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Abstract coupling between the transverse and longitudinal dynam-

The collective effects in high-intensity bunched beam& > induced by thg ZP nonll|r'1e:?1r spacg-charge f'.eld’ thgre
. . . exists no exact kinetic equilibrium which has anisotropic
are described self-consistently by the nonlinear Vlasoy

Maxwell equations. The nonlineaf method, a parti- temperature in the transverse and longitudinal directions.

cle simulation method for solving the nonlinear VIasov-Secondly’ even in a thermal equilibrium with isotropic tem-

Maxwell equations, is being used to study the Collectivgerature, particles’ trajectories on constant energy surfaces

effects in high-intensity bunched beams. Thémethod are non-integrable [9’ 10], \.NhiCh implies that it is impos—
. X . ' sible to perform an integration along unperturbed orbits to

as a nonlinear perturbative scheme, splits the distribution : : ) ) )

function into equilibrium and perturbed parts. The per_analyt.lcally calculate the linear elgenmodes. This paper is

turbed distribution function is represented as a Weightec()jrge.mlzed as foIIows.. Aftgr a brief summary of the.the—
: . . : oretical model and simulation method, the self-consistent

summation over discrete particles, where the particle Otra'quilibrium of a bunched beam is solved. and then. one

bits are advanced by equations of motion in the focuss f linear collective excitations for the, bunched l;)eam

ing field and self-generated fields, and the particle Weighf‘ﬁ'saSe ot d icall

are advanced by the coupling between the perturbed ﬁelg,sexamlne numerncaty.

and the zero-order distribution function. The nonlin@Ar

method exhibits minimal noise and accuracy problems in THEORETICAL MODEL AND 0 F

comparison with standard particle-in-cell simulations. A ~ SIMULATION METHOD

self-consistent kinetic equilibrium is first established for TO Simplify the problem, in the present study we con-

high intensity bunched beams. Then, the collective excit&ider @ single species bunched beam confined in both the

tions of the equilibrium are systematically investigated us-— @ndz— directions by external smooth focusing force in

ing thed f method implemented in the Beam Equilibriumthe beam frame

Stability and Transport (BEST) code. 9 9
Froc = —mpwipX L — mpwsze; . Q)

INTRODUCTION In the beam frame, the dynamics of the bunched beam is

. L ) . described by the nonlinear Vlasov-Maxwell equations
Collective effects in high intensity charged particle

beams often manifest as collective excitations with certain
interesting dynamical properties such as instabilities and
Landau damping. To understand the collective effects, it
is necessary to study the equilibria of the beams and the v P
characteristics of linear and nonlinear perturbations of the ~ +es(V¢ — fVLAz)] : 8_} f(x,p,t)=0, (2
equilibria. A self-consistent theoretical framework based P

0 0
{5 +v- i [ (w%bxl +w?ze,)

on the nonlinear Vlasov-Maxwell equations has been es- V2 = _47reb/d3pf(x, p, 1), (3)
tablished for this purpose [1]. A corresponding numerical

method, thejf particle simulation method, has also been vig, = 4T, / d’pv. f(x, P, 1). 4)
developed [2]. This theoretical and numerical framework ¢

has been successfully applied to study stable beam propa-

. . . L This set of equations is a simplified version of the non-
gation [3], electron-ion two-stream instabilities [4-6], anq; o) /a5 oy-Maxwell equationsin the general cases [1,6].
temperature anisotropy instabilities [7, 8]. However, previ; or the boundary conditions, a perfect conducting cylindri-
ous studies were carried out for long coasting beams Wi[g] '

arbitrary nonlinear space-charge field in the transvers al pipe is located at the radius= r,,. To numerically
rection yln this pa erp we anpl gthe Viasov-Maxwell e 3a— olve the Vlasov-Maxwell equations, we use the low-noise
) ' Paper, we apply au 0 f method [2, 4, 5], where the total distribution function
tions and thé f simulation method to bunched beams with © . . : )

. ) . i Is divided into two parts,f = fy + 6f. Here, fy is a
nonlinear space-charge fields in both tbaditudinal and knownequilibrium solution §/3¢ — 0) to the nonlinear
transverse directions. For bunched beams, the equilibri d .

and collective excitation properties are qualitatively differ asov-Maxwell equations (2)-(4), and the numerical sim-
prop q auvely diflers, ation is carried out to determine the detailed nonlinear

ent from those for coasting beams. First of all, due to thgvolution of the perturbed distribution functiarf. This

* Research supported by the U.S. Department of Energy. is accomplished by advancing the weight function defined




by w = §f/f, together with the particles’ positions and L
momenta. The dynamical equation oy is given by [5]

dw; . i% dp;

5 (%) = ¢ (v5¢ - %vﬂm )

where the subscript:™ labels thei'th simulation particle,
0p = ¢ — ¢g, anddA, = A, — A,y. Here, the equilib-
rium solutions ¢g, A.q, fo) solve the steady-state Vlasov-
Maxwell equations (2)-(4). A detailed description of the
nonlinears f method can be found in Ref. [5]. For a single
species beam, we negledt in the beam frame because

(5)

|A.| < |9]. Figure 1: Equilibrium beam density at a function(ef z).
EQUILIBRIUM AND NON-INTEGRABLE o S ¢
ORBITS osf gf”‘\\ E “\\
;
Collective excitations or eigenmodes of charged particle °°f i % ° | )
beams are perturbations around the self-consistent equilib- osf 3} # ae NS
rium. The first step in the investigation is to identify the | ‘ L
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T . . . . Figure 2: Ther-v, Poincare plot at = 0 for 4 different
Equation (6) implies thafy is an invariant of the particle pa?rticles v P

dynamics in the equilibrium ge-charge potential, and
the external focusing field. Thereforg, is a function of all
of the independent invariants. Even for the Simple mOdQ{”” adopt the equ”ibrium speciﬁed by Eq (11) for sim-

adopted here for bunched beams, there are Only two Invaﬂhcny Under this assumption, the Poisson equation (8)
ants of the single particle dynamics in the equilibriumfieldphecomes

the total energyd and angular momentum defined by
my (wﬁbr + w2z2)

2 . €00

H= 2p—mb + e + %mb (Whyr* +w22?) . (9) V2o = —dmepivexp | — 5T T |

Do = rMmpvy . (20) (12)

which can be solved numerically fgg in a perfect cylin-

We choosgfy to be a function off only as drical conducting pipe with radius = r,. As an ex-
. I ample, let's consider the case of a proton beam with

fo=fo(H) = L exp <_—> , (11) s, = 0.079, wz/wgb = 0.1, and vy /c = 1.6 x

(2mmy 1)/ T 1073, and rywgp/c = 6.75 x 1073. Here, s, =

dmipe; [2mpwy, measures the relative strength of the
space-charge force compared with the applied focusing
force Equation (12) is numerically solved fgg. Plotted
Flg. 1 is the normalized equilibrium density, /7, =

which gives an isotropic temperatu?ein all directions.
Here, 7y, is the beam number density @t z) = (0,0). To
model bunched beams in accelerators, itis desirable to hay
anisotropic temperature in the transverse and Iongltudlngl _
directions. However, rigorously speaking, such equilibri§XP [—mb (W%MQ + WEZQ) /2T — @b¢0/T} as a function

do not exist for bunched beams. Approximate kinetic equibf (r, z). Even though the kinetic equilibrium is taken to be
libria with anisotropic temperature can be constructed fahe well-behaved thermal equilibrium in Eq. (11), the dy-
long bunches, or other cases where the coupling inducedmics of a single particle on the constant energy surface
by the nonlinear space-charge field is weak. Results on thigsnonintegrable. Figure 2 shows the,. Poincag plots at
topic will be reported elsewhere. In the present study, we = 0 for 4 different particles. Clearly, the — v,. cross-
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Figure 3: Time history of perturbed potential at a fixed spa- Figure 4: FFT spectrum of the perturbation.
tial location.
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sections are not curve-forming at= 0. The nonintegra- :

2.0F

bility is a result of lacking a third invariant of the dynam-
ics, which is fundamentally due to the coupling between
the transverse and longitudinal dynamics induced by the:
2D nonlinear space-charge field. Previous studies on this=
subject can be found in References [9, 10]. It is also clear =
from Fig. 2 that the nonintegrability and the correspond- =
ing nonlinear space-chargeduced coupling are weak for

this case, which permits us to construct an asymptotically
approximate kinetic equilibrium with anisotropic tempera-
ture.
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COLLECTIVE LINEAR EXCITATIONS Figure 5: Real part of the mode structure fafr at w =
1.970wgy

Once the equilibrium is determined, we can apply the
0 f particle simulation method to examine the linear and e o
nonlinear evolution of perturbations in the system. In'he mode structure indicates that this is a body mode and
the present paper, we will only focus on linear perturbal@s no node in either theor = directions.
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