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The Vlasov-Maxwell egquations are used to investigate the nonlinear evolution of an intense sheet beam
with distribution function £, (x, x’, s) propagating through a periodic focusing lattice «,(s + S) = «,(s),
where S = const is the lattice period. The analysis considers the special class of distribution functions
with uniform phase-space density f,(x,x’,s) = A = const inside of the simply connected boundary
curves, x', (x,s) and x’ (x, s), in the two-dimensional phase space (x,x’). Coupled nonlinear equations
are derived describing the self-consistent evolution of the boundary curves, x’, (x,s) and x" (x, s), and
the self-field potential ¢(x,s) = ey d(x,s)/y»myBic:. The resulting model is shown to be exactly
equivalent to a (truncated) warm-fluid description with zero heat flow and triple-adiabatic equation of
state with scalar pressure P, (x, s) = const[n, (x, s)]>. Such afluid model is amenable to direct analysis
by transforming to Lagrangian variables following the motion of a fluid element. Specific examples of
periodically focused beam equilibria are presented, ranging from a finite-emittance beam in which the
boundary curves in phase space (x, x’) correspond to a pulsating parallelogram, to a cold beam in which
the number density of beam particles, n, (x, s), exhibits large-amplitude periodic oscillations. For the case
of asheet beam with uniform phase-space density, the present analysis clearly demonstrates the existence
of periodically focused beam equilibria without the undesirable feature of an inverted population in phase

Kinetic description of intense beam propagation through a periodic focusing field

space that is characteristic of the Kapchinskij-Vladimirskij beam distribution.
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I. INTRODUCTION

Periodic focusing accelerators, transport systems, and
storage rings [1-5] have a wide range of applications
ranging from basic research in high energy and nuclear
physics, to applications such as heavy ion fusion, spal-
lation neutron sources, tritium production, and nuclear
waste transmutation. Of particular importance at the
high beam currents and charge densities of practical
interest are the effects of the intense self-fields produced
by the beam space charge and current on determining
detailed equilibrium, stability, and transport properties.
In general, a complete description of collective pro-
cesses in intense charged particle beams is provided
by the nonlinear Vlasov-Maxwell equations [1] for the
self-consistent evolution of the beam distribution function,
f»(x,p, 1), and the éectric and magnetic fields, E(x, 1)
and B(x, 7). While considerable progress has been made
in analytical and numerical simulation studies of intense
beam propagation [6—34], the effects of finite geometry
and intense self-fields often make it difficult to obtain
detailed predictions of beam equilibrium, stability, and
transport properties based on the Vlasov-Maxwell equa-
tions. For example, the only known fully self-consistent
equilibrium solution (including electric and magnetic
self-fields) to the nonlinear Vlasov-Maxwell equations
for an intense beam propagating through a periodic
focusing field configuration is the so-called Kapchinskij-
Vladimirskij (KV) distribution function fiV [1,6-9].
Such a distribution, due to its highly inverted population
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in phase space, of course is of very limited practical
interest. While Hamiltonian averaging techniques have
been developed [31—-34] that justify the smooth-focusing
approximation and thereby permit investigation of a
whole class of (approximate) beam equilibria, these
averaging techniques typically require sufficiently small
vacuum phase advance (o, < 60°, say) and other
approximations for their validity. Therefore, whether or
not there exist periodicaly focused non-KV solutions
to the Vlasov-Maxwell equations remains a question of
continued fundamental importance, which we examine in
this paper for an intense sheet beam propagating through
a periodic focusing field.

To briefly summarize, the present analysis considers an
intense sheet beam which is infinite in the y dimension
and propagates in the z direction with average axial veloc-
ity V, = B,c = const and directed kinetic energy (v, —
)my,c?, wherey, = (1 — B7)~ /2 istherelativistic mass
factor, m,, isthe rest mass of a beam particle, and ¢ isthe
speed of light in vacuo. The beam propagates through a
periodic focusing lattice k,(s + S) = k.(s), where § =
congt is the lattice period, which provides transverse con-
finement of the beam particles in the x direction. The
self-consistent evolution of the system is described by the
nonlinear Vlasov-Poisson equations [Egs. (1) and (2)] for
the beam distribution function, £ (x, x’, s), and the normal-
ized self-field potential, ¢ (x,s) = e, P (x,s)/ypmyBict.
Here x’ = dx/ds is the dimensionless velocity, ¢;, is the
charge of abeam particle, and ¢ (x, s) is the space-charge
potential. In the present analysis, we consider the specia
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class of distribution functions with uniform phase-space
density in which f,(x,x',s) = A = const [Eq. (23)] in-
side of the simply connected boundaries, x/. (x,s) and
x"(x,s), in the phase space (x,x’). Coupled equations
are derived describing the self-consistent evolution of the
boundary curves, x', (x,s) and x’_(x, s), and the self-field
potential ¢ (x, s) [Egs. (27)—(29)]. Quite remarkably, the
resulting model is found to be exactly equivalent to a
(truncated) warm-fluid description with zero heat flow and
triple-adiabatic equation of state [Egs. (33), (35), (36), and
(37)]. Such afluid model is amenable to direct analysis by
transforming to Lagrangian variables following the motion
of afluid element [35,36].

The organization of the paper is the following. The
theoretical model based on the Vlasov-Maxwell equations
is summarized in Sec. Il, including a derivation of the
statistical rate equations describing the general nonlinear
evolution of the rms beam thickness, centroid motion,
and the unnormalized beam emittance. In Sec. IlI, the
Vlasov-Maxwell equations are simplified for the case of a
sheet beam with uniform phase-space density; the dynami-
ca equations are derived for the boundary curves, x/, (x, s)
and x’_(x, s), in phase space (Sec. Il A); and the equiva-
lence of the model to a (truncated) warm-fluid description
with triple-adiabatic equation of state is demonstrated
(Sec. 111 B). For the specific example of a pulsating
paralelogram with uniform phase-space density, closed
dynamical equationsfor the self-consistent evolution of the
system are derived in Sec. IV. Findly, in Sec. V, the
(closed) warm-fluid model derived in Sec. Il is trans-
formed to Lagrangian variables (xo,7) following the
motion of afluid element. This leads to a single nonlinear
partial differential equation [Eq. (76)] for the number
density n,(xo, 7) of beam particles. Specific numerical
examples corresponding to large-amplitude collective
oscillations in the cold-beam limit are also considered in
Sec. V, including back transformation to the laboratory
frame.

For the case of a sheet beam with uniform phase-space
density, the present anaysis clearly demonstrates the
existence of periodically focused beam equilibria without
the undesirable feature of an inverted population in phase
space that is characteristic of the Kapchinskij-Vladimirskij
beam distribution. It should be emphasized that the ex-
istence of periodically focused beam equilibrium for a
non-KV distribution with uniform density in the two-
dimensional phase space (x, x’) does not imply that peri-
odically focused beam equilibria exist for non-KV beam
distributions in four and six dimensions.

[I. THEORETICAL MODEL

In the present analysis, we consider an intense sheet
beam, made up of particles with charge ¢, and rest mass
my, which is infinite in the y dimension (6/0y = 0), and
propagates in the z direction with average axial velocity
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V, = Bpc and directed kinetic energy (v, — Dmyc?,
where y, = (1 — B7)~ /2 is the relativistic mass factor,
and c is the speed of light in vacuo. The beam propagates
through a periodic focusing lattice x.(s + §) = k.(s),
where S = const is the lattice period, which provides
transverse confinement of the beam particles in the x
direction.  Introducing the (dimensionless) self-field
potential (x,s) = e, (x,s)/ypmpBic?, where ¢ (x,s)
is the electrostatic (space-charge) potential, the nonlinear
Vlasov-Maxwell equations describing the self-consistent
nonlinear beam dynamics and collective processes in the
paraxial approximation are given by [37]

ofp s 0fb _ N ofe _
s + x P <KX(S))C + ax> o/ =0, (D

a2y 27K, ,

dx2 Ny fdx Jo. &
In Egs. (1) and (2), f4(x,x',s) is the distribution of par-
ticles in the two-dimensional phase space (x,x’), x' =
dx/ds is the (dimensionless) velocity in the x direction,
s = 59 + Bpctisanormalized time variable, the focusing
coefficient k(s + S) = «,(s) hasdimensions (length) 2,
and

np(x,s) = f dx’ fp(x,x',s) 3

is the number density of beam particles (hnumber of beam
particles per unit volume). For present purposes, we as-
sume that perfectly conducting walls are located at x =
*x, (the case where x,, — o0 is not excluded), and en-
force the boundary conditions

Y(x = *x,,s) = const 4

in solving Egs. (1) and (2). Furthermore, the constants K,
and N, occurring in Egs. (1) and (2) are defined by

2Nyep
K, = %612)2 = congt, 5)
Yomp B¢
and
N, = [ dx dx' f,(x,x’',s) = const. (6)

Here, K, is the normalized self-field perveance, with di-
mensions of (length)™!, and N, = [dxn,(x,s) is the
area number density of beam particles, with dimensions
of (length)~2. The validity of Egs. (1) and (2) assumes
negligibly small axial momentum spread in the z direction
and that the particle motions are nonrelativistic in aframe
of reference moving with the beam (axia velocity in the z
direction = B,¢ = const). We further assume that

flx,x' = *oo,5) =0,

fx] > Ixol,x',s) = 0,

()

such that there are no beam particles beyond some trans-
verse x dimension |x| = |xo] < x,,.
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The Vlasov-Maxwell equations (1) and (2), subject to
the boundary conditions in Egs. (4) and (7), are valid for
an intense sheet beam in the paraxial approximation and
can be used to describe the nonlinear beam dynamics and
collective processes in the phase space (x, x’) over awide
range of system parameters and applied focusing field con-
figurations k(s + S) = k,(s). While the full solutions
for f,(x,x’,s) and ¢r(x, s) are of special interest, it isalso
possible to derive exact equations for the evolution of sta-
tistical averages (x)(s). Here, the statistical average of
a general phase function y(x,x’,s) over the phase-space
distribution £, (x, x’, s) is defined by

) = f dxdx' xfy, (8)

where N, = [dxn, = [dxdx' f, = const is the area
number density of beam particles in the sheet beam. For
x = x and y = x/, taking the appropriate moments of
Eq. (1), readily gives [38]

d :
T =, ©

Loy r=-(2) o

where use has been made of Eq. (7). Substituting Eq. (9)
into Eq. (10) readily givesfor the evolution of the centroid

location (x) (s)
L@+ mwm=-(2). a

In Eq. (11), the average self-field force, —(dy/ax), is
determined self-consistently from Egs. (1), (2), and (8).
Similarly, it can be shown (exactly) from Egs. (1) and (8)
that

and

i 2y = 2(xx’
R (x7) = 2(xx’), (12)
and
Lty )6 = 0 = (20 )
or equivalently,
2
4+ el = o = ()
In addition, it can be shown from Egs. (1) and (8) that
%(x’z) + 2k, (s) (xx'y = —2<x' %>, (15)

or equivalently,

d ! i _ /%
o (x'?) + Kky(s) s (x?) = 2<x P >, (16)
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where use is made of Eq. (12). Equations (11), (14), and
(16), derived from the Vlasov equation (1), are exact equa-
tions describing the nonlinear evolution of the statistical
averages (x) (s), (x2)(s), and (x"?) (s). In a similar man-
ner, making use of Eq. (1), dynamical equations can be
derived for the evolution of statistical averages for higher-
order moments, (x™), (x'"), and {(x?x'?), form > 2, n >
2, etc.

For future reference, it is convenient to rewrite Eq. (14)
in terms of the mean-square beam dimension X 2(s) defined

by
X7 = ((x — (). (17)

We further make use of the identities

((x = )P = () = &)
(2 = ) = () = (P (18)

(= ) = D) = 54w = ().

Substituting Egs. (17) and (18) into Eg. (14), and making
use of Eq. (11) to eiminate (d?/ds?) {x), we readily obtain

d’> 1
) — X7 + K (5)X}

— I _ / _ _ %
— (@ = = (- @ 2. a9

Subtracting out the centroid motion, it is convenient to
introduce the unnormalized beam emittance €, (s) defined

by
1) = (O = I — W)
—(x — N — Y

(de> (20

= (= g - X3

where X2 = ((x — (x))?), and use has been made of
Eq. (18). Using Eq. (20) to eiminate ((x’ — (x’))?) in
favor of €2(s) in Eq. (19) gives directly the dynamical
equation

d’X, exls) 1 B ap
% = S - (=8,

(21)

Equation (21) is fully equivalent to Eq. (14) and describes
the nonlinear evolution of the rms beam thickness X, (s).

In a similar manner, Eq. (16) for (x'?)(s) can be re-
placed by adynamical equation for the unnormalized beam
emittance. Without presenting algebraic details, making
use of Egs. (11), (14), (16), and (18), we obtain
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d 1 i / / oY
s er(s) = —((x — <x>)2><(x — ) a>

= = (- 8

— —xi{ - oy 2

P00 (- @
s 0x

Equation (22) shows clearly that space-charge effects (pro-
portional to d¢s/dx) generally cause a variation in the
beam emittance €, (s). Only in the limit of very low beam
intensity (|oy/dx| — 0), or very special choices of distri-
bution function £, (x, x’, s) (see Sec. 1V), is the emittance
a conserved quantity.

To summarize, Egs. (11), (21), and (22) are exact
consequences of the Vlasov equation (1) and describe the
self-consistent dynamical evolution of the beam centroid
(x)(s), rms thickness X,(s), and emittance e,(s). In
general, Egs. (11), (21), and (22) are not closed dynamical
equations because the statistical averages (d¢/dx), {(x —
(x))oy/dx), etc., require a knowledge of the self-field
potential ¢ (x,s) which is determined self-consistently
in terms of the distribution function £, (x, x', s) from the
Vlasov-Maxwell equations (1) and (2).

[11. NONLINEAR VLASOV-MAXWELL
EQUATIONS FOR UNIFORM PHASE-SPACE
DENSITY

We now return to the Vlasov-Maxwell equations (1)
and (2) for the distribution function f,(x,x’,s) and
sdlf-field potential «(x, s). For specified applied focusing
field k(s + S) = k,(s) and initia distribution function
fr(x,x',s = 0), obtaining the solutions to Egs. (1) and
(2) is generaly difficult analytically, athough solutions
to Egs. (1) and (2) are accessible using nonlinear 6 f
simulation techniques [22—25]. For present purposes,
we consider a special case where considerable anaytical
simplification occurs in the analysis of Egs. (1) and
(2). In particular, as illustrated in Fig. 1, we consider
the case where the distribution function f,(x,x’,s) has
constant phase-space density (independent of x, x/, and
s) within the simply connected boundary curves x/, (x, s)
and x’ (x, s), and zero phase-space density outside.

That is, we take

x(x,s) < x' < x\(x,s),

, .« [A=congt,
folx.x,5) = {0, otherwise.
(23)

If £,(x,x',s) satisfies Eq. (23) initialy at s = 0, then the
nonlinear Vlasov equation (1) assures that the phase-space
density remains constant at subsequent values of s as the
boundary curves x/, (x, s) and x’ (x, s) distort and evolve
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X' = X, (X,8)

fo(x, x',s) = A
= const.
X =X%(9)

X=X (9)

\

X" = x'(x,s)

FIG. 1. Phase-space plot of distribution function with uni-
form phase-space density f,,(x,x’,s) = A = const in the region
x(x,5) < x' < x(x,s) and x; (s) < x < x; (s) [Eq. (23)].

nonlinearly in response to the applied focusing field and
the self-generated fields. Of course as the system evolves,
Eq. (1) assures that

dNp/ds = (d/ds)f dx dx' f,(x,x',s) =0,
or equivalently from Eq. (23) and Fig. 1,

xp (5)
N, = A[ ( dx [x'.(x,s5) — x"(x,s)] = const. (24)
X (s

That is, no matter how complicated the evolution of the
boundary curves, x', (x, s) and x"_(x, s) in Fig. 1, the total
area within the phase-space boundary remains constant.
In the subsequent analysis, we assume that the bound-
ary curves, x' (x,s) and x’_(x, s), in Fig. 1 remain single-
valued functions of x as the system evolves.

A. Dynamical equations for x/, (x,s) and x’(x, s)

We now make use of Egs. (1) and (23) to derive exact
dynamical eguations for the boundary curves x', (x, s) and
x"(x,s). Referring to Fig. 1 and Eq. (23), we operate on
Eq. (1) with [~ dx’---. Thisreadily gives

%(}C'+ - x1) + %%(Xf -x?) =0, (25)
for x; (s) < x < x; (s). Here, use has been made of
[Codx'afy/ox’ =0, [~.dx'f, =A(\ —x"), and
[7dx'x'f, = A(1/2) (x> — x'?). In a similar manner,
operating on Eq. (1) with [~ dx’x'---, and making use
of [, dx'x'af,/ox' = — [~ dx' fy, we obtain

a 1
a)c )
b}

J 1
— — (2 =x?+ i3 (x!3 = x3)
(26)

ds 2

= —(x - x'_)(xx(s)x +
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for x, (s) < x < x; (s). Finally, making use of
[dx' f, = A(x', — x_) for the choice of distribu-
tion function in Eq. (23), it is straightforward to show that
Eq. (2) for the self-field potentia ¢ (x, s) reduces to
0, —xy = x < xp (5),
2
T8 B anl — a5 () <x < ¥,
* 0, xi () < x = x,,.
(27)
Equations (25) and (26) can be combined to give sepa-
rate dynamical equations for x/, (x,s) and x’(x, s). Some
straightforward algebraic manipulation gives

J 0 0

S O TR )
as ax ax

d 0 0

—xL +x—x = —k(s)x — —l'//, (29)
Jas ox ox

for x, (s) < x < x; (s). Equations (28) and (29) are ex-
actly equivalent to Egs. (25) and (26). Note that Egs. (28)
and (29) are simply statements that the acceleration of
the upper (x',) and lower (x") phase-space boundaries in
Fig. 1isequa to —k,x — d¢/dx, which corresponds to
the combined effects of the applied focusing force (— k, x)
and the self-field force (—ay/dx).

In summary, for the case of constant phase-space density
in Eqg. (23) and Fig. 1, there has been an enormous sim-
plification in the kinetic description based on the Vlasov-
Maxwell equations (1) and (2). In particular, Egs. (1) and
(2), which are partial differential equations in the three
variables (x, x', 5), are replaced exactly by Egs. (27)—(29),
which are partial differential equationsin the two variables
(x, s). Equations (27)—(29) can be solved analytically in at
|east one case of specia interest (Sec. 1V), and can beinte-
grated numerically for awide range of initial phase-space
boundaries, x', (x,s = 0) and x’_(x,s = 0).

B. Equivalence to a war m-fluid model

It is instructive to recast the basic equations derived in
Sec. II1 A in a form familiar in macroscopic warm-fluid
descriptions widely used in plasma physics [35]. In this
regard, we introduce the number density n,(x, s), and the
(normalized) macroscopic flow velocity, V., (x,s), pres-
sure, Py (x,s), and heat flow, O, (x, s), defined by

np Zfdxlfh,

np Vb :fdxlx/fb,
(30)
P, = f dx' (x' — Vu)fp,

Oy = / dx' (x' — Vu)fy .
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Referring to Eq. (23) and Fig. 1, some straightforward al-
gebra gives

ny = A(x, — xL),

1
np Vi = EA(X/E - x'?),
] (31)
Pr=1o0 [A(x}, = x1)P,
0, =0,

for x, (s) < x < xj (s). Notefrom Eq. (31) that thetrans-
verse flow velocity V., (x, s) is given by

1
Vi = E(XQ +x1), (32
and the pressure P, (x, s) can be expressed as
p
P, = —2n}, (33)
npo

where P,o/fio = 1/12A% = const is a constant coeffi-
cient. Furthermore, because there is no “skew” in the x’
dependence of f,(x,x',s) in Eq. (23), the heat flow Q,, is
identically zero (Q, = 0). Making use of the expressions
for n,Vy, Py, and Vy, in Egs. (31) and (32) gives the use-
ful identity

1
I’le)gb + Py, = g(xf - x’j) (34

We now return to the basic dynamical equations for x/.
and x’ derived in Egs. (25) and (26) in Sec. Il A.
Substituting Egs. (31)—(34) into Egs. (25) and (26) gives
directly the familiar macroscopic continuity and force
bal ance equations,

J J
—ny + —(npVy) =0, (35)
as 0x
and
9 v +a( vv)+aP”
T NpVy —— \NpVxbVix N
Jas b¥xb ox b¥xb b ox
o —nb<Kx(s)x + %>,
ox
(36)

where Py (x,s) = (Ppo/fio)ni(x,s) satisfies the triple-
adiabatic pressure relation in EqQ. (33). Furthermore,
Poisson’s equation (27) is simply expressed as
('Jz_lﬂ . _27TKb
ax2 Nb

ny . (37)
Finally, Eq. (36) can be further simplified by making use

of Egs. (33) and (35) to diminate dn,/0s. We readily
obtain
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— Vo + Voo—Vu + = —
as " Pox T 2 fipo 0x b
0
— —kuls)r = 22
ax

(38)

in the region where n;, # 0. Equation (38) shows clearly
that the transverse acceleration of a beam fluid element is
produced by the combined effects of the pressure-gradient
force (—nj, '9P),/0x), the applied focusing force (—k,x),
and the self-field force (— a4y /ox).

To summarize, for the case of constant phase-space
density in Eg. (23) and Fig. 1, the macroscopic fluid de-
scription provided by Egs. (33), (35), (36), and (37), or
equivaently, Egs. (35), (37), and (38), is fully equivalent
to the nonlinear Vlasov-Maxwell eguations (1) and (2).
This remarkable simplification, i.e., closure of the macro-
scopic fluid equations with the first two velocity moments
for ny(x, s) and V,;(x, s), is a consequence of the fact that
the heat flow satisfies 0, (x,s) = 0 exactly for the class
of beam distribution functionsin Eq. (23) and Fig. 1 [35].
Similar to Sec. Il A, the Vlasov-Maxwell equations (1)
and (2), which are nonlinear partial differential equations
in the three variables (x, x/, s), have been replaced by the
macroscopic fluid-Maxwell equations (35), (37), and (38),
which are nonlinear partia differential equationsin thetwo
variables (x, s). It should be pointed out that Egs. (35),
(37), and (38) are readily amenable to numerical solution,
and can aso be investigated analytically, e.g., by introduc-
ing a Lagrangian transformation to a frame of reference
moving with velocity V,,(x,s) of a beam fluid element.

A = condt,
Folx,xlys) =

0, otherwise.

It is clear from Eq. (40) and Fig. 2 that

1
N—hfdxdx'xf;, = (x),

Nib[ dx dx' x' fi, = (x'},
as required by the definition of statistical averages in
Eq. (8). Inthe subsequent analysisin Sec. |V, we consider
the class of solutions in which the phase-space boundaries
xp, (s) and x; (s) in Fig. 2 remain vertical, i.e., thereis not
an initial perturbation corresponding to a tilt (relative to
the vertical) of the boundaries x, and x; in Fig. 2.

(41)

A. Evaluation of macroscopic quantities and statistical
aver ages

The simple shape of the boundary curves in Fig. 2 and
Eq. (40) makes it straightforward to calculate the various
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Equations (35), (37), and (38) can be used to investigate
detailed beam propagation properties over a wide range
of focusing field configurations (s + S) = k,(s) and
system parameters. In this regard, it should be noted
that the dynamical equations for the beam centroid (x) (s)
[Eg. (11)], the rms beam thickness X, (s) [Eq. (21)], and
the unnormalized beam emittance €, (s) [Eq. (22)], derived
in Sec. |1, aso apply to the class of distribution functions
described by Eg. (23) and Fig. 1.

V. PULSATING PARALLELOGRAM WITH
UNIFORM PHASE-SPACE DENSITY

As an application of the analysis in Sec. I1l, we now
consider the uniform phase-space distribution illustrated
in Fig. 2, where the boundary curves x/, (x,s), x" (x,s),
xz (s), xp (s) corresponds instantaneously to a paral-
lelogram centered at the phase-space point ((x), {x)),
where (x)(s) is the centroid position, and {(x')(s) =
(d/ds){x) (s) is the centroid velocity. Here, the boundary
curves are defined by

Xl (xys) = ) (s) + x(s) + als)[x — () ()],
xL(x,5) = () (s) = x(s) + als)[x — (x) ()],
X (5) = () (5) + x(5), (39
xp (8) = () (s) = xp(s),
where a(s) is a (yet unspecified) s-dependent coefficient.
The distribution function £} (x, x’, s) with constant phase-

space density consistent with Eq. (39) and Fig. 2 is given
by

(xy = xp + alx — (O] <x' <)+ x, + alx = ()],
x) — xp < x <{x)+ xp,

(40)

macroscopic properties and statistical averages of physical
interest. For example, it follows directly from Eq. (40) and
Fig. 2 that the density profile n, (x,s) = [dx' fy(x,x’, )
corresponds to the simple step-function profile

09 _xW = X < xb_(s)7
np(x,5) = 1 A2xh(s), xp (s) < x < xp (s),

(42)
0, xp () < x = xy,

and the area number density N, = [ dx dx’ f,(x,x',s) is

given by

Ny = A2x}(s)2x,(s) = const. (43)
Here, 2x,(s) and 2x,(s) are the thicknesses of the par-
alledlogram in Fig. 2 in the x direction and the x’ direc-
tion, respectively. While both x;(s) and x;,(s) depend on
s, it is clear from Eq. (43) that the product x;,(s)x,(s) is
constant. Furthermore, combining Egs. (42) and (43), the

084402-6



PRST-AB 5 KINETIC DESCRIPTION OF INTENSE BEAM ... 084402 (2002)

X (s) = X+ X,(S) 1

Ko=) | ((x = D) = 5 x3(s),

+a(s) (x ~x)) \ / 3 (47)

——— 1

(= @) = S [726) + (D)),
©).xD 1
“ (= ) = () = 5 a(s)3).
Therefore, from Eq. (47), the mean-square beam thickness
f.(x x,8) = A X[%(S) ={((x — (x))?)is given by

= const.
X (x,8) = (x') = x/(s)

+0(s) (X = X))

/

X, (s) = —x'b(s)

FIG. 2. Phase-space plot of distribution function f,(x, s', s) =
A = congt in Eq. (40). Note that the boundary curves in the
figure correspond to the parallelogram x’ = x’.(x,s) = (x/) *
xh(s) + a(s)(x — (x) andx = x; (s) = (x) * x,(s), and that
the parallelogram is centered at (x,x’) = ({(x),(x')).

particle number density n,(s) = 2Ax},(s) in the interval
—xp < x — (x) < x;, can be expressed as

Ny
2xp(s)

np(s) = (44)

The average flow velocity Vy,(x,s) = n;, ' [dx' X
x'fy(x,x',s) is also straightforward to calculate from
Eg. (40) and Fig. 2. Some algebraic manipulation gives

Ve (x,5) = %[xﬁr(x,s) + x"(x,5)]

=N () + al)[x — )], (45

where (x) (s) and (x’) (s) = (d/ds) {(x) (s) are the centroid
position and velocity.

To evaluate the statistical averages (x2), (x'?) and (xx'),
we make use of the identities (see Sec. 1)

() = ((x = () + )
(%) = (= ) + @D (46)
(o) = (= W = @)+ ) = (),

where datistica averages are defined by (y) =
N, ' [dxdx' yf,. Some straightforward algebraic ma-
nipulation that makes use of Egs. (40) and (43) and Fig. 2
gives the simple expressions

084402-7

X3(6) = 5 336), (48)
where x,(s) is the half thickness of the beam. Substi-
tuting ((x — (x)) (x’ — (x/))) = a(s)X;(s) [Eq. (47)] into
Eq. (46) gives

L = W)+ awXie). (@9
Making use of (x2) = X7 + (x)* [Eq. (46)] and
(d/ds){x) = {x"), Eq. (49) gives directly
_ 1 dxy
a(s) = X, ds (50)

where X, (s) = (1/4/3)x,(s) is the rms beam thickness.
Equation (50) determines a/(s) in terms of X, (s). Making
use of Egs. (48) and (50), the expressions in EqQ. (47) re-
duce exactly to

(= () = X3s) = 3 00),

2
(= ) = o) + (D) e
(= ) = ) = x, B2
)

for the choice of distribution function in Eg. (40) and
Fig. 2.

The unnormalized beam emittance (subtracting out the
centroid motion) defined in Eq. (20) is a quantity of con-
siderable physical interest. Making use of Egs. (20) and
(51), we obtain

16 = (6 = I = )
(- ) - )

| P <de )2 (de )2
—_ — + - — -
AR ds ds

— S POXE), (52)

for the choice of distribution function in Eq. (40). Substi-
tuting X7(s) = (1/3)x2(s) into Eq. (52), and making use
of 2x;,(s)2x,(s) = Nj/A = const [Eq. (43)], we obtain
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4 We now turn to a determination of the self-field poten-
€:(s) = ry [x) (s)xp(s)T? tial ¢ (x,s) required in evaluating the statistical averages
(¢ /axyand ((x — (x))dy/ax) occurringinthe rate equa

1 N} tions (11) and (21) for the centroid position {x) (s) and rms

_ —_—— = 2 = i
= 3 o = €0 = const, (53) " beam thickness X, (s).

where N, = const isthe areanumber density of beam par- . ' .
ticles, and A = const is the phase-space density of beam B. Solution for self-field potential 4 (x,s)

particles. Thefact that €2(s) = €2, = const for the choice We now solve Poisson’s equation (37) for the choice of
of distribution function in Eq. (40) and Fig. 2 leads to  step-function density profile n,(x,s) in Eq. (42), which
enormous simplification in the analysis of the dynamical  corresponds to the distribution function f,(x,x’,s) in
equation (21) for the evolution of the rms beam thickness  Eq. (40) and Fig. 2. Making use of Egs. (42)—(44),

X, (s) = (1//3)xp(s). | Poisson’s equation (37) becomes
82¢ 0’2 X =Xy = x < xp (5) = (x) — xp(s),
Froin B T np(s), xp (5) = (x) — xp(s) < x < x5 (s) = (x) + x(9), (54)
0, xp (8) = (x) + xp(5) < x = x,,

where n,(s) = N /2x,(s) is the particle number density. Referring to Fig. 3, Eq. (54) can be solved for % (x, s), enforc-
ing the boundary conditions (x = *x,,,s) = 0 at the conducting walls, and continuity of ¢(x,s) and d¢s(x,s)/dx at
the leftmost boundary of the density profile, x, (s) = {(x) — x;(s), and at the rightmost boundary of the density profile,
xp (s) = (x) + x,(s), in Fig. 3. For the three regions in Fig. 3, making use of Eq. (54) and n,(s) = N,/2x,(s), the
solution for ¢ (x, s) can be expressed as

(s) = T2 (x + x) (0 — (),

for —x, =x <x,(s) =) — x(5),

ns) = lllll(x,sz = —ZT’? [x2 + 2%()@, - icw)x + () + X2 — 2xbxw], (55)
for x, (s) = (x) — x5(s5) < x < xp (5) = (x) + x5(s),

W (x,5) = T (x, — x) (0 + (X)),

L for x; (s) = (x) + x,(5) < x =< x,,.

The solution for (x,s) in Eq. (55) is valid even in | X,(s) are the doatisticd averages (d¢/0x) and
the case where the centroid (x) (s) undergoes nonlinear  ((x — (x))dy/dx) defined by [see Eq. (8)]
motion, provided the beam surfaces do not comein contact oy 1 o
with the conductingwallsat x = *x,,. Of course Eg. (55) <—> A f dx dx' afb

simplifies for the case of a centered beam with (x) = 0. ox b
Of particular interest in the rate equations (11) and (21) 1 oY
for the centroid position {x) (s) and rms beam thickness A ] dx ax b
(56)
_ %> _ L [ e — oy O
s (6= 2) = [ avar' e - 3
1 [ o
= — | dx(x — (x))—nyp,

N, /2,(S) Ny ( 2 ax "
where ny,(x,s) = [dx' f,(x,x',s) is the number density
of beam particles. For the choice of distribution function

< = in Eq. (40) and Fig. 2, the density profile n,(x, s) has the
I step-function profile in Eq. (42) and Fig. 3, and the ex-
| . pression for (3¢ /dx) in Eq. (56) reduces to
X
| g 9 l/f > 1 f Qo)+, (s) 9 i
n - : Y= — = 7
X, %, (s) 0 (x) x; (s) X, <(?x N, np(s) R dx Py (x,s), (B7)

FIG. 3. Plot versus x of the step-function density profile 1 . . . .
ny(x,s) in Eq. (42) corresponding to the parallelogram distri- where " (x,s) is defined in Eq. (55), and ny(s) =
bution in Eq. (40) and Fig. 2. Here, ny(s) = N,/2x,(s), and ~ N»/2xp(s) follows from Eq. (44). Substituting Eqg. (55)
the density profile is centered at x = (x) (s). into Eq. (57) readily gives
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<%> — K . (59)

ox W

In a similar manner, it can be shown from Egs. (55) and
(56) that
7TKb

81,!/ 7TKb
(=P = Ty = -T2 %, (69
where use is made of X,(s) = x,(s)/~/3. The expressions
for the statistical averages in Egs. (58) and (59), vaid for
the choice of distribution function in Eq. (40) and Fig. 2,
can be used directly in the rate equations for {x) (s) and
X, (s) in Egs. (11) and (21).

C. Rate equations for {x) (s) and X (s)

We substitute Egs. (58) and (59) into the rate equations
(12) and (21) for the motion of the beam centroid (x) (s)
and rms beam thickness X, (s) = ((x — (x))?)!/2. This
gives

d? K
S+ [ms) -z b}<x>=o, (60)
s Xy
and
d? [ 7K, } €
EoXy A+ | kals) — b Iy, = 530 61
PR LS Ay Sl L (61)

where €, is the constant emittance defined in Eq. (53).
Note from Egs. (58) and (60) that the self-field force on
the beam centroid, —{(0¢//dx) = (7K}, /x,,) {x), is Aways
defocusing and is proportional to the displacement (x)
from the center position (x = 0), and the constant factor
7Ky /x,. Furthermore, the self-field force in Eq. (60) is
associated with image charges in the conducting wall. In
particular, at fixed beam intensity (K, ), the self-field force
in Eqg. (60) becomes negligibly small as x,, — «. On the
other hand, from Egs. (59) and (61), the self-field force
term is —X;, ((x — (x)ay/ox) = wK,//3 = congt,
which is aso defocusing, but is independent of X,
and (x).

Equations (60) and (61) constitute closed dynamical
equations for the motion of the beam centroid (x) (s)
and rms beam thickness X,(s). Moreover, Egs. (60)
and (61) can be integrated numerically for a wide range
of choices of lattice function «.(s), beam emittance
€0, beam intensity K,, and conducting wall location
x,. Note from Eqg. (60) that if the beam is initially
centered with (x)(s = 0) = 0 = [d{x)/ds]s=9, then
(x) = 0= (d/ds) (x) a all subsequent s. Most impor-
tantly, solving Egs. (60) and (61) for (x) (s) and X,(s) is
fully equivalent to solving the nonlinear Vlasov-Maxwell
equations (1) and (2) for the choice of parallelogram dis-
tribution in Eq. (40) and Fig. 2 with constant phase-space
density f(x,x',s) = A = const. Making the identifica
tions x,(s) = V3 X,(s) [EQ. (51)], als) = X, 'dX,/ds
[Eq. (50)], x;(s) = (v/3/2)ex0/Xs(s) [Eq. (53)], and
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(x"y(s) = (d/ds){x)(s) [Eg. (9)], it follows directly from
Eqg. (39) that the phase-space boundaries in Egs. (39),
(40), and Fig. 2 are given by

ﬁ €x0
2 X(s)

Ks) = @) =

1 dX,

+ X, ds & (x)(5)), (62)

xi(s) = (x)(s) = V3Xp(s).

Therefore, a determination of (x)(s) and X,(s) from
Egs. (60) and (61) fully specifies the distribution function
in Eg. (40) and Fig. 2. For matched-beam solutions
X,(s +8) = X,(s) to the nonlinear rms envelope
eguation (61), the shape of the parallelogram in Fig. 2
pulsates with period S in a frame of reference centered
a ({(x),(x’)). Depending on the initial conditions for
(x)(s = 0) and [(d/ds) {x)]s—=0, however, the motion of
the centroid ({x), (x’)) in Fig. 2 can be moreirregular, with
both fast-oscillatory and slow-oscillatory components.
For present purposes, we examine Egs. (60) and
(61) for the choice of a periodic step-function lattice
Ky(s + 8) = k(s) illustrated in Fig. 4. Here, &, =
congt is the lattice amplitude, and % is the filling fac-
tor. For simplicity we consider here a centered beam
with [(x)];=0 = [d{(x)/ds]s=o = 0, so that (x) = d{x)/
ds = 0 at al subsequent s. Typical humerical results ob-
tained from Eq. (61) for the rms beam thickness X, (s) are
shown in Fig. 5, where X, (s)/+/€x0S is plotted versus s /S
for a matched beam with moderate space-charge intensity
propagating through the periodic step-function lattice
in Fig. 4. Here, the dimensionless system parameters
correspond to &,S% = 14.92, filling factor n = 0.3, and
normalized beam intensity K, S/+/€,0S = 5.0. Moreover,
the vacuum phase advance per lattice period corresponds
0 oy = limg,—oex0/2) [27° ds/X}(s) = 60°, and
the depressed phase advance (K, # 0) corresponds to
o = 3.4°. Note from Fig. 5 that the solution for X, (s)
corresponds to a matched beam with X, (s + S) = X, (s),

Ky(S) ,
Full-Period
+Ry
n/ 4
/ ) 1
T T
0 1/ 2 1 s/S
S
< n/2 =

FIG. 4. Plot of lattice function «,(s) versus s/S for a periodic
step-function lattice with amplitude %, = const and filling fac-
tor 7.
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0 0.2 04 0.6 0.8 1
s/ S

FIG. 5. lllustrative plot of X, (s)/+/exS versus s/S obtained
numericaly from Eq. (61) for a matched beam with moderate
space-charge intensity propagating through the periodic step-
function latticein Fig. 4. Here, the dimensionless system param-
eters correspond to #,S> = 14.92, n = 0.3, and K, S/ /€508 =
5, with vacuum phase advance o, = 60° and depressed phase
advance o = 3.4°.

and the corresponding phase-space boundaries in Eq. (62)
correspond to a periodically focused beam equilibrium
with x'(x,s + §) = xL(x,s) and x; (s + §) = x;, (s).

V. LAGRANGIAN DESCRIPTION OF NONLINEAR
BEAM DYNAMICS

For the case of uniform phase-space density, it was
shown in Sec. I B that the basic dynamica equations
for a planar sheet beam propagating through a periodic
focusing field could be cast into the form of the macro-
scopic warm-fluid equations (35)—(37) with triple-
adiabatic pressure relation Py (x,s) = (P, /fio)ni(x,s)
and zero heat flow Q,(x, s) = 0. Introducing the (normal-
ized) electric field E(x,s) = —a(x,s)/dx and making
use of Egs. (35)—(37), it follows that the number density
ny(x,s) = [dx' f, and (normalized) average velocity
Vi (x,5) = ([dx'x' f,)/([dx' f,) evolve exactly ac-
cording to

9 ) AV
— 4 Vg — |np + =0, 63
(2 Voo + m 222 (63)
d Jd 3 d
<g + Vo a)be + Ev%b al’li = — Kk (s)x + E,,
(64)
where E,(x, s) solves
3EX 27TK},
= : 65
P N, " (65)

Here, v3, = P, /A, = const is the normalized thermal
speed. As noted in Sec. 11, for uniform phase-space den-
sity, Egs. (63)—(65) are exactly equivalent to the Vlasov-
Maxwell equations (1) and (2), and Egs. (27)—(29) for
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(x, s) and the phase-space boundary curves, x', (x, s) and
x"(x,s).

A. Dynamical equationsin Lagrangian variables

The fluid-Maxwell equations (63)—(65) are particularly
amenableto analysisin Lagrangian variables following the
motion of a fluid element [35,36]. We introduce the La-
grangian variables (xy, 7) following afluid e ement defined

by
T=39,

r (66)
Xp=x — f dr' Vi (xo, 7).

0
Here, 7 is a (normalized) time variable, and it follows
exactly from Eq. (66) that derivatives transform according
to

) 4 ) R

— =1+ [ dr' — Vy(x, ’} —,

ax |: fo T dxg o (X0, 7)) dxo

d 0

Pyl b (X0, T) (67)

4 9 1y
e [(ar L] 2
0 dxo dxo

From Eq. (67) we obtain

J 0 J
— +Vyp—=—, 68
as Xbax ks (68)

and the continuity equation (63) in Lagrangian variables
becomes

d ( ) + np(xo, 7)
— np(xg, T 7
gr o0 [1+ [ dr' 9V, (x0. ')/ dx0]

0
— Vwlxo,7) =0.
BX()

(69)

Equation (69) can be integrated exactly with respect to 7
to give

np(xo,0)
[1 + [od7 dVip(xo,7/)/dx0]"

(70)

np(xo, 7) =

Notethat Eq. (70) givesaclosed expressionfor n;,(xg, 7) in
Lagrangian variables in terms of 7, (xo,0) and V., (xq, 7).
Poisson’s equation (65) also simplifies in Lagrangian
variables. Making use of Eq. (67) we obtain
! X
[1+ fg dt 0V, (xg, ')/ dx0]
9
axO

27TKb
Ex(xo, T) =

np(xo, 7),

(71)
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where n;(xg, 7) is given by Eq. (70). Equations (70) and (71) readily give

9

Ex(x09 T) =
aX()

27TKb

np (X(), 0) . (72)

A very important consequence of transforming to Lagrangian variablesisevident from Eq. (72). In particular, E,(xg, 7) =
E,(x0,0) is independent of 7, and depends only on the initial density profile n;, (xo, 0).
We now return to the force balance equation (64), transforming to Lagrangian variables according to (67), (68), and

(70). This gives (exactly)

2
UTh

0 3
e (X0, T) + B}

np(xo,0) }2

Jd
[1 4+ [odr aVy(xo, 7')/dx0] B—xO{[l + [od7 dVyp(x0,7')/dx0]

= E (x0,7) — Kky(7) [xo + fOT d7' Vi (xo, T/)},

(73)

where E, (xo, 7) is determined self-consistently in terms of n,(xo,0) from Eq. (72). Operating on Eq. (73) with 9/dxq

and rearranging terms, we readily obtain
2

912

d T d
—|:1 + f dr' — V. (xo, ’T/):| + Kx(T)|:1 +
0 dX0

4 d
,[0 d’l‘la—xovxb()C(),T/):| +

ny(xo,0) _ 27K,

o Pk ]
v — b T e —
™ 9x0 L np(x0,0) axo L[1 + [od7" aVp(x0, 7/)/0x0] Ny

np (X(), O) . (74)

Equation (74) is a closed, partial differential equation for |
the density compression factor

0 T 9
w0y (T Ly 9
np(xo, 7) 0 9xo

in Lagrangian variables, which is fully equivalent to the
original dynamical equations (63)—(65) in laboratory-
frame variables. Substituting Eq. (75) into Eq. (74) gives
directly

6—2[ ! } + k (7')|: ! :| +
72 L ny(xg, 7) * np(xo, 7)

v%b d 1 d
n(x0,0) 9x0 |:nh(XO’O) axo

oo, Y | = 22

(76)

in the region where n;(xq, 0) is nonzero.

Equation (76) [or equivalently, Eq. (74)] constitutes the
final dynamical equation in Lagrangian variables and can
be used to investigate the detailed nonlinear dynamics of
intense beam propagation for a wide variety of input den-
sity profiles n;, (xg, 0), lattice functions . (7), normalized
beam intensity (K},), and beam emittance (proportional to
v#,). Furthermore, Eq. (76) is well posed as an initial-
value problem. For specified n;(x9,0) and V,;(xo,0), it
follows from Eq. (75) that

9

— np(xp, 7)

d
V)Cb (X(), 0) ’
or =0 X0

= —my(x0.0) 5 (7
and Eq. (76) can generadly be integrated numerically to
determine n;(xp, 7) once the initial profiles for n,(xg, 0)
and V,;,(xo,0) and beam parameters are specified.

Once ny(xg, 7) is determined from Eq. (76), the ex-

pression for ny(xo,0)/no(xp, 7) can be used to formally
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determine the inverse transformation to laboratory-frame
variables (x,s) defined in Eq. (66). For example, con-
sider the case where the initial density profile is an even
function of xo with n,(—x9,0) = n,(x9,0), and the ini-
tial flow velocity profile is an odd function of x, with
Vier(—x0,0) = =V (x9,0) and Vy(xp = 0,0) = 0. It
readily follows from Egs. (74)—(76) that

nh(_-xo’ T) = nb(XOv T) ) (78)
Vi (=x0,7) = =V (x0,7),

where V;,(xg = 0,7) = 0 for all values of 7. Integrating
Eq. (75) with respect to x, then gives
T Xo
xo + f dr' Ve (xo, 7)) = f dxo (X0, 0) ,
0 0 np(xo, T)
which is required to determine the inverse transformation

from Lagrangian variables (xo, ) to laboratory-frame vari-
ables (x, s) in Eq. (66).

(79)

B. Cold-beam limit

Asnoted earlier, Eq. (76) [or equivaently, Eq. (74)] can
be used to describe in Lagrangian variables the beam dy-
namics for a wide variety of initial profiles and system
parameters. For present purposes, we consider the special
case of a cold beam with negligible transverse emittance,
i.e,

v?, — 0. (80)
In this case, Eq. (76) simplifies to become

}+Kx(r)[ ! }=2”K1’. (81)

np (xo, 7) Ny

2l
12 | np(xp, 7)
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Note that Eq. (81) is an inhomogeneous, linear, ordinary
differential equation for 1/n,(xo, 7), with xo occurring as
acontinuous parameter. Indeed, Eg. (81) can be integrated
numerically with respect to = for awide variety of periodic
lattice functions (7 + S) = k.(7), and initia density
profiles n,(xg,0) consistent with Eq. (77).

A useful representation of the general solution to
Eqg. (81) is

1

np(xo, 7)

= Al(xo, T)w(xo, ) COSYs (x0, T)

+ B(xg, T)w(xp, 7) SiN(xg, 7). (82)

InEq. (82), the envelope function w(xo, 7) istaken to solve

92 1
— wix0,7) + ke(T)W(xo, 7) = ———,
w3(xo, 7)

37.2 (83)
and the phase function ¢ (xo, 7) is defined by

sor) = [ T (64)

w2(xg, 7')
Substituting Egs. (82)—(84) into Eq. (81), we obtain
1[2% + i(ﬁwz)}cosw +

w orT Jd7 \oT

1 0A 0 (0B . 27K
—[—2— + —(—wzﬂsngb = =720 (85)
w a7 ot \ 0T Np

where we have suppressed the (xp,7) arguments in
Eq. (85). It is readily shown that Eq. (85) is satisfied
exactly provided the amplitudes A(xg,7) and B(xo, 7)
solve

0A 27K .

92— TR wSsnyg ,

a7 N},

B _ 27Ky | (86)
— = —w .

a7 Nb

Equations (83), (84), and (86) can be used to determine
w(xg, 7), A(xo, 7), and B(xg, 7), and therefore the solution
for 1/n;(xo, 7) in Eq. (82). Some straightforward algebra
that makes use of Egs. (77), (82), (84), and (86) showsthat
the appropriate initial conditions at = = 0 are given by

1

= AW T=U>
nb(X0,0) [ ] 0
a0 = [ L2y BT &7
dx b 1X0, w ar  Aw? |-

For specified initial conditions, once the solutions
for w(xg, 1), A(xg,7), and B(xo, 7) are obtained from
Egs. (83), (84), and (86), the solution for n(xo, 7) can be
determined from Eq. (82), and the inverse transforma-
tion to laboratory-frame variables (x,s) obtained from
Egs. (66) and (79).
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C. Examplesin cold-beam limit

The Lagrangian formulation developed in Secs. V A and
V B can be applied to a wide variety of intense beam pro-
files ny,(x9, 0) and V,;, (xo, 0). To illustrate the power of the
Lagrangian formalism in anayzing the beam dynamics, we
consider here two simple examples in the cold-beam limit.

The first example corresponds to a periodic step-
function lattice in which «k.(7 + s) = k,(7) has the
waveform illustrated in Fig. 4 with filling factor » and
constant amplitude &,. In this case, the periodic solutions
wy(T + 5) = wy(7) obtained (numerically) from Eqg. (83)
have vacuum phase advance o, determined from

so+S dr
Ovac =[ - (88)

50 w

Moreover, the corresponding value of the (approximate)
smooth-focusing coefficient « is given by [1]

1 2
2 21 - £ K254
O TR A U ) O G
In the first example, we consider the choice of initial den-
sity profile at = = 0 corresponding to

_ [all + AQ = x5/x50)], 0 = Ixol < xpo,
5 (x0, 0) {0, lxol > xp0 -
(90)

Here, i1, = np(xg = *xp0,0) is the initial edge density
of the sheet beam, and A is a (dimensionless) measure of
the amplitude of the initial density perturbation at x, = 0,
with np(xg = 0,0) = 7,(1 + A). It is further assumed
that be(x0,0) = 0, and therefore I’lb(X(), T) and be(xo, T)
evolve according to the symmetries in Eq. (78). Finaly,
we introduce the (dimensionless) measure of normalized
beam intensity s;, defined by

@7

2 2
Yr@Wpg1
where &3, = 4miye;/ypmy is the reaivisic plasma
frequency squared, and wg, = /Kt B¢ isthe (smooth-
focusing) betatron frequency. Then, making use of the
definition of K, in Eq. (5), the dynamica equation (81)
for ny(xg, 7) in Lagrangian variables can be expressed
(exactly) in the equivalent form

2 ~ N
28—[ " } + Kx(T)Sz|: b

a2 L np(xo, 7) np(xo, 7)

: (91)

Sp —

i| = SstfS2.
(92)
As a numerical example corresponding to the step-

function lattice in Fig. 4 and the initial density profile in
Eg. (90), we consider the choice of system parameters

RyS? = 14.92, n = 0.3, Oyac = 60°
2 (93)
KSfS = 1.0, Sp — 1, A=-02
084402-12
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Note from Eq. (93) that the beam has large intensity close
to the space-charge limit (s, = 1), and that the density
perturbation (relative to the uniform beam density) has
moderately large amplitude (A = —0.2). The numerical
results corresponding to Eq. (93) are illustrated in
Figs. 6—8. In Fig. 6, the profile for n;,(xy,7) obtained
numerically from Egs. (82)—(86) is plotted versus x, and
7. Note that ny(xg, 7) = np(—xo, 7) evolves symmetri-
cally, as expected from Egs. (78) and (90). In Lagrangian
variables, it is evident from Fig. 6 that the layer maintains
constant thickness 2x,0, but undergoes strong oscillatory
modulation as a function of 7/§, and over the layer cross
section as a function of xy/x,9. From Egs. (66) and (79),
the corresponding backtransformation to laboratory-frame
variables (x,s) consistent with Eq. (92) and Fig. 6 is
determined from

x(xg,s) = [ dx ,nb(xo,O) (94)

nb( 07S)

For example, at the layer edge *x,(s), Fig. 7 shows
a plot of x,(s) = x(xpo,s) obtained numerically from
Egs. (82)—(86) and Eqg. (93). Note from Fig. 7 that the
layer edge in the laboratory frame, *x,(s), has a fast
oscillatory modulation with period equal to the lattice
period S, plus a slow oscillatory modulation with pe-
riod approximately equal to 27 /\/ks = 2mS. Finally,
making use of Eg. (70), or equivalently, the numerical
solution for n;(xg, 7) Obtained from Egs. (82)—(86), with
7 = s and xo = xo(x,s), the density profile n,(x,7) in
|aboratory-frame variables (x, s) is illustrated in Fig. 8,
which clearly shows the large-amplitude modulation of
the density profile in the laboratory frame.

As a second example, we adopt a smooth-focusing
model in which the lattice function «,(7) is replaced by
the constant value kg = const in Eq. (81), or equiva
lently, in (92). In this case, Eq. (92) is exactly integrable
for genera initial density profile n,(xp,0). Assum-
ing initial conditions with n,(—xg,0) = n,(xe,0) and

FIG. 6. Plot of density profile n, (xq, 7) in Lagrangian variables
obtained numerically from Egs. (82)—(86) for the initial density
profile in Eqg. (90) and choice of system parameters in Eq. (93).
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FIG. 7. Plot of layer edge location x,(s) = x(x,, s) obtained
numerically from Egs. (82)—(86) and Eq. (94) for the initia
density profile in Eq. (90) and choice of system parameters in
Eq. (93).

Ve (—=x0,0) = =V, (x0,0), it follows exactly from
Egs. (75) and (92) that the solutions for n,(xg, 7) and
Vb (x0, 7) can be expressed as

np(xo, 7)
_ ny(xo,0)
spnp(x0,0)/fp + [1 — spnp(xo,0)/fp]coskpgT)’
(95)
and
Ve (x0,7) = —kﬁ[xo — ’;—b[ dx), nb(x(/),O)}Sin(kng),
b Jo
(96)

where we have introduced the notation kg = /K.
Furthermore, it follows from Egs. (66) and (96) that the
|aboratory-frame variables (x, s) and Lagrangian variables
(x0,s) are related by

X/
. bo
0.5 0

-1

0
FIG. 8. Plot of laboratory-frame density profile ny(x,s) =
nplxo(x,s),s] obtained numerically from Egs. (82)—(86) and
Eq. (94) for the initia density profile in Eqg. (90) and choice of
system parameters in Eq. (93).
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X0
x =x9 + [xo - ’;—bfo dx)) nb(x(’),O)}[COS(kBT) - 1],
b
97

S = T.

The condition for the backtransformation (97) to remain
single valued is given by dx/dxg > 0, which is equivalent
to the requirement that the solution for n,, (xo, 7) in Eq. (95)
remain non-negative. Evaluating Eq. (95) or Eq. (97) at
kgt = m, some straightforward algebra shows that the
condition for the transformation to remain single valued
is given by

1
f—b np(xo,0) > —,
np 2

which assures that wave breaking does not occur.
As a particular choice of initial density profile, we con-
sider the case where

1y (x0.0) = {gb[l + A cos(koxo)],

(98)

0 = |x] < xpo,
lxol > xp0,
(99)

which isillustrated in Fig. 9 for kox,0 = 57/2 and A =
0.45. Note from Eq. (99) and Fig. 9 that n;(xy,0) cor-
responds to a sinusoidal density perturbation with ampli-
tude An, superimposed on a flattop density profile with
constant density 7i,. The corresponding transformation of
variables consistent with Egs. (97) and (99) is given by

kox = koxo + [(1 - Sb)k()xO — 5pA gn(kQXQ)]

X [cos(kgT) — 1], (100)
s =T,
and the inequality in Eg. (98) gives the requirement
1
sp(1 — |A]) > > (101)
14
12
< 10
= o8
:?3 0.6
= o4
0.2
0.0
-1 -0.5 0 05 1
Xo! X0
FIG. 9. Initial density profile in Eq. (99) for kox,o = 57/2
and A = 0.45.
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FIG. 10. Plot of kox(xo, s) versus kyx, obtained from Eq. (100)

a kgs = 0,7/2, 7,37 /2,2 for the choice of system param-
eters s, = 1, A = 0.45, and koxpg = 57T/2

which assures that the transformation in Eq. (100) remains
single valued. As a numerical example, we consider the
choice of parameters

sp =1, A =045,

T
k()xb() = 7 . (102)

Shown in Fig. 10 isaplot of the inverse transformation
x(xp,s) versus x, obtained from Eq. (100) at kgs =
0,7/2,7,3m /2,27 for the choice of system parameters
in Eq. (102), over the interval kolxo| < koxpo = 57/2.
Note from Fig. 10 that 9x/dxo > 0 and the transfor-
mation remains single valued, as expected. Consistent
with Egs. (95), (99), and (100), shown in Fig. 11 is a
plot of the laboratory-frame density profile ny(x,s) =
np[xo(x,s), 7 = s] obtained numerically for the choice of
system parameters in Eq. (102). In Fig. 11, the density
profile n,(x, s) is plotted over the beam cross section | x| <
xp(s). Of course, as a function of s, the density profile
np(x,s + L) = ny(x,s) is periodic, with fundamental
periodicity length L = 27 /kg. What is most remarkable

A/

|
*%ls

il

%&\\\\m‘w

I

1

x/ Xo0 1

FIG. 11. Plot of laboratory-frame density profile n,(x,s) =
nplxo(x,s), 7 = s] obtained numerically from Egs. (95), (99),
and (100) for the choice of system parameters s, = 1, A =
0.45, and koxpo = 57T/2
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in Fig. 11 is that a kgs = 7,37,57,..., very-large-
amplitude density compression peaks with [nj, lmax/Ap =
5.5 occur a kox = *=0.4, and large-amplitude density
rarefactions with [np, Jmin/Ap = 0.55 occur at kox = *0.4
when kgs = 0, 27, 4m,.... Therefore, in the context
of the present cold-fluid model, the planar beam configu-
ration supports large-amplitude collective oscillations,
with peak density compression far exceeding the limiting
space-charge density for a uniform density beam. (Keep
in mind that s, = 1 has been assumed in the numerical
example presented here.)

VI. CONCLUSIONS

In this paper, the Vlasov-Maxwell equations (1) and (2)
were used to investigate the evolution of an intense sheet
beam with distribution function f;,(x,x’,s) propagating
through a periodic focusing lattice (s + §) = k.(s),
where § = const is the lattice period. The analysis
considered the specia class of distribution functions with
uniform phase-space density f,(x,x’,s) = A = const
inside of the simply connected boundary curves, x/,(x, s)
and x’ (x,s), in the two-dimensional phase space (x, x’)
[Eq. (23)]. Coupled nonlinear equations were derived
describing the self-consistent evolution of the boundary
curves, x', (x,s) and x’_(x,s), and the self-field potential
y(x.s) = epp(x,5)/ysmp Bic® [Egs. (27)—(29)]. The
resulting model was shown to be exactly equivalent to
a (truncated) warm-fluid description with zero heat flow
and triple-adiabatic equation of state with scalar pressure
Py (x,s) = const[n,(x,s)]® [Egs. (36)—(38)]. Such a
model is amenable to direct analysis by transforming to
Lagrangian variables (xo,7) following the motion of a
fluid element. This resulted in the single nonlinear partial
differential equation (76) for the number density n; (xo, 7)
of beam particles in Lagrangian variables, with back-
transformation to the laboratory-frame variables (x,s)
specified by Eq. (66). Specific examples of periodically
focused beam equilibria were presented, ranging from
a finite-emittance beam in which the boundary curves
in phase space correspond to a pulsating parallelogram
(Sec. 1V), to a cold beam in which the number density
of beam particles exhibits large-amplitude periodic os-
cillations (Sec. V). For the case of a sheet beam with
uniform phase-space density [Eg. (23)], the present
analysis clearly demonstrates the existence of periodi-
cally focused beam equilibria without the undesirable
feature of an inverted population in phase space that is
characteristic of a KV beam distribution. In future work,
the warm-fluid model developed in Secs. 111 B and VI
will be used to derive a nonlinear Schrédinger equation
describing the evolution of perturbations about a uniform
density beam, including soliton solutions. It should be
emphasized that the existence of periodically focused
beam equilibrium for a non-KV distribution with uniform
density in the two-dimensional phase space (x, x’) does

084402-15

not imply that periodically focused beam equilibria
exist for non-KV beam distributions in four and six
dimensions.
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