly energetic halo particles.
Figures 9(a) and 9(b) and Figs. 10(a) and 10(b), respec-
tively, illustrate the initial and final (x, X) phase spaces for
both moderate and high values of the space-charge inten-
sity parameter s. The scaled coordinates X = x/(2d) and
X = 2(td —xd)/e, are plotted to remove the envelope
oscillations.
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FIG. 8. WARP simulations of the beam compression in an
alternating-gradient quadrupole lattice. Evolution of the rms
envelope dimensions @/d, (solid line) and b/b, (broken line)
are plotted during (a) adiabatic compression with 7,/,/7; = 20,
and during (b) nonadiabatic compression with 7,,/7, = 10, for
a space-charge—dominated beam with s = 0.9999.

For a space-charge—dominated beam with the almost
flattop density profile shown in Fig. 11(a), the shape of the
final phase-space plot [Fig. 10(b)] resembles a well-known
Poincaré section with a 2:1 resonance structure for the
particle-core  model with a KV core distribution.
However, contrary to the particle-core model, where par-
ticles are usually launched with zero transverse canonical
angular momentum, here the particle motion is in the 4D
transverse phase space, providing a nearly complete smear-
ing of the 2:1 resonance structure in the X — X phase-space
projection. The halo evolution after one half-period of the
mismatch oscillations is illustrated in Fig. 10(e). The time
instants for the phase-space plots are indicated by arrows in
Fig. 8(b) for the rms envelope dimensions in the final state.

Note that the 2:1 resonance points are located on the X
axis when the core radius is a minimum, and on the X axis
when the core radius is a maximum. This coincides well
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FIG. 9. Plots of the instantaneous (X, X) phase space for a
beam with moderate space-charge intensity, s = 0.7: (a) Initial
state at t/7;, = 100; (b) final state at t/7, = 357.3 for non-
adiabatic compression with 7,,,/7;, = 5; (c) final phase of the
transition stage at t/7; = 110 for nonadiabatic compression
with 7,/,/7; = 5; (d) final state at 1/7; = 309.95 for adiabatic
compression with 7,/,/7; = 10.

with the results obtained by Ikegami in [12], where the
Poincaré section for the particle-core model with the strobe
time, taken at the minimum (maximum) of the beam size,
gave the same location of the resonance islands. In the
same work [12], the maximum halo extent (the width of the
separatrix of the 2:1 resonance island) was found to be
about twice as large as the maximal core radius, when the

halo was driven by the breathing mode. Figure 10(b) illus-
trates approximately the same halo width. The analogous
studies were also performed for a beam with moderate
space-charge strength, s = 0.7, and the results are illus-
trated in Fig. 9. The strong nonuniformities in the density
profile [compare Figs. 11(a) and 11(b)] lead to a complete
mixing of the mismatch oscillations, and therefore parti-
cles do not experience resonance interaction in the final
state [Fig. 9(b)].

To assure that the simulation parameters do demonstrate
halo formation, and that the above analysis is not a collat-
eral effect due to the core tails, we use a smooth-focusing
model with the same parameters and plot the radial r-7
phase space, (see Fig. 12). Note that in the smooth-
focusing approximation there is no core flutter and we do
not use the scaled coordinates. Figure 12(a) for a space-
charge—dominated beam with s = 0.9999 clearly illus-
trates the resonance structure, and the resonance structure
is not observed in Fig. 12(b) for moderate space-charge
intensity with s = 0.7. In Sec. II B it was indicated that the
relaxation of a large mismatch for a space-charge—domi-
nated beam corresponds qualitatively to the nonlinear stage
of Landau damping. Indeed, the halo particles illustrated in
Fig. 12(a) are the trapped particles in the nonlinear inter-
action between the collective mismatch oscillations and the
single particle motion.

We emphasize here some interesting features of the halo
formation. The simulations show that during the transition
stage only a small number of particles leave the core
[compare Figs. 9(a) and 9(c) and Figs. 10(a) and 10(c)],
whereas most particles populate the halo region during the
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FIG. 10. Plots of the instantaneous (X, X) phase space for a space-charge—dominated beam, s = 0.9999: (a) Initial state at t/7, =
100; (b) final state at #/7;, = 175.25 (corresponds to the minimum beam radius) for nonadiabatic compression with 7,,,/7, = 10; (c)
final phase of the transition stage at ¢/7; = 120 for nonadiabatic compression with 7, ) /7, = 10 ; (d) final state at t/7, = 199 for
adiabatic compression with 7/, /7 = 20; (e) final state at 7/7; = 178.05 (corresponds to the maximum beam radius) for non-

adiabatic compression with 7/,/7, = 10.
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FIG. 11. WARP simulation for an alternating-gradient quadru-

pole lattice. Normalized beam density profile n(x, y = 0)/ng in
the final state for nonadiabatic compression. The two cases
correspond to (a) s = 0.9999, 7/7; = 175.25, and (b) s = 0.7,
7/7, = 375.3. The small graphical inserts correspond to the
density profile at the core edge.

relaxation stage [compare Figs. 9(a) and 9(b) and
Figs. 10(a) and 10(b)]. Furthermore, it is found that the
halo formation process saturates along with the Landau
damping of the mismatch mode. These details are evidence
that the main mechanism for halo formation is indeed an
energy transfer from the collective modes to the resonant
particles (halo particles). When the transition stage is much
shorter than the characteristic Landau damping time, there
is negligible collective energy transfer to the particles, and
the particles stay trapped inside the beam core.

Of considerable practical interest are the halo particle
contributions to the low-order moments of the beam dis-
tribution function. To investigate these phenomena quali-
tatively, we have also arbitrary removed the halo particles
from the simulation. No rigorous mathematical criteria
were applied for the removal procedure. We simply re-
moved particles from the X-X and Y-Y projections of the
4D phase space using ““‘visual criteria’ to obtain approxi-

2000

Vr (m/s)

-2000

2000

1000

Vr (m/s)

-1000

-2000 % ! ]

FIG. 12. WARP simulation results using a smooth-focusing
model. Plots of the radial (7, 7) phase space at the final state of
the nonadiabatic compression process for (a) s = 0.9999,
t/7, = 437.5 , and (b) s = 0.7, /7, = 725.5.

mate quantitative information about interesting phe-
nomena. The contours which were used to divide the
X-X phase space into the core and halo regions are illus-
trated in Figs. 9(b) and 10(b), and analogous contours were
applied to the Y-Y phase-space projection. The ratios of the
values of rms envelope dimensions calculated with and
without halo particles are gWithouthalo /gwithhalo — () 95 for
s =0.9999, and gWithouthalo /gwithhalo — (0 91 for 5 = (.7.
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For the transverse emittance we  obtained
gVithouthalo / gwithhalo — () 9 for s = 0.9999, and
gWithouthalo / gwithhalo — () 85 for ¢ = (7. It should be em-
phasized here that, after halo removal, the emittance drops
somewhat below its initial value. Consequently, for the
parameters used here, the core size does not grow in phase
space during the relaxation stage, but the halo formation
provides an increase in the total beam phase-space area and
causes the growth of the emittance. The halo fraction of all
simulation particles is about 2% for a space-charge—domi-
nated beam with s = 0.9999, and about 4% for a moderate
intensity beam with s = 0.7. This difference can be ex-
plained by recalling (Sec. II B) that more energy transfers
from the collective oscillations to the transverse particle
motion for s = 0.7 than for s = 0.9999. Another interest-
ing feature is that a negligible number of new halo particles
(less than 0.05% of all simulation particles) are observed
for both values of s if we continue the simulations after the
halo particle removal procedure (in these simulations, to
conserve the line-charge, we placed the removed halo
particles on the beam axis). This indicates that, despite
charge density nonuniformities at the beam edge and mis-
match oscillations, the phase space of the beam core is
surrounded by a KAM surface, providing the core particles
stay inside the core region and do not penetrate the halo
region.

The results for adiabatic compression for different val-
ues of the space-charge intensity parameter are illustrated
in Figs. 7(a) and 8(a) (rms envelope dimensions behavior)
and Figs. 9(d) and 10(d) (X — X phase space). These
figures show that a certain level of the final beam mismatch
still persists. However, it should be noted that the final
population of halo particles is similar to the initial one,
which is due to the challenge in loading the initial “‘equi-
librium.” Hence, a further increase in the transition time
does not lead to an improved quality of the final beam state.

V. CONCLUSIONS

Envelope equations and full particle-in-cell numerical
simulations using the WARP code have been used to inves-
tigate the evolution of the rms beam radius, the emittance
growth, and halo formation during the transverse compres-
sion of an intense ion beam propagating through an
alternating-gradient quadrupole lattice. It was shown that
when the lattice transition is smooth (adiabatic) the emit-
tance variation is negligibly small, and therefore a
constant-emittance approximation can be used as a closure
condition for the envelope equations to model the com-
pression process. For the case of a nonadiabatic transition,
it was found that the characteristic time scale for the
emittance growth is much larger than the transition time
required for adiabatic compression. Therefore, even for
nonadiabatic compression, the constant-emittance approxi-
mation can be used to estimate the beam mismatch pro-
duced in the transition region.

The details of halo formation were investigated self-
consistently using the WARP code, both in the smooth-
focusing approximation and for a quadrupole lattice. In
the smooth-focusing approximation, a 2:1 resonance struc-
ture was observed for space-charge—dominated beams
with almost uniform density profile. For a quadrupole
lattice, the beam particle motion in the 4D transverse phase
space provides some smearing of the 2:1 resonance struc-
ture in the 2D phase-space projection. Nonetheless the
width and location of the resonance islands coincide well
with the results, obtained by Ikegami [12] in the particle-
core model for a quadrupole focusing field. It was also
found that during halo formation the energy transfers from
the collective mismatch oscillations to the transverse mo-
tion of the resonant particles (halo particles). The energy
transfer time is of order the phase-mixing (Landau damp-
ing) time. Therefore, only a few particles populate the halo
region during beam propagation through the lattice tran-
sition region. Generation of most of the halo particles, and
consequently growth of the transverse emittance, occurs
during the subsequent beam transport.

It was also found in the smooth-focusing approximation
(constant focusing frequency) that the collective relaxation
of the mismatch oscillations of a space-charge—dominated
beam saturates with the formation of a stable, transverse,
nonlinear wave structure.
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