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Abstract

Two-stream instabilities in intense charged parti-
cle beams, described self-consistently by the nonlinear
Vlasov-Maxwell equations, are studied using a 3D mul-
tispecies perturbative particle simulation method. The
newly developed beam equilibrium, stability, and transport
(BEST) code is used to simulate the linear and nonlinear
properties of the electron-proton (e-p) two-stream insta-
bility observed in the Proton Storage Ring (PSR) experi-
ment for a long coasting beam. Simulations in a parame-
ter regime characteristic of the PSR experiment show that
the e-p instability has a dipole-mode structure, and that the
instability threshold descreases with increasing fractional
neutralization, and increases with increasing axial momen-
tum spread of the beam particles. In the nonlinear phase,
the simulations show that the instability first saturates at
a relatively low level, and subsequently grows to a higher
level.

1 INTRODUCTION

In periodic focusing accelerators and transport systems
[1-4], when a second charge component is present, it has
been recognized for many years, both in theoretical stud-
ies and in experimental observations [5-18], that the rel-
ative streaming motion of the high-intensity beam par-
ticles through a background charge species provides the
free energy to drive the classical two-stream instability,
appropriately modified to include the effects of dc space
charge, relativistic kinematics, presence of a conducting
wall, etc. A background population of electrons can result
by secondary emission when energetic beam ions strike the
chamber wall, or through ionization of background neu-
tral gas by the beam ions. A well-documented example is
the electron-proton (e-p) instability observed in the Proton
Storage Ring [12-14], although a similar instability also ex-
ists for other ion species, including (for example) electron-
ion interactions in electron storage rings [15-18].

At the high beam currents and charge densities of prac-
tical interest, it is increasingly important to develop an im-
proved theoretical understanding of the influence of the in-
tense self fields using a kinetic model based on the nonlin-
ear Vlasov-Maxwell equations [1, 19-22]. Recently, the
δf formalism, a low-noise, nonlinear perturbative parti-
cle simulation technique for solving the Vlasov-Maxwell
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equations, has been developed for intense beam applica-
tions [23, 24]. The 3D multispecies nonlinear δf formal-
ism has been implemented in the newly developed Best
Equilibrium Stability and Transport (BEST) code [25],
which has been applied to a wide range of important col-
lective processes in intense beams [25, 26]. In this paper,
we study the electron-proton two-stream instability numer-
ically using the nonlinear δf method, with particular em-
phasis on the parameter regime characteristic of the Proton
Storage Ring (PSR) experiment [12-14] for a long coast-
ing beam. Following a brief description of the nonlinear
δf method in Sec. 2, we present the simulation results
in Sec. 3. In particular, the dependence of the instability
growth rate on beam density, fractional charge neutraliza-
tion, and longitudinal momentum spread is investigated in
detail. The nonlinear phase of the instability is studied as
well.

2 NONLINEAR δF FORMALISM FOR
VLASOV-MAXWELL SYSTEM

The theoretical model employed here is based on the
nonlinear Vlasov-Maxwell equations. We consider a thin,
continuous, high-intensity ion beam (j = b), with char-
acteristic radius rb propagating in the z-direction through
background electrons (j = e), with each component de-
scribed by a distribution function f j(x,p, t) [5, 20, 22].
The charge components (j = b, e) propagate in the z-
direction with characteristic axial momentum γjmjβjc,
where Vj = βjc is the average directed axial velocity,
γj = (1 − β2

j )−1/2 is the relativistic mass factor, ej and
mj are the charge and rest mass, respectively, of a j’th
species particle, and c is the speed of light in vacuo. While
the nonlinear δf formalism outlined here is readily adapted
to the case of a periodic applied focusing field [27], for
present purpose we make use of a smooth-focusing model
in which the applied focusing force is described by Ffoc

j =
−γjmjω

2
βjx⊥, where x⊥ = xêx + yêy is the transverse

displacement from the beam axis, and ωβj = const is
the effective applied betatron frequency for transverse os-
cillations. Furthermore, in a frame of reference moving
with axial velocity βjc, the motion of a j’th species par-
ticle is assumed to be nonrelativistic. The space-charge
intensity is allowed to be arbitrarily large, subject only to
transverse confinement of the beam ions by the applied fo-
cusing force, and the background electrons are confined in
the transverse plane by the space-charge potential φ(x, t)
produced by the excess ion charge. In the electrostatic



and magnetostatic approximations, we represent the self-
electric and self-magnetic fields as Es = −∇φ(x, t) and
Bs = ∇ × Az(x, t)êz . The nonlinear Vlasov-Maxwell
equations can be approximated by [5, 22]{

∂

∂t
+ v · ∂

∂x
− [γjmjω

2
βjx⊥

+ej(∇φ− vz
c
∇⊥Az] · ∂

∂p

}
fj(x,p, t) = 0,

(1)

and

∇2φ = −4π
∑

j

ej

∫
d3pfj(x,p, t),

∇2Az = −4π
c

∑
j

ej

∫
d3pvzfj(x,p, t).

(2)

In the nonlinear δf formalism [23, 24, 25], we divide the
total distribution function into two parts, f j = fj0 + δfj ,
where fj0 is a known equilibrium solution to the nonlinear
Vlasov-Maxwell equations (1) and (2), and the numerical
simulation is carried out to determine the detailed nonlinear
evolution of the perturbed distribution function δf j . This
is accomplished by advancing the weight function defined
by wj ≡ δfj/fj , together with the particles’ positions
and momenta. The equations of motion for the particles,
obtained from the characteristics of the nonlinear Vlasov
equation (1), are given by

dx⊥ji

dt
= (γjmj)−1p⊥ji,

dzji

dt
= vzji = βjc+ γ−3

j m−1
j (pzji − γjmjβjc),

dpji

dt
= −γjmjω

2
βjx⊥ji − ej

(
∇φ− vzji

c
∇⊥Az

)
.

(3)

Here the subscript “ji” labels the i’th simulation particle
of the j’th species. The dynamical equations for wji is
[23, 25]

dwji

dt
= −(1 − wji)

1
fj0

∂fj0
∂p

· δ
(
dpji

dt

)
,

δ

(
dpji

dt

)
≡ −ej

(
∇δφ− vzji

c
∇⊥δAz

)
,

(4)

where δφ = φ − φ0 and δAz = Az − Az0. Here, the
equilibrium solutions (φ0, Az0, fj0 ) solve the steady-state
(∂/∂t = 0) Vlasov-Maxwell equations (1) and (2). A wide
variety of axisymmetric equilibrium solutions to Eqs. (1)
and (2) have been investigated in the literature. The per-
turbed distribution δf j is obtained through the weighted
Klimontovich representation [1]

δfj =
Nj

Nsj

Nsj∑
i=1

wjiδ(x− xji)δ(p − pji), (5)

where Nj is the total number of actual j’th species parti-
cles, andNsj is the total number of simulation particles for

the j’th species. Maxwell’s equations are also expressed in
terms of the perturbed fields and perturbed density accord-
ing to

∇2δφ = −4π
∑

j

ejδnj, ∇2δAz = −4π
c

∑
j

δjzj , (6)

where

δnj =
Nj

Nsj

Nsj∑
i=1

wjiS(x − xji),

δjzj =
ejNj

Nsj

Nsj∑
i=1

vzjiwjiS(x − xji).

(7)

Here, S(x − xji) is a shape function distributing particles
on the grids in configuration space.

The nonlinear particle simulations are carried out by
iteratively advancing the particle motions, including the
weights they carry, according to Eqs. (3) and (4), and
updating the fields by solving the perturbed Maxwell’s
equations (6) with appropriate boundary conditions at the
cylindrical, perfectly conducting wall. Even though it is
a perturbative approach, the δf method is fully nonlinear
and simulates completely the original nonlinear Vlasov-
Maxwell equations. Compared with conventional particle-
in-cell simulations, the noise level in δf simulations is sig-
nificantly reduced. The dominant numerical noise mecha-
nisms in particle simulations, such as numerical collisions,
are statistical. The δf method reduces the noise level of the
simulations because the statistical noise, which is of order
O(N−1/2

s ) for the total distribution function in the conven-
tional particle-in-cell (PIC) method, is only associated with
the perturbed distribution function in the δf method. If the
same number of simulation particles is used in the two ap-
proaches, then the noise level in the δf method is reduced
by a factor of f/δf relative to the PIC method. To achieve
the same accuracy for the perturbed fields, the number of
simulation particles used in the δf method is reduced by a
factor of (f/δf)2 . For the e-p two-stream instability in the
Proton Storage Ring experiment studied in this paper, we
obtain satisfactory results with about 105 simulation parti-
cles using the δf method. If the conventional PIC method
is used, then for a nonlinear saturation level of 1%, about
104 times more simulation particles would be needed to
achieve the same accuracy. The δf method can also be
used to study linear stability properties, provided the fac-
tor (1 − wji) in Eq. (4) is approximated by unity, and the
forcing terms in Eq. (3) are replaced by the unperturbed
force. Implementation of the 3D multispecies nonlinear
δf simulation method described above is embodied in the
BEST code [25] developed at the Princeton Plasma Physics
Laboratory. The code advances the particle motions us-
ing a leap-frog method, and solves Maxwell’s equations
in cylindrical geometry. For those fast particle motions
which require much larger sampling frequency 1/∆t than
the frequency of the mode being studied, the code uses an



adiabatic field pusher to advance the particles many time
steps without solving for the perturbed fields. The upper
limit for ∆t, the time step to advance the particles’ phase
space position, is normally determined by the Courant con-
dition. For the electron-proton two-stream instability, the
electrons’ transverse motion requires the smallest ∆t, and
the mode frequency is comparable to the electron bounce
frequency in the transverse direction. We can therefore up-
date the electrons’ phase space positions more often than
the field. On the IBM SP-2 super computer, the BEST code
advances 4.2 × 1011 particle×time-steps when simulating
the e-p two-stream instability in the Proton Storage Ring
experiment.

3 SIMULATION OF TWO-STREAM
INSTABILITY

In high-intensityaccelerators and storage rings, there ex-
ists many discrete collective eigenmodes (excitations) of
the ion beam. Among them, the dipole surface mode can
exhibit instability when a background electron population
is present [5, 12-14]. This instability is basically of the
two-stream type, and is strongest when the ions are rela-
tively cold in the propagation direction. The directed ve-
locity difference, Vb − Ve, between the beam ions and
the background electrons provides the free energy for the
collective modes to grow. The instability observed in the
Proton Storage Ring [12-14] is believed to have this two-
stream characteristic. We have simulated the two-stream
instability using the BEST code, which self-consistently
solves the nonlinear Vlasov-Maxwell equations using the
δf method. The simulation results presented here are
for system parameters typical of the PSR experiment for
a long coasting beam. The background distribution func-
tions fj0(r,p) are assumed to be the bi-Maxwellian with
temperature Tj⊥ = const. in the x− y plane, and temper-
ature Tj‖ = const. in the z-direction, i.e.,

fj0(r,p) =
n̂j

(2πmj)3/2γ
5/2
j Tj⊥T

1/2
j‖

(8)

× exp

{
−(pz − γjmjβjc)2

2γ3
jmjTj‖

}
×

exp

{
−p

2
⊥/2γjmj + γjmjω

2
βjr

2/2 + ej(φ0 − βjAz0)
Tj⊥

}
,

where n̂j is the density on axis (r = 0) of the j’th species.
φ0 and Az0 are equilibrium fields, which are coupled with
Eq. (8) through the nonlinear Maxwell equations

1
r

∂

∂r
r
∂φ0(r)
∂r

= −4π
∑

j

ej

∫
d3pfj0(r,p), (9)

1
r

∂

∂r
r
∂Az0(r)
∂r

= −4π
c

∑
j

ej

∫
d3pvzfj0(r,p).

In the simulations, we take γb = 1.85, me/mb = 1/1836,
ωβb = 40 MHz, rw = 5 cm, Ve = 0 and ωβe = 0

Figure 1: Plots of the equilibrium proton and electron den-
sity profiles.

(corresponding to axially stationary electrons). The space-
charge intensity varies from moderate to strong, corre-
sponding to 0.008 ≤ ω̂2

pb/2γ
2
bω

2
βb ≤ 0.158, where ω̂2

pb =
4πn̂be

2
b/γbmb is the ion plasma frequency-squared on axis.

The fractional charge neutralization f ≡ n̂e/n̂b varies from
5% to 25%,where n̂e and n̂b are the electron and beam ion
number densities on axis (r = 0).

Typical numerical results are illustrated in Figs. 1–3 for
the “baseline” case with system parameters corresponding
to ω̂2

pb/2γ
2
bω

2
βb = 0.079, Tb⊥/γbmbV

2
b = 3.61 × 10−6,

Te⊥/γbmbV
2
b = 5.86 × 10−7, f = 0.1, Ve = 0, and

ωβe = 0 (stationary electrons). Because the e-p instabil-
ity is strongest when the beam ions are cold in the parallel
direction [5] (no Landau damping by parallel kinetic ef-
fects), we take ∆pb‖ = 0 = ∆pe‖ in the simulation pre-
sented in Figs. 1–3 to maximize the growth rate. Plotted
in Fig. 1 is the equilibrium density profiles for the protons
and electrons, n0

j(r) =
∫
d3pfj0(r,p, t) (j = b, e), which

are easily obtained after the equilibrium potentials φ0 and
Az0 are solved numerically from Eqs. (8) and (9). As illus-
trated in Fig. 2, the x-y projection (at fixed value of z) of
the perturbed space-charge potential δφ(x, y, t) grows ex-
ponentially with time during the linear phase of the insta-
bility. Clearly, the unstable mode is a dipole mode with
azimuthal mode number l = 1. It is important to em-
phasizes that the simulations are based on first principles
— the nonlinear Vlasov-Maxwell equations. All possible
mode excitations are allowed in the simulations. Simula-
tions using typical operating parameters in the PSR exper-
iment [12-14] indicate that the l = 1 dipole mode is the
most unstable mode. For this dominant mode in Fig. 2, the
real part of the eigenfrequency is Reω = 25.13ωβb, and
the normalized wavelength in the longitudinal direction is
kzVb/ωβb = 26.17. These results are in good agreement
with those measured in the PSR experiments [12-14]. For
the baseline case, the dependence of the instability growth
rate on normalized axial wavenumber kzVb/ωβb is illus-
trated in Fig. 3. Here, kz = 2πn/L = n/R, where R is
the ring radius, and n is the mode number. The results in
Fig. 3 are qualitatively consistent with the analytical results
obtained for uniform-density beams [5, 6]. The important
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Figure 2: The x-y projection (at fixed value of z) of the
perturbed electrostatic potential δφ(x, y, t) for the electron-
proton two-stream instability growing from a small initial
perturbation, shown at (a) t = 0, and (b) ωβbt = 200.

physics here is that only for a certain range of kzVb/ωβb

can the collective modes of the beam ions effectively res-
onate with the electrons and produce instability. In Fig. 4,
for the case where f = n̂e/n̂b = 0.15, the maximum
growth rate in the simulations is plotted versus the nor-
malized beam density n̂b/n̂b0 for different values of initial
axial momentum spread. Here, n̂b0 = 9.41 × 108cm−3,
corresponding to an average current of 35 A in the PSR ex-
periment (the baseline case with ω̂2

pb/2γ
2
bω

2
βb = 0.079 in

Figs. 1–3). It is evident from the results shown in Fig. 4
that the growth rate is an increasing function of the beam
density n̂b/n̂b0, but a decreasing function of the longitu-
dinal momentum spread, which qualitatively agrees with
previous analytical results [7]. A larger longitudinal mo-
mentum spread induces stronger Landau damping by par-
allel kinetic effects and therefore reduces the growth rate
of the instability, whereas higher beam intensity provides
more free energy to drive a stronger instability.

Besides the effects of longitudinal Landau damping by
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Figure 4: Maximum growth rate versus normalized beam
density for different values of initail axial momentum
spread of the beam ions.

the beam ions, we are also be able to simulate the sta-
bilizing effects due to space-charge-induced tune spread,
because the simulations are carried out for realistic equi-
librium beams with near-Gaussian density profiles. As a
result of the presence of various important damping mech-
anisms, an instability threshold is observed in the simula-
tions. Plotted in Fig. 5 is the instability threshold in terms
of the normalized beam density n̂b/n̂b0 as a function of
momentum spread ∆pb‖/pb‖ for different vaules of frac-
tional charge neutralization f. Evidently, larger momentum
spread and smaller fractional charge neutralization imply a
higher density threshold for the instability to occur. For a
specified value of f , if (∆pb‖/pb‖, n̂b/n̂b0) fall bellow the
curves in Fig. 5 , then there is no two-stream instability.
Finally, in Fig. 6, we simulate an unstable case to its fully
nonlinear phase. This case corresponds to n̂b/n̂b0 = 2,
ω̂2

pb/2γ
2
bω

2
βb = 0.158, f = 0.1, and ∆pb‖ = 0 = ∆pe‖.

We see clearly from Fig. 6 the initial linear phase of the
instability and the subsequent nonlinear saturation. Most
important, a second phase of nonlinear growth is observed,
which leads to a strong nonlinear modification of the beam
density. Since the initial instability nonlinearly saturates
at a relatively low level (δnb/n̂b ∼ 0.3%), the late-time
growth of the e-p instability observed experimentally in
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PSR has likely passed the initial linear growth and satu-
ration, and entered the second phase of strong nonlinear
growth.

4 CONCLUSIONS

In conclusion, a 3D multispecies nonlinear perturba-
tive particle simulation method has been developed to
study the electron-ion two-stream instabilitydescribed self-
consistently by the Vlasov-Maxwell equations. Important
properties of this instability have been investigated numeri-
cally, and are found to be in qualitative agreement with the-
oretical predictions [5-7] and the PSR experiment [12-14].
Numerically, the instability threshold is found to decrease
with increasing fractional neutralization, and increase with
increasing axial momentum spread of the beam particles.
In the nonlinear phase, the simulations show that the in-
stability first saturates at a relatively low level, and subse-
quently grows to a higher level.
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