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Abstract by ey, it is convenient to introduce the relativistic plasma

frequencyw,, defined byw,, = (4mipe? /yyms)t/? and

. Thg linearized \(Iasov-MaxweII'equatlons are usgd t?he normalized (dimensionless) beam intensijtydefined

investigate properties of the wall-impedance-driven inst Sy s = 2, /2202, [1]

bility for a long charge bunch with flat-top density pro- ~ . = “#b vbffﬂ ' fth vsis is that it ied

file propagating through a cylindrical pipe with radiug An |mportant eature o t. € analysis 1 thatitis carrie
= out for arbitrary value ok, in the intervald < s, < 1,

%r}d Vevsgrg??;?uaengﬁ(ﬁg'ngprﬁaslit;:(;“gyegr%a% iSnsuvilld assuming perturbations about a KV equilibrium with flat-
~2 g 2 o . y= top density profile. Illustrative parameters for intense beam
W2, /2v;ws | inthe intervald < s, < 1. 4
pb/ =I5 L systems range from the very small vakge= 1.36 x 10
in the Tevatron, where the particles are highly relativis-
INTRODUCTION AND MODEL tic, to the intermediate valug, = 0.08 in the low-energy,

, ) moderate-intensity Proton Storage Ring (PSR) experiment,
High energy ion accelerators, transport systems and st%-sb ~ 0.98in the low-emittance, gre-charge-dominated

age ringsT [1] have a'wid.e range of applications rangi_ngeams for heavy ion fusion. Finally, the present analysis
from basic research in high energy and nuclear physicg,,gjgers the case where the axial momentum spread is
Fo applllcanons such as spallation neutron sources, he_""l\%gligibly small. Furthermore, the functional form of the
ion fusion, and nuclear waste transmutation. —Considyy| impedanceZ(w) is not specified, although the case of
erable recent analytical progress has been made in aall impedancé|Z| < 1) is considered.

plyin.g the Vl_a}so.v-MaxweII qugtions to ipvestiggte the To describe stability properties of the charge bunch, we
detailed equilibrium and stability properties of intens ake use of a kinetic description based on the Viasov-

charged particle beams [1]. Building on these advances, t axwell equations [1]. For simplicity, the analysis consid-

pr_esent. analy.s.is reexamines .the classical Wa”'.'mpe.dan%% small-amplitude perturbations about the axisymmetric,
driven instability [2-5], making use of the linearized

. ) axially uniform, quasi-steady-state equilibrium distribution
Vlasov-Maxwell equations [1] for perturbations about &unction 6, 7]

Kapchinskij-Vladimirskij (KV) beam equilibrium [6, 7]

with flattop density profile. Compared with previous work, o .

the present analysis based on the Vlasov-Maxwell equaft (" P1) = ST, S(H 1L =T1p)6(p=—mufec) - (1)
tions constitutes a much more general approach. In partic-

ular, it enables us to solve for the dispersion relations angl Eq. (1),7, and7’, , are positive constants, adfl, is the
mode structures for arbitrary azimuthal mode numbier  transverse Hamiltonian defined by

the transverse direction [8].

To summarize, the present analysis considers a very Ion}ig _ I, 1 2 2 0(r) — 3 A0
charge bunch (bunch length > bunch radius;) with di- L= omp L T QML e [¢°(r) = B A2 ()]
rected axial kinetic energyy, — 1)m,c? propagating in 2)

the z-direction through a cylindrical pipe with constant ra-wherer = (z* + y)'/? is the radial distance from the
dius r, and (complex) wall impedanc8(w). The anal- Cylinder axis, andp, = (p3 + p;)'/? is the transverse
ysis is carried out in the smooth-focusing approximatiodnomentum. In Eq. (2), the equilibrium self-field poten-
where the applied transverse focusing force is modeled Bypls are determined self-consistently in termsftr, p)
Ffoe = _'mebw?glxl- Here,v, = (1 — 55)—1/2 is fr'om. thg steady—.stat_e Maxwell. equqtlons. Npte Fhat the
the relativistic mass factol, = SB,c is the directed ax- distribution function in Eq. (1) ixold in the axial direc-

ial velocity of the charge bunchp; is the particle rest tion. An attractive feature of the choice gf(r,p) in
mass,ws, = const. is the applied focusing frequency, EQ. (1) is that the corresponding equilibrium number den-
andx, = zé&, + &, is the transverse displacement ofS'tY, ny(r) = [ d®pfy(r,p), has the flattop profile [6, 7]

a beam particle from the cylinder axis. Denoting the num-

ber density of beam particles loy, and the particle charge n0(r) =
Ur) =

3)

ny =const., 0<r<nry,
0, Ty < T < Ty -
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and the edge radius is determined self-consistently from whered¢ andd A, are determined from

27, 1 254 = —
= (“’?ﬂ - W“ib) s = vy . (4) V10¢ = —dmeyony , (10)
b

AU
2 _ —
In Eq. (4), we have introduced the quantifydefined by V1i0As = —dmeyfpony . (11)
1 Here,V2 = 92/02% + 9%/0y?, Vi, = Byc is the average
Vi =wh, — 2—2@2,,) =wj, (1—s), (5) axial velocity, and the perturbed number density is defined
T by 6ny = [ d3pd fy .

wheres, = &2, /277w?, is a dimensionless measure of Equations (9)—(11) are to be solved in the beam interior
the normalized beam intensity. Note from Eq. (5) that0 < r < rp) and in the vacuum regiofr, < r < ry,)
vy, = wpy (1 — sp)'/2 corresponds to the (depressed) beeutside the beam, enforcing the appropriate boundary con-
tatron frequency for transverse particle oscillations in thditions at the conducting wall located at raditis= r,,.

equilibrium field configuration. For present purposes, we describe the wall impedance by a
complex scalar functior? (w) = Z, + iZ;, wherew is the
LINEARIZED EQUATIONS oscillation frequency in Eg. (6). The boundary condition
on the perturbed tangential electric and magnetic fields at
To investigate the instability, we expregs(x, p,t) = 1 =77 = [r,(1 — €)]._o+ can be expressed as [2-5, 8]
f(r,p) + 0fp(x,p,t), and make use of the lin- )
earized Vlasov-Maxwell equations [1, 8] to determine [0E:],- = Z(w)h x [6B], - . (12)

T‘U)

the self-consistent evolution 6ff,(x, p, t), dE*(x, ¢) and

6B*(x,t) for small-amplitude perturbations. The per-Here,ii = —é,. is a unit vector pointing outward from the
turbed fields are expressed®@&® = —Vi¢p—c 196A /0t  cylindrical conducting wall sueice. In what follows we
anddB*® = V x JA, and use is made of the Lorentz gaugeassume that the metal wall is almost perfectly conducting,
condition,V - §A = —c~198¢/dt, to relatedA andép.  implying that|Z(w)| < 1. Making use of(V x éB), =
The linearized Vlasov-Maxwell equations are analyzed [8} ' E,./dt in the vacuum region, the boundary condi-
for perturbations of the form tions in Eq. (12) can be expressed fatt < 1 as

Sp(x,t) = 69 (1) exp (il + ik.z — iwt) (6)

where? = 1,2,...is the azimuthal mode number of the
perturbationk. is the axial wavenumber, andis the os- ’ sfw ¢
cillation frequency. We consider perturbations with suffi- a[&b bz = _ZZ{E [55‘75 ]
ciently low frequency and long axial wavelength that

k[861),, — S[64%),, ziZ[%éAﬁ] )

0
— A" .
Tw +kz|:aré Z:|ru_,}

Equation (13) expresses the boundary conditions at the
r2 < 1. (7) conducting wall in terms of the impedang&w) and the

perturbed potentialsj¢ and §A.. In the limit of zero
The linearized Vlasov-Maxwell equations can be simpliimpedanceZ — 0, Eq. (13) reduces t{ﬁqbe]”_) =0=

fied within the context Of the |nequal|t|e5 in Eq (7) W|th-[5A£]T_, Corresponding to the boundary conditions ex-
out presenting algebraic details [1, 8], it follows that theyected for a perfectly conducting, cylindrical wall. De-
perturbed transverse foré& . on a beam particle can be pending on the frequency regime, there are several models

approximated by of wall impedanceZ (w) that can be used in the boundary
1 conditions in Eq. (13) [4].
5Fl = —ebVL <5¢ - EU25A2> . (8)

jwlrs o W
flad k2 — =

<1, ki< 1,and

- STABILITY ANALYSIS
Similarly, for the low-frequency, long-wavelength pertur-
bations consistent with Eq. (7), it can be shown that the In the analysis of Egs. (9)—(11), we introduce the new
perturbed longitudinal force can be neglected [7, 8]. Moreindependent variablesandZ defined byr = t—z/V}, and
over, because the axial momentum spread is negligibly = ~ .The perturbation in Eq. (6) can be expressed as
small for the distribution function in Eq. (1), we approx-

imate [ d*pv.dfy, = Byc [ dPpé fp. SY(x, Z,7) = 89" (r) explilh — iwr —i(Q/V;)Z] , (14)

In summary, making use of the approximations outlined ] ) .
above, the linearized Vlasov-Maxwell equations can be aftheref = 1,2, -- -, is the azimuthal mode numberjs the
proximated by [8] oscillation frequency, and

d d ) ) Q/Vy = (w—k:V3)/ Vi (15)
Vo XL 5= |0
ot 0x op . . . L
0 is the effective axial wavenumber of the perturbation in the
- pL-V. <5¢ — 1U25A2> Ofp , (9) new variablesZ, 7). If the charge bunch experiences a
ToT ¢ OH perturbation forr > 0 with real oscillation frequency, it




is evident from Egs. (14) and (15) thay V, represents the the dispersion relation
spatial oscillation and growth (or damping) of the perturba-

2¢
i - - it 1 r
tion as afunctlon of aX|'aI positiof. . Df(Q) =1+ — [1 _ (_b) ]Xﬁ(Q)
Assuming perturbations of the form in Eq. (14) for b Tw
Im& > 0 and integrating Eq.(9), it is found that a - 20
class of solutions exists with density perturbation ampli- +<T—> e (Q)[B2A - Al =0. (21)
w

tudedn(r) = [d*pd f(r,p.) localized at the surface of
the charge bunclr = r;). Without presenting algebraic  Equation (21) is the final form of the dispersion rela-
details [8], we obtain tion derived from the linearized Vlasov-Maxwell equations
for perturbations about the equilibrium distribution func-

Ameydny(r) = _2_€X£(Q)[5¢€(T) — BySAL(M)S(r — 1) . Fion in Eq. (1) Wit.h corrgsponding flattop den§ity profile
Tb in Eg. (3). The dispersion relation (21) is valid for low-

(16) e . . .
) , , quency long-wavelength perturbations consistent with
Here, the response functioff(Q) is defined by Eq. (7), and can be applied over a wide range of normalized
o | beam intensity in the range< s, = &7, /2yjw3, <1.
Yh(Q) = — “pb Z a (£ —2m)vy The dispersion relation (21) can be used to investigate
b 202 = ml(l —m)!Q — ({ = 2m)v, detailed stability properties for azimuthal mode numbers
(17) £=1,2,3,---. As an example, we consider dipole-mode

whereQ) = w — k.V} is the Doppler shifted frequency, perturbations witl/ = 1. In this case, it follows from
Opy = (dmige? /ymsp)'/? is the relativistic plasma fre- Eq. (17) that the response functigf™ () is given by
quency, ands, = (w3, — @2,/277)"/? is the depressed 2 7
betatron frequency. As expected, the response function =) = wpb/ (22)
in Eq. (17) has a rich harmonic content at harmonics of Q2 -’

i 4 _ 4 4
oy We d?fme&/}y) = (Z‘b (r) = BbeeAZ(r),eand denote wherev? = w?, — &2 /277, Substituting Eq. (22) into
0" = 89" (ry), 0¢° = 6¢"(ry) anddA, = 6A;(r). Sub- Eq. (21), the dispersiopn relation reduces to
stituting Eq. (16), Maxwell’'s equations (10) and (11) be- '

come [8] ) e ") g2z, < iz
0t —u, - () B (2 g i,
Lo o g o0 ) Tw/) 27 Tw Wy
(‘ o' or —2>6¢4<r> = —xp ()3 a(r—r), (18) o
ror or r T where use has been madegf= w3, — &2, /277, and we

Lo o o 90 ) have approximate@?A — A’ = —(2ifZcl/wry,) Z(w) .
(——r— - —2>6A§(r) = = Buxs ()6 S (r — 1) The dipole-mode dispersion relation (23) is valid over
roror "o (19) the entire allowed range of normalized beam intengity.
for azimuthal mode numbefs= 1,2, - - - sp < 1) and can be used to investigate detailed stability

Equations (18) and (19), derived for perturbations abOlﬁropertles for a wide variety of choices of impedance func-

the equilibrium distribution in Eq. (1) with flattop-density 1o 7 (w). The application of Eq. (23) is discussed in more

profile, constitute the final forms of the eigenvalue equa- in Ref. 8.

tions used in the present stability analysis. Here, Egs. (18)
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whereA’ andA are treated as small parameters withi|,
|A] < 1. Some straightforward algebra [8] then leads to



