Multiple Beam Transport

Quadrupole array configuration

- Square unit cells
- Shell-type coils: better magnetic properties
- Racetrack coils: better mechanical properties

Superconducting magnets are required for efficiency in the HIF driver
Classroom Exercise

$$HIF2004$$

$$\eta = 0.4489$$ $$\alpha = 0.2508$$

$$\frac{\partial B_q}{\partial x} \bigg|_{I_{op}} = 0.4489$$
$$\alpha = 0.2508$$

$$G = 84.2 \text{ T/m}$$
$$l_q = 10.1 \text{ cm}$$
$$d_1 = 6.219$$
$$d_2 = 18.58$$

HCX Quadrupole Specification

Axial Geometry:

$$L_{coll} = 125 \text{ mm}$$
$$L_{mat} \leq 155 \text{ mm}$$

Transverse Geometry:

$$r_{clear} = 35 \text{ mm}$$
$$w_{\text{max}} \leq 64 \text{ mm}$$

Conductor:

$$J_c (5T,4.5K) = 2.55 \text{ kA/mm}^2$$

Operating Point:

$$I_{op} = 0.85 I_{ss}$$
$$J_{cu}(I_{ss}) \leq 1.3 \text{ kA/mm}^2$$

Integrated Gradient:

$$\int_{-\infty}^{\infty} B_q' dz \geq 8.5 \text{ T} \quad @ \quad I_{op} \quad \Leftrightarrow \quad G \approx 100 \text{ T/m}$$

Opportunity to address key R&D issues for HIF superconducting magnets:

- Cost-effectiveness
- Compactness
- Reliability
- Performance trade-offs

...while serving the near term program needs:

- Advance beam science
- Progress on IBX design

Beam Physics Experiments

High Current Experiment (HCX)

Axial Geometry:

$$l_q = 10.1 \text{ cm}$$
$$d_1 = 6.219$$
$$d_2 = 18.58$$

Focus Quadrupole

Defocus Quadrupole

Transverse Geometry:

$$r_{clear} = 35 \text{ mm}$$
$$w_{\text{max}} \leq 64 \text{ mm}$$

Conductor:

$$J_c (5T,4.5K) = 2.55 \text{ kA/mm}^2$$

Operating Point:

$$I_{op} = 0.85 I_{ss}$$
$$J_{cu}(I_{ss}) \leq 1.3 \text{ kA/mm}^2$$

Integrated Gradient:

$$\int_{-\infty}^{\infty} B_q' dz \geq 8.5 \text{ T} \quad @ \quad I_{op} \quad \Leftrightarrow \quad G \approx 100 \text{ T/m}$$
HCX Field Quality Specification

Definitions:

\[\hat{B}_y(x, y) = \int \frac{\partial B_y}{\partial x} \, dz \]

\[\hat{B}_z(x, y) = \int \frac{\partial B_z}{\partial y} \, dz \]

\[\delta \beta = \hat{B}_y + i \hat{B}_z = \sum_n \left(B_y + iA \left(\frac{2}{n} \right) \right) = \sum_n \left(\frac{2}{n^2} \right) \]

\[\delta F = \frac{\max \left| \beta \left(r, \theta \right) - B_y(r, \theta) \mathcal{e}^{\mathcal{i} \theta} \right|}{B_y(r, \theta)} \]

Requirement (50 periods):

\[\delta F \leq 50 \times 10^{-4} \text{ "units"} @ r_g = 25 \text{ mm} \]

A factor of ~10 improvement may be needed for beam transport in HIF driver

Magnet Design Concepts

Coil layout

Shell-type (cosθ)
- magnetically more efficient
- radially more compact
- complex geometry, fabrication

Block-type
- simpler tooling and parts
- mechanical support/assembly
- compatible with brittle SC

Fabrication and assembly

Racetrack coils
Conductor in groove (cylinder, plate)
Baseline Design

Magnet design:
- Block-coil (square) geometry
- 8 double-pancake racetracks

Coil fabrication and support:
- Pre-load by split-pole and wedges
- Epoxy-impregnation in holders
- Modules supported by yoke/shell

Test results (2 pre-series models):
- Rutherford cable or monolith
- Fast training to short sample
- No retraining after th. cycle

Design Optimization (HCX-C)

New design features:
- “square” ends for magnetic efficiency
- Aluminum coil holders for lower cost
- Rutherford cable for flexible design
- SSC inner wire, Cu/Sc=1.3:1.

Fabrication experience:
- Some difficulties due to tight bends
 ⇒ winding radius must be increased
- Larger than expected cable size
- Higher deflections of Al holders
 ⇒ deviations from design geometry
HCX-C Test

- Achieved conductor-limited gradient (132 T/m) in 2 quenches (stable after Q4)
- No retraining after thermal cycle & no significant dependence on ramp rate.

![HCX-C Quench History](image)

HCX-C Magnetic Measurements

<table>
<thead>
<tr>
<th>Current (A)</th>
<th>Temp (K)</th>
<th>Data type</th>
<th>Gradient B2/r0 (T)</th>
<th>12-pole</th>
<th>20-pole</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>300</td>
<td>Meas. (*)</td>
<td>0.0674</td>
<td>109</td>
<td>15.5</td>
</tr>
<tr>
<td>9.5</td>
<td></td>
<td>Calc.</td>
<td>0.0726</td>
<td>121</td>
<td>19.1</td>
</tr>
<tr>
<td>2500</td>
<td>4.2</td>
<td>Meas.</td>
<td>11.03</td>
<td>5.8</td>
<td>8.5</td>
</tr>
<tr>
<td>2500</td>
<td></td>
<td>Calc.</td>
<td>11.63</td>
<td>8.1</td>
<td>8.7</td>
</tr>
</tbody>
</table>

(*) Averages for ±9.5 A current and clockwise/counterclockwise probe rotation.

INTEGRATED HARMONICS

<table>
<thead>
<tr>
<th>Order</th>
<th>Measured</th>
<th>Random-Block</th>
<th>Random-Quad</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5.3</td>
<td>2.7</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>5</td>
<td>7.0</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>7</td>
<td>0.6</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>8</td>
<td>1.0</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>9</td>
<td>2.8</td>
<td>0.05</td>
<td>0.1</td>
</tr>
</tbody>
</table>

(8) Random displacements in a ±100µm interval, flat distribution.
Magnetic Field Optimization (HCX-D)

- 3 turns /layer removed from inner coil, 1 turn /layer removed from outer coil
- Two rectangular pockets introduced in the inner pole-island, facing the bore

All design harmonics within 1 unit at the reference radius (22 mm)

New Coil Fabrication Procedure (HCX-D)

Monolithic pole; coils are impregnated separately, then inserted in holder
Goals: accurate and reproducible geometry; reduction of labor and parts
HCX Quadrupole Cost

Cost basis:
- Experience with prototype fabrication
- Cost of parts for the prototypes
- Quotes for larger sets of parts
- Comparison with other accelerators

Assumptions:
- Production of 100 quads (HCX “Phase II”)
- Conductor/cable procured by project
- Other parts procured by manufacturer
- Overhead/fees at 40% of labor and parts
- Project costs are not included

Estimated cost for each quad: 9 k$

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand</td>
<td>0.5 k$</td>
</tr>
<tr>
<td>Cabling</td>
<td>0.15 k$</td>
</tr>
<tr>
<td>Insulation</td>
<td>0.2 k$</td>
</tr>
<tr>
<td>Total conductor</td>
<td>0.85 k</td>
</tr>
<tr>
<td>Coil holders (Al)</td>
<td>1 k$</td>
</tr>
<tr>
<td>Inserts/wedges</td>
<td>0.65 k$</td>
</tr>
<tr>
<td>Insulators/spacers</td>
<td>0.26 k$</td>
</tr>
<tr>
<td>Yokes/shell</td>
<td>1.25 k$</td>
</tr>
<tr>
<td>Total parts</td>
<td>3.16 k</td>
</tr>
<tr>
<td>Coil winding</td>
<td>16 hrs</td>
</tr>
<tr>
<td>Coil loading</td>
<td>12 hrs</td>
</tr>
<tr>
<td>VPI</td>
<td>6 hrs</td>
</tr>
<tr>
<td>Splices</td>
<td>6 hrs</td>
</tr>
<tr>
<td>Alignment</td>
<td>8 hrs</td>
</tr>
<tr>
<td>Shell welding</td>
<td>2 hrs</td>
</tr>
<tr>
<td>Total assembly</td>
<td>50 hrs (at 50$/h)</td>
</tr>
<tr>
<td>Total/quad</td>
<td>9 k</td>
</tr>
<tr>
<td>Overhead/fees</td>
<td>2.5 k$</td>
</tr>
</tbody>
</table>

Prototype Focusing Doublet

- Compatible with the HCX short lattice period of 45 cm
- Warm axial gap between cryostat tanks as (acceleration, diagnostics, pumping)
- Leads & cryogen supplies provided through central chimney (max. core efficiency)
Cryostat Test Results

First cool-down:
- thermal short in the beam tube region
- unacceptable heat loads
- magnets close to short sample (-3%)
- no training

Second cool-down:
- thermal short repaired
- Heat loads ~ 1W in quad+chimney
- magnets at the short sample limit
- low ramp-rate dependence

Will be published at the 2004 Applied Supercond. Conference

IBX Magnet System

IBX
- *Single-layer Quad Design*
- Cost: 6 k$/unit

* Cryostat is magnet cost driver (single channel, accel. gaps)
* HCX doublet: 35 k$

IBX Magnet Cost Distribution by Category
- Overhead/fees: 28%
- Labor: 24%
- M&S (Lab): 10%
- M&S (company): 38%

RHIC Magnet Cost Distribution by Category
- Overhead/fees: 29%
- Labor: 11%
- M&S (Lab): 22%
- M&S (company): 38%
Advanced Superconductors

Superconducting wires:

- **NbTi:**
 - well developed
 - performance limitations

- **Nb$_3$Sn:**
 - Substantial progress
 - New baseline for HEP

- **HTS:**
 - Very good potential
 - Practical challenges

_Hb$_3$Sn Quads (including racetrack) are presently being developed for the LHC_

Summary

HCX/IBX: opportunity to address key magnet design issues:

- Design simplicity and cost-effectiveness
- Aperture, Gradient and Field Quality tradeoffs
- Optimization of the conductor parameters
- Modularity
- Compact cryostats compatible with induction acceleration

Prototypes tested with excellent results

Cryostated doublet successfully fabricated and tested

Further optimization in progress

Cost estimates generated in support of the IBX design
Lab Credits

LBNL: Program coordination; specs; magnet design and test
LLNL: Magnet design and fabrication; cryostat design
AML: Magnet design and fabrication; value engineering
MIT: Magnet design and test; cryostat fabrication and test