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This paper employs a one-dimensional kinetic model to investigate the nonlinear longitudinal
dynamics of a long coasting beam propagating through a perfectly conducting circular pipe with
radius rw. The average axial electric field is expressed as hEs

zi � �ebg0@
b=@z� ebg2r
2
w@

3
b=@z
3,

where g0 and g2 are constant geometric factors, and 
b�z; t� �
R
dpzFb�z; pz; t� is the line density.

Assuming a waterbag distribution for the longitudinal distribution function Fb�z; pz; t�, it is shown that
weakly nonlinear disturbances moving near the sound speed evolve according to the Korteweg–deVries
equation.

DOI: 10.1103/PhysRevSTAB.7.054402 PACS numbers: 41.75.–i, 05.45.–a, 52.25.Dg
nonlinear disturbances in neutral plasma-loaded wave-
guides [22] and for intense beam propagation in a circular

dependence on line density 
b. In addition, beam proper-
ties such as the number density nb�r; z; t� of beam
I. INTRODUCTION

High energy accelerators and transport systems [1–4]
have a wide variety of applications ranging from basic
research in high energy and nuclear physics, to applica-
tions such as spallation neutron sources, heavy ion fusion,
and medical physics, to mention a few examples. It is
therefore important to develop an improved basic under-
standing of the nonlinear dynamics and collective pro-
cesses in intense charged-particle beam systems. While
there have been significant advances in three-dimensional
numerical and analytical studies of the nonlinear Vlasov-
Maxwell equations describing intense beam propagation,
there is also considerable interest in the development and
application of simplified one-dimensional kinetic models
to describe the longitudinal dynamics of long coasting
beams [5–12]. This paper employs a one-dimensional
kinetic model recently developed by Davidson and
Startsev [12] for a long coasting beam propagating
through a perfectly conducting circular pipe with radius
rw (Sec. II). The average axial electric field is expressed as
hEs

zi � �ebg0@
b=@z� ebg2r2w@3
b=@z3, where eb is the
particle charge, the constants g0 and g2 are geometric
factors that depend on the shape of the transverse density
profile and location of the conducting wall, and 
b�z; t� �R
dpzFb�z; pz; t� is the line density. Assuming a waterbag

distribution [13–16] for the longitudinal distribution
function Fb�z; pz; t�, it is shown that weakly nonlinear
disturbances moving near the sound speed evolve accord-
ing to the Korteweg–deVries (KdV) equation (Sec. III).
The classical KdV equation [17–21] of course arises in
several areas of nonlinear physics (e.g., hydrodynamics,
plasma physics, etc.) in which there are cubic dispersive
corrections to sound-wave-like signal propagation. The
nonlinear KdV equation also has the appealing feature
that it is exactly solvable [19,21] using inverse scattering
techniques. Earlier treatments by Karpman et al. [22] and
Bisognano [23] have also developed theoretical models
leading to the Korteweg–deVries equation for weakly
1098-4402=04=7(5)=054402(5)$22.50 
pipe [23]. An important difference between the present
paper and these treatments [22,23] is that the present
analysis provides a rigorous derivation of the KdV equa-
tion that makes use of the self-consistent kinetic model
for longitudinal beam dynamics recently developed by
Davidson and Startsev [12] that incorporates the impor-
tant effects of transverse density profile shape, longitu-
dinal beam thermal effects, etc. As such, the present
analysis should have a wide range of applicability for
weakly nonlinear disturbances moving slightly above
the sound speed in intense charged-particle beams.

This paper considers longitudinal disturbances in a
long coasting beam with characteristic radius rb. The
beam is made up of particles with charge eb and rest
mass mb propagating in linear geometry (the z direction)
with directed axial kinetic energy ��b � 1�mbc

2, where
�b � �1� �2

b�
�1=2 is the relativistic mass factor, Vb �

�bc is the average axial velocity of the beam particles,
and c is the speed of light in vacuo. It is assumed that the
beam propagates through a straight, perfectly conducting
cylindrical pipe with wall radius rw, and the applied
transverse focusing force Ftr

foc is modeled in the smooth-
focusing approximation. Finally, the nonlinear dynamics
of the beam particles is treated in the thin-beam (para-
xial) approximation, and the particle motions in the beam
frame are assumed to be nonrelativistic [1,12].

II. THEORETICAL MODEL AND ASSUMPTIONS

In the present analysis, we adopt a one-dimensional
kinetic model recently developed by Davidson and
Startsev [12] that describes the self-consistent nonlinear
evolution of the longitudinal distribution function
Fb�z; pz; t�, the average self-generated axial electric field
hEzi�z; t�, and the line density 
b�z; t� �

R
dpzFb�z; pz; t�.

For simplicity, the analysis is carried out in the beam
frame (unprimed variables), and the beam intensity is
assumed to be sufficiently low that the beam edge radius
rb and rms radius Rb � hr2i1=2 exhibit a negligibly small
2004 The American Physical Society 054402-1
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particles are assumed to be azimuthally symmetric about
the cylinder axis �@=@� � 0�, where �r; �; z� are cylindri-
cal polar coordinates with x � r cos�, y � r sin�, and
r � �x2 � y2�1=2. Finally, the axial spatial variation in
the number density nb�r; z; t� and line density 
b�z; t� �
2�

Rrw
0 drrnb�r; z; t� is assumed to be sufficiently slow that

k2zr
2
w � 1, where @=@z	 kz 	 L�1

z is the inverse length
scale of the z variation.

Within the context of these assumptions, the one-
dimensional kinetic equation describing the nonlinear
evolution of the longitudinal distribution function
Fb�z; pz; t� and the average axial electric field hEs

zi�z; t�
can be expressed correct to order k2zr2w in the beam frame
as [12]

@
@t
Fb � vz

@
@z

Fb � ebhEs
zi

@
@pz

Fb � 0; (1)

ebhEs
zi � �e2bg0

@
b

@z
� e2bg2r

2
w
@3
b

@z3
; (2)

where the geometric factors g0 and g2 are defined by

g0 � 2
Z rw

0

dr
r

�
2�

Z r

0
drr

nb

b

�
2
; (3)

g2 �
2

r2w

Z rw

0

dr
r

�
2�

Z r

0
drr

nb

b

�Z r

0
drr

Z rw

r

dr
r




�
2�

Z r

0
drr

nb

b

�
: (4)

Here, we have assumed a perfectly conducting cylindrical
wall with �Es

z�r�rw � 0 and consider the class of axisym-
metric, bell-shaped density profiles nb�r; z; t� of the form

nb �
� 
b

�r2b
f� rrb�; 0  r < rb;

0; rb < r  rw:
(5)

In Eqs. (1)–(5), 
b �
R
dpzFb � 2�

Rrw
0 drrnb is the line

density, rb is the edge radius of the beam (assumed
independent of 
b), and f�r=rb� is the profile shape
function with normalization

R
1
0 dXXf�X� � 1=2. As a

simple example, for f�r=rb� � �n� 1��1� r2=r2b�
n, n �

0; 1; 2; . . . , over the interval 0  r < rb, it can be shown
that [12]

g0 � ‘n
�
r2w
r2b

�
�

Xn�1

m�1

�n� 1�

m�m� n� 1�
; (6)

g2 �
1

2

�
1�

1

n� 2

r2b
r2w

�
1� ‘n

r2w
r2b

�

�
Xn�1

m�1

1

m�m� n� 2�

r2b
r2w

�
: (7)

In Eqs. (5)–(7), n � 0 corresponds to a step-function
density profile; n � 1 corresponds to a parabolic density
054402-2
profile; and n � 2 corresponds to an even more sharply
peaked profile with �nb�r�rb � 0 � �@nb=@r�r�rb . Note
from Eqs. (6) and (7) that the precise values of g0 and
g2 exhibit a sensitive dependence on profile shape [12].
Moreover, the mean-square beam radius is R2

b �

�1
b 2�

Rrw
0 drrr2nb � �n� 2��1r2b for the choice of shape

function f�r=rb� � �n� 1��1� r2=r2b�
n, n � 0; 1; 2; . . . .

In any case, Eqs. (1) and (2) constitute the starting
point in the present kinetic model of longitudinal non-
linear beam dynamics. The detailed wave excitation
properties of Eqs. (1) and (2) of course depend on the
form of the distribution function Fb�z; pz; t�. However, as
a general remark, for small-amplitude perturbations (lin-
earization approximation) Eqs. (1) and (2) support sound-
wave-like disturbances (with signal speed depending
on g0 and the momentum spread of Fb) with cubic dis-
persive modifications (depending on g2) [12]. For present
purposes, we specialize to the class of exact nonlinear
solutions to Eq. (1) corresponding to the waterbag dis-
tribution [13–16]

Fb�z;pz;t��
�
A� const; �mbV�

b �z;t�<pz<mbV�
b �z;t�;

0; otherwise;

(8)

for �1< z<1 (infinitely long coasting beam). Here,
the distribution function Fb � A remains constant within
the interval indicated in Eq. (8) and zero outside, whereas
the boundary curves V�

b �z; t� and V�
b �z; t�, assumed single

valued, distort nonlinearly as the system evolves accord-
ing to Eqs. (1) and (2).

It is convenient to introduce the macroscopic fluid
quantities corresponding to line density 
b �

R
dpzFb,

average axial velocity Vb � 
�1
b

R
dpzvzFb, longitudinal

particle pressure Pb � mb

R
dpz�vz � Vb�

2Fb, and heat
flow Qb � mb

R
dpz�vz � Vb�

3Fb, where vz � pz=mb is
the axial particle velocity. Some straightforward algebra
that makes use of Eqs. (1), (2), and (8) gives the closed
system of nonlinear fluid equations for 
b�z; t�, Vb�z; t�,
and Pb�z; t� corresponding to

@
@t

b �

@
@t

�
bVb� � 0; (9)


b

�
@Vb

@t
�Vb

@
@z

Vb

�
�

1

mb

@Pb

@z
��


be
2
bg0

mb

@
b

@z

�

be2bg2r

2
w

mb

@3
b

@z3
; (10)

�
@
@t

� Vb
@
@z

��
Pb


3
b

�
� 0: (11)

Here, for the choice of waterbag distribution in Eq. (8),

b � Amb�V�

b � V�
b �, 
bVb � �1=2��V�2

b � V�2
b �, Pb �

�1=12�mbA�V�
b � V�

b �
3, and Qb � 0 (exactly), which pro-

vides closure of the fluid equations. We therefore express
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[see Eq. (11)]

Pb�z; t� �
Pb0


3
b0


3
b�z; t�; (12)

where Pb0 � const and 
b0 � const represent the unper-
turbed pressure and line density, respectively, and
Pb0=


3
b0 � 1=12�mbA�

2 � const. Here, A is the constant
phase-space density in Eq. (8).

III. DERIVATION OF KORTEWEG–DEVRIES
EQUATION

In the subsequent analysis we introduce the constant
speeds UbT , Ub0, and Ub2 defined by

U2
bT �

3Pb0


b0mb
; U2

b0�

b0e2bg0
mb

; U2
b2�


b0e2bg2
mb

; (13)

and the normalized (dimensionless) fluid quantities
)�z; t� and U�z; t� defined by

) �

b � 
b0


b0
; U �

Vb

�U2
b0 �U2

bT�
1=2

: (14)

In Eqs. (13) and (14), UbT is the thermal speed, Ub0 is the
effective sound speed associated with the geometric fac-
tor g0, and Ub2 is an effective speed that measures the
strength of the cubic dispersive term in Eq. (10) associ-
ated with the geometric factor g2. Finally, it is convenient
to introduce the scaled (dimensionless) time variables T
and spatial variable Z defined by

T �

�
U2

bT �U2
b0

U2
b2

�
Ub2t
rw

; Z �

�
U2

bT �U2
b0

U2
b2

�
1=2 z

rw
:

(15)

Making use of Eqs. (12)–(15), the nonlinear fluid descrip-
tion provided by Eqs. (9)–(11) reduces exactly to

@
@T

)�
@
@Z

�U� )U� � 0; (16)

@
@T

U�
@
@Z

�
)�

1

2
U2 �

1

2

U2
bT

U2
b0 �U2

bT

)2 �
@2

@Z2 )
�
� 0:

(17)

The fluid description provided by Eqs. (16) and (17) is
exactly equivalent to the nonlinear kinetic description
provided by Eqs. (1) and (2) for the choice of waterbag
distribution in Eq. (8).

The fluid equations (16) and (17) in scaled variables are
particularly amenable to direct analysis. For example, for
traveling pulse (soliton) solutions we look for solutions to
Eqs. (16) and (17) that depend on Z and T exclusively
through the variable Z0 � Z�MT, where M � const is
the normalized pulse speed measured in units of the
sound speed �U2

b0 �U2
bT�

1=2. Making use of @=@T �
�M@=@Z0 and @=@Z � @=@Z0, Eq. (16) can be integrated
once to give U�Z0��1� )�Z0�� � M)�Z0�, where use
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has been made of U�Z0 � �1� � 0 � )�Z0 � �1�.
Integrating Eq. (17) and substituting U � M)=�1� )�
then gives for )�Z0�

@2)

@Z02
�

�
1�

M2

1�)
�
1

2
M2 )

�1�)�2
�
1

2

U2
bT

U2
b0�U2

bT

)
�
)�0;

(18)

where �)00�Z0��1 � 0 and �)�Z0��1 � 0 are assumed. For
present purposes, we solve Eq. (18) in the weakly non-
linear limit, treating j)j � 1 and retaining terms to
order )2. Introducing the scaled amplitude

~))�Z0� �

�
3

2
M2 �

1

2

U2
bT

U2
b0 �U2

bT

�
)�Z0�; (19)

Eq. (18) can be approximated by

@2 ~))

@Z02
� �M2 � 1�~))� ~))2 � 0: (20)

For M2 > 1 the exact soliton solution to Eq. (20) is

~)) � 3
2�M

2 � 1� sech2�12�M
2 � 1�1=2�Z�MT��: (21)

Consistent with the assumption of weak nonlinearity
(small amplitude), in Eq. (21) it is assumed that M� 1 �
., where 0< . � 1, which corresponds to a compres-
sional pulse �~)) > 0� moving slightly above the sound
speed �U2

b0 �U2
bT�

1=2. In this case, the amplitude of the
soliton in Eq. (21) is proportional to ., whereas the soliton
width is proportional to .�1=2.

The functional form of Eq. (21) strongly suggests that a
weakly nonlinear analysis of Eqs. (16) and (17) for gen-
eral disturbances moving near the sound speed �M � 1�
may satisfy a Korteweg–deVries-like equation [17–21].
Indeed, for M� 1 � ., the argument in Eq. (21) can be
expressed as

1

2
�M2 � 1�1=2�Z�MT� �

1			
2

p �.1=2�Z� T� � .3=2T�:

(22)

Therefore, for disturbances moving near the sound speed,
we introduce the new independent stretched variables /
and 0 defined by

/ � .1=2�Z� T�; 0 � .3=2T; (23)

and expand Eqs. (16) and (17) according to

) � .)�1� � .2)�2� � � � � ;

U � .U�1� � .2U�2� � � � � ;
(24)

where )�1�, )�2�, etc., are of order unity. Equation (23)
then gives @=@Z � .1=2@=@/ and @=@T � .1=2�.@=@0�
@=@/�. Substituting into Eqs. (16) and (17), we obtain
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�
.
@
@0

�
@
@/

�
�)�1� � .)�2� � � � ���

@
@/

�U�1� � .U�2� � .)�1�U�1� � � � �� � 0; (25)

and �
.
@
@0

�
@
@/

�
�U�1� � .U�2� � � � ���

@
@/

�
)�1� � .)�2� � � � � � .

@2

@/2 )
�1� � � � ��

1

2
.U�1�2 �

1

2

U2
bT

U2
b0 �U2

bT

.)�1�2 � � � �

�
� 0: (26)

In Eqs. (25) and (26), we have scaled out a factor .3=2

common to all of the terms.
To solve Eqs. (25) and (26), we equate the coefficients

of like powers of . equal to zero. In lowest order, Eqs. (25)
and (26) give @)�1�=@/ � @U�1�=@/ � 0, which can be
integrated to give

)�1��/; 0� � U�1��/; 0� (27)

for isolated disturbances with �)�1��/��1 � 0 �
�U�1��/��1. In order ., Eqs. (25) and (26) reduce to

@
@0

)�1� �
@
@/

)�2� �
@
@/

�U�2� � )�1�U�1�� � 0; (28)

@
@0

U�1� �
@
@/

U�2� �
@
@/

�
)�2� �

@2

@/2 )
�1� �

1

2
U�1�2�

1

2

U2
bT

U2
b0 �U2

bT

)�1�2
�
� 0:

(29)

Eliminating �@=@/��U�2� � )�2�� in Eq. (29) by means of
Eq. (28), and substituting )�1� � U�1�, it is readily shown
from Eq. (29) that )�1��/; 0� evolves according to

@
@0

)�1� �

�
3

2
�
1

2

U2
bT

U2
b0�U2

bT

�
)�1� @

@/
)�1��

1

2

@3

@/3)
�1� �0:

(30)

Finally, introducing ~))�/; 0� � �3=2�U2
bT=2�U

2
b0 �

U2
bT��)

�1��/; 0�, Eq. (30) reduces directly to the familiar
form of the KdV equation [17–21] given by

@
@0

~))� ~))
@
@/

~))�
1

2

@3

@/3 ~)) � 0: (31)

Equation (31) is the main result of this paper. To sum-
marize, for a coasting beam described by the longitudinal
kinetic equations (1) and (2), the present analysis shows
for the choice of waterbag distribution in Eq. (8) that
disturbances moving near the sound speed �U2

b0 �
U2

bT�
1=2 satisfy the Korteweg–deVries equation (31). The
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cubic dispersive term in Eq. (31) can of course be traced
back to the term proportional to @3
b=@z

3 in Eq. (2).
Furthermore, Eq. (31) can be solved exactly using inverse
scattering techniques [19,21]. As a general remark, for
specified initial disturbance )�/; 0�, a discrete number of
soliton solutions emerge from the disturbance moving to
the right as 0 ! 1. These solitons have the form given in
Eq. (21) with the tallest (fastest) solitons on the right. That
portion of the initial disturbance that does not decompose
naturally into solitons, disperses and decays to negligible
amplitude as 0 ! 1.

IV. CONCLUSIONS

Several points are noteworthy regarding the derivation
of the Korteweg–deVries equation in Eq. (31). First, the
specific form of hEs

zi in Eq. (2), which assumes a perfectly
conducting wall at r � rw [12], has played an important
role. The inclusion of finite wall impedance ~ZZ and/or the
effects of a slip factor ) for a circular (large-aspect-ratio)
ring will lead to different equations [10,11] governing the
weakly nonlinear evolution of the system. Second, the
present nonlinear analysis has been carried out for
the choice of waterbag distribution in Eq. (8). If instead
the analysis is carried out for perturbations about a
Maxwellian distribution F0

b�pz�, it is anticipated that
there will be an additional term in Eq. (31) describing
the weak Landau damping of the disturbance due to
resonant wave-particle interactions [20]. This is analo-
gous to the corrections to the Korteweg–deVries equation
obtained for weakly damped ion acoustic waves in plas-
mas [20]. Finally, for simplicity, the present analysis has
been carried out in the beam frame. The corresponding
results in the laboratory frame can be obtained by Lorentz
transformation to a frame of reference moving with axial
velocity �Vb � ��bc relative to the beam frame [12].
Apart from the coordinate transformation, the main
modification in the laboratory frame is the replacement
of the geometric factors by g0 ! g0=�2

b and g2 ! g2=�4
b,

where �b � �1� �2
b�

�1=2 [12].
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