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Outline

& Wobbler fields control the centroid.
O Focusing lattice controls the envelope.

O Envelope and centroid dynamics are decoupled.

& Time modulation stabilizes RTI.
O Courant-Snyder theory for dynamics stabilization.
O Slower modulation is necessary.

O What is the beam modulation form.

& A wobbler design for NDCX-II.



Basic idea: scan the beam for better target performance
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Basic beam physics: envelope dynamics and centroid dynamics

~ Wobbler fields control the centroid

~ Focusing lattice controls the envelope

centroid

T decoupled

envelope




&~ What are the second order effects?

o Are wobbler and envelope coupled?

o Does the space charge force affect the centorid?
o Do the wobbler fields change the envelope?
o Does the focusing lattice affect the centroid? (trivial)

» [s it practical in terms of engineering?

o Field strength

o Flield frequency



Centriod and enevelope dynamics: starting from Vlasov-Maxwell Egs.
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Moment

Vlasov

(X) = ([xfdzdydv dv )/ N,.
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Envelope and emittance defined relative to the centroid

o=\(o-n) e, =2 et ({0, ) )~ (o~ ) o))

l /. No wobbler field
e 1/
CL”‘|_I'§3 a :4—alg—g<%<$—,u,) /.
2
B kb= 1 i 8_¢<y _ y) Centroid enters through space charge
! 4° b\ Oy




Does the space-g\harge affect centroid dynamics?
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If the wall is faraway, then space-charge does not affect the centorid.

Lee 87, Sharp 92



Are the centroid and enevelope decoupled?

Centroid enters through space charge
2
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Driver example : drift compression and final focus with wobbler

QQin, Davidson, Barnard and Lee 2004
Cst, m=132au, (y—1)mc* =243GeV, I=28954

1044(s) / a(0) (CLO , bo) = (40, 228)mm

— (as,br) = (1.2,1,2)mm

(u,v) = 2.4mm

/ 0 5 10 i5 Assuming no coupling

Wobbler fields (not shown) at 0.4MV /m, 67TMHz



Dynamic Stabilization of RTI by wobbler

 Wolf, 1970, dynamic stabilization of classical RTT.

e Troyon & Gruber, 1971, need both viscosity & surface tension.

e Betti, McCrory, & Verdon, 1993, dynamic stabilization of ablative RTT.

e Piriz et al, 2009, 2011, NO dynamic stabilization of ablative RTTI.
o« Kawata 1993, 2009, 2012, reduce instability without change growth rate.

F =1+ aSin(wt)




Dynamic Stabilization of an inverted pendulum
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Most effective

e F is random
e F is feedback controlled

e F is pre-determined & time-dependent

e Kawata 1993, 2009, 2012, reduce instability without change
growth rate by an analogy of feedback control.




Sharp boundary model for ablative RTI

Oscillatory acceleration

. Surface
(¢) e.g., g(t) = 14 gsin(wt) displacement
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Dynamic stabilization and ablative stabilization

Ablative stabilization
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Growth-rate depends on the modulation in a complex way

e Piriz 2011, NO dynamic stabilization of ablative RT1I for a

sequence of delta-function modulations, therefore NO dynamic

stabilization for all modulations.

 Kawata 1993, 2009, 2012, reduce instability without change growth
rate by an analogy of feedback control.

e The modulation can be designed to minimize the growth rate, with
correct theoretical (mathematical) treatment of the problem.



Floquet theory and its (incorrect) application

For 2 = B(t)x, where z is a vector,
and B(t+T) = B(t) is a matrix,

the fundamental matrix solution ¢(t) satisfies

¢t +T) = ¢(t) " (0)(T).

determines the growth rate

For the 2D dynamic stabilization problem, need to solve

i = B(t)z for two independent solutions to obtain the growth rate.

Betti 93 solves © = B(t)x once obtain the growth rate,

which is not accurate.



Courant-Snyder theory for dynamic stabilization
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Growth rate for £ is ln| ,u|
1 : the eigenvalue of M(t) with largest amplitude.

p : independent of choices of ¢ and initial conditions for w.



Slower modulation is better
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What is the best modulation?

Complicated dependence on modulation forms
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Demonstration of wobbler concept on NDCX-II

A=17 q=1, (y-1)mc* = 3MeV, L e = 140ms

Az =5mm, D . = 1m, D .. =0.0m

*

Wobbler

neutralized

Vv

E=6000Volts/meter @ 7TMHz




Conclusions

~ Wobbler fields control the centroid.
O Focusing lattice controls the envelope.

O Envelope and centroid dynamics are decoupled.

& Time modulation stabilizes RT1I.
O Courant-Snyder theory for dynamics stabilization.
O Slower modulation is necessary.

O Best modulation form is yet to be found.

& A wobbler design for NDCX-II.



