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Abstract

This paper is an analytical investigation of the trans-
verse electron-proton (e-p) two-stream instability in a pro-
ton bunch propagating through a stationary electron back-
ground. The equations of motion, including the effect of
damping, are derived for the centroids of the proton beam
and the electron cloud. An approach is developed to solve
the coupled linear centroid equations in the time domain
describing the e-p instability in proton bunches with non-
uniform line densities. Examples are presented for proton
line densities corresponding to uniform and parabolic pro-
files.

1 INTRODUCTION

For intense proton beams, the focus of recent two-stream
instability analyses has been on the transverse instability
observed in the Proton Storage Ring (PSR) at Los Alamos
National Laboratory [1-4]. The PSR stores a long proton
bunch with a near triangular line density profile for a dura-
tion of about one millisecond. The instability is obser-
ved as rapidly growing transverse oscillations of the stored
beam, usually occuring when the beam intensity reaches
2.5 × 1013 ppp or higher, causing fast beam loss. Experi-
mental results support the conjecture that the instability in
PSR is due to the two-stream interaction between the cir-
culating proton beam and the electrons created in the ring,
i.e., the so called e-p instability. However, the understand-
ing of the physics of this instability is usually based on the
theory developed for a continuous beam of uniform line
density [5-10]. Although computer simulations have been
implemented or are being developed [10,11] to study the
e-p instability in bunched beams, a companion analytical
theory still remains to be developed. The present work is
an attempt to investigate the transverse e-p instability in
a proton bunch using an analytical approach based on the
centroid model built on the “one-pass” interaction between
the protons and the electrons.

2 THEORETICAL MODEL

We consider a bunched proton beam of full length L and
circular cross section of radius a, propagating with a con-
stant velocity v through a stationary electron background of
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infinite extent in the direction of beam propagation. We as-
sume that in the equilibrium state, the electrons are trapped
in the proton beam, and the particles are distributed uni-
formly in the transverse direction so the trapped electrons
experience a linear transverse focusing force. The protons
are confined in the transverse direction by a linear external
focusing force. A Cartesian coordinate system is chosen
such that the z axis is pointing opposite to the direction
of proton propagation, and the origin coincides with the
center of the beam cross section. The line densities of the
protons and electrons, λp and λe, generaly depend on z.
The synchrotron motion of the protons and the axial motion
of the electrons in the laboratory frame are neglected for
simplicity. Further simplifications are made by neglecting
the impedance due to the beam environment, like the beam
pipe, and by considering the transverse motion in only one
direction, say the y direction. The stability study is based
on a model in which each electron interacts with the proton
beam only once, i.e., a “one-pass” interaction between the
electrons and protons.

The centroid of the proton beam Yp(z, t) and the centroid
of electrons Ye(z, t) are defined by

Yq(z, t) =
∫ ∞
−∞

yq(z, t, ωq)Fq(ωq)d(ωq/∆q) , (1)

where the subscripts q stands for p (protons) or e (elec-
trons), yq(z, t, ωq) is the particle displacement at the posi-
tion z and time t, ωq is the oscillation frequency, Fq(ωq) is
the frequency distribution function, and ∆q characterizes
the frequency spread of ωq. The equation of motion for a
single particle is

ÿq = −ω2
qyq + (F̂q/mq) , (2)

where the super-dot denotes derivative with respect to
time, F̂q is the perturbing force, and mq is the relativis-
tic mass of a proton or an electron. For the perturbing
forces, we make the approximations F̂e/me = Ω2(z)Yp
and F̂p/mp = G(z)Ye, where Ω(z) = (c/a)

√
2reλp(z)

is the electron bounce frequency, G(z) = ω2
βξ(z), ξ(z) =

2rpc2λe(z)/(a2ω2
βγ), c is the speed of light, ωβ is the beta-

tron frequency, γ = (1−v2/c2)−1/2, and rq is the classical
radius of a proton or an electron.

We consider a Lorentzian distribution function Fq(ωq)
= (∆2

q/π)[∆2
q + (ωq − ωqo)2]−1, where ωqo is the mean

value of ωq, and assume that the general solution to Eq.
(2) can be expressed as a linear combination of eiωqt and
e−iωqt, where i =

√
−1. Averaging Eq. (2) yields

D2Yp + 2∆pDYp + (ω2
β + ∆2

p)Yp = G(z)Ye , (3)



and
Ÿe + 2∆eẎe + [Ω2(z) + ∆2

e]Ye = Ω2(z)Yp , (4)

where we have replaced the time derivative in Eq. (2) by
D = ∂/∂t − v(∂/∂z) for the moving proton beam in the
laboratory frame. In deriving Eqs. (3) and (4), we have
also assumed that the incoherent betatron frequency shift
due to the self-fields of the proton beam is negligible, and
that the maximum value of λe is much smaller than that of
λp, so that ωpo = ωβ = undepressed betatron frequency.
Note that the damping factors in Eqs. (3) and (4) depend
on the choice of the frequency distribution function.

3 STABILITY ANALYSIS

Since the analysis here is based on the linearized equa-
tions (3) and (4), the subsequent analysis is necessarily
limited to the linear regime. The axial coordinates in the
laboratory and beam frames are denoted by z and z′, re-
spectively. We assume that the origins of these two co-
ordinate systems coincide when t = 0, and that the head
of the proton bunch is located at z′ = 0. For simplicity,
relativistic effects are neglected and the Galilean transfor-
mation z′ = z + vt is used between coordinate systems.

Substituting Yp(z′, t) = e−∆ptYpn(z′, t) and Ye(z, t) =
e−∆etYen(z, t) into Eqs. (3) and (4), and tranforming the
proton equation to the beam frame, yield

Ÿpn + ω2
βYpn = G(z′)e(∆p−∆e)tYen , (5)

and
Ÿen + Ω2(t− te)

[
Yen − e−(∆p−∆e)tYpn

]
= 0 , (6)

where a sharp-edged line density λp is assumed so that
Ω(x) = 0 for x ≤ 0, and te = −z/v is the time when
a slice of electrons located at the position z in the labora-
tory frame enters the proton bunch. Using the variational
method and applying a Fourier transformation, we derive
from Eqs. (5) and (6) the integral equation

Ŷ (z′, k) =
∫ z′/v

0

Ω2(x)G(vx)
(ω2
β − k2)W (x)

[
Φ(s′)Ψ(x)

−Ψ(s′)Φ(x)
]
Ŷ (vx, k) dx , (7)

where Ŷ (z′, k)= e(ik−∆p+∆e)s
′
Ỹ (z′, k)/G(z′), s′= z′/v

≤ L/v, and Ỹ (z′, k) is the Fourier transform of Ypn(z′, t).
Here, Φ(t) = Φ(z, t) and Ψ(t) = Ψ(z, t) are the linearly
independent solutions of the homogeneous part of Eq. (6),
and W (x) is the Wronskian of Φ(x) and Ψ(x). In obtain-
ing Eq. (7), we have assumed that Yen = dYen/dt = 0 for
t ≤ te. Differentiating Eq. (7) twice leads to the following
equation for Ŷ (z′, k), i.e.,

v2d2Ŷ /dz′
2 = −Ω2(s′)

{
1 + [G(z′)/(k2 − ω2

β)]
}
Ŷ . (8)

Thus, the stability analysis has now resulted in solving
Eqs. (7) or (8) and inverting a Fourier transformation. For
non-uniform line densities, Eqs. (7) or (8) have exact so-
lutions only for very limited cases. A possible approxi-
mation in Eq. (7) can be seen by substituting Ŷ (z′, k) =
ζ(z′, k)Φ(s′) into Eq. (7), which gives

ζ(z′, k) =
∫ z′/v

0

ζ(vx, k)Ω2(x)G(vx)Φ(x)Ψ(x)
(ω2
β − k2)W (x)

×
{
1− [Ψ(s′)/Φ(s′)][Φ(x)/Ψ(x)]

}
dx . (9)

We assume that (i) Φ and Ψ are such that ΦΨ is a smooth
function and Φ/Ψ is an oscillatory function, and (ii) that
the main motion described in ζ(z′, k) are betatron oscil-
lations at much lower frequency than the electron bounce
motion in the beam, so that the contribution from the fast
oscillatory term containing Φ/Ψ in the integration in Eq.
(9) is negligibly small. Then, neglecting the term propor-
tional to Φ/Ψ in Eq. (9) leads to the approximate solution

Yp(z′, t) ∼
{
J(z′)/[ωβ(t− s′)]3

}1/4
G(z′)Φ(s′)

×exp
[
−(iωβ + ∆p)(t− s′)−∆es

′

−(i/4)J(z′) +
√

2ωβJ(z′)(t− s′)
]
, (10)

where

J(z′) = i

∫ z′/v

0

Ω2(x)G(vx)
ω2
βW (x)

Φ(x)Ψ(x)dx . (11)

Similarly, the solution for Yp(z′, t) in terms of Ψ(s′)
can be derived by making the substitution Ŷ (z′, k) =
ζ(z′, k)Ψ(s′) in Eq. (7). Equation (10) indicates that the
instability grows in both time and space consistent with
computer simulation results[11]. In the absence of damp-
ing, the asymptotic temporal growth of the instability in the
beam frame is proportional to eαt

1/2
(where the constant α

is independent of t), and the spatial growth is determined
primarily by the quantity J(z′). Further, we see from Eq.
(10) that the e-p mode “wiggles” in space proportional to
Φe−iJ/4. Note that Eq. (10) also indicates that the pertur-
bation is eventually damped as long as ∆p is nonzero. This
is due to the combined effects of finite proton bunch length
and the “one-pass” electron-proton interaction.

The following two examples illustrate the applications of
the theory developed here.

Example A: Uniform Line Densities λp and λe

When both λp and λe are uniform, Ω2(x) = ω2, and
G(x) = ξω2

β , where ω is the electron bounce frequency,
and ξ is a constant. Equations (7) and (8) have the exact
solutions Φ(z′) = exp(iωs′η) and Ψ(z′) = exp(−iωs′η),
where η = {1 + [ξω2

β/(k
2 − ω2

β)]}1/2. We concentrate on
the part of the solution containing Φ here. The part con-
taining Ψ can be treated in the same manner. The solution
for Yp(z′,t) is

Yp(z′,t)∼ ξω2
βe

∆p(s
′−t)−∆es

′
∫ ∞
−∞

eik(t−s
′)+iωs′ηdk , (12)

where z′ ≤ L. The inverse Fourier transformation in Eq.
(12) can be carried out analytically only in a few parame-
ter ranges by using the steepest descent method. We limit
discussion here to two cases.

The first case corresponds to ξ2 	 ξωs′/[ωβ(t− s′)]	
1. In this range, the unstable mode has the approximate
solution



Yp(z′, t) ∼
{
ωs′/[ωβ(t− s′)]3

}1/4exp
[
−∆es

′ − iωβt

+ i(ω + ωβ)s′ −∆p(t− s′) +
√

ξωωβs′(t− s′)
]
, (13)

where we have neglected constant factors in the amplitude.
This solution agrees well with the result of applying the ap-
proximation in Eq. (10). Equation (13) indicates that the
proton beam “wiggles” in space approximately according
to the electron bounce frequency as seen in experiments[1-
4]. It can be shown that if the damping is large enough, the
instability grows to a maximum amplitude and then subse-
quently damps.

The second case corresponds to ξω2s′2/[ωβ(t−s′)]2 	
ξ3 	 1. The approximate solution for the unstable mode
in this range is found to be

Yp(z′, t) ∼
{
(ωs′)2/[ωβ(t− s′)]5

}1/6exp
{

(iω −∆e)s′

+ (3/4)(
√

3− i)
[
ξω2ωβs

′2(t− s′)
]1/3

−(iωβ + ∆p)(t− s′)
}

. (14)

This solution shows that when there is no damping, the in-
stability grows like eαt

1/3
- a result similar to that obtained

in earlier works [12-14]. In the presence of damping, an
instability continuing to grow from the previous parameter
range will be damped in this regime after the perturbation
reaches a maximum amplitude. In reality, the growth of the
instability can stop due to substantial loss of beam particles
before it reaches the theoretical maximum, or the growth
can saturate at a lower level due to nonlinear effects not
discussed here.

Example B: Parabolic λp and Uniform λe

In this case, G(x) = ξω2
β is a constant, and Ω2(z′/v)

= 4ω2
o

[
(v/L)(z′/v) − (v/L)2(z′/v)2

]
, where ωo is the

electron bounce frequency at the center of the proton
bunch. The homogeneous part of Eq. (6) becomes

d2Yen/dp
2 +

[
h− (p2/4)

]
Yen = 0 , (15)

where h = Lωo/(4v), and p = 2
√

ωov/L
[
s′ − L/(2v)

]
.

The two linearly independent solutions to Eq. (15), Φ(s′)
and Ψ(s′), are chosen to be

Φ = Ψ∗ = U(−h, p) + iΓ(2µ)V (−h, p) = ReiΘ , (16)

where ∗ denotes the complex conjugate, U(x, y) and
V (x, y) are parabolic cylinder functions[15], Γ(x) is the
Gamma function, and µ = (1/4) − (h/2). Here, R and Θ
have the following expansions valid for |p| 	 2

√
h [15],

R ≈ Γ(µ + h)
2µ
√
π

(
1 +

p2

16h
+

5p4

512h2
+ · · ·

)
, (17)

and
Θ ≈ πµ +

√
h p

{
1− [p2/(24h)] + · · ·

}
. (18)

Substituting Eqs. (16) - (18) into Eq. (11), using the Wron-
skian relation between U(x, y) and V (x, y), and retaining
the three lowest-order terms in z′/L, we obtain

J(z′)≈ 3ξh3/2(z′/L)2
{
1−[10z′/(9L)]+(z′/L)2

}
, (19)

where only two lowest-order terms in the expansion of R2

have been retained. The solution for Yp(z′, t) can be ob-
tained by substituting Eqs. (16) and (19) into Eq. (10). For
no damping, the combined spatial and temporal growths
at the center and the tail of the bunch are approximately
exp[(ξωβt)1/2h3/4] and exp[2.3(ξωβt)1/2h3/4], respec-
tively.

4 CONCLUSIONS

We have derived the equations for the transverse mo-
tion of the centroids of the proton bunch and the elec-
trons. The damping effect was included by considering
Lorentzian distributions of the particles’ transverse oscil-
lation frequencies. Based on the model of “one-pass” in-
teraction between the protons and the electrons, we dis-
cussed approaches for solving the linearized centroid equa-
tions to investigate the e-p instability in finite-length proton
bunches with arbitrary line density. Case studies were pre-
sented for uniform and parabolic proton line densities. It
was found that the e-p instability can grow in both space
and time. Depending on the stage of the instability, the
temporal growth of the electron-proton oscillations can be
proportional to eαt

1/2
or eαt

1/3
. For a Lorentzian distribu-

tion of proton oscillation frequencies with nonzero spread,
the instability will eventually be damped for long times.
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Meth., 121 (1974) 517.

[7] H. Schönauer and B. Zotter, CERN Internal Note, 1972.

[8] D. G. Koshkarev and P. R. Zenkevich, Particle Accelerators,
3 (1972) 1.

[9] E. Keil and B. Zotter, CERN-ISR-TH/71-58, Dec. 1971.

[10] H. Qin, R. C. Davidson, Edward Startsev, and W. W. Lee,
these proceedings, also see H. Qin et al., Phys. Rev. STAB,
3 (2000) 084401; 3 (2000) 109901.

[11] T. Wang, AIP Conf. Proc. 496, p. 305 (1999).

[12] M. Lampe et al., Phys. Fluids, B5 (1993) 1888.

[13] D. H. Whittum, et al., Phys. Rev. Lett., 67 (1991) 991.

[14] R. J. Briggs, in Quarterly Progress Report No. 85 of Re-
search Laboratory of Electronics, MIT, p. 183, 1967.

[15] M. Abramowitz and I. A. Stegun, Handbook of Mathemati-
cal Functions, US NBS, 1964, Chap. 19.


