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Abstract

The theoretical and numerical properties of the electromagnetic Darwin model for intense charged particle beams are

investigated. The model neglects the transverse displacement current in Ampere’s law and results in the elimination of

high-frequency transverse electromagnetic waves and the associated retardation effects in the Vlasov–Maxwell

equations. In this paper, two numerical schemes are presented for the purpose of circumventing the numerical

instabilities associated with the presence of ET ½� �ð1=cÞqA=qt� in the equations of motion for particle codes, where A is

the vector potential. The first relies on higher-order velocity moments for closure, and the other replaces the mechanical

momentum, p ¼ gmv; by the canonical momentum, P ¼ pþ ðq=cÞA; as the phase-space variable. The properties of these
simulations schemes in the laboratory frame as well as in the beam frame are also discussed. These new numerical

methods are most suitable for studying Weibel and two-stream instabilities in heavy ion fusion research.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to understand the
basic properties of the electromagnetic Darwin
model for high intensity relativistic particle beams
and for the development of efficient numerical
particle simulation schemes. The model was
originally proposed by Darwin to retain the
e front matter r 2005 Elsevier B.V. All rights reserve
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lowest-order relativistic corrections through
order v2=c2 [1] by neglecting the transverse
induction current in Ampere’s law. The net result
is the elimination of light waves from the
Maxwell–Vlasov system, which, in turn, greatly
relaxes the time step restrictions for numerical
simulations. Another interesting property of the
model is that the resulting Maxwell’s equations
are now elliptic rather than full-blown wave
equations, and the required numerical procedures
for solving these equations are different and the
d.
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time-step requirement is relaxed. One may argue
that the Darwin model is also valid for highly
relativistic beams, if retardation effects are not the
important physics at hand. The use of the Darwin
model in particle simulations of plasmas has a long
history. However, as noted in the past [2], the
presence of the time derivative of the vector
potential, qA=qt; in the equations of motion for
the Darwin model can cause numerical instabil-
ities. To circumvent this difficulty, procedures
involving the removal of qA=qt in the equations
of motion have been developed, and the Darwin
model has been successfully used in particle
simulations for studying electromagnetic perturba-
tions in plasmas, such as Weibel instabilities [2,3],
whistler and magnetosonic waves [4], shear-Alfvén
waves [5] as well as other applications [6,7]. In this
paper, we adopt two different procedures for
studying high-intensity particle beams. The first
uses higher-order velocity moments to get rid of
the troublesome time derivative of the vector
potential similar to the method used for shear-
Alfven waves [8], and the second uses a procedure
similar to the Hamiltonian formulation suggested
by Nielson and Lewis [2] in which the mechanical
momentum, p ¼ gmv; is replaced by the canonical
momentum, P ¼ pþ ðq=cÞA; as a phase-space
variable so as to eliminate the troublesome qA=qt

term, where q is the charge, c is the speed of light in
vacuo, and m is the rest mass. The advantage of
using the canonical momentum has long been
recognized in magnetic fusion research for test
particle transport [9] and for gyrokinetic theory
[10,11]. The present schemes can easily be cast into
the df ð� F � F 0Þ formalism [12,13], where F is the
distribution function in phase space, and F0 is the
equilibrium distribution. As a result, the simula-
tion plasma has minimal numerical noise, and also
provides us with the ability to easily access both
linear and nonlinear regimes for the physics of
interest. Since the high-frequency waves associated
with the radiation fields are absent from the
simulations, we can use the schemes of adiabatic
particle pushing [14] for which the electrons are
advanced more often, and with smaller time steps,
than those for the ions and field equations so as to
compensate for the mass ratio disparities for
different charge species. These schemes are ideal
for studying two-stream [15], filamentation [16]
and Weibel [17] instabilities, which may cause
deterioration of the beam quality in the heavy ion
fusion driver and fusion chamber. The paper is
organized as follows. In Section 2, the basic
formalisms and properties for the intense beams
based on the Darwin model are given. The basic
schemes using higher-order velocity moments are
discussed in Section 3, and the algorithms utilizing
canonical momenta are presented in Section 4. In
Section 5, the associated nonlinear df formalisms
are briefly described and concluding remarks are
presented in Section 6.
2. Darwin model for relativistic beams

The relativistic form of the Vlasov equation
describing the propagation of an intense particle
beam with narrow momentum spread through a
smooth-focusing transverse external focusing field
can be expressed as [14]

qF

qt
þ v 	

qF

qx
þ �gbmo2

bx? þ q Eþ
1

c
v� B

� �� �

�
qF

qp
¼ 0 ð1Þ

where v ¼ p=gm; gb ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2b

q
and bb ¼ hvzi=c;

hvzi is the average axial velocity, x? is the
perpendicular displacement, z is the direction of
beam propagation, and ob ¼ const: is the effective
applied betatron frequency for transverse (perpen-
dicular) oscillations. In terms of longitudinal (L)
and transverse (T) quantities relative to the
direction of wave propagation, the reduced Max-
well’s equations for the Darwin model can be
expressed as

r 	 EL ¼ 4pr (2)

r� B ¼ ð4p=cÞJT (3)

r� ET ¼ �ð1=cÞqB=qt (4)

and r 	 B ¼ 0; where r ¼ q
R

F dp; J ¼ q
R
vF dp;

EL ¼ �rF;

JT ¼ J�
1

4p
qrF
qt

(5)
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and r � EL ¼ 0; r 	 ET ¼ 0 and r 	 JT ¼ 0: The
only difference from the original Maxwell’s
equations is that the transverse induction current,
ð1=cÞqET=qt; is neglected on the right-hand side of
Eq. (3). Letting B ¼ r� A and using the Coulomb
gauge with r 	 A ¼ 0; Eqs. (3) and (4) become
r2A ¼ �ð4p=cÞJT and

ET ¼ �
1

c

qA
qt

(6)

respectively. For comparison, the original Am-
pere’s law takes the form of r2A�

ð1=c2Þq2A=qt2 ¼ �ð4p=cÞJT : Thus, we can view
the Darwin model simply as the low-frequency
version of the original Maxwell’s equations valid
for o2

5k2c2; where o and k are the characteristic
frequency and wavenumbers, respectively, for the
perturbations proportional to expðik 	 x� iotÞ:
The boundary conditions for these equations are
problem dependent. We can now write the Vlasov
equation (1) for the relativistic beam in terms of
the new variables as

qF

qt
þ v 	

qF

qx
þ �gbmo2

bx? � q rFþ
1

c

qA
qt

� ��

þ
q

c
v? � r? � A? þ

qv? 	 A?

qz
ẑ

�

�vz

qA?

qz
þ vzr?Az � ðv? 	 r?ÞAzẑ

�	
qF

qp
¼ 0.

ð7Þ

The associated Poisson’s equation and Ampere’s
law are

r2F ¼ �4pq

Z
F dp (8)

and

r2A ¼ �
4pq

c

Z
vF dpþ

1

c

qrF
qt

(9)

respectively, where v? � r? � A? ¼ ðqAy=qx �

qAx=qyÞðvyx̂� vxŷÞ: This system of [Eqs. (7)–(9)]
for the relativistic beam is energy conserving, i.e.,

q
qt

Z
p 	 p

2gm
F dpþ

gbmo2
b

2
x? 	 x?

Z
F dp

*

þ
1

8p
½jrFj2 þ jrAxj

2

þjrAyj
2 þ jrAzj

2�

+
x

¼ 0 ð10Þ

where h	 	 	 ix ¼
R
dx=V denotes spatial average.

Letting vz � cbb; we find from Eqs. (8) and (9)
that

Az � bb 1�
o

kzvz

k2
z

k2

� �
F.

Using the approximation

o
kzvz

k2
z

k2










51 (11)

we approximate Ampere’s law, Eq. (9), by

r2A ¼ �
4pq

c

Z
vF dp (12)

where k2
¼ k2

? þ k2
z and the A? part of the

equation is obtained through the use of
r 	 A ¼ 0: Thus, Eqs. (7), (8) and (12) form the
basic equations for the low-frequency ðo=kzvz51Þ
and long-thin ðk2

z=k2
51Þ approximations of

intense beams. The low-frequency condition in
Eq. (11) is more stringent than the condition
o5kc used in the Darwin model. The approxima-
tion on the transverse current can also be
understood from Eq. (5) by using r 	 JT ¼ 0 to
obtain

JT ¼ J�
k 	 J

k2
k (13)

in Fourier k-space. For JzbJ?; the transverse
current becomes

JT
z ¼ Jz 1�

k2
z

k2

� �
; JT

? ¼ �
kzJz

k2
k?.

With the additional long-thin approximation of
kz5k; we can further assume that A? � 0; JT

z �

Jz; and JT
? � 0: The corresponding Ampere’s law

is simplified to become

r2Az ¼ �
4pq

c

Z
vzF dp. (14)
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Eq. (14) together with Poisson’s equation (8) and
the simplified version of Eq. (7), i.e.,

qF

qt
þ v 	

qF

qx
þ �gbmo2

bx? � q rFþ
1

c

qAz

qt
ẑ

� ��

þ
q

c
vzr?Az �

q

c
ðv? 	 r?ÞAzẑ

i
	
qF

qp
¼ 0 ð15Þ

form the governing equations for a long-thin
relativistic beam. This set of equations conserves
energy which takes the form of Eq. (10) minus the
A? terms. For comparison, the present long-thin
Darwin model is similar to the electrostatic/
magnetostatic model used in previous studies
[14], for which only the term of ðq=cÞvzr?Az

associated with the vector potential is kept in the
Vlasov equation.
3. Darwin model I for particle simulation

The governing equations for a general relativis-
tic beam are Eqs. (7)–(9). To circumvent the
numerical difficulty, let us first follow the proce-
dures similar to those developed for shear-Alfvén
waves in gyrokinetic plasmas [8]. The associated
characteristics for Eq. (7) are

dx

dt
¼

p

gm
(16)

and

dp

dt
¼ � gbmo2

bx? � q rFþ
1

c

qA
qt

� �

þ
q

c
v? � r? � A? þ

qv? 	 A?

qz
ẑ

�

�vz

qA?

qz
þ vzr?Az � ðv? 	 r?ÞAzẑ

�
ð17Þ

and they are related to Eq. (7) through the
Klimontovich–Dupree representation

f ðx; p; tÞ ¼
XN

j¼1

d½x� xjðtÞ�d½p� pjðtÞ�

where N is the total number of simulation
particles. The equation of motion dp=dt ¼

�ðq=cÞqA=qt þ 	 	 	 can cause numerical difficulties
in particle simulations [2] because of the time-
centering problem in particle pushing. These
difficulties are avoidable if we calculate the time
derivatives directly from the higher-order velocity
moments. Specifically, let us first take the time
derivatives of Eq. (9) and substitute the resulting
expression for qF=qt from Eq. (7). We then obtain

r2 qA
qt

¼ �
4pq

c

Z
v
qF

qt
dpþ

1

c
r

q2F
qt2

(18)

whereZ
v
qF

qt
dp ¼ � r 	

Z
vvF dp� gb

o2
b

g
x?

"

þ
q

gm
rFþ

1

c

qA
qt

� ��Z
F dp

�
q

c

1

gm
ðr? � A?Þ �

Z
v?F dp

�

� ẑ
q
qz

A? 	

Z
v?F dp

þ
qA?

qz
�r?Az

� �Z
vzF dp

þẑ r?Az �
qA?

qz

� �
	

Z
v?F dp

�
.

Thus, in addition to the equations of motion, Eqs.
(16) and (17), and the governing field equations,
Eqs. (8) and (9), we need to solve an additional
equation, Eq. (18), for qA=qt explicitly from
higher-order velocity moments, together with

r2 q2F
qt2

¼ 4pqr 	

Z
v
qF

qt
dp

and

r2 qF
qt

¼ 4pqr 	

Z
vF dp

for the time derivatives in Eqs. (18) and (8),
respectively, based on similar procedures. For the
low-frequency approximation with o5kzvz; the
governing equations become Eqs. (8), (12), (16),
(17) and

r2 qA
qt

¼ �
4pq

c

Z
v
qF

qt
dp (19)

by neglecting the time derivatives of F: On the
other hand, for a long-thin relativistic beam, the
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governing equations from Eq. (15) are:

dx

dt
¼

p

gm

and

dp

dt
¼ � gbmo2

bx? � q rFþ
1

c

qAz

qt

� �

þ
q

c
vzr?Az � ðv? 	 r?ÞAzẑ½ �.

The associated field quantities are given by Eqs. (8)
and (14). Again, the qAz=qt term can be evaluated
directly from Eq. (14) as

r2 �
4pq2

gmc2

Z
F dp

� �
qAz

qt

¼
4pq

c
r 	

Z
vvzF dpþ

q

gm

qF
qz

Z
F dp

�

þ
q

gm
r?Az 	

Z
v?F dp

�
ð20Þ

to circumvent the numerical instabilities. In this
section, we have outlined the simple procedure for
simulating high-intensity relativistic beams in the
laboratory frame. The formalism presented here
can easily be generalized to multi-species beam-
plasma systems.
4. Darwin model II for particle simulations

Here, let us introduce a different way to
eliminate the time derivatives of the
vector potential by introducing the canonical
momentum

P � pþ
q

c
A (21)

as a new phase-space variable. From

dA

dt
�

qA
qt

þ v 	
qA
qx

we rewrite the orbit characteristics as

dx

dt
¼

p

gm
(22)

and

dP

dt
¼ �gbmo2

bx? � qrFþ
q

c
rðv 	 AÞ. (23)
Thus, by transforming from p to P, the time
derivative of A conveniently disappears from the
equations of motion. The Vlasov equation in the
new variables can be expressed as

dF

dt
�

qF

qt
þ

dx

dt
	
qF

qx
þ

dP

dt
	
qF

qP
¼ 0 (24)

where the characteristics are defined by Eqs. (22)
and (23). The corresponding form of Poisson’s
equation is

r2F ¼ �4pq

Z
F dP (25)

and Ampere’s law can be expressed as

r2 �
o2

p

c2

 !
A ¼ �

4p
c

q

Z
P

gm
F dPþ

1

c
r

qF
qt

(26)

where op �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4pnq2=mÞ

R
F dP=g

p
is the relativis-

tic plasma frequency. As before, the qF=qt term
can then be calculated by the combination of
Poisson’s equation and the continuity equation,
i.e.,

r2 1

c

qF
qt

þ r 	
o2

p

c2
A

 !

¼ 4pqr 	

Z
P

gmc
F dP

� �
. ð27Þ

Thus, Eqs. (22)–(27) constitute the Darwin model
for an intense relativistic beam. Computationally,
this formalism seems to be much simpler. How-
ever, the calculations of Pðx; vÞ may cause pro-
blems, if jqA=cjbjpj: For the low frequency
approximation with o=kzvz51; Eqs. (22)–(26)
are the governing equations, in which the term,
rqF=qt; in Eq. (26) is negligible. For the long,
thin-beam approximation, we can again let A? �

0; so that

P � pþ
q

c
Azẑ.

Thus, the corresponding governing equations are
now Eqs. (22)–(26) without the terms associated
with A? and qF=qt:
For a one-component relativistic beam traveling

with a constant average velocity of vz � bbc;
which gives Az ’ bbF; the Darwin model in the
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laboratory frame becomes

qF

qt
þ v 	

qF

qx
þ �gbmo2

bx? �
q

g2b
rF

�

þ
q

c
rðv? 	 A?Þ

�
	
qF

qP
¼ 0 ð28Þ

where P ¼ pþ ðq=cÞðbbFẑþ A?Þ; with

r2F ¼ �4pq

Z
F dP (29)

and

r2A? ¼ �
4pq

c

Z
v?F dP. (30)

We then obtain the single-beam Darwin model in

the beam frame (‘primed’ variables) by setting gb ¼

1; and bb ¼ 0 and replacing ðx;P; tÞ ! ðx0;P0; t0Þ:
For A? � 0; we recover the usual electrostatic
model in the beam frame [18]. Thus, we present
here a different approach to derive the same
model. Similarly, we can obtain the one-compo-
nent Vlasov equation in the beam frame in p0

coordinates from Eq. (28) as

qF

qt0
þ v0 	

qF

qx0
� mo2

bx
0
? þ qr0Fþ

q

c

h
�

qA?

qt0
� v0? � r0

? � A? � ẑ
0 q
qz0

ðv0? 	 A?Þ

�

þv0z
qA?

qz0

��
	
qF

qp0
¼ 0

and the potentials are given by Eqs. (29) and (30)
with r ! r0; v? ! v0? and P ! p0: This system of
equations in the beam frame conserves energy
similar to that of Eq. (10).
5. Nonlinear df formalism

The corresponding df formalism [12–14] in the
laboratory frame for the Darwin model can be
derived by expressing F ¼ F 0 þ df ; F ¼ F0 þ dF
and A ¼ A0 þ dA; where F0 satisfies

qF0

qt
þ

dx

dt
	
qF0

qx
þ

dðp;PÞ

dt






0

	
qF0

qðp;PÞ
¼ 0

and j0 denotes the zeroth-order trajectories calcu-
lated by using the equilibrium potentials, F0 and
A0: The perturbed distribution is determined from

ddf

dt
¼ �

dðp;PÞ

dt






d
	

qF0

qðp;PÞ
(31)

where jd denotes the perturbed trajectories ob-
tained by using the perturbed potentials, dF and
dA: Defining w ¼ df =F ; the weight function
evolves according to

dw

dt
¼ ð1� wÞ

1

F0

ddf

dt
. (32)

In the Klimontovich–Dupree representation, the
perturbed distribution is related to the particle
weight through

df ¼
XN

j¼1

wjd½x� xj�d½ðp;PÞ � ðpj ;PjÞ� (33)

where N is the total number of particles in the
simulation. The time evolution of xj ; pj ; Pj ; and wj

for the jth particle are described by the appropriate
equations of motion discussed in Sections 3 and 4.
For the field equations, the zeroth-order poten-
tials, F0 and A0; are obtained by using F0; and the
perturbed potentials, dF and dA; can be obtained
by using df :
6. Conclusions

The non-radiative Darwin models developed
here for particle simulations are similar to the
usual electro-magnetostatic model [14] and repre-
sent an improvement over the model described
earlier [19] by including all three components of P
and A in the field equations. With the absence of
the high-frequency radiation in the model, it has
many numerical advantages over fully electromag-
netic codes. The application of this model to the
study of high-intensity beams will be reported
elsewhere.
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