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A nonrelativistic warm-fluid model is employed in the electrostatic approximation to investigate the
equilibrium and stability properties of an unbunched, continuously focused intense ion beam. A
closed macroscopic model is obtained by truncating the hierarchy of moment equations by the
assumption of negligible heat flow. Equations describing self-consistent fluid equilibria are derived
and elucidated with examples corresponding to thermal equilibrium, the Kapchinskij—Vladimirskij
(KV) equilibrium, and the waterbag equilibrium. Linearized fluid equations are derived that describe
the evolution of small-amplitude perturbations about an arbitrary equilibrium. Electrostatic stability
properties are analyzed in detail for a cold beam with step-function density profile, and then for
axisymmetric flute perturbations witlt/90=0 and 9/9z=0 about a warm-fluid KV beam
equilibrium. The radial eigenfunction describing axisymmetric flute perturbations about the KV
equilibrium is found to beidentical to the eigenfunction derived in a full kinetic treatment.
However, in contrast to the kinetic treatment, the warm-fluid model predicts stable oscillations.
None of the instabilities that are present in a kinetic description are obtained in the fluid model. A
careful comparison of the mode oscillation frequencies associated with the fluid and kinetic models
is made in order to delineate which stability features of a KV beam are model-dependent and which
may have general applicability. @998 American Institute of Physid$€1070-664X98)00508-4

I. INTRODUCTION of the basis for present analytical understanding of the col-
In recent years, there has been increasing interest in tchtive stability properties of intense beams, also has an un-

equilibrium and stability properties of intense ion bednfs. physical, highly- inverted. phase-space population. This. in-
Potential applications include heavy-ion-driven productionVe't€d population provides the free energy to drive
of inertial fusion energy, transmutation of radioactive wasteProgressively more modes of 0_82((:)I||atlon unstable with in-
spallation neutron sources, and accelerator-based productiGfEasing space-charge strenbfﬁ_. Many of these insta-
of tritium.5=° Such intense beam applications necessitate thilities are regarded as unphysical, since they are not ob-
study of beam transport in a regime where space-charge e$§rvgd in pample—m—gell simulations of more real|§t|c initial
fects and collective oscillations are importa?t2 Recent distributions with noninverted, monotonic decreasing phase-
experiments and simulation studies suggest that such mod&gace population. Furthermore, the KV distribution tends
can play a deleterious role in intense beam transioff.In to overestimate the effects of instabilities because all par-
general, an analysis of collective modes in intense nonticles in the equilibrium distribution have the same frequency
neutral beams requires knowledge of the beam distributioff transverse particle oscillatioime., the depressed betatron
function in six-dimensional phase space in order to carry oufrequency) rather than a more realistic spread of oscillation
numerical simulations using the distribution function as anfrequencies. Thus, the entire KV equilibrium distribution
initial condition, or to perform analytical studies of equilib- Participates in any instability rather than only a portion of the
rium and stability properties using kinetic theory. Although distribution as would be anticipated in a more realistic
analytical studies provide valuable insight regarding paramodel.
metric behavior, such kinetic analyses can become quite Because of these pathologies, many aspects of the ki-
complex, even under highly idealized assumptithd?Fur-  netic modes associated with the KV distribution are com-
ther complicating this situation is the fact that the detailedmonly regarded as being of limited practical value. Never-
form of the initial distribution function entering the accelera- theless, the two-dimensional transverse phase-space
tor is often unknown due to various nonideal effects in theprojections of a KV beam are not too dissimilar from those
region near the beam source. Moreover, for the case of perbbserved in intense beam experiments and in simulations
odic focusing channels, the transverse Kapchinskij—-with more realistic initial distributions. Furthermore, the col-
Vladimirskij (KV) distribution® is the only distribution lective modes observed in experiment and simulation can be
function for which the kinetic equilibrium and linear stability similar in structure to those studied analytically using the KV
properties have been determined analyticHy! distribution. For example, the simplest linear kinetic mode
Unfortunately, the KV distribution, which forms much supported by the KV model is the so-called “envelope”
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modé&®>12which is characterized by a uniform density per- self-consistently in the absence of heat flow. This contrasts
turbation in each transverse beam slice, and a related changédth the simpler cold-fluid approximation, where thermal ef-
in the envelope radius. This envelope mode is experimentallfects are neglected under the assumption of negligible fluid
observed and has a well-known parametric instability in pepressure. The fluid model employed in the present analysis is
riodic focusing channels when the phase advance per focusxpected to be valid for high-frequency collective modes.
ing period of the envelope of beam particles becomes tohow-frequency modes which may be influenced by heat flow
large. Other kinetic modes supported by the KV distributionare beyond the scope of the truncation model.
have more detailed transverse structtfeSthat are sugges- The fluid equations are employed to derive eigenvalue
tive of classes of perturbations observed experiment&i?  equations that describe general perturbations about arbitrary
but typically exhibit instabilities that are inconsistent with cold-beam equilibria, and axisymmetric flute perturbations
experimental evidence. Thus, certain features of the KWvith d/96=0 andd/9z=0 about arbitrary warm-beam equi-
model appear to be relevant to realistic beams, while otherbria. The cold-fluid eigenvalue equation is analyzed to de-
do not. The purpose of this paper is to better understand hotermine the stability properties of a step-function equilibrium
the collective modes associated with the KV distributiondensity profile, which is equivalent to a cold KV beam. The
change under different model assumptions, so as to leanvarm-fluid eigenvalue equation is analytically solved for a
which features are model-dependent and which are likely tevarm KV beam equilibrium to determine the transverse fluid
have general applicability. Such knowledge should provestability properties of a KV beam. Results are compared to
valuable because the KV distribution provides considerabl¢hose previously obtained in the kinetic treatment by
analytical insight into the mode structure. In turn, these simGluckstern:! These comparisons help to elucidate which
plified models can then provide valuable guidance regardindeatures of the kinetic model are a consequence of the de-
possible structure resonances and other destabilizing effectailed phase-space structure of the KV distribution function,
of practical importance. and which features are a consequence of the kmlkcro-

The standard kinetic description of an intense beam iscopig properties of the distribution. Since the detailed
based on the nonlinear Vlasov—Maxwell equations, wherghase-space dependence of the KV distribution is somewhat
the beam is regarded as a collisionless non-neutral pl&mapathological, whereas the macroscopic properties are similar
Vlasov stability analyses are generally difficult due to theto those of more realistic beams, this comparison helps to
need to evaluate orbit integrals that describe how smalldelineate which features of the kinetic KV model are likely
amplitude perturbations evolve by integrating along the parto be of practical importance.
ticle trajectories in the equilibrium field configuration. In This paper is organized as follows. First, in Sec. Il, a
contrast, a macroscopic fluid motief® offers the prospect closed fluid model is derived for a propagating intense beam
for a more straightforward stability analysis. The simplicity by truncating the hierarchy of moments of the Vlasov equa-
of a fluid description results from the fact that the beam istion under the assumption of negligible heat flow and a di-
described in terms of local macroscopic variables obtaine@gonal pressure tensor. The basic equations for the warm-
by averaging over the momentum-space dependence of thileid model, describing both the equilibrium properties and
kinetic distribution function. Furthermore, a fluid model canthe evolution of small-amplitude perturbations about an ar-
lead to results that are more amenable to physical interpretditrary equilibrium, are presented in Sec. Ill. The equilibrium
tion, because the fluid variables consist of readily understoofluid equationgSec. Il A) are elucidated with examples cor-
macroscopic quantities. As a general remark, while macroresponding to thermal equilibrium, the KV equilibrium, and
scopic fluid mode¥ —>* have been applied to a number of the waterbag equilibrium, which are familiar examples from
intense beam problems ranging from studies of the electrathe kinetic theory of a continuously focused behfollow-
magnetic filamentation instabili{};>?to intense equilibrium ing a derivation of the linearized equations describing the
flow in uniform®® and periodié* focusing systems, there are evolution of small-amplitude perturbations about an arbitrary
few instance®°° where thermal effects are included in a fluid equilibrium (Sec. Il B), simplified eigenvalue equa-
self-consistent manner. tions are derived in the cold-beam liniBec. Il O, and for

In this paper, we employ a warm-fluid model to analyzethe case of axisymmetric flute perturbations withy9=0
the equilibrium and electrostatic stability properties of anandd/dz=0 in the warm-beam cag&ec. Ill D). These sim-
unbunched, intense ion beam propagating in the absence pfified eigenvalue equations are employed to analyze the
acceleration. Equations are derived describing self-consistemtacroscopic stability properties of a KV beam equilibrium
fluid equilibria and the evolution of small-amplitude pertur- in Secs. IV and V. First, for reference, the eigenfunction and
bations about an arbitrary equilibrium. For simplicity, the normal modes describing perturbations about a cold KV
analysis is carried out in the nonrelativistic, electrostatic rebbeam equilibrium with a step-function density profile are re-
gime, and a continuous, applied focusing field is assumedjiewed in Sec. IV. Particular attention is given to a bifurca-
corresponding to either a solenoidal magnetic field and/or &éion of the eigenfunction as the total canonical angular mo-
radial electric field produced by a fixed uniform charge back-mentum of the cold-beam equilibrium changes from zero to a
ground. The macroscopic fluid model is based on the hieramonzero value. Second, the radial eigenfunction and normal
chy of moments of the Vlasov equation, truncated by assummodes describing axisymmetric flute perturbations with
ing negligible heat flow, which yields a closed system ofd/96=0 andd/dz=0 are analyzed for the warm-beam case
equationg” Such a model incorporates average thermal efin Sec. V. This eigenfunction is found to bgentical to the
fects through an anisotropic pressure tensor, which evolvesigenfunction first derived by Gluckstéfinusing a kinetic
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description.(These so-called Gluckstern kinetic modes are  ES(x,t)=—V ¢(x,t), ®)
reviewed in Appendix B.However, in contrast to the kinetic
model, the dispersion relation is found to be simpler in th
warm-fluid treatment, and it predicts a single, stable mode o
oscillation, rather than the discrete spectrungpafssibly un-
stable oscillation frequencies obtained in the kinetic treat- .
ment. It is found that the single oscillation frequency ob_evolves In the ph_ase spacep). . S

tained from the fluid dispersion relation is a good Consistent with the assumption of a nonrelativistic beam

approximation to the highest-frequency branch of the kinetié’vIth Bp=Vplc<l and, the neglect of magnetic self-fiefds,
dispersion relation—which is always stable. This close cor2SSumed that Budker's parametesatisfies

respondence is shown to be exact in the limits of vanishing zi2e2|\|

and maximum(focusing limi) space-charge strengths. To- V= W<1' (4)
gether, these results are used to argue that the highest-

frequency branch of the kinetic dispersion relation is fluid-Here, ¢ is the speed of lightn vacug N=fdxdy nis the
like, and consequently is associated with the bulknumber of beam particles per unit axial length, ar(a,t)
(macroscopigfeatures of the KV equilibrium rather than the =Jd>p f(x,p,t) is the number density of beam particles.

detailed phase-space structure—suggestive of general appWhile the inequality in Eq(4) assures that the self-fields are
cability. sufficiently weak in absolute intensity that the characteristic

potential energyZ,e¢ satisfies|Z;e¢/mc?|<1, the present
analysis does permi;e¢ to be comparable in size with the
transverse kinetic energyf+ pZ)/2m of a beam particle.

In the present analysis, we consider a single-species, in- For the field configuration in Eq$1)—(3), the distribu-
tense non-neutral beam of charged particles with charactetion functionf(x,p,t) of the beam particles evolves accord-
istic beam radius,, and axial velocityV,~V, = const propa- ing to the nonlinear Viasov equatith

awhere ¢(x,t) is the electrostatic self-field potential. The
Peam particles of course interact with the total electric and
magnetic fieldsE'+ES and B*®, causing a corresponding
change in the beam distribution functiof{x,p,t) as it

Il. THEORETICAL MODEL AND ASSUMPTIONS

gating in thez direction parallel to a uniform focusing P 1 P
solenoidal magAnetlc field E+v. 5+Zie ~Vo+E'+ p vaer}- (9—p]f=0.
B*(x)=B#&,, (1) (5)
where B;=const. To model an additional radial-focusing Here, v=p/m is the (nonrelativisti¢ velocity, E'(x)
force, we assume €ictitious) fixed, uniform charge back- =—(mwf2/Zie)xL is the focusing electric field due to the
ground which produces an effective radial electric field“fixed” background charge, an@(x,t) is determined self-
Ef(x) defined by consistently in terms of the distribution functidi{x,p,t)
m from Poisson’s equation
E'(x)=— 55 0f(x&+Y§) @
' V2¢p=—4nZen= —471'ZieJ’ d®p f. (6)

over the radial extent of the beam. Herge andm are the
charge and rest mass, respectively, of a beam partiiﬁe, For present purposes, a perfectly conducting cylindrical wall
=const has the dimensions of frequency-squared, and th&é assumed to be located at radiusr,,=const. Imposing
transverse coordinates,f/) are measured from the beam the requirement that the tangential electric field is equal to
axis atx=0=y. The focusing electric field in Eq2) would ~ zero atr=r,,, i.e.,[d¢/dz], -, =0=[r"19¢/36], -, , then

be produced by a unifgrmly distributed background withgives the boundary condition

charge densityp;=—mw$/27wZ,e=const. Such a uniform

charge background is oftfen used to modeldkieragefocus- ¢(r=ry,0,2,t)=const @)
ing properties of an alternating-gradient lattice of electric orfor the self-field potential. Herery (6,z) are cylindrical polar
magnetic quadrupolés? For future reference, we introduce coordinates, where=r cosé and y=r sin 6, and r = (x?
simplified terminology for two important special focusing +y?)¥?is the radial distance from the beam axis. Equations
field configurations, and refer to the case where:0 and (5) and (6) can be used to investigate the nonlinear beam
B¢=0 aspure electricfocusing, and the case wheBg+0  dynamics, collective processes, and linear stability properties
and w;=0 aspure magnetidocusing. In addition, the space over a wide range of system parameters consistent with the
charge and current of the charged particles composing thessumptions enumerated earlier in this section. For present
beam generally produce self-electric and self-magnetipurposes, however, we make use of E5j.to derive a set of
fields, E5(x,t) and BS(x,t), which can be expressed &  macroscopic fluid equations that describe the self-consistent
=—-V¢—(1/c)oAldt, and B5=V xA. For simplicity, the evolution of the system.

present analysis treats the dynamics of the beam particles As is customary in anacroscopic fluid descriptionf
nonrelativistically and the self-magnetic field generated bycharged particle systems, we introduce the fluid quantities
the average beam current is neglected. In addition, field pecorresponding to particle densityfx,t), average flow veloc-
turbations withtransverse electromagnetigolarization are ity V(x,t), pressure tensoP(x,t), and heat flow tensor
neglected, and self-field effects are treated in the electrostatiQ(x,t) defined in terms of the distribution functidiix,p,t)
approximation withBS=0 and by*’
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n—fd3f ANV &V+(9VTP
B bt ot n o (VPP o x|
Z,eB A
nV=fd3p vf, = mo (PX&—&XxP). (12

Equations(9), (10), and (12), when supplemented by Pois-
p:j d3p(v—V)(p—mV)f, (8) son’s eque}tior(G) and the appropriate bqundary conditi_ons,
then constitute a closed system of equations that describe the
self-consistent evolution of the beam densitfx,t), flow
Q:f d3p(v—V)(v—V)(p—mV)f, velocity V(x,t), pressure tensd?(x,t), and electrostatic po-
tential ¢(x,t). This model should retain leading-order ther-
mal effects that are describable in an average sense in terms
of a macroscopic pressure. A model that assumes a diagonal
form of the pressure tensor a@fdlz=0 was first employed
Operating on Eq(5) with [d°p--- and taking successive py Hofmand® to analyze beam stability properties.

momentum moments as indicated by E8) leads to the Formally, the assumption of negligible heat flow

chain. of macroscopic moment equations advancingv, [(9/9x)-Q=0] in Eq. (11) is strictly justified when the par-

P,..., l.e., ticle distribution functionf is an even function ob;—V;,
wherej denotes the, y, or z Cartesian component of etc.

i n+ i .(nV)=0, (9) For an intense beam propagating near the space-charge limit

gt Ix of the applied focusing field, certain classes of transverse

electrostatic oscillationéwith time dependencee™'“!) are
known from kinetic theorl?'°to have frequencies of order
the beam plasma frequencye., w~ wp). In this situation,
¢ 1 transverse single-particle oscillations & '"*) will be on a
=Zien< - —+E'+ = vxB; éz) , (100  much slower time scale than these collective mo@es,

Ix c ~w,>v), because the defocusing space-charge field nearly
cancels the applied focusing field. The influence of heat flow

mn

&+v av+a P
gt ax X

ﬂ P+ i (VP)+P- iV n i v T.P+ i Q on modes with such rapid characteristic time scales should
at X X IX X be small. On the other hand, approximations inherent in the
Z.eB, present fluid model are likely to become more problematic
= (Px&,—&,xP), for low-frequency collective modes.e., whenw<wp).
mc Equation (12) can be further simplified in the strong-

focusing approximation, in which case the terms on the
right-hand side of Eq12) (which are proportional t8;) are

AT : treated as individually large in magnitude in comparison
where () denotes dyadic transpose. Note from Egg.o t&mh the terms on the left-hand side of E@.2). We then

(11), that lower-order moments are coupled, successively, .
higher-order moments, e.g., the evolution of the beam dengonclude, in lowest order, that the pressure terfos)

sity n(x,t) is coupled to the flow velocity/(x,t) by the necessarily safisfies

11

continuity equatior(9), the evolution ofV(x,t) is coupled to P(x,t) x&,=&,XP(x,t), (13
;hnedpsrss;:re tens®(x,t) by the force balance equati¢h0), in which caseP(x.1) has thediagonalform

The simplest level of closure of the macroscopic mo-  P(x,t)=P, (x,t)(&&+8&,8,) +P(X,1)&8,. (14
ment equationg8)—(11) corresponds to theold-fluid ap-
proximation inwhich the pressure-tensor contribution in Eq.
(10 is neglected in comparison with other terms in the force
balance equatiofY. In this case, we approximatei/(x)-P

Substituting Eq(14) into Eq.(12), some straightforward al-
‘gebra shows that theerpendicular pressure Rx,t) and the
parallel pressure R(x,t) evolve according to

=0 in Eqg.(10) and neglect the information in E¢l1) and d d v,

higher-order moment equations. While several aspects of |7 *V+ ¢ |PLT2P. o V=P, —==0, (19
equilibrium and stability properties can be investigated in

such a cold-fluid model, many important effects associate@nd

with finite beam temperature and thermal anisotropy are nec- p 9 v,

essarily absent. Therefore, in the present analysis, we retain E+V' x P,+P x -V+2P, Ezo. (16)

finite-pressure effects and adopt a closure model in which the
heat-flow contributions are treated as negligibly small in EqHere,V,(x,t)=&,-V(x,t) is the axial component of flow ve-
(12).* In this case, we approximates/(x)-Q=0 in Eq. locity. In the subsequent analysis, we make use of E)s.
(11), and the evolution of the pressure ten§gk,t) is de-  (9), (10), (15 and(16) to provide a closed system of equa-
scribed by tions that describes the self-consistent evolution of the elec-
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trostatic potential ¢(x,t), density n(x,t), flow velocity
V(x,t), perpendicular pressure, (x,t), and parallel pres-
sure P;(x,t). Making use of the continuity equatidi9) to
eliminate @/dx)-V in Egs.(15) and(16), it is readily shown

that Egs.(15) and (16) can be expressed in the equivalent

forms,

a J\[P\ V. [P\

vl ) () 7
and

atVox/\w T2 w7 (18

Whenevew/dz=0, we note from Eq9.17) and(18) that
P, /n? andP,/n are constant following thénonlineaj mo-
tion of a fluid element. Evidently, the role of the strong fo-
cusing field[Egs. (13) and (14)] has an isotropizing effect
similar to that of collisions. Note from Ed17) that when
dldz=0 the dependence d?, on n is double adiabatic
(P, «n?), corresponding tdwo degrees of freedom in the
plane perpendicular t8; &,. Hofmann showed that such a

double-adiabatic equation of state is also valid in periodic

focusing system® and for reasonable equilibria witt, (r
=0)=0, it follows thatP, /n?|,_,=const. This constraint
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1
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J
+2P, o7 V,=0. (24
Equations(19)—(24) describe the nonlinear evolution of
V., Vg, V,, P, andP;, and of course must be supple-
mented by Poisson’s equatid) for the electrostatic poten-
tial ¢(r,0,z,t). In cylindrical coordinates, Eq6) can be
expressed as

1 4% &
+>—+—
r296° 972

194
——r
roar

d

ar d=—4wZen.

(25

In summary, Eqs(19)—(25) together with the appropri-
ate boundary and initiaftime t=0) conditions constitute a
closed macroscopic description of the nonlinear evolution of

can be regarded as a generalization of beam emittance cotiie system in the context of the present warm-fluid model.

servation for a periodically focused KV beam equilibrium to
the case of periodically focused non-KV distributions.

The equilibrium and stability analysis in Secs. llI-V is
carried out in cylindrical polar coordinates, @,z), where
X=r cosé, y=r sin 6, andr=(x>+y?)'? is the radial dis-

Most notably, Eqs(19)—(25) incorporate the effects of pres-
sure anisotropy, beam rotation, a focusing magnetic field
B &,, and a focusing electric field’= — (m/Z;e) w?ré& due

to a fixed, uniform charge background.

tance from the beam axis. For completeness, we record here

the complete set of dynamical equations for the beam densi
n(r,6,z,t), flow velocity V=V, (r,0,z,t)&+V,(r,0,z,t)e,

+V,(r,0,z,t)e,, and perpendicular and parallel pressures,

P,(r,0,z,t) and Py(r,0,zt). In cylindrical coordinates,
Egs.(9), (10), (15), and(16) become

0 0 J 0
En+rﬁ—r(rnVr)+F£(nV9)+£(an)=0, (19)
IRV LRV LY §+ b

MOt Ve ar " 90 Veaz) TV Tar Tt
2
=Zen —id)—%r'f‘ﬂB (20
! ar Ze c )
Oov, 2 Y00y Dy YV 10
MO Gt ™ Y or T ge  Veaz) e Ty rog -+
=Z b B 21
- ien r g6 c fls ( )
RV ARV IV
MOt Ve ar T g0 Ve az) Ve oz T
=-Z J 22
- ien(?Z ¢l ( )

tI)(I. BASIC EQUATIONS

In this section we make use of Eq49)—(25) to inves-
tigate equilibrium properties d{dt=0) for axisymmetric
beam propagation parallel & &, (Sec. Ill A), and to derive
linearized equations describing the evolution of small-
amplitude perturbationgSec. Il B). The linearized equa-
tions are then used to obtain the electrostatic eigenvalue
equation in the cold-beam approximatig8ec. Il . Fi-
nally, in the warm-beam case, the linearized equations are
simplified for the special case of axisymmetric flute pertur-
bations with 9/d6=0=4d/9z (Sec. lll D). Henceforth, all
analysis is restricted to an unbunched beam equilibrium
(0/9z=0) and, in practice, applies near the axial midpulse of
a long-pulse beam.

A. Equilibrium properties
An equilibrium analysisof Eqgs. (19)—(25) for axisym-
metric, unbunched beam propagation proceeds by setting

Jd 40 a

Aoz a0 % 26

corresponding to time-stationary solutions with no axial or
azimuthal spatial variations. We denote the equilibrium pro-
files by n°(r), Vo(r), Vo(r), Vo(r), PY(r), PP(r), and
¢°(r). Making use of Eq(26), examination of Eqs(19)—
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(25 shows that the radial flow velocity is necessarily 1. Thermal equilibrium
v9(r)=o. We further assume that the axial flow velocity

e In thermal equilibrium, the angular velocit rofile
satisfies d ' 9 y P

w(r) is constani{independent of),

0 _ —
V(r)=V,=const, (27) w, (1)=&, =const, (31

whereas the azimuthal flow velocityg(r) is generally al-  and the perpendicular pressure profi®(r) has the form
lowed to be nonzero. The assumption in E2j7) is consis- ~

tent provided the space-charge-induced electrostatic potential Pf(r): n(r)T,, (32
energy variation over the transverse beam profile is negli-

gible in comparison to the average axial particle kinetic en\WhereT, =const is the temperaturén energy units Sub-

ergy, i.e., (1/2971Vk2)>2ie[¢70(0)— #°(r,)], wherer, is the stituting Eqs.(31) and(32) into Eq.(29) and integrating with
characteristic beam radius. In addition, the parallel pressurﬁes'peCt tar gives
Pl‘,)(r) can have general dependence, whereas the perpen-

dicular pressur?(r) is related tovd(r), n°(r) and ¢°(r) nd(r)=n exp(

m
- [ch—fuc)m?]rz
by the radial force balance equatid®0). Introducing the

1

cyclotron frequencyw,. and the equilibrium angular rotation
velocity — w, (r) defined by 50 )] ) (39
ZieB; "
W= Here, N=n%r=0) is the on-axis density, ang°(r=0)
(28) =0 has been assumed without loss of generality. Equation
V‘;(r) (33) can be substituted into E¢B0), and Poisson’s equation
—o(r)= P integrated numerically to determine the self-consistent pro-
files for ¢°(r) and n°(r). This has been done in other
it is readily shown that Eq(20) reduces to publications:?**% and the results won't be repeated here
w 3 (7 040 except to note that for approprigte range of rotation%l param-
N[ w0y (0— ;) + wf]r 22 PS -0z ( ied ) eterwr and'on—aX|s beam densﬁy.the.densn){ profilen ([)
m or ar m in Eq. (33) is bell-shaped, assuming its maximum valumg (

(29 on-axis. Furthermore, the characteristic beam radju&s-
sumed to be small in comparison with the wall radiy$can

for dlot=0/96=0l/9z=0. The sign convention fow, in be many tmes the thermal Debye lengthp

Egs.(28) and(29) is chosen so that the equilibrium angular ~~ ~ 2 oaN12 . ! -

rotation velocityw, is positive for positive ion charge spe- __(TLMWZi e_n) ! with negrl% flat den5|ty_prof|ler(°zn)

cies (z,e>0) with V<0. Furthermore, Poisson’s equation in the beam interior, and with”(r) decreasing to exponen-

(25) forl #0(r) becon?es tially small values over a scale length comparable\ goin
the outer surface region of the beam.

19 o [Zieg® 4wzie?
A AN N (30
2. Warm-fluid Kapchinskij —Vladimirskij (KV)

Equations(27), (29), and (30) constitute the final equi- equilibrium

librium equation within the context of the assumptions enu-
merated in Sec. Il. Note that Eq29) represents a radial As a second example, we consider the case where the
force balance between the inwaffibcusing forces due to  density profilen®(r) has the form of the step-function

the axial magnetic field and the fixed background chatige

terms proportional tav.w, and wf) and the outwarddefo- nO(r):{
cusing forces due to the centrifugal, pressure-gradient and
space-charge forces on a fluid elemétfite terms propor- and the perpendicular pressure profile has the parabolic form
tional to w?, dPY/ar and d¢%ar, respectively. It is also  described by
evident that the functional form of any two of the profiles for

n=const, Osr<ry,

0, rp<r=ry, (34)

w.(r), n°(r), PY(r), and ¢°(r) can be specified, and the AT 1 re O<r<r
remaining two profiles calculated self-consistently from Egs. pf(r): + rﬁ ' b: (35)
(29) and (30). That is, there is considerable latitude in the 0, ry<r<r

) lw-

choice of equilibrium profiles consistent with Eq29) and

(30). It should also be pointed out that the special case wherblere,r,=const is the beam radius=const is the density in
w,(r)=&,=const corresponds to r@gid-rotor equilibrium,  the beam interior, andl, =const is the effective perpendicu-
which has been extensively investigated in the literature uslar temperature in energy units on axis=0). From Eq.
ing a kinetic model based on the Vlasov—Maxwell (34), note that the number of particles per unit axial length,
equations. We now illustrate the application of Eqé29) N=27w fBWdr rn°(r), can be expressed as

and (30) to specific examples of self-consistent equilibrium 9a

profiles. N=ryn (36)
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for the step-function density profile in E¢34). Substituting Here,V,, is the average axial velocity of the beak,is the
Eq. (34) into Eq. (30), Poisson’s equation can be integrateddimensionless self-field perveance, the unnormalized emit-

to give tancesey andey, have dimensions of length, and the focusing
2 coefficientx; has dimensions of (lengthf. Making use of
~ZeN r_2 o=<r<ry, Eqgs.(40) and(4_1), the radial force balance equati®B) can
0 My be expressed in the compact form
$o(r)= (37 .,
_ 7 o < K Ed+ eth
ZeN1+2lIn r } MNe<<r=<r. Kfrb_a_ rg _ (42)

Here, N is r_elat?gi to th% glf;\sma frequzer;cy-sqlzjar?g In the=quation(42) is identical in form to the familiar envelope
beam interior, w,=4wZ7e*n/m, by Zie*N/mry=a/4.

: P : h= equatio??1?* for a constant-radius KV beam. Note that
Without loss of generaléty, the constant occurring in E4). 2= 65 n etzh plays the role of atotal effective emittance-
has been taken to b&°(r=r,)=—2ZeN1+2In(r,/ry)].

o= - \ squared in Eq42). Moreover, whenever the beam rotates at
Substituting Eqs(34), (35), and (37) into the radial force

; ) exactly the Larmor frequencya = w/2), then(P, =0 and
balance equatiof29) then gives €4=0. In this case, the only emittance contribution in Eq.

211 m 27%e?N, - 6); (42)is ez, which is proportional to the on-axis perpendicular

o(we— &)+ wi— 2 _— > (389 temperatureT, .

in the region where’(r) is nonzero. From Eq(38), note
that w,(r) = @, = const(independent of ), corresponding to

- L L 3. Warm-fluid waterbag equilibrium
a rigid-rotor equilibrium. The quantityo, can be related

directly to the average canonical angular momentiiy) As a third and final equilibrium example, we consider
defined by the radial force balance equati®) in circumstances where
w,(r)=&,=const, and the perpendicular pressure profile
P 2m [ dr rPon°(r) 39 PY(r) is assumed to have the double-adiabatic form
6) — ' ~

2mfgvdr rn%r) ) 7

0 0 . : PY(r)=—=[n%r)]% (43
whereP,=mr(V,+rw/2) is the canonical angular momen- n

tum of a fluid element, antd/g(r)z — @,r. Substituting Eq.

(34) into Eq, (39 readily gives Here, the constants and i are the on-axisr(=0) values

of plasma density and effective temperatuia energy
w,) 12 units), respectively. We substitute E@3) into Eq.(29), and

(P0>=—m( &)r—7) > (40 eliminate 9¢% r by means of Eq.30). Operating with
r~X(alar)r--- then gives the closed differential equation

That is,(P,)=0 whenever the beam is rotatiegactlyat the

0 0 PN 2
Larmor frequency &, = w./2). 19 anir) 1 n%r) &fwc— &)+ ws _

The profiles in Eqs(34), (35), and (37) all have the ror' o h Nl N wpl2
familiar signature of the KV beam equilibriuti,considered (44)
here in the context of a warm-fluid model. Indeed, the forcefor the equilibrium density profilen®(r). In Eq. (44), \p
balance equatio(B8) can be cast into the form of the famil- =(21A'l/4772i2e2ﬁ)1’2 is an effective Debye length, andl,
iar envelope equatidrf***for a KV beam in the smooth- (47772¢?A/m)*2 the on-axis plasma frequency. Equation

beam approximation rg=const). In this regard, we (44)is a(linearn inhomogeneous Bessel’'s equation fI(r)
introduce the self-field perveantg the unnormalized trans- jn the beam interiof:?® Solving Eq.(44) for n°(r), we ob-
verse emittance:y associated with thelirected azimuthal  t5in

motion (relative to the Larmor frequengythe unnormalized

transverse thermal emittaneg,, and the focusing coeffi- 5 lo(ry/Ap) —lo(r/Ap) o<r<r,
cient «; defined by no(r)= lo(rp/Ap)—=1 ° 4y
2NZi2e2 rﬁa)s 0, rp<r=r,.
mvﬁ - 2V§ ' Here,l(x) is the modified Bessel function of the first kind
of order zero, and the normalized beam radiyé\ is de-
, [2(P))\? termined self-consistently from
€| "my, | ~2
i (42) lo(rp/Ap) =1+ by/2 (46)
, 2T obiTe Drwe— 07+ wf— 32’

€=
th mVy Note from Eq.(45) that the density profile®(r) decreases

5 5 monotonically fromn atr =0 to zero at the outer edge of the
Kf:(&) +(ﬁ) _ beam ¢=r,). Note also from Eq.(46), that &,w.— &7
2V, Vp +wf=®5/2 is required for existence of the equilibrium.
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Moreover, the beam radiug is large in comparison with the

Debye length\p whenever &,0,— &>+ w? is “closely
tuned” to &5/2.

That completes the summary of selected equilibrium ex-
amples. Clearly, a wide variety of warm-beam equilibria can

be constructed consistent with Eq27), (29), and(30), and

the assumptions enumerated in Sec. Il. Moreover, it should
be kept in mind that the functional form of the parallel pres-
sure profiIePﬁ(r) can be specified arbitrarily for the case of

axisymmetric beam propagation witt/d6=0 and d/9z
=0.

B. Linearized equations

S. M. Lund and R. C. Davidson 3035
0

. | (9PII |
- IQ5PH+ 7 5Vr

1o il
Fa—rr(SVr—i—TﬁV,,—széVZ

+P?

+2ik,PPoV,=0,

(53

(1& a 12
(54)

22 I _ asn
T r pra kz)&f) AdwZeon'.
In Egs. (48)—(51), we have introduced the Doppler-shifted
complex oscillation frequenc{) defined by

Q=w+lw,—k,V,. (55

Equationg(48)—(54) constitute the final set of linearized

We now make use of Eq$19)—(25) to investigate the €quations in the present warm-fluid model. As a general re-
evolution of small-amplitude perturbations about the equilib-mark, keep in mind that the equilibrium profiles fag(r),

rium profiles described by Eq427), (29), and (30). All
quantities are expressed as an equilibrium vak® @lus a
perturbation @), i.e., y(x,t)=y°(r)+ Sy (x,t), where

5¢(x,t)=|:2x ) ;w Y (r K, w)exdi(l 0+k,z— wt)].
Z (47)

Here | is the azimuthal mode numbek,=2#n/L is the
axial wave number, whene is an integer and. is the fun-

damental axial periodicity length of the perturbation, and

is the complex oscillation frequency, with la>0 corre-

sponding to instability(temporal growth We expand the

perturbations according to E¢7) in Egs. (19)—(25), and

n(r), P%(r), and¢°(r) are related self-consistently by the
equilibrium radial force balance equati¢20) and Poisson’s
equation(30). In this regard, in obtaining Eq49), we have
made use of Eq(29) to simplify the term proportional to
sn'dP%/or on the right-hand side of E¢49). An analysis of
Egs. (48)—(54) proceeds in the following manner. The per-
turbed pressuresiP| and 6P|, are first calculated in terms
of 8V! and V!, and 6V}, from Egs.(52) and (53) and then
substituted in the linearized force balance equati@Gfs—
(51). Equations(48)—(51) are then used to determine the
perturbed flow velocity componentsv' , SV'@ andﬁV'Z, in
terms of the perturbed potentialy', and the results used in
the continuity equatiort48) to expresssn' in terms of5¢'.
Equation (48) then becomes an eigenvalue equation for

linearize for small-amplitude perturbations about the equilib-5¢'(r) and the complex oscillation frequenay The eigen-

rium profilesn®(r),V°o=— o, (r)ré,+ Vpe,, PO(r), P(r),

value equation for6¢'(r) must be solvedoften numeri-

and ¢°(r). Some straightforward algebra in cylindrical co- cally) subject to the requirement thai'(r) be regular at the

ordinates gives

i | 10 0 | il 0 | H 0 |
—iQén +F§(m 5Vr)+?n 6V,yt+ik,n"6V,=0, (48
—iQN%V! — (0.~ 2w,)n°sV),
__ (9 5n'apo Ze 60 s g
T Tmlar P g P T g 04 49
14
—iQnosV,+ wc—”—r(rzwr) n%sv!
Lil o zell oo 0
" P o -
f R0 s\ — 1. | Li® L oo
—i0n%6V,= = — ik, 0P|~ — = ik,n%5¢, (51)

P
_|95PL+7 5Vr

+2P° Eirﬁv'JrléV'Jrik sV, | —ik,POsVi=0
Ly gr 790 Ty OTeT RNz £

(52

origin (r=0) and continuous over the intervakO <r,,,
wherer , is the radius of the conducting wall. Assuming that
the wall is perfectly conducting, we further require that the
tangential electric field be zero at=r,,, i.e., SEL(r=r,)
=0= 6E'0(r= rw), which gives the boundary conditidsee
Eq. (7)]

S5¢'(r=r,)=0. (56)

We now make use of Eq$48)—(54) to establish the
appropriate eigenvalue equation for the two limiting cases
analyzed in Secs. IV and V.

C. Cold-beam eigenvalue equation

We first simplify Egs.(48)—(54) in the cold-beam limit
where P?(r)=0=PY(r). In this case,dP| =0= 6P| fol-
lows from Egs.(52) and (53), and the equilibrium radial
force balance equatiof29) reduces to

4

27, _
[o(0.— o)+ of]r= m

z%% 1 (v
—J'dr’ r'n(r’y (57)
rJo
in the region wheren’(r) is nonzero. Here, use has been
made of Eq. (30) to eliminate d¢%ar in favor of
Jodr r(r). Substituting P?=0=P? and 6P| =0= 6P|
into Egs.(49)—(51), and solving for5V'r, 5V'9 and 6V'Z in
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terms of the perturbed potentiabg', the linearized over, althoughsP, is generally nonzero from Ed65), the
continuity-Poisson equatiorig8) and(54) can be combined perturbed parallel pressure is not required in the self-

to give!’ consistent determination afV, required in the continuity
19 W2\ g |2 2 equation(60). Also, keep in mind that the equilibrium pro-
- - r( 1— _p> - 54,!} - — ( — _§> 5¢' files for w,(r), Pf(r), andn®(r) occurring in Eqs.(60)—
ror =) or r r (65) are related self-consistently by the radial force balance
w2 156" 1 o : equation(29) and the Poisson equatid80).
—kﬁ(l— —2) op=——— = — | <P (we—2w,)|. We make use of Eqg60), (62), and (64) to eliminate
Q roQér|r én, 6V,, andSP, , respectively, in favor obV,, and sub-

(58)  stitute the resulting expressions into the linearized radial
force balance equatio(6l) for 6V,. Some straightforward

Here, o?(r)=47Z2%?n°(r)/m is the local plasma _ SUTe D
P algebraic manipulation gives

frequency-squared, the equilibrium profiles fet(r) and

n%(r) are related self-consistently by the radial force balanc
equation(57), andI'?(r,®) is defined by 6{wz—(wc—Zwr) T (r’w,) ]noévr
I'?(r,0)=0°—(w;—2w,)| ® —Ei(rzw) (59 1|94 d d P% o

y = c r < Y oar r) |- I __po _ 1=

m [ar <5Vr ar Pi)+(9r 2 r5Vr>

The cold-beam eigenvalue equatiB) can be solved o
numerically for a broad range of choices of density profile 1P ogyv )| iwZie ;d 5 6
n%(r), and analytically for the choice of step-function den- nr ar or (rn ) m n ar ¢. (67)

sity profile in Eq.(34). Note that the right-hand side of Eq.

(58) vanishes identically whenevér=0 (azimuthally sym- Equation (67) provides a direct relation between the per-
metric perturbationsor wheneverw, = w /2, corresponding turbed radial flow velocity6V, and the perturbed electro-
to a rigid rotation of the beam equilibrium at the Larmor Static potentialdg. A second relation betweedV, and o¢
frequency. Here, keep in mind that = w./2 is equivalent to ~ an be obtained from Eq&60) and(66), which can be com-

(P,)=0 [see Eq(40)]. bined to give
The cold-beam eigenvalue equati@®8) will be ana- 19 o dmizel o
lyzed in Sec. IV for the special case wher¥(r) is a step- oo Sp= - ' T rnosv, . (68)

function density profile.

For present purposes, it is assumed that the density profile

0 _ .
D. Warm-beam eigenvalue equation for axisymmetric n (r) extends fronr =0 to an outer radius=ry, and that

flute perturbations with /=0 and k,=0 n°(r)=0 in the vacuum regiom,<r=r,,. Integrating Eq.

o . (68) once with respect to then gives
We now simplify Eqs(48)—(54) for the case of axisym-

metric flute perturbations with/96=0= g/ dz. Substituting d AmiZie
|=0 andk,=0, Eqs.(48)—(54) become o 0¢= oV, Osr<ry, (69)
—iwén+ 19 (rn°sV,)=0, (60)  in the beam interior. Here, we have set the constant of inte-
ror gration equal to zero in Eq69) because of the requirement
—iwn®sV.— (w.—2w.)n°sV that §¢&(r) pe regular ar =0. On the other hand, in the
@ (0 200) o vacuum region where®(r) andén are zero, Eq(68) [or Eq.
1 sp on g PO Ze 9 5 61 (66)] can be integrated to give
T mla P P T M o4 (O PN
J E&b:?, MNe<r=<ry, (70
—iwn®Vy+| w— T (r?w,) In%sV, =0, (62
where A= const. Of courseS¢(r) must be continuous at
—iwn®sV,=0, (63 =ry, and any discontinuity ind/dr) 8¢ atr=ry, is related
0 14 to the surface-charge perturbationratr,, by the jump con-
. 1 diti
—iwdP == —= 6V, —2P] — 14V, (I
o {a 50 3 56
, aP; 19 i ~lar
—lwdP=——= — P T Ve, (65) N PR S L P
4dmZie (rp(l+e)
L g —anzies 66 = Ifb dr rén
T or F gy 0¢=—4mZiedn. (66) Mo Jry(1-o
Here, we have dropped the supersctiptotation for thel _ AmizZ;e [n%6V,] (71)
=0 perturbations. Note from Ed63) that §V,=0. More- w rirp(1=e)
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in the limit e—07. Here, use has been made of E(g6)
and (68) to obtain Eq.(71). Substituting Eqs(69) and(70) >
on the left-hand side of Eq71) readily gives the condition a 5
A=0. It therefore follows from Eq(70) that the perturbed a
radial electric field is zero in the vacuum region, i.e., E
9 E
3
ar 0¢p=0, rp<r=<r,, (72 2
for the class of axisymmetric flute perturbations with 0 {’ 0

andk,=0 considered here.

We therefore conclude that E@9) is a valid expression
for (dlor)d¢ over the entire interval €r=<r,,, including r, Radius
the vacuum region whera®(r)=0. Substituting Eq.(69) FIG. 1. Equilibrium density profil@®(r) is plotted as a function of radius

into Eq. (67) then gives the closed eigenvalue equation forfor a step-function density profile. A perfectly conducting, cylindrical wall
is located ar=r,, .

o

Ty Tw

oV,
J
[a)z—(wc—Zwr) W™ T o (rw,) —wg(r)J n°sv,
ror instances, the fluid modes predicted by this cold-beam model
19 a 5 d P% 4 should be similar to those of realistic beam distributions.
T mlar WrEPL T ZTEmVr _ For a cold beam with step-function density profile,
0 T, =0 and the equilibrium force balance equati@Y) re-
_ 1 9Py i 0 duces to the simple condition
o, (rn”8Vy) . (73
n°r dr or 2
w

Here, wi(r)=4mz7e*n°(r)/m is the local plasma &),(wc—&)r)erfZ:?p (74)

frequency-squared. Equatigi73d) is the final form of the
eigenvalue equation for axisymmetric flute perturbationsn the beam interior (&r<ry). Here, &),2):477ﬁzi2e2/m,
with =0 andk,=0 using the warm-beam fluid model de- wheren®(r)=n=const andw,(r)=&,=const are the equi-
veloped in Sec. Il. As noted earlier, EGZ3) is valid for  librium density and angular rotation velocity in the interval
general equilibrium profiles,(r), n°(r), andP%(r) consis- 0<r<r,. Equation(74) can be solved for the angular rota-
tent with the radial force balance equati@$) and Poisson’s tion velocity to give
equation(30). The advantage of having integrated the conti- 5 >
nuity equation(60) and Poisson’s equatiq®6) to obtain the o= We (&) w]?— “p
2 2

1/2

relation in Eq.(69) is evident. The eigenvalue equatitid) 2"
for 6V, is second ordefwith respect to the derivatives,
whereas the analogous eigenvalue equation dérwhen
thermal effects are included would be third order.

(75

For existence of the equilibrium, it follows from Eg75)
that the inequality

Equation(73) will be used in Sec. V to investigate de- 202
tailed stability properties for the choice of step-function den-  Se= mSl (76)
sity profile and parabolic pressure profile in E¢34) and ¢ f
(35). is required, whers, is a positive, dimensionless measure of

space-charge strength. F&e> 1, radially confined equilibria
do not exist because the defocusing self-field force propor-

IV. COLD-BEAM STABILITY PROPERTIES tional to Euf)lz is too large for the beam to be radially con-

The cold-beam eigenvalue equatic®), derived for the ~ fined by the net focusing force proportional ta{(2)?
case of zero transverse and longitudinal equilibrium pres+ @f. The limiting cases.— 1 is referred to as the Brillouin
suredfi.e., P(r)=0=PY(r)], can be used to investigate de- density limit and corresponds to the space-charge limit of the
tailed stability properties for a wide range of equilibrium transport channel neglecting thermal effects. Further analysis
density proﬁlesno(r) and angu'ar Ve'ocity prof”e&)r(r) of the equilibrium structure of a KV beam is presented in
consistent with the cold-fluid radial force balance equatiorPPendix A.

(57). For present purposes, we consider the case wifiére For the step-function density profile in E4), the av-

has the step-function profile in Eq34) and Fig. 1. This €rage canonical angular momenty,) is given by Eg.
simple case, corresponding to a cold KV beam equilibrium(40) as(Py)=—m(&, — wc/2)r/2. It follows that(P,)=0

with T, =0, allows analytical progress and can be physicallyMPlies that the beam is rotating at the Larmor frequency,
motivated. In many intense-beam applications, the thermdi®- @r= /2. Note also that Eq(75) can be expressed in
emittanceey, is small and the transverse density profile is€rms of the space-charge parameigas

approximately uniform over a distance of many thermal De- R

bye lengths\ out to some radius,(>\p), where the den- &, — e _ iw_ (1_59
sity falls abruptly to zero over a few Debye lengths. In such 2 v2 \ Se

1/2

(77
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Equation(77) shows that a cold KV equilibrium witiP,)  whereQ=w+l&,—k,V, is the Doppler-shifted oscillation
=0 corresponds to the Brillouin density limit with self-field frequency,é(x) is the Dirac delta-function, and
parametes,= 1, whereagP ) #0 corresponds tg.<1.

For the step-function density profile in E¢34), the

cold-beam eigenvalue equati¢®®8) reduces t&
2
wp(T) }iad)'] @i=const, O<r<ry,

190
Fﬁ[r — 4o, — w/2)? wp(1)= 0, ry<r<r,.
|2[ wi(r)

- — |
re —4(a)r—wc/2)2}5¢

1- QZ (79)

The eigenvalue equatiof78) can be solved analytically be-
) p( ) cause the coefficients proportional (r) are constant,
—kz| 1= —52—| 8¢ both inside the beam, wher@?(r)=&j, and outside the
beam, wherew? p(r)=0. The solutlon that is regular at
=0, contlnuous at=ry, and satisfied¢'(r=r,)=0 at the
conducting wall can be expressed as

o 268¢! (&~ wl2)
T Q0 A(a—wg2? T (8

A|J|(Tr), 0$r<rb,
5¢'(r)= (k2K (K w) = Ky (Ko ) 1i(Kar ) (80)

AJ(Tr , p<<r=r,,
T T K (o)~ Ktk o) () o
|
whereT? is defined by Bessel function recursion relationsxJ| (x)=1J3,(x)
, 1_&);/02 =xJ+1(X), X1/ (X)=11,(X)+x1,+1(x), and xK/(x)=IK
—k —— - > 8D  (x)—xK;;1(x) can be used to further simplify E3) and
P 1= o[~ 4(ar— wc/2)7] subsequent expressions.
Here,A, is a constant),(x) is thelth-order ordinary Bessel Often, the beam density is directly measured experimen-

function, andl|(x) andK;(x) arelth-order modified Bessel tally, whereas the potential must be inferred indirectly.
functions of the first and second kind, respectively. The reTherefore, it is also useful to determine the normal-mode
maining boundary condition is obtained by integrating Eq.eigenfunction expressed in terms of the perturbed density
(78) across the surface of the beant atr,,. Multiplying Eq.  &n. In this regard, the Poisson equatiB#) and the eigen-
(78 by r, and operating with/[*"9dr---, where ¢  value equatior(78) can be employed witld¢' given by Eq.

r (l . . |
—.0", readily gives (80) to express the eigenfunction fén'(r) as

~ 2
{i 5 - “p , on! N=7—>¢ i (k2 T2)3(Tr)O(rp—r)
ar B O~ 4, — wl2)
r=ry(l1+e)
A o7 ,
ﬁ_r 54 T 4nZe 07 4(% —wg2)? [Ter' (Trs)
et o — w2 1
2064 -1, @2y —w2) T2AN(Try) g | por=ro) (84
M QO 4(&,— 0 /2)%] (82 where O(x) is the Heaviside step function defined by
Substituting Eqs(80) into Eq. (82) and rearranging terms, ©(x)=1 for x>0 and®(x) =0 for x<0. The terms in the
we obtain the dispersion relation expression fosn' in Eq. (84) that multiply the step and delta
functions correspond to “body-wave” and “surface-wave”
Ki(Karw) 1 (K p) = K (Krp) 1 (Kor ) perturbations, respectively. The surface-wave term in Eq.
2o Ky (Ko w) 11 (Krp) — K (Ko p) 1 (Kor ) (84) is a singular layer of charge at the edge radiysf the
2 , beam that is a manifestation, within linear theory, of a small
. “p r I (Trp) change in the edge radius of the bedirhis can be demon-
02— 4(o,— wd2)?] ' ° J(Try) strated using analogous arguments to those employed for the
(&, — wy2) case of warm-beam perturbations wikhb=0 and|=0 in
=_7| pore (83)  Appendix C) Comparing Eqs(80) and (84), note that the

2 ~ 21
QLA = 4(or— 0 /2)7] body-wave component @r<r) of the cold-beam density
Here, a prime denotes differentiation with respect to theeigenfunction,dn', is proportional to the potential eigen-
functional argument, i.e.J,’(Trb)=[dJ|(x)/dx]X=Trb. The  function 8¢’
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The eigenfunction(80) and the dispersion relatiof83)  plays the role of a directed emittancey=2|(Py)|/mV,.
describe perturbations about a cold-beam equilibrium withThis directed emittancey adds in quadrature with the ther-
step-function density profile. In general, the dispersion relama| beam emittancesy,= (2T, rZmV2)"2 to produce the
tion (83) is a transcendental equation which determines theoial effective emittance-squared? of the beam, i.e. €2
{Dopplerf-?rrslfted_ osi:rl]ll":}tlondfrequeréd%t;w+|w,;kz\d/b n | €5+ ex. The total emittance-squared and the self-field
Vi;?j r?umt?eiz;muthz t:g gme r::;nm: free Eg;@am:n di);': perveanceK = &2ri/2Vj then fix the equilibrium beam ra-

zb P quenc. diusry, determined from the envelope equatid?). Larger

shifted frequencyb, — w /2= —2(P,)/mr2. For present pur- ) . ) .
poses, we analyze, in turn, properties of the solutions to qumlttance leads to increased beam radjusBecause of this,

(83) for zero and nonzero canonical angular momenturdntense beams are usually launched from the source under
(P,). For(P,)=0, the solution is described analytically. On conditions such thatP,)=0 in order to reduce the trans-
the other hand, fotP,)+0, the solution to Eq(83) must Verse beam size. Thus, the special case of a cold beam with
generally be determined numerically. Various limiting cases{P¢) =0 is of considerable practical interest.
including those with multispecies generalizations and A cold KV beam equilibrium with(P,)=0 necessarily
streaming instabilities, have been analyzed elsewHere. rotates at the Larmor frequency with, = w /2, which cor-
responds to the Brillouin density limit with space-charge pa-
rameters,=1. For @, = w./2, it follows from Eq.(81) that
T2=—k§, and J;(Tr)=i'l,(k,r). In this case, the expres-

In Sec. lll A 2, it was shown for a warm-fluid KV beam sions for the eigenfunction in terms of the perturbed potential
equilibrium that nonzero canonical angular momenti#y) [Eg. (80)] and perturbed densif\Eq. (84)] reduce to

A. Beam equilibrium with zero canonical angular
momentum

iI'AlL(k, ), O<r<ry,

spl(r)= [ (KK (Kt o) — K (K ) 1 (Kgr 85
¢ (r) i|A|||(kzl’b) I( z) I( zw) I z)l( zw) Crp<r=<r,, (89
II(kzrb)Kl(kzrw)_Kl(kzrb)lI(kzrw)
|
and Using the modified Bessel function Wronskian identity
| I/ (X)K;(X) =1, (X)K| (x) = 1/x, the cold-beam dispersion re-
son'(r)= | K21,(K,r) O (ry—1) lation (88) can be further simplified to give
2’7Tzie
. R . , Ki(Krp)  Ki(Kry)
LI ks S S(r—ry),  (86) Q%= adkaroh (ko)1 (kaf o) ||(kzrb) - ||(er W) '
47Tzie QZ vAll L INAVAN ] r b/ z zZw (89)
respectively. The solution in Eq85) can also be obtained The dispersion relatiori89) determines the oscillation

directly by noting foro, = w./2 that the right-hand side of gequency of electrostatic perturbations about a cold KV
the eigenvalue equatiovg) vanishes, and the eigenvalue peam equilibrium rotating at the Larmor frequency. The

equation reduces to simple analytical form of the dispersion relation is due to the
19 2] 4 assumption thatw,=w /2. In the long-axial-wavelength
-2 [r 1_“"3_2 Z I] limit kiri<1, the dispersion relatioi89) can be further
ror Qs Jor simplified using asymptotic expressions fpfx) andK,(x)
12 W2(1) to give
- r—2+kf) 1-—47|94'=0. (87) >
w
. _ _ =P (Kk,ry) |n<—), kr2<1 and =0,
Because the coefficients proportlonalaié(r) in the reduced 02~ 2 b
eigenvalue equatiofB7) are constant both inside the beam, T w? M 21 (90
where w}(r)= a2, and outside the beam, wheag(r)=0, 7‘) 1_(r_) , Kiri<1 and|+0.
w

Eq. (87) is of the modified Bessel form. The solution in Eq.
(85) then follows trivially from the relevant boundary condi-
tions. Similarly, after some algebraic simplifications that
make use oby, = /2, the dispersion relatiof83) reduces to

o a2 1K) [ (Ko p) K (Kot ) — K (Korp) 1 (Kor ) , )
~ P k) |1 (KT o) K (Ko ) = Ky (KT p) 1 (Ko ) | 0%=) &p ®
(88)

Similarly, in the short-axial-wavelength limitk2r2>1,2
andk2r2>12, the dispersion relatiof89) simplifies to give

WKl (Krp)K (Kyry),  KIre>1J2,

Krg>1)2.
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FIG. 2. Solutions for the normalized frequed@/&)p\ of electrostatic per-
turbations, calculated from the cold-fluid dispersion rela{®®), are plotted
as a function of normalized axial wave number,, for a cold KV beam
equilibrium rotating at the Larmor frequenc® (= w./2). The ratio of beam
radius to conducting walls radius is chosen ta pér,,=0.5, and results are
shown for azimuthal mode numbdrs 0, 1, 2, and 3.

(]
N

Here, kr2>1)? is used to denoté2r2>1 for I=0 and
k2rZs12 for | #0, etc. Also, in Eqs(90) and(91), note that
rw>rp, SO k2r2<1 andkr2>1 imply thatk?ri<1 and
k§r§v> 1, etc. Note from EQqs(90) and (91) that the plasma
oscillations described by Eq89) are dispersive The | =0,
kZrg<<1 limitin Eq. (90) is Q2= ga3(k,rp)%/4 with geomet-
ric factor g=2In(r,/rp), which corresponds to the well-

. Lund and R. C. Davidson
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FIG. 3. Solutions for the normalized eigenfunctiép'/ 5¢'(r=r,) of elec-
trostatic perturbations, calculated from E§5), are plotted as a function of
normalized radial coordinate'r,, for a cold KV beam equilibrium rotating

at the Larmor frequencyi, = w/2). The system parameters are identical to
those in Fig. 2 withk,r,=1.
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B. Beam equilibrium with nonzero canonical angular
momentum

Since the directed and thermal emittancesy
=2|(P,)|mV, and en=(2T,r3/mV2)*? are indistinguish-
able in their contributions to the equilibrium envelope radius
of a KV beam[see Eq.42)], one might expect, particularly
for small azimuthal mode numbels that these emittances

known oscillation frequency for long-wavelength longitudi- @lso contribute in a qualitatively similar manner to the fluid
nal perturbations in a cold beam with step-function densitymodes supported by the equilibrium. In particular, one might
profile*” Note also, that short-wavelength perturbations withconjecture that aarmKV beam with canonical angular mo-

kerg>1)? have characteristic frequency)=*&,/v2,

mentum(P )= —m(&, — 0 /2)r3/2=0 and total emittance

which is the well-known oscillation frequency of perturba- €= € Might support similar mode structure to a cold KV

tions in beam radiugi.e., envelope oscillationsfor a cold
KV beam??

Plots of the normalized frequencif)/@,|, obtained
from Eg. (89), versus normalized axial wave numbeyr
are presented in Fig. 2 for<9k,r,<10, r,/r,=0.5, and

beam with(P ) # 0 and total emittance= €4, provided the
values ofey, and €4 are the same.

Motivated by this conjecture, we now analyze the cold-
beam dispersion relatiof83) for nonzero canonical angular
momentur P). It is found that the dispersion relation de-

azimuthal mode numbeils=0, 1, 2, and 3. Note that there Scribes stable electrostatic oscillations for all physically al-
are two frequenciest |Q| corresponding to each dispersion lowed equilibrium parameters. In contrast to the caBg)
curve plotted, and the normal modes associated with these 0 analyzed in Sec. IV A, whe(P ) #0 anda, # o /2, it
solutions are related by a phase difference. Note also frort$ found that analytical simplification is straightforward only
Fig. 2 that the #0 dispersion curves have only a weak de-in the long-axial-wavelength regime whekérg<1. In this

pendence oik,, whereas thé=0 curve is strongly depen-
dent onk, for k?r2<1. Consistent with Eq(91), all curves
approach the envelope-mode oscillation frequehay&)p|
=1M?2 in the short-wavelength limik?r2>1)2. The corre-
sponding eigenfunctiond¢'(r), normalized tod¢'(r=r,)
=i'A/l,(k,rp,), are plotted versus/ry, in Fig. 3 forr in the
interval O<r=<r,, and the choice of system parametkys,

=1,r,/r,=0.5,andl =0, 1, 2, and 3. Here, the expression
for 8¢'(r) in Eq.(85) has been used. As the azimuthal mode
numberl increases, we note from Fig. 3 that the eigenfunc-

tions 8¢'(r) become increasingly peaked atr,, corre-

sponding to a strong surface-charge perturbation at the sur-

face of the beam. Finally, note from Ed85) and (86) that
8¢ (r)18¢'(r=r,)=6n'(r)/én'(r=r,) interior to the beam
(0=<r<ryp) and én'(r)=0 exterior the beamr{<r=<r,,).

limit, asymptotic expressions for the Bessel functions can be
employed to show that

~2
) r
02=—2 (krp)? In —W), (92)
2 My
for kr2<1 andl=0, and
~ 1 N We 2
Qz(wr—wC/Z)iE 4 =
rb 217) 172
+203 1—(—) ] , (93)
rW

for kr2<1 andl+0. Comparing Eqs(92) and (93) for
(P4 #0 with the corresponding limits in E490) for (P)
=0, it is evident that the long-wavelendtk O solutions are

Therefore, the normalized potential curves in Fig. 3 servdhe same in the two cases. On the other hand, the long-
equally well to illustrate the interior structure of the body- wavelengthl #0 solutions are modified whefP,)+0, i.e.,

wave component of the density eigenfunctiémi(r).

wheno, # /2.
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FIG. 4. Solutions for the normalized frequenfy &, of electrostatic per-  FIG. 5. Solutions for the normalized eigenfunctiée'/ 5¢'(r=r) of elec-
turbations, calculated from the cold-fluid dispersion relat®8), are plotted  trostatic perturbations, calculated from Eg0), are plotted as a function of
as a function of normalized axial wave numbgr,, for a cold KV beam normalized radial coordinate/r, for a cold KV beam equilibrium with
equilibrium with(P z)# 0. System parameters correspondj¢r,,=0.5 and (P, #0. The system parameters are identical to those in Fig. 4 kyith
o;— 0 J2=0.50,, and results are shown for azimuthal mode numbters =1.

=0, 1, 2, and 3.

where the positive and negative mode frequencies are equal

The important features of the solutions to the cold-bean] | magnitude for all. Moreover, the functional dependence

dispersion relatior{83) with (P,)#0 are illustrated in Fig. glf giﬁggn;re fg:)rf?:]ings )axllirwear\-/ri;unrirzsggbfrghigggises
4. Here the normalized frequen€y/ @, calculated numeri- g y o 9 9 d

2 2 e i
— o
cally from Eq.(83), is plotted versus normalized axial wave )| are fpund as ‘b'. @c/2) <|i€> Is increased, anq the
. frequencies are shifted aboft=0. Also, the normalized
numberk,r, for 0<Kk,r,<10 and the choice of system pa- . ; | Lo . o -
o . S : eigenfunctionss'(r)/ 8¢'(r =ry) differ significantly within
rametersry,/r,,=0.5 and @, — w/2=0.50,, and azimuth- . . ) .
~ ; . . the beam (<r,). The eigenfunction bifurcates from modi-
al mode numberd=0, 1, and 2. This choice of relative _ . . | .
A P ) fied Bessel function form, i.e§¢'(r)~1,(k,r), to ordinary
angular velocitym, — w /2= 0.5, corresponds to self-field : . | .
Y o AP : Bessel function form, i.e.0¢'(r)~J,(Tr) with T real,
parameters,= & /(ws+4ws)=2/3, and canonical angular 2 , . b
P ~2 2 . wheneverT< defined in Eq.(81) satisfiesT>0. It follows
momentum(P9>=—mwprb/4. For{P, #0, note from Fig. from Egs. (81), (92, and (93) that for small (P2 (&
4 that the positive{solid) and negative-frequencidashed X ' ' 0 '

_ 272 2.2 o hi ; ;
branches fof) are of equal magnitude with opposite sign for ©cl2) /wp<.1 and k;ry, <1, this b'|furcat|on to ordinary
n . . Bessel function form occurs for azimuthal mode number
| =0, whereas the magnitudes are different wher0. The

_ 2.2 A 2/ ~2
corresponding  eigenfunctionsd¢'(r), normalized to =0 whenk;r, <8(wr —wo/2) /[ &} In(r/ry)]. and does not

A 2/ ~2% . . _
54\ (r=ry)=AJ,(Try), are plotted versus/r, in Fig. 5 for occur forl #0. As (o, — w /2)"/ @y is increased, the bifurca

: 2,2 —
the same choice of system parameters as in Fig. 4 and rgion threshold value ok;r; increases foi =0, and modes

k,rp=1. Here, the full expression fai¢!(r) in Eq. (80) has with 170 begin to bifurc_ate foir less th_ari -dependfnt
been used. Fol=1, note from Fig. 5 that the normalized threshozldA 2va|ugs: It s found. numerically, foro(
eigenfunctions for the positive{solid and negative- — wdl2) b, suff}uently large at flxed’zwlrb, that aI! al-
frequency(dashed solutions plotted in Fig. 4 have different lowed frequencies() correspond toT">0 and 5¢'(r)

functional forms within the beamr &r,), whereas outside ~Ji(Tr), with T real for aII_ azimuthal mode numbers_and
the beam (>,), or for | =0 within the beam, the normal- all values ofk,r,. The choice of P,)#0 parameters illus-

ized eigenfunctions are the same for both positive- an&rated:n Figs. 4 and 5 sat|sry this threshold conditjéor
negative-frequency solutions. Also, comparing E§6) and  'b/"w=0-5, all modes havég'(r)~J,(Tr), with T real for
(84), note thatd¢'(r)/ 8¢ (r=ry,) = sn'(r)/ an'(r=r,) inte- all values ofl andk;rj, when|wr—wC/2|/(f)p>0.45ﬂ. Con-
rior to the beam (&r<ry) andsn'(r)=0 exterior the beam trasting Figs. 3 an(_j 5, note _that_the ordlna_ry B_essel functlon
(r,<r<r,). Therefore, analogous to the case whépg) structure of the eigenfunction illustrated in Fig. 5 is less

=0, the normalized potential curves in Fig. 5 also iIIustratepeaked at the beam edge(r,,) than for the case where the

the interior structure of the body-wave component of theelgenfunctlon has modified Bessel function structure as illus-

density eigenfunctiodn'(r). trated in Fig. 3.
Contrasting Figs. 2 and 3 obtained fd? ;) =0 with the
corresponding Figs. 4 and 5 obtained {&,) #0, it is evi-
dent that the mode frequencies and eigenfunctions for ele
trostatic perturbations about a cold KV beam equilibrium
exhibit a sensitive dependence on canonical angular momen- In all practical applications, charged particle beams have
tum. In particular, finitg P,4) significantly changes the mode a finite velocity spread, which is represented in the present
structure. FokP,)# 0, the positive and negative mode fre- fluid model by nonzero transverse and longitudinal pres-
guencied) remain equal in magnitude for= 0, but differ in sures,PE(r) and Pﬁ’(r). In a kinetic model, it is well-known
magnitude forl#0. This contrasts with the cagd®,)=0, that the velocity spread of the beam equilibrium can have a

V. WARM-BEAM STABILITY PROPERTIES FOR
AXISYMMETRIC FLUTE PERTURBATIONS ABOUT A
V BEAM EQUILIBRIUM
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strong influence on the detailed stability properties of thepressure prof”epg(r):noTL, with T, =const, is nearly

system. The influence of finite velocity spread on the stabil.gstant in the beam interior, rather than parabolic. Such

ity behavior of the system must also be examined in th&igerences may significantly influence the fluid modes of the

present fluid model. Further motivating this point, significantbeam, particularly as the effects of finite temperature become
differences in mode structure were found in Sec. IV for a

N ) 7' “appreciable. Nevertheless, because the transverse kinetic
cold KV beam equilibrium with zero and nonzero canonical\,qqes of a warm KV beam equilibrium are known analyti-
angular_ momentun(lP_g>. These d|ffe_rences,_together.w!th cally (see Appendix B this simple case affords an ideal
the conjecture that finit¢P ;) can provide qualitatively simi- example that illustrates the consequences of the approxima-
lar effects to finite velocity spread further motivates the neeqi,ns inherent in the present warm-fluid model.

for a warm-beam stability theory with nonzero pressure. The  £or the warm-fluid KV equilibrium, the eigenvalue

general analysis of warm-beam stability properties Kor  oqyation (73) for axisymmetric flute perturbations can be
#0 is complicated. Therefore, to obtain readily |nterpretablesimp|iﬁed_ Substituting Eqg34) and (35) into Eq. (73), the

results, we examine the fluid stability properties of a warMgjgenvalue equation for the perturbed radial flow velocity
KV beam equilibrium for the case of axisymmetric flute per- 5/ an pe expressed within the beam<(0<r) as
turbations withl =0 andk,=0. The analysis of more com- '

plicated modes with finite axial wave numbée¢0) is de-  [w?— &5~ 4(&,— 0 /2)?]8V,
ferred to future studies.

The warm-beam eigenvalue equati@ats), derived forl _
=0 andk,=0, can be used to investigate transverse stability m or
properties for a wide range of warm-beam equilibria with
radial profiles for densityn®(r), angular velocityw,(r), and
perpendicular pressuﬂéﬁ(r) consistent with the warm-fluid
radial force balance equati@¢®9). In the present analysis, we
consider the special case corresponding to a warm KV beal
equilibrium, where the equilibrium densitg®(r) has the

T, 4

! 1 )2 oV 95
r ra) or FOVr]- (95)
Motivated by analogy with Gluckstern’s kinetic modkor
a warm KV beam(see Appendix B we look for solutions to
Eq. (95 where the perturbed potentidl) can be expanded
within the beam in terms of a finite polynomial irf. Spe-
'ically, we takesgp= d¢yn, where

step-function profile in Eq(34) and Fig. 1, withn°(r)=n n r\2i

=const within the beam (€r<r,), and the equilibrium Zo ajl | o O=r<ry,

pressure profile decreases parabolically with radivgthin Spp= . b (96)
the beam according toP{(r)=AT, (1-r?r}) with 2108y (r_w) e

T, =const[see Eq(35)]. In this case, the equilibrium pres- In(ry/ry) r) bW

sure gradient force is linear in and the radial force-balance
equation(29) reduces to the simple form given in E@®8).
Equation(38) can be solved for the angular rotation velocity

Here,n is a positive integer defining the cutoff of the power
series expansion, and tlee are expansion coefficients that
must be determined consistent with the eigenvalue equation

y to give (95) and the boundary condition in E¢71). Note that the
. PRE: , a)g Z:U 12 form of Eq. (96) satisfi_es thel Poisson equati@b) out;ide

&;r=7 + (? +wf— 2 2 (94)  the beam (b<'rsrw), is continuous at =r, and vanishes

b at the conducting wall, i.eq¢,(r=r,,) =0. It should also be

This result generalizes the previous cold-beam result in EcPointed out, on general grounds, that one would expect that
(75) to include finite thermal effects witir, 0. The two e expansion coefficient to depend on the mode oscilla-
solutions in Eq(94) correspond to fast- and slow-rotational 0N frequencyw as well as on equilibrium parameters.
modes of the equilibrium. Beam launching conditions will ~ Eduation(69) can be applied to show that the perturbed
determine the particular frequency selected. The conditiof@dial flow velocity 6V, = 8V, corresponding to the poten-
for existence of a radially confined equilibrium that follows tial expansion in Eq(96) is given by
from Eq. (94) is (w/2)*+wf=®}/2+2T, /mri. Contrast- 2w O [r\2-t
ing this constraint with the cold-beam equilibrium constraint ~ 6V,,= j< ) :
in Eq. (76), note that the addition of finite beam temperature
(T, #0) results in a lesser amount of space—chartgé)f() within the beam. Substituting Eq97) into the eigenvalue
being confined for fixed values @, and ws . equation(95), we obtain
As indicated in Sec. IV, the step-function density profile ,_;
assumed in the present analysis is a good approximation H 2 02 Ao — 2_ SL 2
se F 0= df A 02?5 ]
those of more realistic beam distributions when the beanj=1 P mry
thermal emittanceey, is sufficiently small. However, the - 2i-1
parabolic pressure profil@f(r) associated with the KV +8L(~+1)2a. (L)
equilibrium may differ significantly from the pressure pro- mrf, ) i+1f] Mo
files characteristic of more realistic beam distributions. For

R —— — 9
(4qu)rbj:11a Iy 97

a;

example, in the limit of small thermal emittance, the density | 2 22 ja ) o2 8T, 02 (L 2n—1:O
profile n°(r) of a thermal equilibrium beam is approximately n P rooe mrﬁ Iy '
uniform in the beam interior, and therefore the equilibrium (98
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The coefficients of each radial power in E§8) must be set w)\?
separately equal to zero for the expansions in E9@). and (7) =2+2
(97) to be valid. Therefore, the coefficient of the highest
radial power,r2"~1, yields the dispersion relation Here, 1?=w?— 2/2= 2T, /mr2 and v2=w?=2T, /mr}

- +&),2)/2 are the squares of the depressed and undepressed
99) single-particle oscillation frequencies in the equilibrium field
mry configuration[see Appendix A, Eqs(A3) and (A4)]. The

tune depressiom/ vy conveniently parametrizes the normal-
Equation(99), together with setting the coefficients of suc- ized mode oscillation frequencw/v, in Eq. (103. As
cessive powers af? in the summation in Eq(98) equal to  shown in Appendix A, the limitv/v,—0 corresponds to a

14
14

2
—) (2n2—1). (103
0

zero yields the recursion relation cold, space-charge-dominated beam, ara,—1, corre-
s o sponds to a warm, temperature-dominated beam. On the
aL=— n—J a (100 other hand, for pure magnetic focusing withy=0 and
i (j+1)2 7 w:#0, the dispersion relatiof®9) can be expressed conve-
niently as

for j=1,2,3,..n—1.

The jump condition at the beam edge radiysin Eq. w\? & 205 , Ad—wd2)?
(71) must also be satisfied. Substituting the perturbations in P :w_g“L 1- w? n-— w—§ n°. (104

Egs.(96) and(97) into Eq.(71) gives the requirement A
Here, Eq.(94) has been used to eIiminaTE;L/mrﬁ in Eq.

é 4—0 (101 (99). Note that (1 2&5/ w2)=4(d, — w/2)? o is implied
=R from the warm-beam equilibrium constraint equati@#)
with T, =0.
Note from Eq.(96) that this condition implies thai¢,=0 at The mode structure is illustrated in Figs. 6 and 7. As a

the beam edger&ry,) and in the vacuum regionr{<r  specific example, the electric focusing case is considered,
<r,,). Equation(101), together with the recursion relation and Eq.(103) is used in Fig. 6 to plot the normalized mode
(100 can be used to show that the eigenfunction expansionscillation frequencies/ v, as a function of the tune depres-
in Eq. (96) can be expressed succinctly as sion v/v,. Low-order solutions with radial mode numbers
n=1 ton=5 are shown. Note that the cold-beam limit with
vlvg—0 andw— = v2vy=* @, corresponds to the familiar
long-wavelength K2r2—0) limit found in Sec. IV A. The
warm-beam limit with v/vg—1 and w— *=2np, corre-
(102 sponds to collective oscillations in the absence of space-
charge effects. In Fig. 7, the radial eigenfunctions corre-
Here,P,(x) denotes thath-order Legendre polynomial, and sponding to the modes of oscillation in Fig. 6 are plotted
A,=const denotes the linear mode amplitude, which can bgersus the normalized radial coordinaté,. The radial
identified in terms of the expansion coefficiersts of the ~ mode structure is illustrated in terms of both the perturbed
nth-order eigenmode expansion in E§6) asA,=a,. Com-  potential 5¢,(r) and the body-wave component of the per-
paring Eqs(96) and (102, we note that the expansion coef- turbed densityén,(r) normalized to their on-axis values
ficientsa; are pure numbers, independent of both the equid¢,(r=0) andén,(r=0), respectively. Here, Eq102) is
librium beam parameters and the mode oscillation frequencysed to calculate the perturbed potential, and the correspond-
w. Therefore, when expressed in terms of the normalizedhg perturbed density is determined in EG11) of Appen-
radial coordinate/r,, the radial mode structure isdepen- dix C. Note that the radial mode structure is independent of
dentof both the equilibrium beam parameters and the tune depressiow/ vy, and that the density perturbations
The radial eigenfunctioril02) and the dispersion rela- become more peaked towards the beam edgerf) with
tion (99) specify the transverse fluid mode structure for per-increasing mode numbar. The plots of the potential and
turbations about a warm KV beam equilibrium. Evidently, density eigenfunctions in Fig. 7 are valid for all possible
the dispersion relatiof@9) predicts stable oscillations with a combinations of focusing fieldpure electric, pure magnetic,
single distinct value ofv? for all allowed equilibrium beam or combined electric and magnetid@he general structure of
parameters. It should also be pointed out that stability ighe eigenfunction in Eq(102) is analyzed in detail in Ap-
expected from general energy considerations applied to theendix C. This analysis includes expansions of initahe
warm-fluid KV beam equilibrium and certain other classes oft=0) perturbations in density and potential in terms of the
rigidly rotating fluid equilibria®® For the important special eigenfunctionss¢,,, expressions for the eigenmode in terms
cases of pure electric or pure magnetic focuggepe Appen- of the perturbed densitysh) including singular surface-
dix A) appropriate to model alternating gradient or solenoi-wave terms, and explicit power-serigs-r?) expressions for
dal transport channels, respectively, the dispersion relatiothe low-order eigenfunctions.
(99 can be expressed in alternative useful forms. For pure  Gluckstern’s kinetic treatment of transverse modes for
electric focusing withw.=0= &, and w;+# 0, the dispersion perturbations about a KV beam equilibrium is reviewed in
relation can be expressed as Appendix B for the case of pure electric focusing in the

1 2r2
i

An P (1 2r2
> |Pn-1| =25
Spo=1 2| "1 re

0, rp<r=<r,.

+Pn y 0$r<l’b,
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10 T (103] and kinetic[Eq. (B10)] dispersion relations for a
I n=5 1 warm KV beam with pure electric focusing are contrasted in
Fig. 8. Solutions of theth-order polynomialin »?) kinetic
dispersion relatiorisolid curve$ and the fluid dispersion re-
sF n=3 lation (dashed curvegsare plotted as a function of the tune
depressionv/ vq for radial mode numbers=1,2,3,4, and 5.
The oscillation frequency Re and the growth rate Iw are
n=1 | shown in absolute value because batlm are solutions to
the fluid and kinetic dispersion relations. For given radial
. . . . mode number and tune depression, the fluid dispersion rela-
% X ¥ R T L tion predicts stable oscillations with a single distinct value of
vivy, Tune Depression w?, whereas the kinetic dispersion relation yields gos-
sible modes of oscillation, some of which can become un-
FIG. 6. Solutions for the normalized frequerjey/ v,| of axisymmetric flute  stable (Imw>0) over a range of/v(<0.3985. The(identi-
perturbations, calc'ulated from the warm—ﬂgid dispersion relati®8), are cal) radial eigenmode structure of the fluid and kinetic modes
plotted as a function of the tune depressiahy, for a warm KV beam 4, \qirated in Fig. 7 is independent of both the tune depres-
equilibrium with w.=0=®, and w¢#0 in the electrostatic approximation. . S
Frequencies are shown for radial mode numlrerdl, 2, 3, 4, and 5. sion, v/ Vo, and the mode oscillation frequenay! Note that
progressively more modes of oscillation become unstable in
the kinetic model for higher radial mode number The
absence of beam rotatiofw.=0=&, and w;#0). It is !(inetic mode strugture iIIustrgted in Figs. 7 and 8 is analyzed
found that the radial eigenfunction obtained in the kineticin greater detail in Appendix B. For present purposes, we
treatment[see Eq.(B9)] is identical to the expression de- NOt€ that the oscillation frequenc_les of the fIU|d_ ques
rived in the present warm-fluid theory in EQL02 and Fig.  closely track the(always stable high-frequency kinetic
6. However, the dispersion relation derived in the kineticPranch with largesjw| over the entire range of space-charge
theory[see Eq(B10)] is strikingly different than the corre- Strength, G<v/vo<1. Moreover, the fluid and high-
sponding fluid dispersion relation in E4LO3. To illustrate frequency kinetic oscillation frequencies become identical in

this, the oscillation frequencies supported by the flig. ~ the cold- and warm-beam limits/vo—0 andw/vo—1. For
the special case of radial mode numimer 1, the fluid and

kinetic dispersion relations both reduce to the familiar
envelope-mode dispersion relatibn, (w/vy)2=2
+2(vlvg)?, and the fluid and kinetic curves overlay exactly
for 0<v/vy<1 in Fig. §a).

To interpret the mode comparisons in Fig. 8, we begin
by pointing out that it is not surprising that time=1 modes
are identical in both the fluid and kinetic descriptions. It is
expected on general grounds that the lowest-order perturba-
tion about an equilibrium should reflect the structure of the
equilibrium itself. In Appendix C, it is shown that the struc-
ture of then=1 eigenfunction is equivalent to an infinitesi-
mal change in equilibrium beam density with a correspond-
ing, charge-conserving change in beam radius. Thus, this
lowest-order perturbation reflects the structure of the equilib-
rium and corresponds to the situation encountered in an en-
velope model based on the assumption that the distribution
evolution is self-similar to the equilibrium beam structéfte.
Furthermore, the moment equations derived in an envelope
model are spatial averages of fluid equations. These consid-
erations indicate that the exatt1 mode agreement in Fig.
8(a) should be expected. Next, the lack of instability in the
fluid description and the good agreement between the
(stablg high-frequency kinetic and fluid modes can be quali-
tatively understood as follows. The present fluid model is
based on the assumption of negligible heat flow, so it is not
FIG. 7. Solutions for the normalized radial eigenfunction of axisymmetric SUrprising that high-frequency oscillations are well-modeled
flute perturbations are plotted as a function of normalized radial coordinatdor v/vy<<1, because heat flow should be negligible for a

r/ry for a warm KV beam equilibrium in the electrostatic approximation. cgld beam on fast oscillation timescales. However, for the
The eigenfunction is plotted in terms dB) the normalized potential :

S8¢pnl8¢n(r=0), and(b) the normalized densityn, /sn,(r=0), as calcu- (?tab|é hlgh-f'requepcy braOCh’ It Is remarkable that the
lated from Eqs(102 and (C11), respectively, for radial mode numbens ~ Simple fluid dispersion relation approximates well the com-
=1,2,..., and 5. plicated,nth-order polynomialin »?) kinetic dispersion re-

Frequency

lo/vyl,

5d,(r) / 8d,(r=0), Potential

on,(r)/ dn,(r=0), Density

[ 0.2 * 0.4 * 0.6 0.8 * 1.0
r/ry, Radius
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dispersion relatioB10), are plotted(solid curve$ as a function of the tune depressiofw, for a warm KV beam equilibrium witho,=0= &, and w;

#0 in the electrostatic approximation. Results are shown for radial mode numbdrs2, 3, 4, and 5 ifa)—(e), and the normalized oscillation frequencies

of the fluid modes shown in Fig. 6 are also plot{eldshed curves
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lation over the entire range of space-charge strength, @eam may form a reasonable basis state for characterizing
<vlvyg<l, and becomes exact in the warm-beam limitperturbations in beam density—even for non-KV beams.
vlvy—1. Evidently, for perturbations about a KV beam
eqw!@num, thg neglected heqt flow terms in EGl) are V1. CONCLUSIONS
negligible relative to the retained pressure terms for the
highest-frequency mode. The lack of instability in the fluid A variety of modes of oscillation can be obtained from
model indicates that this approximation breaks down fordifferent theoretical models of charged-particle beams. Some
lower-frequency modes, and the well-known kinetic insta-models may predict instability in situations where others
bilities for a KV beam indicated in Fig. 8 are not recovered.may not. It is important to analyze collective modes and
However, these kinetic instabilities are associated with thénstabilities using a hierarchy of model assumptions, so as to
(unphysical inverted phase-space population of the KV dis-learn which features are model dependent and which have
tribution (see Appendix B and are not observed experimen- general applicability. In this paper, we have employed a
tally for more realistic phase-space distributidfé! Thus, it ~ warm-fluid model derived under the assumption of negligible
may be preferable that the approximations inherent in théeat flow and a diagonal pressure tensor to investigate the
present warm-fluid model have removed such behavior. Notelectrostatic stability properties of unbunched beams. Par-
that kinetic beam distributions with monotonic decreasingticular emphasis was placed on a KV beam equilibrium with
phase-space populations are stdbuch distributions are uniform charge density and parabolic pressure profile. This
also necessarily stable in any fluithomenj model and are was motivated by the fact that the kinetic modes that de-
not dissimilar in macroscopic properties to a KV beam equi-scribe perturbations about a KV beam equilibrium are known
librium when v/vy<1. From this perspective, it is not sur- analytically, affording an opportunity to better understand
prising that the present macroscopic model does not recovelifferences between the kinetic and fluid descriptions, and
the instabilities inherent in a kinetic treatment of a KV beam.because the kinetic modes for a KV beam are frequently
The results presented here have a number of importarsitudied theoretically. The fluid modes were analyzed for per-
implications. First, the analysis shows that certain, high{urbations about a KV equilibrium in both the cold-beam
frequency kinetic modes supported by a KV beam equilibdimit, and for axisymmetric transverse perturbations about a
rium are well approximated by the present, warm-fluidwarm-beam equilibrium. The cold-beam results were used to
model and are consequently a feature of the coarse, macrexamine the effects of finite beam canonical angular momen-
scopic structure of the equilibrium as opposed to the detailetim on collective modes. The warm-fluid transverse stability
phase-space structure. Such kinetic modes fhrie-like,  results were compared with kinetic theory. It was shown that
whereas modes not obtained in the present fluid model arée fluid description reproduces exactly the radial eigenfunc-
kinetic-like and require more details of the structure of thetion obtained in kinetic theory but has a distiristablg os-
full distribution function. Because the macroscopic proper-cillation frequency, in contrast to the multiplicity gpossi-
ties of the KV beam equilibrium are not too dissimilar from bly unstablg frequencies obtained in the kinetic theory. This
those of more physically realistic beams, these fluid-likefluid-mode oscillation frequency approximates very well the
modes are likely a good approximation to the high-frequencyrighest-frequency kinetic mode, and is an important mani-
collective modes supported by beam equilibria with mono-festation of the(physica) macroscopic features of the equi-
tonically decreasing phase-space populations  witHibrium, whereas the possibly unstable, lower-frequency ki-
dF°(H%)/9H®<0 (see Appendix B Such correspondences netic modes depend on thenphysical inverted phase-space
will, of course, be limited to time scales where kinetic effectspopulation of the equilibrium distribution. Implications of
such as Landau damping can be neglected. From this arthese results with regard to the interpretation of collective
other results presented here, we conclude that models basescillations supported by realistic beam distributions were
on an assumed, self-similar evolution of the beam distribudiscussed. These results promise to increase our understand-
tion are of questionable validity for all but lowest-ordee., ing of the evolution of density variations in intense
envelope-modgl considerations. Even if a single, stable beams—a topic of increasing importance in recent experi-
mode of oscillation is excited, the radial profiles of all mac-ments.
roscopic quantities would oscillate in time. Depending on It should be emphasized that the stability results pre-
measurement phases, no discernible perturbation may be opented in this paper were derived for beam focusing
served at one phase, while later the perturbation reappears peduced by the simultaneous presence of a continuous
the mode oscillates. Likely perturbations could, in practice solenoidal magnetic field3S°=B; &,, and a continuous ra-
involve a spectrum of modes with differing oscillation fre- dial electric field,Ef= —(m/Zie)wfzxL. These fields repre-
guencies. Poorly defined launching conditions can furthesent that average focusing properties of a periodic lattice of
complicate interpretations. Higher-order structure reso- solenoids, or a periodic lattice of alternating gradient quadru-
nances, etc., calculated under the assumption of self-similgroles(electric or magneti; respectively. In practice, the sta-
distribution evolution could lead to erroneous conclusionsbility results will typically be applied for pure magnetic fo-
Finally, because the radial mode structure obtained in theusing (Ef=0 and BS°#0) and a rigidly rotating beam
kinetic and fluid models are identical, and the macroscopi@quilibrium (@,#0), or for pure electric focusingE'+0
properties of a KV beam equilibrium are similar to what is and BS®=0) and a nonrotating beam equilibriund(=0).
expected for a cold, space-charge-dominated beam, this sugiso, as explained in Sec. IV, in the pure magnetic focusing
gests that the modes describing perturbations about a K¥ase the beam is typically launched with zero canonical an-
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gular momentum in order to achieve a minimum beam raoscillation frequency. Substituting this expression into the
dius, corresponding to equilibrium beam rotation at the Larequation of motion givesy®+ wcv—(wfz—a)f)/Z):O, or
mor frequency,o,=Z;eB;/2mc=w /2. In this case, it is equivalently,

shown in Appendix A that the pure magnetic and the pure

electric focusing cases are equivalent u'nder the correspon- . _ &tl (w2+4wg_2@2)1/2_ (A2)
dence w?< (w/2). Here, we have retained both electric 2 ¢ P

and magnetic focusing components explicitly to allow analy-A" particles in a KV beam equilibrium undergo transverse

SIS ofpeam stability with nonzero ca_nonu_:z?\l ar_lgular MOMENGscillations in the presence of the applied focusing field and
tum (&, # w/2), and to allow easy identification of appro-

riate substitutions to analvze other focusing Cases not{nwe defocusing space-charge field at the frequencies defined
S'rlectl cl:JonsI'cljJelred yz using in Eq. (A2). The two solutions fow correspond to fast and
! y ; ' slow modes of particle oscillation in the equilibrium field,

Fmally, for simplicity of presentgtmn, the stability nd are symmetrically located above and below the Larmor
analysis presented here has been carried out for the case Oﬁgquency w2
y C .

nonrelativisticion beam. It should be emphasized, however, In most practical applications of the present model, the
that the warm-fluid formalism is readily extended to the Cas§ .am will be subject to pure electric focusig,— 0 ano,l
of an intense ion beam propagating in the axial directionw +0) and will not be in a state of macroscgpic,rotation
with relativistic average axial velocity,, and relativistic (&f) —0), or will be subject to pure magnetic focusitg
mass factory,= (1—V2/c?) Y2 provided the ion motion in o ) P 9 f

the beam frame(“primed"” rdinates is nonrelativisti =0 andw.#0) and will be in a state of macroscopic rota-
€ bea amet-pnmed CO,O ates 15 nonrelativistic (&,#0). These two cases model the average focusing
with ion velocities satisfyingv’|<c, and the directed axial

velocity V.. is larae relative t icle velocities in the b mproperties of a periodic lattice of alternating-gradient quadru-
elocity Vip IS age, €lative to particle velocities In the bea poles(electric or magnetic or a periodic lattice of solenoids,
frame, i.e.,V,>|V’|. These restrictions are met in the re-

) . ; . . . respectively. We now analyze, in turn, both of these special
gimes of practical interest for heavy-ion fusion and the in- b y y P

tense proton accelerators envisioned for tritium roductionCases in greater detail.
P P In the pure electric focusing case with,=0= &, and

and spallation neutron sources. For completeness, the relativ-

- o i #0, the square of the single-particle oscillation frequenc

istic generalizations of the cold- and warm-beam stablllty.wf d gle-p q y

i . X ) ... 7in EqQ. (A2) reduces to

analyses in Secs. IV and V, consistent with the inequalities
|v'|<c andVy>|Vv’'|, are presented in Appendix D. o2 2T
2_ 2 _P_ L

V=i 5= —>. (A3)
2 mrg
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by taking v— vy and Eog—>0 in Eq. (A3). Note from Egs.
APPENDIX A: PARTICLE ORBITS IN A KV BEAM (AS) and (A4) that Vo Corresponds to the oscillation fre-
EQUILIBRIUM quency of a single particle in the applied focusing field
which is proportional tawf, and thatv?=v§— ®3/2, show-
In this appendix, we analyze the transverse dynamics ohg that the actual particle oscillation frequency in the pres-
particleS in the equi”brium f|e|d Conﬁguration Of a KV beam ence of Space_chargé}ﬁi O) is depresse(ﬂrom the app”ed_
to better understand the implications of changing equilibriun¥ie|d value. The ratio vlvy is referred to as thetune
parameters on the particle motion. Using the notation emgepressionand provides a convenient, dimensionless mea-
ployed in Sec. Il A, we examine the motion of a particle gyre of space-charge strength in the equilibrium beam, with
with transverse coordinate, moving within the beam (0 /., .0 corresponding to a cold, space-charge-dominated
<r<rp). The equation of motion of the particle is given by pagm With'AI'l—>0 and&)g/2—>wf2, andw/vo— 1 correspond-
d? ) a)g d R ing to a temperature-dominated beam W‘Itb/m&)grfﬁoo.
qE T T @i o Xt e g XU XE,. (Al)  The fact that Eq(A4) predicts a single, distinct particle os-
cillation frequency7| follows from the absence of an applied
DenotingZ=x+1iy, the equation of motiofAl) can be ex- magnetic field .=0) and macroscopic beam rotatiod(
pressed as’Z/dt?= — (wf— &5/2)Z+iwdZ/dt. The solu-  =().
tion to this equation can be expressedZasZ exp(—iut), In the pure magnetic focusing case with=0, w #0,
whereZ is a complex amplitude determined from the initial and&, #0, it is convenient to rewrite EGA2) in the Larmor
conditions of the particle motion, and= const is the particle frame, rotating about the beam axis<0) with angular ve-
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locity —w¢/2. In the Larmor frame, the frequency of trans- electric-focused equilibrium under the correspondence
verse particle oscillations i$’'=v+ w /2. Equation(A2) (wC/Z)Z@wa. In this context, a rigidly rotating, magnetic-

then reduces to focused beam equilibrium with zero canonical angular mo-
o [ 2 fof, 2-|-l o mentum @, = w./2) can be regarded as equivalent to a non-
V) =l5] —%5 = oo + (0= @c/2)°. (A5)  rotating beam equilibrium with pure electric focusing. This

b

result holds for both the fluid and kinetic descriptions.
Here, we have employed the equnlbrlum constraint condition

(& — 0/2)? —(w /2)2— % 2/2 2TL/mrb, which follows
same form as EqA3) Wlth the focusmg termuf replaced KV BEAM

by (wc/2)? andT, replaced byT, +m(&, — @c/2)?r¥/2. This In this appendix, we summarize results from a kinetic
“shifted” measure of temperature includes contrlbutlonsstabmty analysis of a continuously focused, warm KV beam
from both the thermal emittanag,= 2T, rmV2 [Eq. (41)]  equilibrium. Glucksteri2and other authoté*have em-
and the directed emittaneg= (2<P0>/mvb) [Eq (4D)]ap-  ployed an electrostatic Vlasov—Poisson model to derive ana-
propriate for a beam with canonical angular momentumlytically the normal-mode structure of transverse,=£0)
(Pyy=—m(&,— 0/2)r2i2 [Eq. (40)]. Note that the directed flute perturbations about a KV beam equilibrium. We refer to
emittanceey vanishes for a beam with zero canonical angu-these modes aSluckstern moded-or present purposes, the
lar momentum rotating at the Larmor frequencys,( summary here is limited to the case of symmetric perturba-
=w./2). tions (9/96=0) with azimuthal mode numbér=0.

The correspondence between the pure electric and pure For simplicity, we consider a nonrotating(=0) beam
magnetic focusing cases discussed above can be understowith pure electric focusingB¢=0 andw?# 0). The Vlasov—
more generally in terms of a simple transformation argu-Poisson equation&)—(7) for the transversed dz=0) dis-
ment. Assuming a general distribution of beam space-chargeibution functionF(x, ,p, ,t)=/dp, f(x, ,p,t) can be ex-
(not necessarily a KV equilibriujn it is clear from the pressed as
Vlasov—Poisson system in Eq$)—(7) that the equations of 9  oH 9 oH 9
motion of a particle with transverse coordinate and axial [ ]
coordinatez are

¢ 2 d 5% V2¢p=—4nze| dpdp, F (B1)
qR LT T e T oe X X6 =V, @, (A6) L ' XA By T
d? Zie i o(r=r,,0,t)=const.
e - (A7) Here,
dt m 9z’
2
where ¢ is the electrostatic potential for the average self- _ p_L Yo ‘
electric field. To transform the transverse equations of mo- H= 2m +m 2 Xl+z'e¢(xl Y (B2)

tion to the Larmor framg*primed” coordinateg rotating

X . A . . is the single-particle Hamiltonian, ane,= w denotes the
with angular velocity— w./2 about thee, axis, we define gle-p neh= o

frequency of undepressed patrticle oscillations in the applied
focusing field [see Appendix A, Eq(A4)]. Perturbations

, We . W¢
X=X cos—-t—y sin—=-t, with 9/96=0 are assumed and expanded according to
2 2 (A8)
wg o ¢= %)+ 5(r,w)expl —iwt), B3)
y mxsinmrtrycospt F=Fox, ,p,)+ 6F(r.p. ,o)exp —iwt),
In the Larmor frame, Eq(A6) is expressed as where equilibrium quantitieGsuperscript zenocorrespond to
42 5 dl9t=0 solutions to Eqs(B1) and (B2) with §¢=0= 5F.
— X =—|w?+ &) X — Ze V! . (Ag)  For present purposes, we assume a KV equilibrium distribu-
de* ™ 2] ™ . tion defined by?

Note that the equation of motiofA6) in the laboratory A .
frame for pure electric focusingu(;=0) is identical to the FO(X, ,py)= >mm S(HO=T)). (B4)
equation of motior(A9) in the Larmor frame for pure mag-

netic focusing (¢=0) provided we make the replacement Here, §(x) is the Dirac delta functionn=const, andT,
(wo/2)?>— w?. Therefore, if the radial profiles for the pure =const. Note that all particles in the distribution functieh
electric-focused and magnetic-focused equilibria are identihave the same value of single-particle energy in the equilib-
cal, and the magnetic-focused equilibrium is rigidly rotatingrium fields H°= TL) constituting a highly inverted popula-
with angular velocityw, = w./2 [see the equilibrium force tion in phase space where the entire distribution will partici-
balance equatio(29) and note the rotation sense defined inpate in any instability. It follows trivially from the
Eqg. (28)] so that the equilibrium is “nonrotating” in the Hamiltonian form of the Vlasov equatiofB1) that the KV
Larmor frame, it follows that the Larmor-frame stability distribution F° specified by Eq(B4) [or any other function
analysis of the magnetic-focused equilibrium will be identi- FO(H%)] is a valid equilibrium solution 4/gt=0) when

cal (in primed variables to the stability analysis of the &¢=0=6F. The form ofF° in Eq.(B4) is consistent with a
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uniform beam densityfdp,dp, Fo=n, and a parabolic
pressure profile/dp.dp, (p?/2m)F°=AT (1—r?/rd), in
the beam interior (&r<r,). Here,
2T, /m
2_ L
w2 (B9

is the square of the equilibrium beam radiué;f,

=47-rZi2e2F1/m is the plasma frequency squared, and the con
straint equation(B5) is identical to the envelope equation

given in Eq.(38) with @,=0=w,, or in Eq. (42) with €4

—0=w,.
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~, o v, .
r2(r)=r? cos(vr)+ - cog ¢)sin(2v )
UZ
+;§gmow) (B8)

is the radial trajectory of a particle in the equilibrium
field configuration, with “initial” conditions ¢~=0) corre-

sponding to X(0)=r cosd, Y(0)=r sind, P,(0)
=p, COS¢y,, andﬁy(g)):pl sin ¢,. Here,y=0—¢,, and

v=(vh— @5/2)?= (2T, /mr})"? denotes the frequency of

The linear eigenvalue equation for the perturbed potentransverse particle oscillations in the fidpplied- plus self-
tial ¢(r, ) can be derived as follows. First the perturba-field configuration of the KV beam equilibriuisee Appen-

tions (B3) are substituted into the Vlasov—Poisson equation§liX A, EQ. (A3)]. The terms on the right-hand side of the

(B1), and the equations are expanded to linear ordef¢in
andSF. Then thdinearizedVlasov equation is solved fa¥f
using the method of characteristit@his solution can then

be substituted into the linearized Poisson equation to obtain

the eigenvalue equation

19 4 -
—— T — 8¢=w,0(rp—r)
ror or

1 9o

X|— Iorb A

vy vy vf=(2TL/m)(lfr2/r§)

A2

P00 S —rp)[ 8+ ot (B6)

2_’|‘_le b orbllv =0-

Here,v, =p, /m, ©(X) is the Heaviside step function de-
fined by©(x)=1 for x>0 andO©(x) =0 for x<0, and

T d 0
Iorb(r,vl,w)Ziwfi %fﬂch S¢[T(7),w]

Xexp —iwr) (B7)

is the orbit integrat:'* In Egs. (B6) and (B7), Im >0 is
assumedcorresponding to instabiliy and

1, n=0,
[(e/2)>~07] [(al2)®~2]

eigenvalue equatioriB6) multiplying the step and delta
functions represent body- and surface-wave perturbations,
respectively.

It can be showh®that the integro-differential equation
(B6) subject to the boundary conditiof(r=r,,)=0 sup-
ports normal-mode solutionsj¢=6¢, , that can be ex-
panded as a finite polynomial irf as

2 2

A“P 1-25 ) 4p[1-2" 0

=P, 41-2— 2|, O=sr<r,,

Spp=1 2 n-1 ra n re b
0, rp<r=<r,,.

(B9)

Here,n=1,23,... is the radial mode numbeX,=const is
the linear amplitude parameter of the mode, &y¢x) is the
nth-order Legendre polynomial. Eacfilabeled eigenfunc-
tion, 6¢,, has 2 distinct frequenciesw satisfying an
nth-degree polynomigin w?) dispersion relation that can be
expressed in normalized form as

[(a/2)*—(n—1)?]

[(«2)?=17] [(al2)?=37]
[(@l2)2—1%] [(l2)2—3%]

Bn(a)= [(a/2)*—n?]

1—(vlvg)? wlvg wlvp|
2n+ (vlvg)? Bn-1 vlvg ~Bn vivg)|
(B10)
Here,B,(«) is defined by
, h=135,..,
(B11)
n=2,4,06.....

[(a/2)*—(n—1)°]

[(@/2)2—27] [(al2)2—47]

[(a/2)*-n?]

This explicit polynomial form of the dispersion relation was The structure of the eigenfunctigiB9) for the Gluck-
first derived by Wang and Smiffi.Note that the normalized stern modes is analyzed in detail in Appendix C. Plots of
mode frequencyw/ v, depends on the single dimensionlesslow-order eigenfunctions are presented in Fig. 7, both in
equilibrium parameterp/vy, the tune depression of the terms of the perturbed potentigd¢) and the perturbed den-
beam. Explicit polynomial representations of the kinetic dis-sity (én=Jdp,dp, oF) for O<r<r,. Plots of low-order
persion relation are summarized in Table | for radial modesolutions to the dispersion relatidB10) are presented in
numbersn=1 to n=5 in terms of the dimensionless vari- Fig. 8. Becauser w are both solutions to the polynomiah
ablesw=w/vy andv=v/v,. w?) dispersion relation, only the absolute values of the real
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TABLE I. Kinetic dispersion relation calculated from E@10) for electro- (1=0), electrostatic flute perturbationk,&0) about a
static perturbations with radial mode numbers 1 ton=5 about a warm 2 KV beam equilibrium with edge radius,. Specifi-
KV beam equilibrium. Herep= w/v, andv=v/v,. . . ’ .
cally, the structure of the eigenfunctions, when expressed in
Mode n Dispersion relation terms of the perturbed potentigdp) and the perturbed den-
sity (6n), is examined. Because the eigenfunctions are the

1 @*—2(1+73)=0 . . .
5 = 2(14 99 @ 41— 1779) =0 same in these vgrlaples for both th_e warm-flisde Sec: V,
3 @0 —2(1+ 2707 &+ 8(1+ 97v2) 2’ — 96(1+ 230%) Eqg. (102] and kinetic[see Appendix B, Eq(B9)] theories
=0 presented in this manuscript, all results presented here apply
4 ©8—2(1+592) w®+52(1+831?) 2w to both models.
:ggggigggz First, we demonstrate that the Gluckstern modes can be
5 1 2(1+ 10902) -+ 48(3+ 33652) 72® use_d to describe an arbitrary p_e_rt_urb_atlon in density or po-
— 64(57+ 758872) ' @* tential. LetSn(r) represent an initialtime t=0) perturba-
+128(97+ 420552) 1P w2 — 23040(9+ 6317) 1¥=0 tion in density about a warm KV beam equilibrium. Other

than having small amplitude §n|/n<1), the radial struc-
ture of the perturbation is arbitrary. The Poisson equation
and imaginary parts ab are plotted. Note from EqB9) and  (66) can be solved subject to the boundary condit&b(r

Fig. 7 that the radial structure of timth-order eigenfunction =r,,)=0 at the conducting wall in order to express the ini-
is independent of the values of the Zolutions forw sup-  tial density perturbatio®n(r) in terms of the corresponding
ported by the dispersion relation. As evident from Fig. 8, allperturbation in electrostatic potentiak(r). We introduce
branches are stable (Im=0) in the warm-beam limit with the scaled radial coordinate

v/vg—1, and have oscillation frequeney/vy=*+2,£4,...,

+2n. In the cold-beam limit withy/vy—0, there are two X=1—2
stable solutions witho=*v2v,=* &, and all other solu-

tions are marginally stable witth—0. For general tune de- pq. \aiyes of radius extending from the beam center to
pressions, & v/vp<1, the lowest-order solution with=1 1 paam edge,€r=<r,, note that- 1<X<1, whereX=1
describes the well-known linear envelope mode corresponds;,qx— — 1 cor;espond,to the beam centeI:’(O) and edge
ing to stable oscillations in the beam radiysat frequency (r=r,), respectively. In terms oK, the Poisson equation

w=*+v[2+2(v/ve)?]¥22 Unstable solutions with In (66) can be expressed conveniently as
>0 can exist for mode numbers>1. For a given value of
(X2-1) ¢

n, the high-frequency branch with the largést is always 5 d
stable for G< v/vo=<1. Unstable branches with smaller val- ~ TZi€MoN(X)=2-c| —~——=— =< 0¢(X) . (€2
ues of |w| exist for v/vy less than the threshold values of .
vlvy, where two stable branches with realintersect. The Because the Legendre polynomidtg(X) form a com-
growth rates of these unstable branches achieve a maximuRiete, orthogonal set on the intervall<X<1, it follows
at some value of/ v, below the threshold value for onset of that ¢ can be expanded within the beam as
instability, before decreasing to zefobe., Imw—0) in the %
gold—bg_am limit with V/V.0—>0. The branch with maximum SH(X)= D C,P(X), (C3
instability threshold first becomes unstable at'v, n=0
=0.2425, 0.3859, 0.3985, and 0.3972 for mode numbers
=2, 3, 4, and 5, respectively. This instability threshold is
maximum forn=4 and slowly decreases with increasing 2n+1 (1
for n>4. Generally, for increasing mode numb®r more Cn= 2 f_ldx Pa(X)66(X). (C4
branches ofw are found to be unstable at low values of
vlvy. Such high-order instabilities are a consequence of thdhe expansioriC3) can be expressed in the equivalent form
highly inverted(singula) population of the KV equilibrium w
d_istribuotior:)FO, and will not occeur for equilib_rium dist_ribu— Sh(X)= 2 5bn(X), (C5)
tions F*(H") that are monotonically decreasing functions of n=1
HC with 9F% 9H°<0, which are known to be stabte.

Finally, it should be noted that the stability results de-
rived in this appendix for the case of a nonrotating KV beam A,
equilibrium with pure electric focusing can be applied to a  ¢n(X)= 5~ [Pn-1(X)+Py(X)] (C6)
KV beam equilibrium with zero canonical angular momen-
tum and pure magnetic focusing using the transformatiorare the Gluckstern eigenfunctions describing normal-mode

2

Mo

(CY

where the constantg,, are given by

where

arguments presented in Appendix A. perturbations within the warm-fluijigee Eq(102)] or kinetic
[see Eq.(B9)] models, as expressed in terms ¥&=1
APPENDIX C: STRUCTURE OF THE —2r?/r2, and the coefficientd\,, andC,, are related by
EIGENFUNCTIONS FOR GLUCKSTERN MODES L
n—
In this appendix, we analyze properties of the An=22 (_1)n+1+jcj _ (C7)
=

Gluckstern-mode eigenfunctions for azimuthally symmetric
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TABLE II. Normalized body-wave (6r<r,) eigenfunctions for the potentiab¢,) and density §n,) for
electrostatic perturbations with radial mode numbersl ton=>5 about a warnKV beam equilibrium. Here,
T=r/r,, and the perturbations in potential and density are calculated from(Efsand(C11), respectively.
The results apply to both the warm-fluid and kinetic models.

Moden Potential5¢, /A, Density wZ;er2én, /A,
1 1-r? 1
2 1—4r%+3r* 4(1-3r?)
3 1-9r2+18&*—10r® 9(1—8r2+10r%
4 1-16r2+60r*—80r°+ 358 16(1—15r2+45r*—357F)
5 1-25r2+150r*— 350r®+ 3508 — 126710 25(1—24r%+ 126 % — 2245+ 126°%)

In Eqg. (C5), we have implicitly enforced continuity af¢, at  equations(Appendix B), it can be shown that the density
the edge radius,, of the beam. The inverse of the transfor- representation of the Gluckstern eigenfunctién,,, can be

mation specified by EqC7) is expressed as
CO:A]_/Z, r%
(C8) 5nn: 5nn(r)|bod(rb_ I‘) + 5nn|surfaceT 5([’ - rb)-
A,+A
n:”T“J’l7 i=1,2,3,.... (C10

Here, ©(x) is the Heaviside step function defined Byx)

These results explicitly demonstrate for a warm KV beam=1 for x>0 and®(x)=0 for x<0, and §(x) is the Dirac
equilibrium that an arbitrary initial perturbation in density delta function. The step and delta functions in EG10)
[6n(r)] or potential[ §¢(r)] can be expanded in terms of multiply the “body-wave” and “surface-wave” terms,
the eigenfunctionsS¢,(r). This analysis does not address np|,,q, and dny|sumace Which specify the smooth density
the general completeness problem, which requires showingerturbation within the beam €r=<r,) and the singular
that arbitrary initial pressure and flow velocity perturbationsdensity perturbation at the beam edge=¢,), respectively.
can be simultaneously represented in the present fluid modefhe body-wave componensing|pqy. can be calculated in
Such considerations are important in understanding théerms of the scaled radial coordinaXe=1—2(r/ry,)? from
launching conditions for collective waves. the Poisson equatioiC2) and recursion relations for the

We now investigate the radial structure of thir-order  Legendre polynomials. We obtain
Gluckstern eigenfunctiod¢,,. As evident from Eq.(C6), )
the eigenfunctionsé, is expressed simply within the beam 7Zi€"5Nn|body

as a sum two Legendre polynomiaB,_; and P,, with A
argumentX = 1—2r2/r§. It is useful to note that at the beam =m {(n=1)(n=2)P,,_3(X)
center r=0 and X=1) and the beam edgé&=r, and ( (
X=-1), the resultsP,(1)=1 andP,(—=1)=(—1)" show +(n=1)[(n—1)—2X("—2)]P,_»(X)
that the eigenfunctioid¢,, has values
+[(2n—=1)(X—1)—n(n—1)X—n?X
Opn(r=0)=A,, 2v2 2y2
(C9 +(nN—1)2X2]P,_1(X) +[n(X—1) +n?X2]P(X)}.
O¢y(r=ry)=0. (C11)

Becaused$,=0 at the beam edge~ry, it follows from  rpe ampiitude of the surface-wave componediy|<uace
the Poisson equatiof66) that 6, must vanish outside the .o pe calculated using the fact that the perturbation intro-

beam ¢,<r<ry). The vanishing ofé¢, in the vacuum  q,ces zero net charge into the system, or equivalently, that
region is consistent with Eq$102) and(B9). For reference, war ron.=0 This implies that rﬁ&n leur
n . nlsurface

the eigenfunctionss¢,, are presented in explicit, expanded ~ © ry(1—e) N .
form in Table Il for radial mode numbers=1 to n=5. — Jo . 4" FdM[pogy, Wheree—0". This integral can
These expressions are valid over the ranger &r,, and be carried out using the Poisson equati66) and recursion

are presented in terms of the scaled radial coordimate "€lations for the Legendre polynomials to show that

=r/r,. In general, thenth-order eigenfunctionf¢,, hasn nA

nodes ¢¢,=0) andn antinodegd¢,, at relative maxima or wZierﬁénnlsurfacg(— Hn 5 n (C12
minima with 96¢,/dr =0) over the range &r<r,. The

tabulated eigenfunction8¢,, are plotted in Fig. {@). The singular surface-charge perturbation given by Egs.

Finally, for completeness, we express the Gluckster{C10 and (C12) is the manifestation, within linear theory,
eigenfunction defined in EC6) in terms of the perturbed of a perturbation induced by a small change in beam radius,
density (5n) rather than the perturbed potenti@p). Using  8r,, with |dry|/rp,<1. To understand this, note that the
the Poisson equatioi®6) with §¢= 8¢, andén=én, along total (equilibrium plus perturbeddensity can be expressed
with the corresponding perturbed fluiec. Il D) or kinetic  as n(r)=[n+ 5nn(r)|body]®(rb—r)+ 5nn|5urface(r§/r)5(r
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—rp), wheren®(r)=n@(r,—r) is the equilibrium density —wp,/c). Particularly important, for nonrelativistic motion
profile defined in Eq(34), andry, is the equilibrium beam in the beam frame, is the fact thAt =0, which givesA,
radius. To linear order, this equation can be expressee B,¢ and ¢— BuA,=(1— B2 d= ¢l V.

equivalently as We present here, without giving a detailed derivation,
nA the relativistic generalizations of the cold-beam and warm-
N(r)=[A+ ()] pogJO| Fp+(—1)" 5ot beam fluid stability results in Secs. IV and V, valid for |
2mwZienry, <c andVy>|v'|. Common to both analyses is the equilib-
=[A+ (1) |boay O[Ty + Ty =11, (C13 rium_fc_)rqe balance equatig38), which is generalized in the
relativistic case to become

which shows that the surface-wave perturbation can be

interpreted as a change in beam radiusyry 2-]-L [ ypm

—(—1)"(nA,/2Z;efry). Aside from the complication of & (wc/yp— &)+ @ yp— B —

the mode description associated with this surface term, it is b

evident from the form of the body-wave density perturbation zzize?Nb a,g

in Eg. (C11) and the form of the corresponding potential = W: Zg (D1)

perturbation in Eq(C6) that the Gluckstern eigenfunction is
expressed more simply in terms &k, than in terms of H —(1— 8212 is th lativisti f

on, . Nevertheless, Eq$C10—(C12 can be useful to inter- &)‘Ef;ljr%zgez y n’f b;n dwls’: tzglsrﬁritg:rt;cﬂ:z ar?inr?;l::t)i:/’is?ir::d
pret the mode structure in practical situations because thelp ! c =

profile of the beam charge density is often directly measureg asma frequency-squared and the cyclotron frequency, re-

. Spectively.
experimentally. At the beam center=0 andX=1) and the . . ~ .
beam edgér =r(1— €) andX=— 1+ 4¢ wheree—0"], it First we consider the cold-beanT (—0) stability re-

can be shown that the nonsingular, body-wave component &ults of Sec. IV, derived for the step-function density profile

: . . : in Eq. (79) and general values of azimuthal harmonic num-
the density eigenfunctiosn, given by Eq.(C11) has the berl and axial wave numbeég,. The relativistic generaliza-

I : i ) e )

vaiues tion of the full cold-beam dispersion relation in E@3) is

TZiergon,(r=0)|poay= %A, €14 given by

7Zi 5N, (r =1p)|bogy=(—1)" IN3A,. Ky (KoF ) (Kot ) = K[ (Kgr )1 (KyF )

r

In contrast to the potential eigenfunctigis,, which van- 2 ° Ki(Krw)i(Korp) — K (Kor o)1 (KT )
ishes asr approaches the beam edge=r,(1—¢€) with € ~2 ,

+ G A ; ; } gl vp Ji (Try)
—07], the density elgenfunct|oﬁnn|body is nonzero and be —1- = _ 5| Try
comes large with increasing mode index For reference, 0= 4(oy— 0/2yp) Ji(Trp)
explicit representations of the body-wave component of the
eigenfunctiondn,, are presented in Table Il for radial mode (&2 yp) (&, — wc/2yp)

- : =-2l —" (D2)

numbersn=1 ton=5. The presentation format is analogous Q[Q% = 4(&,— wd2y) 2]

to that used to represent the eigenfunctié, in Table II.
For thenth-order eigenfunctiongn,, it is found that there  Here, identical to the nonrelativistic cas@, is defined by
aren—1 nodes ¢n,=0) andn—1 antinodegdn, at rela- () =w—1&,—k,V,, while the coefficientT occurring in Eq.
tive maxima or minima withdon,,/dr =0) within the beam  (D2) is relativistically generalized as
(0=r<ry). The tabulated eigenfunctior#,, are plotted in

T 0T a(a wd2]

(D3)

APPENDIX D: RELATIVISTIC GENERALIZATIONS The relativistic generalization of the eigenfunction in Eq.
(80) is identical in form provided E(qD3) is used in place of

'thwe consider.aln ioln b_f;/‘m prgpa?att_ir!gt.in théirecftio? Eq. (81) to defineT2. Moreover, the equilibrium parameters

with average axial velocity/,, and relativistic mass factor -2 - L

=(1-p2) Y2 whereB,=V,/c. In situations where the @p, we, @, andy, occurring in Eqs(D2) and (D3) are
7o el b™ ¥p!%: | . , related by the generalized equilibrium force balance condi-
ion motion in the beam framé‘primed” coordinates is ~

lativistic with|v'| < d1th locity of directed i tion (D1) with T, =0. Other results presented in Sec. IV can
nonrefativistic withjv |=c, :and the velocity ot directed 1on -, generalized to the relativistic case in the obvious manner.
motion is large relative to ion velocities in the beam frame

ith Vs v/ | th lativistic electrostatic f lism d Next we consider the stability results of Sec. V, derived
w b .|V |, the honretativistic electrostatic Tormalism de- ¢, o 456 of a warm KV beam equilibrium with axisym-
veloped in Secs. II-V is readily extended to the relativistic

metric flute perturbationfl =0 andk,=0). The dispersion

regime. This can be carried out through the use of the Lor'relation (99 is generalized to become

entz transformations appropriate for the electrostatic poten-

tial, ¢’ = yu(d— BpA,), the z component of the vector po- g7
ter_1tia|, A= y,(A,— Bpp), and the wave freql/Jency and w2= 50;2)/%4' Ao, — wol2yy) 2+ —iz n2, (D4)
axial wave number,o’=y,(w—k,Vp) and k,=y,(k, YoMy

Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



Phys. Plasmas, Vol. 5, No. 8, August 1998

and the eigenfunction given by E¢L02) is unchanged in

S. M. Lund and R. C. Davidson 3053

2M. Reiser, J. Appl. Phys70, 1919(1997).

form. Again, the equilibrium parameters are related by Eq;J: Struckmeier and I. Hofmann, Part. Accag, 219 (1992.

(D1), and other results presented in Sec. V can be general-

ized in the obvious manner.

Finally, it should be pointed out that the two differing
relativistic factors occurring in the terms involving the
plasma frequency-squared in Eq®1)—(D4), a)g/yb and

R. C. Davidson and S. M. Lund, ifhomas H. Stix Symposium on Ad-

vances in Plasma PhysicBrinceton, NJ, 1992, edited by N. J. Fig&iiP

Conf. Proc.314, 1 (1994].

30N, Brown and M. Reiser, Phys. Plasm&s965 (1995.

3IR. C. Davidson and C. Chen, “Kinetic description of intense nonneutral
beam propagation through a periodic solenoidal focusing field based on
the nonlinear Vlasov—Maxwell equations,” Part. Accgh press.

~27.3 . . .

@p/ vp, correspond to corrections due to leading-order kineszg ¢ payidson, W. W. Lee, and P. Stoltz, Phys. Plas6)a79 (1998.
matic effects and combined kinematic/magnetic self-field ef#3J. struckmeier and J. Klabunde, Part. Acad, 47 (1984

fects, respectively. Also, similar arguments to those preZ‘A. Friedman and D. P. Grote, Phys. Fluids4B2203(1992.

sented here can be used to obtain the

relativistic

35, Haber, D. A. Callahan, A. Friedman, D. P. Grote, and A. B. Langdon, J.
Fusion Eng. Desigi32, 159 (1996.

generalizations of the kinetic stability analysis summarizedse aper b A. Callahan, A. Friedman, D. P. Grote, S. M. Lund, and T.-F.

in Appendix B.

IR. C. DavidsonPhysics of Nonneutral Plasmgaddison—Wesley, Read-
ing, MA, 1990, and references therein.

2M. Reiser, Theory and Design of Charged Particle Beafisiley, New
York, 19949.
3H. WiedemannParticle Accelerator PhysicéSpringer, New York, 1993
Vols. | and Il

4J. D. Lawson,The Physics of Charged-Particle Beari@xford Science,
New York, 1988.

SE. P. Lee and J. Hovingh, Fusion Technt, 369 (1989.
5R. A. Jameson, iMdvanced Accelerator ConceptBort Jefferson, NY,
1992, edited by J. S. Wurte[&IP Conf. Proc.279, 969 (1993].

"R. W. Muller, in Nuclear Fusion by Inertial Confinement: A Comprehen-
sive Treatise edited by G. Velarde, Y. Ronen and J. M. Martinez-Val
(CRC, Boca Raton, FL, 1993Chap. 17, pp. 437-453.

8See, for exampleProceedings of the 1995 International Symposium on
Heavy lon Inertial Fusionedited by J. J. Barnard, T. J. Fessenden and E
P. Lee[J. Fusion Eng. Desig82, 1-620(1996], and references therein.
°A. Friedman, R. O. Bangerter, and W. B. Hermannsfeldinceedings

of the IAEA Technical Committee Meeting on Drivers for Inertial Confine-
ment Fusion, Paris, France, 199 ommisariat a I'Energie Atomique,
Saclay, France, 1995p. 243.

101, Kapchinskij and V. Vladimirskij, inProceedings of the International
Conference on High Energy Accelerators and Instrumentat@BRN
Scientific Information Service, Geneva, 195p. 274.

HR. L. Gluckstern, inProceedings of the 1970 Proton Linear Accelerator
Conference, Batavia, IL, 197&dited by M. R. TracyNational Accelera-
tor Laboratory, Batavia, IL, 19731p. 811.

2R. L. Gluckstern, W.-H. Cheng, and H. Yee, Phys. Rev. L&%. 2835
(1995.

Wang, “Transverse-longitudinal temperature equilibration in a bounded
nonneutral plasma,” Nucl. Instrum. Methods Phys. R@spress.

STW. W. Lee, Q. Qian, and R. C. Davidson, Phys. Lett220, 347 (1997).

38Q. Qian, W. W. Lee, and R. C. Davidson, Phys. Plas#ak915(1997).

39S, M. Lund, J. J. Barnard, G. D. Craig, A. Friedman, D. P. Grote, H. S.
Hopkins, T. C. Sangster, W. M. Sharp, S. Eylon, T. J. Fessenden, E.
Henestroza, S. Yu, and |. Haber, “Numerical simulation of intense-beam
experiments at LLNL and LBNL,” Nucl. Instrum. Methods Phys. R@s.
press.

40M. G. Tiefenback, “Space-Charge Limits on the Transport of lon Beams
in a Long Alternating Gradient System, Ph.D. thesis, University of Cali-
fornia, Berkeley, 198@Lawrence Berkeley Laboratory Publication, LBL-
22465, 1986

“W. M. Fawley, T. Garvey, S. Eylon, E. Henestroza, A. Faltens, T. J.
Fessenden, K. Hahn, L. Smith, and D. P. Grote, Phys. Plagin880
(1997).

423, Yu, S. Eylon, E. Henestroza, and D. GroteSipace Charge Dominated

_ Beams and Applications of High Brightness Beam®omington, IN,

1995, edited by S. Y. LepAIP Conf. Proc.377, 134(1996].

433, S, Yu, S. Eylon, E. Henestroza, C. Peters, L. Reginato, A. Tauschwitz,
D. Grote, and F. Deadrick, J. Fus. Eng. Desifh 309 (1996.

4M. Reiser, C. R. Chang, D. Kehne, K. Low, T. Shea, H. Rudd, and .
Haber, Phys. Rev. Let61, 2933(1988.

“5F. J. Sacherer, IEEE Trans. Nucl. SKiS-18 1105(1972.

46gee, e.g., Chaps. 2, 4, 9 and 10 of Ref. 1.

“’Reference 1 presents a general derivation of the macroscopic fluid-
Maxwell equations from the Vlasov—Maxwell equations on pages 22-26.
Several aspects of cold-fluid equilibrium and stability properties of non-
neutral beam-plasma systems are described on pages 240-276 of Ref. 1.

48R. C. DavidsonHandbook of Plasma Physics-Basic Plasma Physids
ited by M. N. Rosenbluth and R. Z. Sagdd@lorth-Holland, Amsterdam,

3R, L. Gluckstern, W.-H. Cheng, S. S. Kurennoy, and H. Ye, Phys. Rev. E 1984, Vol. 2, pp. 729-819.

54, 6788(1996.

14T -S. Wang and L. Smith, IEEE Trans. Nucl. SkiS-28 2399(1981).

15T -S. Wang and L. Smith, Part. Accdl2, 247 (1982.

16H. S. Uhm and R. C. Davidson, Phys. Flui23 1586 (1980.

H. S. Uhm and R. C. Davidson, Part. Accil, 65 (1980.

18] Hofmann, L. J. Laslett, L. Smith, and I. Haber, Part. Acck3, 145
(1983.

191, Hofmann, “Stability of anisotropic beams with space charge,” Phys.
Rev. E(in press.

20G. p. Saraph and M. Reiser, Part. Acct9, 15 (1995.

21C. Chen, R. Pakter, and R. C. Davidson, Phys. Rev. Z6t225(1997.

22C. Chen and R. C. Davidson, Phys. Rev. L&&, 2195(1994).

2C. Chen and R. C. Davidson, Phys. Rev4® 5679(1994.

24E. P. Lee and R. K. Cooper, Part. Accé).83 (1976.

25|, Hofmann, Adv. Electron. Electron Phys. Supp8C, 49 (1983.

28], Hofmann and J. Struckmeier, Part. Acc2l, 69 (1987).

49|, Hofmann, IEEE Trans. Nucl. ScNS-26 3083(1979.

%0G. A. Krafft, J. W.-K. Mark, and T.-S. Wang, SIAMSoc. Ind. Appl.
Math) J. Appl. Math.43, 1390(1983.

5IR. C. Davidson, B. H. Hui, and C. A. Kapetanakos, Phys. Fla/s1040
(1975.

52R. C. Davidson and B. H. Hui, Ann. Phyg\.Y.) 94, 209 (1975.

53M. Reiser, Phys. Fluidg0, 477 (1977.

54R. C. Davidson, P. Stoltz, and C. Chen, Phys. Plastn&310(1997.

%5The authors wish to thank Ed Lee for bringing to our attention energy
arguments analogous to those employed in magnetohydrodyngseies
for example, G. SchmidtPhysics of High Temperature Plasmé&ca-
demic, New York, 197§ can be used in the present warm-fluid model to
bound perturbations for rigidly-rotating fluid equilibria with radial profiles
satisfying certain derivative conditions. This can be used to show that the
macroscopic profiles for a KV beam equilibrium satisfy a sufficient con-
dition for fluid stability.

Downloaded 30 Aug 2001 to 192.55.106.156. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



