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Abstract

• In neutral plasmas with a uniform magnetic field and strongly anisotropic
distribution function (T||/T⊥ � 1) an electrostatic Harris-type collective
instability may develop if the plasma is sufficiently dense.

• Such anisotropies develop naturally in accelerators, and a similar insta-
bility may lead to a detoriation of the beam quality in a one-component
nonneutral charged particle beam.

• The instability may also lead to an increase in the longitudinal velocity
spread, which would make the focusing of the beam difficult and im-
pose a limit on the minimum spot size achievable in heavy ion fusion
experiments.

• This paper reports the results of recent numerical studies of the temper-
ature anisotropy instability using the newly developed Beam Eigenmode
And Spectra (bEASt) code for space-charge-dominated, low-emittance
beams with large tine depression (ν/ν0 � 1).

• Such high-intensity beams are relevant to next-step experiments such as
the Integrated Beam Experiment (IBX), which would serve as proof-of-
principal experiment for heavy ion fusion.
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Harris instability in eclectically neutral plasma with uniform magnetic
field

• Anisotropic electron distribution (T||b/T⊥b < 1/2) is required.

• Plasma must be sufficiently dense that ωpe > ωce, where ωpe = (4πe2n/m)1/2

is the electron plasma frequency and ωce = eB/mc is the electron cyclotron
frequency.

• Instability is very fast γ ∼ ωpe.

∗E. G. Harris, Phys. Rev. Lett. 2, 34 (1959).
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Harris Instability in Intense One-Component Beams

• For the case of charged particle beams in accelerators the cyclotron os-
cillations in the applied magnetic field are replaced by the betatron oscil-
lations of the beam particles in the combined applied and self-generated
fields.

ωce → ωβb.

• Heavy ion fusion experiments require transporting high-current beams
when the average depressed betatron frequency of the beam particles is
much smaller then the average plasma frequency of the beam particles.

ωβb � ωpb.
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Temperature anisotropies (T||b << T⊥b) develop neutrally in accelerators

• For particles with charge eb and mass mb accelerated by a voltage V , the
energy spread of particles in the beam does not change, and (nonrela-
tivistically)

∆Ebi = mb∆v2bi/2 = ∆Ebf = mbVb∆vbf ,

where Vb = (ebV/mb)1/2 is the average beam velocity after acceleration.

• Therefore, the velocity spread-squared, or equivalently the temperature,
changes according to ( for a nonrelativistic beam)

T||bf = T 2||bi/2ebV .

• For example for T||i = 1eV , ebV = 1MeV , T||f = 5× 10−7eV
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Previous Studies of Temperature anisotropy instability in Intense
One-Component Beams

• Analytical theory by Wang and Smith (1982) for axisymmetric perturba-
tions about the beam with a Kapchinskij – Vladimirskij (KV) distribution
assuming infinite anisotropy with T||b/T⊥b = 0.

• 3D PIC simulations by Friedman, et. al.(1990) using the WARP code
observed a rapid temperature ’equilibration’ process of KV beams with
large temperature anisotropy.

• WARP simulations by Lund, et. al.(1998) using a semi-gaussian dis-
tribution to avoid the numerous unstable modes introduced by the KV
distribution.

• Shortcomings:
– WARP is sufficiently noisy that resolving the linear stage of instability
with sufficient accuracy is very difficult.

– KV distribution has a highly unphysical (inverted) population in trans-
verse phase-space variables.

– Semi-gaussian distribution is not a rigorous equilibrium solution (∂/∂t =
0) of the Vlasov-Maxwell equations about which to perturb.
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Instability Mechanism

• KV distribution as an example.

• Dipole mode has the highest growth rate.
δφ(x, t) = φ̂

x

rb
exp(ikzz − iωt)

• Growth rate is an increasing function of kzrb and approaches its limiting
value for k2z r

2
b 
 1. Therefore, k2z r

2
b 
 1 is assumed and δE � −ikzδφez.

• Use equivalent KV beam where all of the particles oscillate with the
same frequency, equal to the average depressed betatron frequency ωβ⊥ =
2T⊥b/mbr

2
b

x(t) = x̂ cos(ωβ⊥t+ α0)

where α0 is the oscillation phase at t = 0 and x̂ =
√
2Hx/mb/ωβ⊥ is the

oscillation amplitude.
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Instability Mechanism

• Longitudinal equation of motion for a beam particle becomes

z̈ = −ikz eb
mb

φ̂
x̂

rb
cos(ωβ⊥t+ α0)e

ikzz0−iωt

• Integrating with respect to time, we obtain

zα = ikz
eb

mb

φ̂
x̂

2rb

[
eiα

(ω − ωβ⊥)2
+

e−iα

(ω+ ωβ⊥)2

]
eikzz0−iωt,

where α = α0 + ωβ⊥t.

• Note that the individual particle motion has two characteristic frequen-
cies, ω − ωβ⊥ and ω+ ωβ⊥.
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Instability Mechanism (Dispersion relation)

• Average displacement 〈z〉(x, z, t) = (zα+ z−α)/2 is

〈z〉(x, z, t) = ikz
eb

mb

φ̂
x

2rb

[ 1

(ω − ωβ⊥)2
+

1

(ω+ ωβ⊥)2

]
eikzz−iωt,

• or, since δEz = −ikzδφ,

〈z〉(x, z, t) = −ebδEz
2mb

[ 1

(ω − ωβ⊥)2
+

1

(ω+ ωβ⊥)2

]
.

• From the continuity equation for the density perturbation,

∂δn

∂t
+

∂

∂z

(
n0
∂〈z〉
∂t

)
= 0, ⇒ δn = −n0∂〈z〉

∂z
.

• Substituting into Poisson’s equation ∇·δE � ∂δEz/∂z = 4πebδn, we obtain
the dispersion relation

1 =
ω̄2pb

2

[
1

(ω − ωβ⊥)2
+

1

(ω+ ωβ⊥)2

]
,

where ω̄2pb = 4πe2b nb/mb is the beam plasma frequency squared.
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Instability Mechanism (Growth rate)

• Using the definition of the depressed tune ν2/ν20 = ω2βb/ω
2
f = 1− ω̄2pb/2ω

2
f

we can rewrite the dispersion relation as

ν2n
1− ν2n

=

[
1

(ωn/νn − 1)2
+

1

(ωn/νn+1)2

]
,

where νn = ν/ν0, and ωn = ω/ωf .

• Solution of the dispersion equation is

ω2n = 1±
√
(1− ν2n)(1 + 3ν

2
n).

• The mode with lower sign in is unstable and purely growing for νn < νthn =√
2/3 ≈ 0.82.

• Maximum growth rate (Imω)max/ωf =
√
2/

√
3− 1 ≈ 0.39 occurs for

νmaxn =
√
1/3 ≈ 0.58.

• (Imω)/ωf � ν/ν0 as ν/ν0 → 0.
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BEST Nonlinear    F  Simulation Codeδ

BEST stands for “Beam Equilibrium, Stability and Transport code”

• 3D particle-in-cell simulation code with cylindrical geometry.

• Multiple species.

• Adiabatic field pusher for light particles (electrons).

• Transition from  delta-f to regular PIC code for large perturbations.

• The code has been parallelized using OpenMP and MPI

• Achieved an average speed of 80 megaflops on IBM-SP (stage I) at NERSC.

• NetCDF data format for large-scale diagnostics and visualization.

• Written in Fortran 90/95 and extensively object-oriented.

•Easily switched between linear and nonlinear operation.

• Simulation noise is reduced significantly when operating as  delta-f.



Description of the BEST Nonlinear    F  Simulation Codeδ

• Equation for the particle motion advance are
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• Equations for the perturbed potentials are

• Solution to the nonlinear Vlasov-Maxwell equations are expressed as

where                           are known equilibrium solutions.
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Simulations show fast instability

• Parameters of the simulation:

,01.0/|| =⊥bb TT ,3/ =bw rr

• The self-consistent equilibrium distribution functions is assumed to be:
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• Time history of density perturbation                           .
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Parameters of the simulation:

Beam intensity parameter:



Saturation of the instability

• The average  longitudinal momentum    
distribution                                   for a 
dominant initial perturbation  with m=1. 

∫ ⊥= bzb xfdpdpF 32)(

,0.9≈wzrk .8.0=bs

• The final width of the longitudinal velocity distribution 
can be estimated as                              , where  |v|v|| bph V−≅∆ ./v znlph kω=

• Mode saturates via particle trapping with 
consequent formation of tails in axial momentum

space.

• Mode growth linearly with Re .0=ω



Grid Interaction and Artificial Heating in PIC codes

• Due to finite number of grid points the particle density with kp = k +
p · kg will be represented by the same grid density ρ ∼ ∑

ρj exp(ikpXj) =∑
ρj exp(ikXj), where kg = 2π/∆z and Xj = j ·∆z.

• This will result in coupling of the main wave with wavenumber k with its
aliases with wavenumbers kp = k+ p · kg, ±1,±2, . . ..

• The coupling strength Ap is smaller for smoother interpolation on the
grid, e.i., smoother particle shape function S(x): Ap ∼ |S(kp)|2.

• The aliases can strongly interact with particles if ω/kp ∼ vzth, or λ
z
d ≤ ∆z

(Langdon, 1970).

• Interaction will result in plasma heating until λzd ≥∆z, when aliases stop
growing due to the Landau damping.

• This artificial heating can be confused for the heating due to the tem-
perature anisotropy instability.
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Description of Beam Eigenmode And Spectra (bEASt) Code

• Code searches for the roots of the matrix dispersion relation.

• Electrostatic perturbations of the form
δφ(x, t) = δ̂φ(r) exp(imθ+ ikzz − iωt)

are assumed, where kz is the axial wavenumber, m is the azimuthal mode
number and ω is the complex oscillation frequency.

• Perturbations are about thermal equilibrium distribution in the beam
frame(Vb = 0)

f0b (r,p) =
n̂b

(2πmb)3/2T⊥bT
1/2
||b

exp

(
−H⊥
T⊥b

− p2z
2mbT‖b

)
.

Here, H⊥ = p2⊥/2mb+ (1/2)mbω
2
f (x

2 + y2) + ebφ
0(r) is the single-particle

Hamiltonian for transverse particle motion, and ωf = const. is the trans-
verse focusing frequency.
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Dispersion Matrix

• Perturbation is expanded into the complete set of vacuum eigenfunctions
φn(r) = AnJm(λnr/rw)

δ̂φ(r) =
∑
n

αnφn(r),

where Jm(λn) = 0.

• Using the method of characteristics, analysis of the linearized Vlasov-
Maxwell equations leads to an infinite dimension matrix dispersion equa-
tion ∑

αnDn,m(ω) = 0

• Dispersion matrix is

Dn,n′(ω) =
J2m+1(λn)

2
(λ2n+ k2z r

2
w)δn,n′ + χn,n′(ω),

where χn,n′ is the beam-induced susceptibility.
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Beam-Induced Susceptibility

• Beam-induced susceptibility is given by

χn,n′(ω) =
r2w
λ2d
qn,n′ +

∫ ∞

0
ds exp

(
isω − s2k2z T||

2mb

)
×

[
iω+

(
1− T||

T⊥

)
sk2z T⊥
2mb

]
Qn,n′(s),

where

Qn,n′(s) =
1

mbλ
2
d

∑
p

∫
dPθ

ωr

dH⊥
T⊥b

exp

[
−H⊥
T⊥b

]
(Ip,mn )∗Ip,mn′ e−is(pωr+mωθ).

Here Pθ is the canonical angular momentum and λ2d = T⊥b/4πe2b n̂b is the
perpendicular Debye length-squared.

• qn,n′ is defined by

qn,n′ =

∫ 1

0
dxxN(x)Jm(λnx)Jm(λn′x),

and the orbit integral is

Ip,mn (H⊥, Pθ) =
∫ Tr

0

dτ

Tr
Jm

[
λnr(τ)

rw

]
e−ipωrτ+im[θ(τ)−ωθτ ]

where N(x) = n0b (xrw)/n̂b and r(τ) and θ(τ) are the transverse orbits in
the equilibrium field configuration.
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Description of Beam Eigenmode And Spectra (bEASt) Code
(continued)

The Beam Eigenmode and Spectra (bEASt) code solves the matrix dispersion
equation in several steps:

• Particle orbits r(τ) and θ(τ) in the equilibrium field configuration are
calculated for one complete oscillation period Tr and the frequencies
ωr(H⊥, Pθ) and ωθ(H⊥, Pθ) are obtained.

• Fast fourier transform (FFT) is used to calculate the orbit integrals.

• Matrices Qn,n′(s) and qn,n′ are calculated, stored, and then used repeatedly
during the search for the eigenvector of the dispersion matrix Dn,n′(ω) with
zero eigenvalue.

• Note that the matrices Qn,n′(s) and qn,n′ are calculated only once, thanks
to the separation of the particle variables (H⊥, Pθ, r, θ) from the dispersion
equation variables ω and kz.
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Description of Beam Eigenmode And Spectra (bEASt) Code
(continued)

• The typical number of particle trajectories used in the calculations is 300,
with 16 time steps during one oscillation period Tr, which is significantly
less than the number of particles and times steps used in PIC simulations.

• For moderately intense beams with ν/ν0 > 0.4, the rank of the dispersion
matrix N = 6 is sufficient for convergence of the results.

• As the beam intensity increases (ν/ν0 → 0) the eigenfunctions become
localized at the beam edge and N increases sharply indicating the need
for a different expansion basis.

• The method works well for finding the unstable modes, or slightly damped
modes. For highly damped modes, an accurate integration requires cal-
culation of the matrix Qn,n′(s) for values of s > |Imω|/(k2z T⊥/mb), which
can be computationally extensive.
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Numerical Results
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• Typical numerical results obtained using the bEASt code for the case
where rw = 3rb, T||b/T⊥b = 0 and m=0 (solid curve) and m=1 (dotted
curve). Thick solid curve corresponds to an approximate solution.

• The m = 1 dipole mode has the highest growth rate, (Imω)/ωf � 0.34
and is purely growing, for ν̄/ν0 � 0.62.

• The instability is absent for ν̄/ν0 > 0.82.
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Numerical Results
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• (Imω)/ωf versus kzrb for ν̄/ν0 = 0.3 and several values of the temperature
ratio T||b/T⊥b = 0,0.01,0.05(curves a,b and c). Here, figures (a) and (b)
are for azimuthal mode number m = 0 and m = 1, respectively.

• Instability is present only for short-wavelength perturbations k2z r2b > 1.

• Finite T‖b effects introduce a finite bandwidth in kzrb for instability, since
the modes with large values of kzrb are stabilized by longitudinal Landau
damping.
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Numerical Results
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• Plots of the normalized eigenfunctions Re[δφ̂(r)] and Im[δφ̂(r)] for the
most unstable modes versus r/rw corresponding to m=0 (solid curves)
and m=1 (dotted curve) and ν̄/ν0 = 0.6 (a) and ν̄/ν0 = 0.3 (b). Here,
T||b/T⊥b = 0 and kzrb = 20.

• Thick solid curve corresponds to normalized density profile n(r)/n(0).

• For smaller normalized depressed tune eigenfunctions become localized
near the beam edge.
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Numerical Results
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• Plots of the longitudinal threshold temperature T th||b for the onset of in-
stability normalized to the transverse temperature T⊥b versus normalized
tune depression ν̄/ν0 for m = 0 (solid line) and m = 1 (dotted line).

• Due to accuracy limitations in the bEASt code, we define the threshold
as the value of T||b/T⊥b at which the maximum normalized growth rate
becomes less then (Imω)max/ωf < 0.01.

• Maximum threshold value, T‖b/T⊥b = 0.11, is achieved for moderately
intense beams with ν̄/ν0 = 0.4.
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Conclusions

• bEASt code, which solves the matrix dispersion relation for electrostatic
perturbations in intense particle beams, has been used to investigate the
stability properties of intense charged particle beams with large temper-
ature anisotropy (T||b/T⊥b � 1) over a wide range of normalized tune
depression, 0.2 < ν̄/ν0 < 1.

• The numerical results clearly show that intense beams with ν̄/ν0 < 0.82
are linearly unstable to short-wavelength perturbations with k2z r

2
b ≥ 1.

• The instability is kinetic and is due to the coupling of the particles trans-
verse betatron motion with the longitudinal plasma oscillations excited
by the perturbation.

• The most unstable mode is found to be a purely growing dipole mode with
normalized growth rate Imω/ωf � 0.34 for ν̄/ν0 � 0.62 and T||b/T⊥b = 0.

• The growth rate is proportional to the normalized tune Imω/ωf ≈ ν̄/ν0
for ν̄/ν0 � 1.

• The instability is stabilized by longitudinal Landau damping whenever the
ratio of the longitudinal and transverse temperatures satisfies T||b/T⊥b >
0.11.
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