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The macroscopic warm-fluid model developed by Lund and David&tys. Plasma$, 3028

(1998] is used in the smooth-focusing approximation to investigate detailed electrostatic stability
properties of an intense charged particle beam with pressure anisotropy. The macroscopic
fluid-Maxwell equations are linearized for small-amplitude perturbations, and an eigenvalue
equation is derived for the perturbed electrostatic potendialx,t), allowing for arbitrary
anisotropy in the perpendicular and parallel pressuFe%(r) and Pﬁ’(r). Detailed stability
properties are calculated numerically for the case of extreme anisotropyﬁ,ﬁ(m)=0 and
Pf(r)aﬁo, assuming axisymmetric wave perturbationg/9@=0) of the form &¢(x,t)

= 5&5(r)exp6kzz—iwt), wherek, is the axial wavenumber, afddhw>0 corresponds to instability
(temporal growth Fork,=0, the analysis of the eigenvalue equation leads to a discrete spectrum
{w,} of stable oscillations withmw,= 0, wheren is the radial mode number. On the other hand,

for sufficiently large values ok,r,, wherery is the beam radius, the analysis leads to an
anisotropy-driven instability nw>0) provided the normalized Debye length=\p, /ry) is
sufficiently large and the normalized beam intensiy= w},/2yfw3, ) is sufficiently below the
space-charge limit. Depending on system parameters, the growth rate can be a substantial fraction
of the focusing frequency,, of the applied field. ©2000 American Institute of Physics.
[S1070-664X00)02506-4

I. INTRODUCTION by Lund and Davidsal in the smooth-focusing approxima-
tion to investigate the linear stability properties of an intense
There is increasing interest in the equilibrium and stabil-charged particle beam, allowing for equilibrium pressure an-
ity properties of intense charged particle bedmayith po-  isotropy (P° # PP). A particular focus in the present analysis
tential application¥ *®including heavy ion fusion, transmu- is application of the warm-fluid model to investigate the
tation of radioactive waste, accelerator-based production ddnisotropy-driven P9 > Pﬁ) instability observed by Lund
tritium, and spallation neutron sources. At the beam intensiet al3’~3%in particle-in-cell simulations and studied analyti-
ties of practical interest, it is particularly important to de- cally using the Vlasov—Maxwell equations. Such anisotro-
velop an improved theoretical understanding of the influencgies are well known to develop naturally in accelerators. For
of space-charge effects and collective processes on detailegtample, for a beam of charged particles of massind
stability and transport propertiés:3°In general, a complete chargeq that is accelerated through a voltaye a simple
description of collective processes in intense non-neutragstimate shows that the final and initial longitudinal tempera-
beams requires a knowledge of the beam distribution functures(in energy units are relatetjin the nonrelativistic case
tion f(x,p,t) in the six-dimensional phase spacef), in by T”szHZi/ZqV. In the relativistic case, this relation is
order to carry out numerical simulations using the distribu-modified to becomeT|;=Tf ¥}/ 87 yimc?, wherey is the
tion function as an initial condition, or to carry out analytical relativistic mass factor ang is the relativistic velocity. As
studies of kinetic equilibrium and stability behavior. While an example, for an electron beam with initial energy 10 keV
considerable progress has been made in analytical investigand temperatur&);=0.5 eV accelerated to 1 MeV, the final
tions based on the Viasov—Maxwell equatidhs*°such  longitudinal temperature i§)(=2.1x10 ¢ eV, a decrease
kinetic analyses are often complex, even under idealized asy seven orders-of-magnitude. In addition, the beam’s effec-
sumptions. It is therefore important to develop and test théive transverse temperatufie and emittance are subject to
robustness of alternative theoretical models, such as macrgicrease due to nonlinearities in applied and self-field forces,
scopic modefs—>!based on the fluid-Maxwell equations, for nonstationary beam profiles, and mismatches, which may
investigating beam equilibrium and stability properties. Suchproduce negligible changes in the parallel temperature. This
macroscopic fluid descriptions have met with recent successimultaneous cooling in the parallel direction and heating in
in describing the propagation of space-charge-dominatethe transverse direction can provide the free energy to drive
(low-emittanc¢ beams in periodic-focusing transport collective instabilities and cause a further deterioration in
systemg€®®Land in describing high-frequency collective os- beam quality through the instability mechanism described in
cillations in high-intensity beant.In the present paper, we this paper.
make use of the macroscopic warm-fluid model developed To briefly summarize the assumptions and macroscopic
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warm-fluid model, the present analysis considers an intensihe eigenvalue equation leads to a discrete specfuh of
non-neutral beam consisting of charged particles with chargstable oscillations withmw,,= 0, wheren is the radial mode

g and rest mass propagating in the-direction with average number(Sec. IV B.. On the other hand, for sufficiently large
axial velocity V,=const., and characteristic directed kinetic values ofk,r,, wherery, is the beam radius, the analysis of
energy (y,—1)mc® in the laboratory frame. Herey,=(1  the eigenvalue equation leads to an anisotropy-driven insta-
—VZIc?) 12 is the relativistic mass factog,is the speed of bility (Imw>0) provided the normalized Debye length
light in vacuq and a perfectly conducting cylindrical wall is (I'p=NM\p, /r}) is sufficiently large and the normalized beam
located at radius =r,,, wherer=(x*+y®)"?is the radial intensity (,=w},/2y;w3, ) is sufficiently below the space-
distance from the beam axis. The characteristic beam radiugharge limit(Sec. IV Q. Depending on system parameters,
is denoted by, and it is assumed that the particle motion the growth rate can be a substantial fraction of the focusing
in the beam frame is nonrelativistic. Transverse confinemerfrequencywz, of the applied field.

of the beam particles is provided by applied magnetic or

electric focusing fields, and in th@nooth-focusingpproxi-

mation we model the applied tranS\A/erseAfocusing force on § AsSUMPTIONS AND THEORETICAL MODEL

beam particle byFi,c= — yoMaw3, (X&+Y§,), where wg,

=const. is the effective betatron frequency for the transverse In this section, we summarize the assumptions and mac-
oscillations, and X,y) is the transverse displacement from roscopic warm-fluid model used in the present equilibrium
the beam axis. Following Lund and DavidsShby taking  and stability analysig¢Sec. Il A), and describe properties of
appropriate momentum moments of the nonlinear Vlasovhe warm-fluid waterbag equilibriut®ec. Il B. The electro-
equation for the beam distribution functidifx,p,t) in the  static eigenvalue equation describing stability behavior for
six-dimensional phase spacg,|), we obtain an intercon- Small-amplitude perturbations about equilibrium is then de-
nected chain of macroscopic fluid equations advancing th&ved in Sec. I, and detailed stability properties are calcu-
particle densityn(x,t), the average flow velocity/(x,t)  lated in Sec. IV.

=V(x,1)&+ V. (x1), the pressure tenséi(x,t), the heat- A Assumptions and macroscopic warm-fluid model

flow tensorQ(x,t), etc. In the present analysis, we adopt a

modef! in which the heat-flow contribution, proportional to ~ 1he Present analysis considers an intense non-neutral
(919%)-Q(x,t), is neglected in the dynamical equation ad- beam consisting of charged particles with chaggend rest

vancing the pressure tens@(x,t), thereby leading to a massm propagating in tha—directi_on Wit_h average a?dal ve-
closed system of macroscopic fluid-Maxwell equations de_locny Vb=con_st., and characteristic directed kinetic energy
scribing beam equilibrium and stability properties. In addi—(ybglz)n](iz , mh thel I_ak_mratory f][ame. . Hﬁre”b:(l ¢
tion, the pressure tens&(x,t) is assumed to be isotropic in AR is the relativistic mass factoc,is the speed o

the plane perpendicular to the beam propagation directiofjgnt In vacua gnd a perfectly conduzcting %Ii.ndrical wa}ll s
(the zdirection, ie., P(xt)=P, (x1)(B&+88) Io_cated at radius =r,,, wherer=(x +vy°) is _the radial _
+Py(x,1)&8,, whereP, (xt) and Pj(x,i) are scalar pres- distance from the beam axis. The characteristic beam radius

. : . S < .is denoted byry. It is assumed thavg/y,<1, wherev
sures. Finally, under axisymmetric equilibrium condltlons'f 9 Jb ) B 7b - B
with 9/060=0, d/9t=0, andd/ 9=0, the warm fluid-Maxwell =N,g?/mc? is Budker's parameterN,=/dxdyn is the

equations support a broad class of solutions for the equilib'jumber o_f beam parncles per un.|t aX{aI length, and
rium density and pressure profila&(r), Pf(r), andPﬁ’(r). n(x,y,z,t) is the particle number density. It is also assumed

In the present anaysis, we limit the detailed investigations o hrztntsrl/eefsaertggﬁﬁr:grt:::‘ tmo;r:ﬁebg:;nmfra;?gcllzsn%nr?l)avti':j/;sg%
stability behavior for small-amplitude perturbations to thea lied maanetic or electric focusinp fields a%d in they
class of so-calleavaterbagequilibrig*2”>%in which P?(r) PP 9 9 :

— consn%(r)]2 and Pﬁ’(r)=const[n°(r)]. The stability smooth-focusingpproximation we model the applied trans-

. ! .2 verse focusing force on a beam particle by
analysis allows for general pressure anisotropy, permitting a

ditaili% :;estigation of anisotropy-driven instabilifies® Froe= — YoMw3, (X&+Y8)), 1)
when .

This paJer is organized as follows. Following a discus-Wherew, =const. is the effective betatron frequency for the
sion of the macroscopic warm-fluid model and the waterbadransverse oscillations, ana,y) is the transverse displace-
equilibrium in Sec. I, we linearize the macroscopic fluid Ment from the beam axis. The transverse focusing force in
equations for small-amplitude perturbations in Sec. Ill, andEd- (1) is equivalent to the electric force produced bghg-
derive a single eigenvalue equation for the perturbed electrg2othetical uniformly d'St”bUtedzv fixed charge background
static potentiald¢(x,t), allowing for arbitrary anisotropy in  With charge density®= — ypmayg, / 2mq=const.,, and is of-
the perpendicular and parallel pressuri@$(r) and P(r). ten used to model thaveragefocusing properties of an
Detailed stability properties are calculated numerically in2/ternating-gradient lattice of magnetic or electric quadru-
Sec. IV for the case of extreme anisotropy wRfl(r)=0 poles. o _ _ _
and Pg(r)qﬁo, assuming axisymmetric wave perturbations The_z pr(_esent analysis is carned_ OL_Jt in the electrostatic
(3106=0) of the form Sé(x.t)=83(r)expikz—iot). approximation, where the se_lf-electrlc field(x,t) produced
wherek, is the axial wavenumber, anthow>0 corresponds by the beam space charge is

to instability (temporal growth For k,=0, the analysis of E’=—-V¢, 2
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and the electrostatic potentiah(x,t) is determined self- (5/9x)-Q(x,t), is neglected in the dynamical equation ad-
consistently from Poisson’s equatio?¢=—4mqn(x,t),  vancing the pressure tensB(x,t). In addition, we adopt a
wheren(xt) is the particle number density. In addition, the modef® in which P(x,t) is assumed to be isotropic in the
axial beam currengn(x,t)V,(x,t), whereV,(x,t) is the av-  plane perpendicular to the beam propagation directiba
erage axial velocity, produces a transverse self-magnetigdirection, i.e.,
field, B3(x,t), where L .

Px,t) =P (x.t)(e&+eey) +P|(Xx,t)ee,, )

whereP (x,t) andP(x,t) are scalar pressures. In this case,
Here, A,(x,t) is determined self-consistently in the magne-making use of Eqgs(1), (6), and(7), and the assumptions
tostatic approximation from Maxwell's equatiorV?A,  enumerated earlier in this section, the warm fluid-Maxwell
= —(4m/c)gnV;. In circumstances where the average axialequation®” appropriately generalized to the case of relativis-
velocity is approximately uniform over the beam cross sectic axial motion are given by the continuity equation for
tion with V,=V,=const., which we assume to be the casen(x,t),
the self-field potentials¢p(x,t) and A,(x,t), are related by

BS=VA,xe,. (3)

the familiar expressior,= (V,,/c) ¢, and Eq.(3) reduces to (iJrV i+v i n+n ’9_\/2+ i,v =—0
L ot gz Tt oax, gz ox, ’
BS=-V,V¢Xxe,. (4) ®)
¢ the perpendicular force balance equation¥or(x,t),
Denoting the average flow velocity of a beam fluid element P P P
by V(x,t)=V,(x,t)e,+V, (xt), whereV, (x,t)=V,(x,t)e,  Yomn St Ve ¥V oo Vit Py
+Vy(x,t)éy, and making use of Eq$3) and(4), the Lorentz 8 B
force on a beam fluid element due to the self-electric and A=Y b MmN ©)
self-magnetic fields can be expressed as --ha ve 1O~ VpMNOp X,
1 the parallel force balance equation Mj(x,t),
Feni NG| E“+ CVXB® P auation 1501
’ i +V i +V i V,+ i P = i
VyV, YoM G T Va2, TV VT gz 1T T A,
=—nq1-—=|V.¢ (10
96V the equation of state for the perpendicular pres§uréx,t),
b ~
_nQ(E_?VL'VMﬁ)eu 5

at

d a\[P,\ P, 4V,
+V,—+V, - —|| = |- —=—==0, (11
A A L Jz X, |\ n? n2 oz
where V, =eg,d/dx+e,dldy. Approximating V,~V, and
making use offV [<c (nonrelativistic transverse motifin  the equation of state for the parallel pressByéx,t),
Eq. (5) reduces to the simple expression

(& Ly, )(P)+ PLVz_y (12
1 -~ d VotV T T
Fforemzz—nq(—zvl¢+e25¢), (6) at Jz X, /\n n 9z

Yo and Poisson’s equation for the electrostatic potemii,t),
where y, ?=1-VZ/c?. Equation (6) shows (as expected ’
that the net effect of the self-magnetic fiedd produced by Vf¢+ Fd): —4mqn. (13

the directed axial motiofgenerally relativisti¢ of the beam

particles is taeducethe perpendicular electrostastic force by Equationg8)—(13) provide a closed macroscopic description

the factor 145 . of the nonlinear evolution of the beam interacting with the
To describe the dynamics of the intense charged particlepplied focusing field and the self-generated electric and

beam interacting with the applied focusing field and the Self'magnetic fieldsES= — V ¢ and BS= (Vb/c)V¢><éZ. In ob-

generated electric and magnetic fieldS,andB®, we make  (5ining Eqs(8)—(13), it has been assumed that the fluid mo-
use of the macroscopic warm-fluid model developed b%ions in the beam frame are nonrelativistic. i.e.

Lund and Davidsor® appropriately generalized to the case - -
where the directed axial motion of the beam is allowed to be ~ Vi/¢?, (V,—Vp)?/c?, P, /ypnmc, Pj/ynmc<1,
relativistic. To briefly summarize, by taking appropriate mo- (14

mentum moments of the nonlinear Vlasov equation for the  Equations(8)—(13) can be used to investigate detailed
beam distribution functiorf(x,p,t) in the six-dimensional macroscopic equilibrium and stability properties for pertur-
phase spacex(p), we obtain an interconnected chain of pations about a wide range of beam equilibria ranging from a
macroscopic fluid equatiofisadvancing the particle density warm-fluid thermal equilibrium with diffuse radial density
n(x,t), the average flow velocityV(x,t)=V,(x,t)e, profile, to a warm-fluid Kapchinskij—Vladimirskij(KV)
+V, (x,t), the pressure tensd¥(x,t), the heat flow tensor equilibrium with step-function density profifé,to a warm-
Q(x,t), etc. Following Lund and Davidsofl,we adopt a fluid waterbag equilibrium® For example, assuming/Jz
modef! in which the heat-flow contribution, proportional to =0, Lund and Davidson have investigatedtable electro-
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static oscillations for perturbations about a warm-fluid KV LS e EEBERRRRREERRRRRER
equilibrium. In the present analysis, allowing for a pressure
anisotropy withP, # P and perturbations witl#/dz#0, in
Secs. lll and IV we examine detailed stability properties for
perturbations about a warm-fluid waterbag equilib-
rium.242759We conclude Sec. Il with a brief summary of 10
equilibrium properties for a warm-fluid waterbag equilibrium S
in which the equilibrium perpendicular pressure is assumed g

<

sp = 0.9999

to have the double adiabatic forRf (r)=const n°(r)]2.

.

0.5

B. Warm-fluid waterbag equilibrium

Under steady-statéequilibrium) conditions with g/t sp = 0.96
=0, we assume a matched, axisymmetric beam in which all

equilibrium profiles(denoted with a superscript zéra®(x), 00 [l
0 0 0 0 ;
#°(x), V(x), VI(x), P?(x) and Pj(x), satisfy 0.0 0.5 1.0 1.5
a d r/rp
ﬁ = 0= E, (15)

FIG. 1. Plot of the normalized density’(r)/n verusr/r, calculated from
and depend only on the radial distance (X2+ y2) 12 from Egs. (21) and(22) for several values of the normalized beam intensity
the beam axis. In equilibrium, it is further assumed that there W/ 2Y505, -
is no perpendicular motion of the beam and that the axial
flow velocity is uniform over the beam cross section, i.e.,

VvP=0, V2=V, =const. (16)  where w},=4mng? y,m is the on-axis plasma frequency-
squared. Without presenting algebraic details, the exact so-
IJTl]J'[iOI’I to Egs.(18) and(19) is given by

i F‘|0(fb/)\DL)_IO(F/)\Di) o=r<r
T S o (17) (=1  lo(re/Ap))—1 " (2
- 0 My<<r=ry,

For a warm-fluid waterbag equilibriufi;?’>° we assume
that the perpendicular and parallel pressures are of the for

O . .y . . .
wheren'(r) is the equilibrium density profile. In Ed17), wherery, is the outer radius of the beam, anglis the con-

YRR : . )
n=n"(r=0)=const. is the on-axis density, and the con- . . A

(r=0)= . y ducting wall radius. In terms ofp, ands,= wj,/2ypw5,
stantsT, andT; are the perpendicular temperature and pars

. ) the beam radius,, in Eq. (21) is determined self-consistently
allel temperature, respectively, et 0, expressed in energy from
units. From Eq(17), we note that the effective temperature

profiles, T (r) =P (r)/n°(r) and TP(r)=PP(r)/n°(r), are 1

given by T?(r)=T,n°(r)/n andT(r)=T=const. That s, lo(ro/Nay) = 1 w2220l
Tf(r) has the same radial shape as the density profie), P 0Tl
whereasT{(r) is uniform (isothermal over the beam cross [N Egs.(21) and(22), 1o(x) is the modified Bessel function

(22

section. of the first kind of order zero.

Making use ofdg/dt=0 and Eqs(15)—(17), it is readily For the equilibrium density profil@®(r) specified by
shown that Eqs(8), (10), (11), and (12) are automatically EQ. (21), we note that the profiles foP{(r), Pf(r), and
satisfied, and that Eq$9) and (13) reduce exactly to #°(r) are fully determined from Eqg17) and (19). In ad-

. o dition, from Eq.(21), the density profile decreases monotoni-
2T, 0 q do

00 0= ol & me? 1 (19  cally from the on-axis valum®(r=0)=n at r=0, to n’(r
n Jr Yo OF AL =r,)=0 at the beam edge €r,). At low beam intensities
19 4 with sp=w3/2yvpws, <1, it follows from Eq.(22) thatr,,

— —r—¢%=—4mqn°, (199  <Ap., corresponding to an emittance-dominated beam with

ror o near-parabolic density profile,o(r)=ﬁ(1—r2/r§), over the
wheren®(r) and ¢°(r) are the equilibrium density and po- beam cross section. On the other hand, fef
tential profiles. Equation$18) and (19) can be solved ex- :;,Sb/zygwéiﬁl_f, with e—0. , it follows from Eq.
actly for the equilibrium density profila®(r). We introduce (21) that rp>\p, and thatn®(r) approaches the step-
the effective perpendicular Debye lengtg, and self-field function density profile characteristic of space-charge-

intensity parametes;, defined by dominated beams with very low transverse emittance. These
2%, 42 o2 properties are illustrated in Eigs. 1 and 2. In Fig. 1, the nor-
)\%lz lzf, b= Zpbz , (20) malized density profils®(r)/n calculated from Eq(21) is
4mqn 2yp0p, plotted versug/r, for several values of the dimensionless
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intensity parameters, = w5/2y;ws, over the interval 0 20 T T T
<s,<1. On the other hand, Fig. 2 shows a universal plot of

the normalized Debye lengthAp, /r, versus s,

= w5/2yfw5, for values of the beam intensity parameter in L5
the interval 0<s,<<1.

£
- 1.0
Ill. EIGENVALUE EQUATION FOR SMALL- 2
AMPLITUDE PERTURBATIONS
In this section, we linearize the macroscopic fluid equa- 05

tions (8)—(13) for small-amplitude perturbations about the
warm-fluid waterbag equilibrium described by Eq45)—
(22) (Sec. llI A). The resulting linearized equations are then
expressed as a single eigenvalue equation for the perturbed o0 Lo Lo b L
electrostatic potentiad¢(x,t), allowing for arbitrary anisot- 0.0 025 0.50 0.75 1.00
roopy in the perpendicular and parallel pressufr¥(r) and (:J;b/Q'szw%J_

Pj(r) (Sec. i B).

A. Linearized warm-fluid-Maxwell equations

FIG. 2. Plot of the normalized Debye lengthy, /r, versus s,
= w’y/2y}w5, calculated numerically from Eq22) for values of the nor-
We now express malized beam intensity in the intervakGs,<1.

n(x,t)=no(r)+én(x,t), V,(xt)=6V,(xt),
2
V,(x,1)=Vp+ 8V, (x,1), PL(xt)=P%(r)+ 5Pl(x,t),(23) Vi5¢+%5¢:_4ﬂq5n_ (30

Pi(x.)=PP(r)+ 8P)(x,1),  $(x,1)= 1)+ S(x.1), Here, thef eguti)libriu? 7|0)ro1‘iloe|:(s fgmo(r), P (;), )an(d F;f’(r)

. . . ) are specifie Eq$17) and(21). Equations25)—(30) can
and linearize Eqs(B_)—(lS) for small-c_':l_mplltude per_turbatlons be fu?ther simglifigd by operatingqon Eq5), (28), and
about the warm-fluid waterbag equilibrium described by Eqs(zg) with (d/0t+V,a/37), and making use of Eq¢26) and

(15~(22). Because (27) to eliminate @/at+V,d/az)(n°V,) and (lat
( q 40 X ) 149 +Vyaldz)(n°8V,). This gives
—oén| — + YpMwy X, | =n——P7,
i SR o ‘?+v824 ) 4mq 7 5P| +n°qs
PR ol po (24) =i TV, | (4mqén) meﬁ( |+Nn°qée)
1| A R
om x| ax, T T 0 ok, Tz ok 2

follow directly from Eqgs.(17) and(18), the linearized equa-
tions for én, 6V, , 8V,, 6P, , 6P| and 6¢ obtained from =0, (31)
Egs. (8)—(13) are readily simplified. We obtain after some

straightforward algebra a a\? 26n 0 g2
—+Vy—| | 5P, P —
gt P 0 "L 0922
§+v a)5+a (°5V)+035V 0, (25 7
— —|én+—-(n n®—6V,=0,
gt Poz ax, + gz * +n0q8¢) =0, (32
d d Jd on d 2 0 2
mr| = +V —)5v =—|—oP ——5—P° g I 2P)
o gt Paz) Ot ax, ot onPax, 4 1T Voo = (6P +n%q6¢)
ng ¢ ) )
+— — 8|, (26) J 9\2( én
V2 ax, ¢ —| gt Vo, nghwnoqa(p =0. (33
d d Jd J A -
yomn? _+Vb_> 8V, =— _5p”+n0q_5¢>, (27) We now make use oﬂDE([)z(Ti/n)[no(r)]2 and
o 7z 7z 7z Pﬁ’(r):no(r)TH, where T, and T are positive constants
where P, , 6P, and 8¢ evolve according to [Eq. (17)], and introduce the definitiorjsee also Eq(20)]
J J 26n J 47n°(r)g? 2T 2T, 52
—+Vp )(5& e P2-P°—6v,=0, (28 2 (r)=m— 1 2 _Z 2 _ZL7b gy
(at 0z L Logz7 7% pb( ) yom TZ YoM DL 47an2 (34)
J J on J Here, w2,(r) is the local relativistic plasma frequency-
— 4 — ___po + 0__ = » “pb p q b Y
(&t Vb, (5P no P | 2P 5, V=0, (29 squared, and the constants, and Ap, are the effective
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axial thermal speedndperpendicular Debye lengthespec-  Here, 8i(x, ) is the perturbation amplitudd, is the axial

tively. Making use of Eqs(17) and(34), it is readily shown  \avenumber of the perturbation, aadis the complex os-
that cillation frequency, withhmw>0 corresponding to instabil-
ity (temporal growth We further introduced the Doppler-

0 0
2Py(r) -2 PL(r) _ 1 N shifted oscillation frequenc§) defined by
5 UTz) 5 52 ML @py(F),
ypmn'(r) yomr®(r) 2%
1 9 P Q=w-k,V,. (40)
WEPEU): ;g’\fu Ewﬁb(r)- (35 Sub,stitutin% Eq(39) into Eq.(38) and making use of Pois-
son’s equation,
Making use of Egs(34) and (35), it is straightforward to
fs(?rcr)nw that Eqs(31)—(33) can be expressed in the equivalent V25¢(x,)—k28p(x, )= —4mqdn(x, ), (41)
J )12 21/ 4mq 2 we readily obtain fordP(x, ),
E+Vb5) (4Wq5n)—&—zz[(—7bm 5PH +wpb(r)5¢} 477q ) )
—— 8P|+ why(r) o
a | o (4mq sp s N, @, YoM
ax, | x| yem 07| T AT T G D) 0 [ 1, . .
. ; = ()2——k§z)$z ~ v Vi6p—k;6¢) + wpp(r) 6|
— 2 — —_—
+ ,ygwpb(r) %, 8¢ |=0, (36) (42)
; D24 \2 Similarly, making use of Eq.37) and (42), gives for
_ - amq _ 2bL 2 5ﬁ)L(XL)r
((9t+vb(72) (7bm 5PL) (4mwqén) yﬁ wpb(r)l
47q . wrz)b(r) “ “
1\3, , & [[4mq , —— 5P, =-\j, (Viop—kio¢)
_ 7 _ Yem 2
1 wzb(l’)/yg 1 A
, . 37) - Ekg)\%L QS_—kZU% - §v$z(Vf o¢
9 d 0 1[[4mq z
. 2 1 2
[(&t Vo 32) UT2572 ( YoM )+ wpb(f)5¢} 2 05 2 5
—K25) + wy(r) 5. (43)

1 2 2
E(47Tq5n)sz+ wpp(r) ¢

] 9\?

- (E +Vp E) =0. (39 Equationg42) and(43) constitute closed expressions for the
Keeping in mind thatsn(x,t) and 8¢(x,t) are related by Pooou'e perturba’t_ionsﬁIS”(_xL) and 6I5L(x),_F1ir_ectly in
Poisson’s equation, Aqén=—(V, 8¢+ 284ldz?) [Eq. tgrms of' thezpotentlal amplltud&ﬁ(x), the gqu[hbnum den-
(30)], it is clear that Eqs(36)—(38) represent three coupled sity profile wp(r), the Doppler-shifted oscillation frzequency
equations describing the evolution @p(x.t), SP(x.t), Q:“’_kz\_/b’ and the constant paranjetméi andvTZ.. As
and 8P, (x,t) in the linearization approximation. Further- noted earlier, for the special case wheje=0, Eq.(42) gives

more, becausad, =T, andv%,=T|, it is also evident that .

Eqs.(36)—(38) incorporate the effects of an equilibrium pres- ~ oP=0, for v7,=0. (44)
sure anisotropy on stability behavior. Equatiof3$)—(38) We now make use of Eq$39) and (40) and substitute
can be simplified in various limiting regimes. For example, if Egs. (41)—(43) into Eq. (36). This results in a single eigen-

. . . . . Pl _ 0_ ~
the beam is cold in the axial direction with=0 (Pj=0),  \3jye equation for the potential eigenfunctiomd(x,) and

it follows directly from Eq. (38 that (J/dt  he complex oscillation frequend) = w—k,V, . After some

2 _ . .
+Vpdl92)75P)(x,1) =0. Therefore, if5P| is equal to0 zero 4 5eprajc manipulation and rearrangement of terms, we ob-
initially, then 6P| remains equal to zero at subsequent timesin

in the linearization approximation.

ARIPeS w3y(r) L2 ) HuZ0% | g 53

B. Eigenvalue equation E )fﬁ ( Z\bL) Qz_k§v$2 E ¢
Equationq30), (36), (37), and(38) are readily combined ) ’ )
into a single eigenvalue equation for the perturbed electro- 22 wpp(r) 4 V250+ Ekz)\z 9 @pu(M)/7p
static potentialb¢ and the complex oscillation frequenay. PLog2 ax t 27770 x| 02— K22,

Using a normal-mode approach, we express all perturbed

quantitieséo(x,t), oP, (x,t), 6P|(x,t), andéon(x,t) as y

1 ~ 1 -
0pi(1)+ 5Ku Tz | 0p= SvTV1 6¢>)

|
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o) o wh(NQF HKGT0% | bations of the form5<}S(xL)='5<Az>(r), wherer is the radial
—k3 T KBl K2 6¢=0. (45 distance from the beam axis. We further introduce (iie
V17 VT2 mensionlessscaled variables defined by

Equation(45) is the final eigenvalue equation for the poten-

tial eigenfunct.ion S5¢(x,) and the. eigenfrequencf) = w R= L . FD_)\DL
—k,V, . Equation(45) has been derived from Eq25)—(30) My’
for small-amplitude perturbations about the warm-fluid (48
waterbag equilik_)rium_described_ by Ec{sL_?_) and (21),_ and O2(R) = pb(r) he- (w—k,Vp)?
can be used to investigate detailed stability properties over a p(R)=— o2 '
wide range of values of the normalized beam intensjty pb @b

= wpy/2yhw5, . and temperature anisotropyl, —Tj.  where w?,(r)=4mn°r)q?/y,m is the relativistic plasma
Amsotropy -driven instabilities are expected to be the stronfrequency -squared. Note from E@48) that lengths are
gest in the case of strong temperature amsotrbpyT‘ scaled to the beam radiug, whererb/)\D | is determined

circumstances where the beam ions are cold in the propag@elf -consistently in terms af,= o pb/Zybw from Eqg.(22),
tion direction, the eigenvalue equatiod5) simplifies con-  and that frequenmes are scaled to the on-axis() plasma
siderably. Settlngr”—o (v2,=0) in Eq. (45), we obtain frequencywpb (477nq2/'ybm)1/2 From Egs.(21) and (49),
the normalized profile foﬂ p(R) is given by

J (r) J .
W'[ 02— pb (1+k2)\ L)lﬁﬁqb | (T=Y— | (RIT
L Y il ) oll'p )tlo( D), 0<R<1,
W21 ) 5 QFR)=1  1o(TpH -1 (49
DI 5 2 Vz 3¢ 0, 1<R<ry/ry.
Vb
9 4 (1) Here, I'p=Ap, /t,, and the outer edge of the beam (
kz)\m (M&Aﬁ) =r},) corresponds tdR=r/r,=1. Note from Eq.(49) that
28 02 QE(R) decreases monotonically from unity at the beam axis

srmz 2 " (R=0), to zero at the beam edg®+£ 1). Moreover, for a
K[~ wpy(r)]6¢=0. (46) low-intensity, moderate-emittance beam equilibrium with
Introducing cylindrical polar coordinatesr,@), wherex  I'p>1 ands,<1, Eq.(49) gives, to good approximation, the
—r cosf and y=r sing, we representﬁgb(xi): 5(})(“0)' parabolic profile()_ﬁ(R)fl— R?, for.OS R<1. On the other
The eigenvalue equatior(@5) or (46) are to be solved for Nand. for a high-intensity, low-emittance beam witg<1,

N . : - and sp,—1, Eq. (49 gives (approximately the unit step-
5¢(r,6) andQ subiject to the requirements théd(r, 6) be functi(b)n profilg QZ(R)g=1 forp(F))s ma y p
regular at the origini(=0), and that P ' :

We now make use of Eq48) and the assumption
Sp(r=r,,0=0. @47)  (996)8¢(x,)=0 to simplify theT;=0 eigenvalue equation

= 2 o5 arp—1
The boundary condition in Eq(47) of course assures (46). Subsﬂtutmg V.V 6¢(r) &lr “(alor)(ralor)

that the perturbed tangential electric field components™ 1/r2 1(31dr) 5¢(r), where & =8, cosf+e,sind is a unit
vanish at the perfectly conducting wall, i.€.5E,] vector in the radial direction, some straightforward algebra
i 7 I':I'W

P i ) . shows that Eq(46) can be expressed as
=—[r ‘95¢/‘90]r:rwzo and [5Ez]r:rW: _lkz[5¢]r:rw

=0. 19 A (R) J .
-7 2_ Pb 2r2y | 2
R(?RR[ QO ¥ ———(1+K:I'p) aR5¢(R)
b
IV. STABILITY ANALYSIS , QR (10 0
. . o |RIRRIR R aR5¢(R)
A. Eigenvalue equation for 7j=0 and (d/d6) 6¢=0 Yb
As noted earlier, for equilibrium density profile®(r) 1 g [QI(R)YE .
e . . 212 P
specified by Eq(21), the eigenvalue equatiof#5) can be +5Kb R T5¢(R)
used to investigate detailed stability behavior over a wide
range of values of normalized beam intensits, —Ki[ﬂz—ﬂgb(R)]&%(R):O- (50)

—wprZywaL , and temperature anisotroﬁ'}i—:l'”. Since

this is the first theoretical study of macroscopic stability For K,=0 andl'p#0, it is found that Eq(50) gives purely
properties for perturbations about a warm-fluid waterbagstable oscillations witHm =0 (Sec. IVB). On the other
equilibrium, the present analysis is Arestricted to the case dhand, asK,=k,r, is increased to sufficiently large values,
extreme temperature anisotropy wil)=0, assuming azi- the temperature anisotropyl (<I'3#0, and ‘rnzo) pro-
muthally symmetric perturbations withi{96) ¢(r,6)=0.  vides the free energy to drive an instability at moderate val-
That is, we consider the eigenvalue equaii4@) for pertur-  ues of beam intensitySec. IV Q.
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B. Stable oscillations for K,=0 and I',#0 Ji(\yfp/Np, ) =0. (56)
Setting K, =0, which corresponds to zero axial wave- Note that{«,(R)} form a complete set of basis functions on
number k,=0), the eigenvalue equatids0) reduces to the interval G=R<1 (or equivalently, Gsr<r), with

ay(R=0)=0=a,(R=1),

19 .. Q%R)
Z _R{|O2- 2L
R IR H Yo

Jd -
R IP(R) . (57)
f dRRa,(R)an (R)=6h s
2 leab(R) °
D 2

Vb

19 J 1\ 9 .
ﬁa_RRa_R_ ﬁz) (y_R&’S(R)} =0 (5D wheres, ,,=1 forn=n’, ands, ,,=0 forn#n’. We rep-
R resent the perturbed radial electric fiei&',(R) in the beam
over the interval &R<R,=r/r,. We define §E,(R) interior (0<R<1) by
=—(3laR)5¢(R), and denote the interior region of the -
2 H A
beam (OSR.<1) whe_rerb(R)qﬁO by Region I, and the 5EL(R):2 dnan(R), (59)
vacuum region exterior to the beam<R<r,,/r,) where n=1
Q5,(R)=0 by Region Il. The eigenvalue equati¢fl) is

L . _ where{#,} are constant expansion coefficients, the eigen-
readily integrated once with respectRoto give

function a,(R) solves

.. Q2(R) QR (1d _d 1 19 a0 1
2_ “Tpbttt 2 °7pb - = 202 959 - —_\2
Oz b7 |RR R R2> FD( RORTR R2) n(R)==Aaen(R), 59
% SE'(R)=0, 0<R<1, 52 and\, is thenth zero of Eq.(56). Substituting Eqs(58) and
(R (52 (59) into the eigenvalue equatigh?2) gives
and ®
. A2_ 202 2 _

That is, the perturbed radial electric field is equal to zerofor 0<R<1.

outside the beam, witE!'(R)=0, whereas the perturbed Equation(60) is fully equivalent to the eigenvalue equa-
radial electric field inside the beandf!(R), satisfies Eq. tion (52) in the beam_interi.or, and autom_atically incorporates
(52). The solution to Eq(52) in Region | is required to be the boundary conditions in Ed54) by virtue of Eq.(57).
regular at the originR=0) and continuous with the solution OPerating on Eq(60) with J5dRRap(R)..., weobtain

in Region Il at the beam edg&k& 1). Therefore, the eigen- o
value equatior(52) is to be solved subject to the boundary > D, (O ¢,=0, (61)
conditions n=1
SE'(R=0)=0=6E'(R=1) (54) where the matrix eIemean'm((Y) are defined by
r r "
N2\ — 202 2
Equation (52) has been solved for the eigenfunction ~ Dnm(9) =708 m= (1+A3)Cpm, (62

SE}(R) and eigenfrequency-square@? subject to the and the constant§, , are defined by
boundary conditions in Eq52) using two approachesa) L
direct numerical integration of Eq52) using a shooting Cn,m:f dRméb(R)an(R)am(R)- (63)
method to determine both the eigenfunctions and eigenvalues 0
that are consistent with Eq&2) and(54), and(b) a matrix-
dispersion-equation technique that expands &g) in a
complete set of basis functions that satisfypriori the
boundary conditions in Eq54). The results using both ap- dqun‘m(ﬁz)}zo_ (64)
proaches are in excellent agreement. . . . —_
We illustrate here the matrix dispersion technique forqu"""t'orA1 (64 getermlnes the normalized oscillation fre-
solving Eq.(52). The boundary conditions in Eq54) and ~ duency{=Q/wy, as a function of the system parameters
the occurrence of the Bessel-function operatorS|D=a)EbIZyﬁa)ﬁL and\p, /ry,, which are related by Eq22)
I'2[R™Y(8/dR)(Ra/IR)—1/R?] in Eq. (52), are strongly (see Fig. 2 Furthermore, the normalized profile fﬂf,b(R)
suggestive of expanding E(2) in the complete set of basis occurring in the definition oC,, ., in Eq. (63) is defined in

The requirement that Eq61) has a nontrivial solution
#0 for somen) gives the matrix dispersion relation

functions{a,(R)} where terms of'p=M\p, /r, andR=r/ry, in Eq. (49).
The matrix dispersion relatio(64), valid for zero axial
an(R)=AnJ1(AqR/T'p). (59 wavenumber K,=0), can be used to calculate the normal

Here, J;(x) is the Bessel function of the first kind of order mode oscillation frequencies fcir perturbations about a warm-
unity, R/Tp=r/\p, in dimensional variables, A, fluid waterbag equilibrium withl=0. The solutions to Eq.

=\/§/J2()\nrb/)\m) is a normalization constant, and, is  (64) are a discrete set of stable modéﬁn/&)pb}, n
the nth zero of[ J;(A,R/T'p) ]g=1=0, i.e., =1,2,3,..., withhmQ ,=0, and the dimensioN of the matrix
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| FIG. 4. Plots ofRew, /vy versusv/vy for mode numbers=1,2,...,4 ob-
o -t tained numerically from the matrix dispersion equatitéd). Here, v,
0.0 0.25 0.50 0.75 1.00 =wp, , andv/vy=(1- wiy/2yiw3 ) ?is a measure of the depressed tune.
~2 2, .2
Wyp/275wh 1L

FIG. 3. Plots of\ , versusw3,/2y5w3, obtained from Eqs(22) and(65) for

mode numbers—1.2.....4. Herex -~ T\, /fs, whered.(I')=O0. =1,2,...,.4. In this regard, it is convenient to introduce the

characteristic measures of the depressed and undepressed
single-particle transverse oscillation frequenciesand v,

required to solve Eq:64) numerically for{Qn/[opb} to good defined by

accuracy depends F)n theA order of t.he mode of interest. For szwiﬂ_;ulzjblzwz)’ VSE w;ﬂ , (66)
example, to determin®,/wy, for radial mode numben to , )

an accuracy of one part in 10n a tenuous beam, it is ad- and the effective tune depressiory, where

equate to consider an 3n approximation to the matrix 2 o2
dispersion relatiolEq. (64)] with N=3n. Greater accura- —=1- 2pb2 =1-s,. (67)
cies can be achieved with much smaller matrices for more %0 2ypwp,

intense beams, since the matrix is closer to diagonal. In thiElsing a 10X 10 matrix representation, the numerical solu-
regard, at very high beam intensities Wwhes, {ions to Eq.(64) are presented in Fig. 4 for mode numbers
= why/2y5w5, —1, it is important to note from Eq€21),  n=1,2,....4. Here, the solutions f&,=w, are purely real
(22, and (49) (see also Figs. 1 and) 2hat Q;,(R) ap-  (Imw,=0), andRew,/v, is plotted versus:/v, in Fig. 4
proaches the constant unit step function on the interval Qor effective tune depressions ranging fromvo=0 (s,
<R<1. In this case, for&)f,b/Zyﬁwfhel, it follows from  =1) tov/vy=1 (s,=0). For each value af, note that the
Egs. (57) and (63 that Cym—dym, and the matrix 1/1,=0 (w5y/2yjw3, =1) intercept in Fig. 4 corresponds
{Dn,m(QZ)} becomes diagonal to good approximation. It iSto the single frequencRew,= \2vy= @wm:g,pb/yb in
also clear from Egs(62) and (64) that the values of\,}  the limit of high beam intensity. On the other hand, as
play an important role in determining the normal-mode 0s-y/y,=(1—s,)*? is increaseddecreasing beam intensity

cillation frequencie§(Q,/w,y}. Here,\, is thenth zero of :[,)Sb/zyngi), it is evident from Fig. 4 that there is a
Ji(Nnrp/Np.) =0 [Eq. (56)]. We define discrete spectrum of stable oscillations with frequencies
. {w,} that increase as/v, andn are increased. The general
)\n=r—1“n, (65)  features of the solutions fdiw,} presented in Fig. 4 fok,
b =0 perturbations about a warm-fluid waterbag equilibrium

where{I",,} are the(tabulated solutions toJ,(I',)=0, and are qualitatively similar to those for a warm-fluid
\p, /1y, is determined self-consistently in terms of the nor-Kapchinskij—Vladimirskij (KV) equilibrium?® although the
malized beam imens”ﬁb=‘:’,2m/27r2;wfﬂ by Eq. (22) (Fig.  precise values ofw,} differ asv/v, is increased. For com-
2). Since{T',} have constant numerical values, it follows pleteness, shown in Fig. 5 are plots of the eigenfunction
from Egs.(22) and(65) that the values of\,} depend onthe SE!(r) versusr/r,, for radial mode numbersa=1,2,3 ob-
normalized beam intensits, = w3,/2yfw3, . Shown in Fig.  tained numerically from Eqs(58), (60), and (64) for s,
3 are plots of,, VerSUS&)SbIZ)/ngL for mode numbers =0.36 andv/v0=0.8.ANote from Fig. 5 that the number of
=1,2,...,4, obtained numerically from Eq&2) and(55). As  radial oscillations of5E'r(r) increase as the mode numbyer
expected, the curves in Fig. 3 are similar in shape to thés increased. Moreover, for specified mode numbgthe
curve in Fig. 2, scaled by the constant faciof, for n number of “zeros” of 5EL(r) in the interval Gsr=<ry is
=1,2,...,4. equal ton+ 1. Finally, for the numerical results presented in
We now present numerical solutions to the matrix dis-Figs. 4 and 5, we have used a X010 representation of the
persion equation(64) (Fig. 4 for mode numbersn matrix equations in Eqg¢58), (60), and(64).
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20 T

(70, 8¢'(R=1)=lim._o [6¢'(R)Jr=1-., Where 5$!(R)

is the solution to Eq(68) in the beam interior (&R<1).

The remaining boundary condition at the beam edge is ob-
tained by integrating the eigenvalue equati66) across the

n=1

& E beam surface &= 1. In this regard, we make use of the fact
= 00 F ] that the profile forﬂf,b(R) approaches zero continuously as
-0s n= 3\\></ E R=r/ry approache§ unitgfrom below), except in the singu-
w b n=2 lar limit wheres,= w},/2ypw%, =1 and\p, =0. Operating
CoE ] on Eq.(68) with [17<dRR.., taking the limite—0. , and
-L5 00 e ‘0.‘5‘ B ‘1.'0‘ e making use o[QSb(Rzl—e)]E_)m:O and the continuity
/7y of §¢(R) atR=1, we obtain
FIG. 5. Plots of the eigenfunctioﬁé',(r) versusr/ry, for radial mode num- . Jd . | . J . I
bersn=1,2,3 obtained numerically from Eq58), (60), and (64) for s, lim ﬁlsd’ (R) = lim ﬁ&f’ (R)
=0.36 andv/v,=0.8, using a 1810 representation of the matrix equa- e—04 R=1-¢ €—04 R=1+¢€
tions. (72

Equation(71) corresponds to continuity of the perturbed ra-
dial electric field at the beam surface, i.e., there is no surface-
C. Stability properties for  K,#0 and I'p#0 charge perturbation aR=1 for the warm-fluid waterbag
We now examine thé'”:O eigenvalue equatiofb0) for equil?brium p[?lfile f(_)rQ’ZJb(R) ir_1 Eq. (49). Supstituting the
the general case where the normalized axial wavenumbdelution for §¢7(R) in Eq. (70) into Eq.(71) gives
K,=k,ry is nonzero k,#0). In this case, the eigenvalue

R . N
equation is more complicated than E§1) and must gener- | — 5¢'(R)
ally be solved using numerical shooting techniques. In Re IR R=1
gion | (the beam interigr Wherle)b(R) #0, Eq.(50) can be / e
expressed as =KZ5(?)|(R=l)KO(KZRW)IO(KZ) KO(Kz)IO(KzRW)

Ko(KRw)1o(K) = Ko(K ) o(KRy)

14 A 2 ng(R) 212 J 1
2rRI @ —Y—g(1+KZFD) “ROP'(R) (72)
wherel {(x) = (d/dx)lo(X), etc.,Ry=ry/ry, andK,=k,ry,.
) Qﬁb(R) 19 0 J - In Eq. (72), the solution to Eq(68) for 5¢'(R) in the
Dy—ﬁ(ﬁ (?_RRﬁ_R_ ﬁf) (7_R5¢ (R) interval 0<R<1 depends on both ttle radial coordAinme
=r/ry and the normalized frequend) = (w—k,Vy,)/ wpp,
1,5 0 [ QR ., as well as the normalized axial wavenumiber=k,r, and
t5KAb R T5¢ (R) other system parameters such\as /r, and w3y/2y505, .

Therefore, once the solution faf¢'(R) is determined nu-
KO-}, (R)164(R)=0, 0<R<L, (68)  merically from Eq.(68), the boundary condition @&=1 in
Eq. (72) effectively plays the role of alispersion relation
that determines the complex oscillation frequency (
—kZVb)/Zopb as a function ok,r,, and other system param-
eters. We introduce the geometric factprdefined by

190 R J sV (R)— K283 (R)=0. 1<R<R 69 1 kor KO(kzrw)I6(kzrb)_K6(kzrb)|0(ker) (73
——R— — = = — = ’
RRRGRO? (R—K4(R)=0, 1<R=R,, (69 do 7 PKolKel ) TolKor) — Ko(Kor o) o(Kor )
where R,=r,,/r,,. Equation (69) is a modified Bessel's wherek,r,=K, andk,r,=K,R, . Equation(72) can then be
equation of order zero, and the solution that satisfiegxpressed as

5¢"(R=R,)=0 and is continuous with the solutioi'(R)

where 0?=02/wl,, Tp=Np, /1y, R=1/ry, K=Ky,
and Qéb(R) is defined in Eq.(49). On the other hand, in
Region Il (the vacuum region outside the beamvhere
Q2,(R)=0, Eq.(50) becomes

at the beam edgeR=1) is given by R Y Ty
) A D(Q/wpp)=| -2 58!(R) 7 goaqs (R=1)=0. (74)
54"(R)=54'(R=1) Rot
Lo(K,R)Ko(K,Ry) — Ko(K,R) 1 o(K,Ry,) Equation(68) is alinear equation foré'(R), which can be

scaled by a constant amplitude factor. Therefore, as noted
earIier,D(Q/&)pb)zo, plays the role of a dispersion relation
1<R<Ry, (70 which determines the complex oscillation frequerﬁyfopb

wherel o(x) andKy(x) are modified Bessel functions of the =(w—kZVb)/&)pb. For future reference, the geometric factor
first and second kinds, respectively, of order zero. In Eqgq defined by Eq(73) can be approximated by

l O(KZ)KO(KZRW) - KO( Kz)l O( KZRW) '
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FIG. 7. Plots ofRe(w—Kk,V,)/ vy versusk,r, obtained numerically from

FIG. 6. Plots of the geometric factgp defined in Eq(73) versusk,r, for ~ E£0S-(68), (70), (76) and(77) for I'p=0.360 (,=0.755).

rylry=21/2,ry,/r,=1/3, andr,/r,=1/8.

Re 8¢'(R=1)]=Rg §¢"(R=1)],

M'w
””(E)' for leriv=<1, Im{63!(R=1)]=Im[ 53" (R=1)],
0= 1 (75)

for k2ri>1,

(76)

and continuity of ¢/JR) 5¢(R) [see also Eq(71)],
B kzrb ’

Jd . Jd .
sl — sl
in the limits of long and short axial wavelengths. Shown in Re{aR o¢(R) Ro1 Re{aR 9¢"(R) Ro1
Fig. 6 is a plot ofgy versusk,r, obtained from Eq(73) for 77
= — = (9 ~ (9 ~
the three cases,/r,=1/2, ry/r,=1/3, andry/r,=1/8. &—R5¢'(R) —5¢”(R)}

=Im
R=1

Im JR

R=1

D. Numerical solution for - K.#0 and I'p#0 We can automatically satisfy the matching conditions in Eq.

The eigenvalue equatidi68) is a linear fourth-order or- (76) by appropriate choice of complex phase factor for the
dinary differential equation. AR=0, several of the coeffi- solution for5¢"(R) in Eq.(70). In general, however, neither
cients are singular. AR=1, the beam edge, the coefficient f ihe matching conditions 088®/JR at R=1 in Eq.(77)
multiplying the highest-derivative term vanishes, causing gyi|| pe satisfied unless the complex eigenfrequeficy ),
boundary layer. Since standard numerical integration tech;rmi occurring in Eq.(68) is correctly chosen, which cor-
nigues are not applicable, we instead expand the 5°|Uti°ﬂesponds to the dispersion relation in E@4). Therefore, in
nearR=0 in a Froebenius series. Using this analytical ex-ne present shooting method, E@8) is repeatedly inte-
pansion near the origin where it is sufficiently accurate, Weyrated, and the value 61, +iQ; adjusted until the matching

begin by numerically integrating from very ne8e=0 outto  csnditions in Eq.(77) are satisfied, thereby determine the
the beam edge &=1, and also from nedR=0, back to the  jesired eigenfrequency.

origin. _ _ _ Using this method, Eqg68) and(70) have been solved
In stable regimes, the eigenfrequencies are real, and $umerically subject to the boundary conditions in E(6)

the imaginary part of the eigenfunction, if chosen to be Z€I%QNnd(77), and the complex eigenfrequenty=Q,+iQ; and
at the origin, is zero everywhere. For unstable modes, th '

molex aiaentr nev links the evolution of the real ndgigenfunctionéfb(R) have been determined self-consistently
complex eigentrequency s he evolution of the real and, o 5 wide range of system parameters corresponding to
imaginary parts of the eigenfunction in E&Q). Exterior to

. . . _ ~ 2 2 2 _
the beam (XR<R,), the eigenfunctions¢(R) takes the normalized beam intensity, = wpy/2ypwp, » tne depres

. : sion, vlvy=(1—s,)"? transverse Debye lengthl'p
IﬁremWQHEq. (70), which has constant complex phase out to=>\m/fb, and axial wavenumbeK ,=k,r,,. Here, keep in

. . o . mind thats, andl'p are related by Eq22), so that very high
i lThe_ Ilnea_nty of Eq.(68) implies that_ the s_olutlon for beam intensity ¢,—1) corresponds td'p<1, and low
d¢'(R) is arbitrary up to a constant, multiplicative, complex pagm intensity §,<1) corresponds &> 1 (see Fig. 2

factor. Th'.s freedom can b_e usgd in the unstable case to ma ecausel|=0 is assumed in the present analysis, the term
the matching of real and imaginary parts at the beam edge . 212 . .
simpler. For present purooses. we choose the initial am I.|_3roport|onal toKZI'5#0 in Eq. (68) provides the free en-

Impler. P purp » W ~l Nt P Iergy to drive instability associated with temperature anisot-
tude and phase ®=0 such thatRd é¢'(R=0)]=1 and

~l _ i ropy ('AI'L>'AI'”). Typical numerical results obtained from Egs.
Im[5¢'(R=0)]=0. In the unstable case, integrating away gg) (70), (76), and(77) are illustrated in Figs. 7—13 for a
from R=0, the eigenfunction generally develops an imagi-m;idly relativistic beam withy,=1.02 andr,, /r,=2. As a
nary component withm[ 5¢'(R)]#0. Of course at the beam general remark, beams which are cold in the transverse di-
edge R=1), there are four conditions to satisfy, corre- rection oscillate stably at all values of axial wavelength.
sponding to continuity of&}S(R), Beams with intermediate transverse temperatures are un-
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WO~ 1717 5¢(r) (assumed replplotted versus/ry, for several values
08 E B of k,r,. The high-frequencyupped branch in Fig. 7 corre-
T 1 sponds to the familiar plasma oscillation branch considered
—06 A in Sec. IV B fork,=0, extended to nonzero valueslaf, .
(% r ] The lower (slow-wave branch in Fig. 7 starts at zero fre-
w04 [ kerp=15 - qguency fork,=0, andRe(w—k,V},) increases linearly with
k,ry, for k,rp,<1, and then asymptotes &®e(w—Kk,V;)
02 2 - =1.03y, for k,r,>1, for the choice of system parameters in
00 L Fig. 7. On the other hand, the upgéigh-frequencybranch

00 05 ‘10 ' '15 ' 20 in Fig. 7 asymptotes aRe(w—k,V,)=1.3v, for k,r,>1.
7"/7°b Ferm Fig. 8, as expected, fér,=0 then=1 eigenfunction
d¢(r) has a node precisely at the beam edger(,). On the
FIG. 8. Plots of eigenfunctioﬂ[i)(r) versusr/r,, for several values df,r, other hand, ai(zrb is increased, the eigenfuncticﬁi[)(r)

for the choice of system parameters in Fig. 7. extends radially well into the vacuum region, withp(r
=ry)=0.
stable forall wavenumbers,r, larger than a critical value. For['p>I"g, the two branches in Fig. 7 coalescekas,
Finally, beams which are sufficiently hot in the transverseS increased beyond some critical vaki(I'p)ry, . Typical
direction have dinite instability bandwidth ink,r,: shorter ~numerical results in this case are illustrated in Figs. 9-11 for
wavelengths and long wavelengths are stable, while wavelhe choice of system parametety,=0.509 (,=0.55).
lengths in a range aboljr,I'p~1 are unstable. That is, the From Fig. 9, for G<k,r,<kjr,=0.968, the eigenvalue
growth rate of sufficiently temperature-dominated beamgduation supports two real oscillatory solutions withw
turns over and approaches zero at large valuek,of.  =0. FOrkyrpy>kjr,=0.968, however, the two modes coa-
(From the analysis in Sec. IV B, keep in mind that the systendesce and have the same valueRé& » —k,Vy,), and com-
is stable fork,=0.) For the choice of waterbag equilibrium Plex conjugate values dfnw (one mode is damped, and the

considered here witf|=0, the onset of instability occurs other is growing. The normalized growth ratéma/v, of
for the unstable branch is plotted verdys, in Fig. 9, and in-

. creases fromimw=0 at k,,=k}r,=0.968, to Imw
Tp>T%=0.364, s,<S!=0.750, 1>V—=O.500. (79) .20.4?/0 for erF,> 1. Con5|stentAW|th Fig. 9, theAcorrespond-
Vo Vo ing eigenfunction plots oRd §¢(r)] andIm[ d¢(r)] ver-
susr/ry, are presented in Figs. 10 and 11 for several values
of k,ry, corresponding to instability. For moderately low val-
relative toT'%, the instability bandwidth first increases, en- U€S Ofk.r'p, the eigenfunction for the unstable mode has the
compassing both higher and lower axial wavenumbers. Foffistinctive n=1 mode structure illustrated in Fig. 10 for
even warmer beams, however, high valuesgt, become K,rp=4. Ask,ry is anreased, however, the real part of the
stabilized, while the region of instability continues to shift to €igenfunctionRe ¢ (r)], changes continuously from an
smaller axial wavenumbers. =1 to ann=2 mode structure as shown by the progression
Figures 7 and 8 show typical numerical results for thein Fig. 11. For very largéqr,>10, the boundary layer at
choice of system parametels,=0.360 (5,=0.755), corre- =r, becomes very sharp, with large changefRig d¢(r)]
sponding tostableoscillations withimQ =Imw=0. Plotted  over a very short radial scale. The radial mode number, how-
in Fig. 7 isRe(w—k,V,,)/vg versusk,r, for then=1 eigen- ever, does not appear to change fram 2. Of course, per-
mode, whereas Fig. 8 shows the corresponding eigenfunctiaiirbations with such large values lofr, are of limited prac-
tical interest because the modes would be stabilidz@tlky(

=0) at short axial wavelengths by finiﬁéﬁio effects in an

The inequalities in Eq(78) are equivalent conditiongsee
Egs. (22), (67), and Fig. 3. For increasing values of p

10 £ . 10 .
o r T - 4
< _ ] ; ]
Sos = fRew-kVp) 03 | ]
S:Oﬁ - = ?0‘6:— —
4'8()4 a Imw/VO E F04F E
3 . r %02; B

g Tt Imé
0‘2; 00 F— ¢ ]
00 lovid i1, o2 b N\ E
0 1 2 3 4 e Lo
ko 00 05 10 15 20

r/Tp
FIG. 9. Plots oRe(w—Kk,Vp)/ vy andlmw/ vy versusk,ry, obtained numeri- ) R
cally from Eqgs.(68), (70), (76) and(77) for the choice of system parameters FIG. 10. Plots ofRe d¢(r)] andIm[ 8¢(r)] versusr/ry, for k,rp,=4 and
I'p=0.509 (,=0.55). the choice of system parameters in Fig. 9.
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FIG. 11. Plots oRe 53(r)] versusr/r,, for several values ok, and the G- 13. Plot of (M) e/ versusy/vo=(1-s,)"" (See also Fig. 12.

choice of system parameters in Fig. 9.

pendicular and parallel pressur@g‘{,(r) and Pﬁ(r). Detailed

analysis of the more complete eigenvalue equatis). stability properties were calculated numerically in Sec. IV

For completeness, shown in Fig. 12 are plots of the norfor the case of extreme anisotropy witAP(r)=0 and
malized growth ratdmw/ vy versusk,r, obtained numeri- Po(r)+#0, assuming axisymmetric wave perturbations
cally from Egs.(68), (70), (76), and (77) for several values (9/96=0) of the form &@(x,t)=3d(r)expikz—iwt),
of I'p>T'f ands,<s; . Note from Fig. 12 that critical value wherek, is the axial wavenumber, anthw>0 corresponds
of k,ry, for onset of instability increases &%, is increased to instability (temporal growth For k,=0, the analysis of
(sp is decreaseqd and that the maximum normalized growth the eigenvalue equation led to a discrete spectfung of
rate (mw)max/vp iNCreases ad'p is increased €, is de-  stable oscillations withmw,, =0, wheren is the radial mode
creasedl For sufficiently large values dfp (large enough number(Sec. IV B. On the other hand, for sufficiently large
transverse emittangewe also note from Fig. 12 that the values ofk,r,,, wherer, is the beam radius, the analysis of
instability has a finite bandwidth irk,r,, whereas for the eigenvalue equation led to an anisotropy-driven instabil-
smaller values of ', the maximum growth rate occurs for ity (Imw>0) provided the normalized Debye length
k,rp,>1. For 'T'ngo (but 'A|'H<t), it is expected that the =A\p, /ry) is sufficiently large and the normalized beam in-
more complete eigenvalue equatiofs) will always give a  tensity (6,=wj,/2yf/2v5w3,) is sufficiently below the
finite instability bandwidth irk,ri,. Finally, a corresponding space-charge limitSec. IV Q. Depending on system param-
plot of the maximum normalized growth raténfw)ax/vo  eters, it is found that the growth rate can be a substantial
versus depressed tumév,=(1—sp)*?is shown in Fig. 13. fraction of the applied focusing frequenay, .
Note from Fig. 13 that the onset of instability occurs for In conclusion, application of a warm-fluid model to de-
vlvy>v*/vy=0.5 for the choice of system parameters herescribe the equilibrium and stability properties of intense

[see Eq(79)]. charged particle beams appears to be a remarkably robust
and simple approach, both for the case of stable high-
V. CONCLUSIONS frequency oscillations considered by Lund and David€on,

as well as the unstable case considered here, where the in-

To brie_fly summqrize, following a discussion C_Jf t_he stability is driven by gross macroscopic properties of the
macroscopic warm-fluid model and the waterbag equilibriumyeam equilibrium(pressure anisotropy

in Sec. Il, we linearized the macroscopic fluid equations for

small amphtude perturpatlons in Sec. lll, and derlve_d aACKNOWLEDGMENT
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