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Abstract

The linearized Vlasov-Maxwell equations are used to
investigate properties of the wall-impedance-driven insta-
bility for a long charge bunch with flat-top density pro-
file propagating through a cylindrical pipe with radiusrw

and wall impedancẽZ(ω). The stability analysis is valid
for general value of the normalized beam intensitysb =
ω̂2

pb/2γ
2
bω

2
β⊥ in the interval0 < sb < 1.

INTRODUCTION AND MODEL

High energy ion accelerators, transport systems and stor-
age rings [1] have a wide range of applications ranging
from basic research in high energy and nuclear physics,
to applications such as spallation neutron sources, heavy
ion fusion, and nuclear waste transmutation. Consid-
erable recent analytical progress has been made in ap-
plying the Vlasov-Maxwell equations to investigate the
detailed equilibrium and stability properties of intense
charged particle beams [1]. Building on these advances, the
present analysis reexamines the classical wall-impedance-
driven instability [2-5], making use of the linearized
Vlasov-Maxwell equations [1] for perturbations about a
Kapchinskij-Vladimirskij (KV) beam equilibrium [6, 7]
with flattop density profile. Compared with previous work,
the present analysis based on the Vlasov-Maxwell equa-
tions constitutes a much more general approach. In partic-
ular, it enables us to solve for the dispersion relations and
mode structures for arbitrary azimuthal mode number` in
the transverse direction [8].

To summarize, the present analysis considers a very long
charge bunch (bunch length`b � bunch radiusrb) with di-
rected axial kinetic energy(γb − 1)mbc

2 propagating in
thez-direction through a cylindrical pipe with constant ra-
dius rw and (complex) wall impedancẽZ(ω). The anal-
ysis is carried out in the smooth-focusing approximation,
where the applied transverse focusing force is modeled by
Ffoc = −γbmbω

2
β⊥x⊥. Here, γb = (1 − β2

b )−1/2 is
the relativistic mass factor,Vb = βbc is the directed ax-
ial velocity of the charge bunch,mb is the particle rest
mass,ωβ⊥ = const. is the applied focusing frequency,
and x⊥ = xêx + yêy is the transverse displacement of
a beam particle from the cylinder axis. Denoting the num-
ber density of beam particles bŷnb and the particle charge
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by eb, it is convenient to introduce the relativistic plasma
frequencyω̂pb defined byω̂pb = (4πn̂be

2
b/γbmb)1/2 and

the normalized (dimensionless) beam intensitysb defined
by sb = ω̂2

pb/2γ
2
bω

2
β⊥[1].

An important feature of the analysis is that it is carried
out for arbitrary value ofsb in the interval0 < sb < 1,
assuming perturbations about a KV equilibrium with flat-
top density profile. Illustrative parameters for intense beam
systems range from the very small valuesb = 1.36× 10−4

in the Tevatron, where the particles are highly relativis-
tic, to the intermediate valuesb = 0.08 in the low-energy,
moderate-intensity Proton Storage Ring (PSR) experiment,
tosb ' 0.98 in the low-emittance, space-charge-dominated
beams for heavy ion fusion. Finally, the present analysis
considers the case where the axial momentum spread is
negligibly small. Furthermore, the functional form of the
wall impedancẽZ(ω) is not specified, although the case of
small impedance(|Z̃| � 1) is considered.

To describe stability properties of the charge bunch, we
make use of a kinetic description based on the Vlasov-
Maxwell equations [1]. For simplicity, the analysis consid-
ers small-amplitude perturbations about the axisymmetric,
axially uniform, quasi-steady-state equilibriumdistribution
function [6, 7]

f0
b (r,p⊥) =

n̂b

2πγbmb
δ(H⊥−T̂⊥b)δ(pz−γbmbβbc) . (1)

In Eq. (1),n̂b andT̂⊥b are positive constants, andH⊥ is the
transverse Hamiltonian defined by

H⊥ =
1

2γbmb
p2
⊥+

1
2
γbmbω

2
β⊥r

2 +eb[φ0(r)−βbA
0
z(r)] ,

(2)
wherer = (x2 + y2)1/2 is the radial distance from the
cylinder axis, andp⊥ = (p2

x + p2
y)1/2 is the transverse

momentum. In Eq. (2), the equilibrium self-field poten-
tials are determined self-consistently in terms off0

b (r,p)
from the steady-state Maxwell equations. Note that the
distribution function in Eq. (1) iscold in the axial direc-
tion. An attractive feature of the choice off0

b (r,p) in
Eq. (1) is that the corresponding equilibrium number den-
sity,n0

b(r) =
∫
d3pf0

b (r,p), has the flattop profile [6, 7]

n0
b(r) =

{
n̂b = const., 0 ≤ r < rb ,

0 , rb < r ≤ rw .
(3)

Here,n̂b = const. is the number density of beam particles,



and the edge radiusrb is determined self-consistently from

2T̂⊥b

γbmb
=

(
ω2

β⊥ − 1
2γ2

b

ω̂2
pb

)
r2b ≡ ν2

br
2
b . (4)

In Eq. (4), we have introduced the quantityν2
b defined by

ν2
b = ω2

β⊥ − 1
2γ2

b

ω̂2
pb = ω2

β⊥(1 − sb) , (5)

wheresb = ω̂2
pb/2γ

2
bω

2
β⊥ is a dimensionless measure of

the normalized beam intensity. Note from Eq. (5) that
νb = ωβ⊥(1 − sb)1/2 corresponds to the (depressed) be-
tatron frequency for transverse particle oscillations in the
equilibrium field configuration.

LINEARIZED EQUATIONS

To investigate the instability, we expressfb(x,p, t) =
f0

b (r,p) + δfb(x,p, t), and make use of the lin-
earized Vlasov-Maxwell equations [1, 8] to determine
the self-consistent evolution ofδfb(x,p, t), δEs(x, t) and
δBs(x, t) for small-amplitude perturbations. The per-
turbed fields are expressed asδEs = −∇δφ− c−1∂δA/∂t
andδBs = ∇× δA, and use is made of the Lorentz gauge
condition,∇ · δA = −c−1∂δφ/∂t, to relateδA andδφ.
The linearized Vlasov-Maxwell equations are analyzed [8]
for perturbations of the form

δψ(x, t) = δψ`(r) exp(i`θ + ikzz − iωt) , (6)

where` = 1, 2, . . . is the azimuthal mode number of the
perturbation,kz is the axial wavenumber, andω is the os-
cillation frequency. We consider perturbations with suffi-
ciently low frequency and long axial wavelength that

|ω|rb

c
� 1, |kz|rb � 1 , and

∣∣∣∣k2
z − ω2

c2

∣∣∣∣ r2w � 1. (7)

The linearized Vlasov-Maxwell equations can be simpli-
fied within the context of the inequalities in Eq. (7). With-
out presenting algebraic details [1, 8], it follows that the
perturbed transverse forceδF⊥ on a beam particle can be
approximated by

δF⊥ = −eb∇⊥

(
δφ− 1

c
vzδAz

)
. (8)

Similarly, for the low-frequency, long-wavelength pertur-
bations consistent with Eq. (7), it can be shown that the
perturbed longitudinal force can be neglected [7, 8]. More-
over, because the axial momentum spread is negligibly
small for the distribution function in Eq. (1), we approx-
imate

∫
d3pvzδfb = βbc

∫
d3pδfb.

In summary, making use of the approximations outlined
above, the linearized Vlasov-Maxwell equations can be ap-
proximated by [8](

∂

∂t
+ v · ∂

∂x
− γbmbν

2
bx⊥ · ∂

∂p

)
δfb

=
eb

γbmb
p⊥ · ∇⊥

(
δφ− 1

c
vzδAz

)
∂f0

b

∂H⊥
, (9)

whereδφ andδAz are determined from

∇2
⊥δφ = −4πebδnb , (10)

∇2
⊥δAz = −4πebβbδnb . (11)

Here,∇2
⊥ = ∂2/∂x2 + ∂2/∂y2, Vb = βbc is the average

axial velocity, and the perturbed number density is defined
by δnb =

∫
d3pδfb .

Equations (9)–(11) are to be solved in the beam interior
(0 ≤ r < rb) and in the vacuum region(rb < r ≤ rw)
outside the beam, enforcing the appropriate boundary con-
ditions at the conducting wall located at radiusr = rw.
For present purposes, we describe the wall impedance by a
complex scalar function,̃Z(ω) = Z̃r + iZ̃i, whereω is the
oscillation frequency in Eq. (6). The boundary condition
on the perturbed tangential electric and magnetic fields at
r = r−w ≡ [rw(1 − ε)]ε→0+ can be expressed as [2-5, 8]

[δEt]r−
w

= Z̃(ω)n̂ × [δBt]r−
w
. (12)

Here,n̂ = −êr is a unit vector pointing outward from the
cylindrical conducting wall surface. In what follows we
assume that the metal wall is almost perfectly conducting,
implying that|Z̃(ω)| � 1. Making use of(∇ × δB)r =
c−1∂δEr/∂t in the vacuum region, the boundary condi-
tions in Eq. (12) can be expressed for|Z̃| � 1 as

kz[δφ`]r−
w
− ω

c
[δA`

z]r−
w

= iZ̃

[
∂

∂r
δA`

z

]
r−

w

, (13)

`

rw
[δφ`]r−

w
= −iZ̃

{
ω

c

[
∂

∂r
δφ`

]
r−

w

+ kz

[
∂

∂r
δA`

z

]
r−

w

}
.

Equation (13) expresses the boundary conditions at the
conducting wall in terms of the impedancẽZ(ω) and the
perturbed potentials,δφ and δAz. In the limit of zero
impedance,Z̃ → 0, Eq. (13) reduces to[δφ`]r−

w
= 0 =

[δA`
z]r−

w
, corresponding to the boundary conditions ex-

pected for a perfectly conducting, cylindrical wall. De-
pending on the frequency regime, there are several models
of wall impedanceZ̃(ω) that can be used in the boundary
conditions in Eq. (13) [4].

STABILITY ANALYSIS

In the analysis of Eqs. (9)–(11), we introduce the new
independent variablesτ andZ defined byτ = t−z/Vb and
Z = z .The perturbation in Eq. (6) can be expressed as

δψ(x, Z, τ) = δψ`(r) exp[i`θ− iωτ − i(Ω/Vb)Z] , (14)

where` = 1, 2, · · ·, is the azimuthal mode number,ω is the
oscillation frequency, and

Ω/Vb = (ω − kzVb)/Vb (15)

is the effective axial wavenumber of the perturbation in the
new variables(Z, τ). If the charge bunch experiences a
perturbation forτ > 0 with real oscillation frequencyω, it



is evident from Eqs. (14) and (15) thatΩ/Vb represents the
spatial oscillation and growth (or damping) of the perturba-
tion as a function of axial positionZ.

Assuming perturbations of the form in Eq. (14) for
ImΩ > 0 and integrating Eq. (9), it is found that a
class of solutions exists with density perturbation ampli-
tudeδn`

b(r) =
∫
d2pδf`

b (r,p⊥) localized at the surface of
the charge bunch(r = rb). Without presenting algebraic
details [8], we obtain

4πebδn
`
b(r) = −2`

rb
χ`

b(Ω)[δφ`(r) − βbδA
`
z(r)]δ(r − rb) .

(16)
Here, the response functionχ`

b(Ω) is defined by

χ`
b(Ω) = − ω̂2

pb

2`2`ν2
b

∑̀
m=0

`!
m!(`−m)!

(`− 2m)νb

Ω − (`− 2m)νb
,

(17)
whereΩ = ω − kzVb is the Doppler shifted frequency,
ω̂pb = (4πn̂be

2
b/γbmb)1/2 is the relativistic plasma fre-

quency, andνb = (ω2
β⊥ − ω̂2

pb/2γ
2
b )1/2 is the depressed

betatron frequency. As expected, the response function
in Eq. (17) has a rich harmonic content at harmonics of
νb. We defineδψ`(r) = δφ`(r) − βbδA

`
z(r), and denote

δψ̂` = δψ`(rb), δφ̂` = δφ`(rb) andδÂ`
z = δA`

z(rb). Sub-
stituting Eq. (16), Maxwell’s equations (10) and (11) be-
come [8](

1
r

∂

∂r
r
∂

∂r
− `2

r2

)
δφ`(r) =

2`
rb
χ`

b(Ω)δψ̂`δ(r−rb) , (18)

(
1
r

∂

∂r
r
∂

∂r
− `2

r2

)
δA`

z(r) =
2`
rb
βbχ

`
b(Ω)δψ̂`δ(r − rb) ,

(19)
for azimuthal mode numbers̀= 1, 2, · · ·.

Equations (18) and (19), derived for perturbations about
the equilibrium distribution in Eq. (1) with flattop-density
profile, constitute the final forms of the eigenvalue equa-
tions used in the present stability analysis. Here, Eqs. (18)
and (19) are to be solved over the interval0 ≤ r ≤ rw for
the eigenfunctionsδφ`(r) and δA`

z(r) and eigenvalueΩ,
subject to the condition thatδφ`(r) andδA`

z(r) be regular
at the origin(r = 0), and satisfy the boundary conditions
in Eq. (13) at the conducting wall(r = rw).

Equations (18) and (19) can be solved exactly for the
eigenfunctionsδφ`(r) andδA`

z(r) in the interval0 ≤ r ≤
rw, and the boundary condition (13) enforced at the con-
ducting wall [8]. We introduce

∆′ = −2
ωrw

`c

(
1 +

kzVb

ω

)
iZ̃(ω) ,

∆ = −2
`c

ωrw

[
1 +

k2
zr

2
w

`2

(
1 +

ω

kzVb

)]
iZ̃(ω) , (20)

where∆′ and∆ are treated as small parameters with|∆′|,
|∆| � 1. Some straightforward algebra [8] then leads to

the dispersion relation

D`
b(Ω) = 1 +

1
γ2

b

[
1 −

(
rb

rw

)2`]
χ`

b(Ω)

+
(
rb

rw

)2`

χ`
b(Ω)[β2

b ∆− ∆′] = 0. (21)

Equation (21) is the final form of the dispersion rela-
tion derived from the linearized Vlasov-Maxwell equations
for perturbations about the equilibrium distribution func-
tion in Eq. (1) with corresponding flattop density profile
in Eq. (3). The dispersion relation (21) is valid for low-
frequency long-wavelength perturbations consistent with
Eq. (7), and can be applied over a wide range of normalized
beam intensity in the range0 < sb = ω̂2

pb/2γ
2
bω

2
β⊥ < 1.

The dispersion relation (21) can be used to investigate
detailed stability properties for azimuthal mode numbers
` = 1, 2, 3, · · ·. As an example, we consider dipole-mode
perturbations with̀ = 1. In this case, it follows from
Eq. (17) that the response functionχ`=1

b (Ω) is given by

χ`=1
b (Ω) = − ω̂2

pb/2
Ω2 − ν2

b

, (22)

whereν2
b = ω2

β⊥ − ω̂2
pb/2γ

2
b . Substituting Eq. (22) into

Eq. (21), the dispersion relation reduces to

Ω2 = ω2
β⊥ −

(
r2b
rw

)2 ω̂2
pb

2γ2
b

−
(
rb

rw

)2

β2
b ω̂

2
pb

c

ωrw
iZ̃(ω) ,

(23)
where use has been made ofν2

b = ω2
β⊥ − ω̂2

pb/2γ
2
b , and we

have approximatedβ2
b ∆ − ∆′ = −(2iβ2

b c`/ωrw)Z̃(ω) .
The dipole-mode dispersion relation (23) is valid over

the entire allowed range of normalized beam intensity(0 <
sb < 1) and can be used to investigate detailed stability
properties for a wide variety of choices of impedance func-
tion Z̃(ω). The application of Eq. (23) is discussed in more
detail in Ref. 8.
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