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i_.aw_h_\. Motivation

= |n the currently envisioned configurations for heavy ion fusion (HIF), it is nec-
essary to longitudinally compress the beam bunches by a large factor after the
acceleration phase and before the beam particles are focused onto the fusion

target.

O In order to obtain enough fusion energy gain, the peak current for each
beam is required to be order 10°A, and the bunch length to be as short as

0.5m.

O Todeliver the beam particles at the required energy, it is both expensive and
technically difficult to accelerate short bunches at high current.

= The objective of drift compression isto compress along beam bunch by impos-
Ing a negative longitudinal velocity tilt over the length of the beam in the beam

frame.
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>PPPL Drift Compression and Final Focus of Heavy lon Beam

= Assume a C's™ beam for HIF driver with A = 1329, ¢ = 1, (y — 1)mc* =
2.43GeV, 2 = 0.27m, and < I >= 2254A.

= Thegoal of drift compression is:
1
> X
21.8

= Allowable changes of other system parameters.
O Veocity tilt |v,,] —< 0.01.

O Length z, . Perveance K — x21.8.

O Beamradiusa — x2.33.

. . 1
O Half lattice period L — xm.

O Filling factor n — x4. nB" — x4.

= The beam pulse need to focused onto atarget with 2mm characterisitic size.
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i.ﬂw_h_\. Other Presentations at HIF04

= Final focus
O Th.I-07 J. Barnard (LLNL - USA)

= Neturalized final focus
O W.P-13 P, Efthimion (PPPL-USA)
O W.P-20 J. Hasegawa (TiTech-Japan)
O Th.I-05P. Roy (LBNL - USA)
O Th.l-06 D. Welch (Mission Research Corp - USA)

= Drift compression
O W.P-19 W. Sharp (LLNL-USA)
O W.P-17 T. Kikuchi (Univ. of Tokyo - Japan)
O Th.I-09 T. Kikuchi (Univ. of Tokyo - Japan)



i.ﬂw_h_\. Important Questions

= Longitudina Dynamics. What is the dynamics of z,(s)?
O How long isthe beam line? (s; = 516m)
O How largeinitial velocity tilt can we afford? (v.,o = —0.0143)
O Stability?
= Transverse Dynamics and Final Focus. How to focus the entire beam onto the
target?
O Non-periodic lattice design, L(s), B'(s), n(s), k(s), K(s).

O Non-periodic envelope, matched solutions? adiabatically-matched solu-
tions?
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>PPPL Outline

= Self-similar symmetry if required for focusing the entire beam pulse.

= Longitudinal Dynamics.
O Self-similar solutions for un-neutralized beams.
O Self-similar solutions for neutralized beams.
O Pulse shaping

= Transverse Dynamics and Final Focus.
O Non-periodic lattice and adiabatically-matched beams.
O Time-dependent lattice for deviation from self-similar symmetry.
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SPPPL  Need Self-Similar Symmetry To Focus the Entire Beam Pulse

= Transverse envelope equations for every slice in a bunched beam,

D%a(s, Z) 2K (s, 2) ex(s, Z)
052 Ra(s)als, Z) - a(s,Z)+b(s,Z2) a(s,Z)3 0

0°b(s, Z) 2K (s, Z) e (s, 2)
oz RS Z) = T T T sz

O K(s,7)=2e*)(s, Z)/m~>3*c* — effective perveance of slice 7.
O Z — longitudinal coordinate for different dlices.
O K(s,Z)and \(s, Z) are determined by the longitudinal dynamics.

= A lattice design for one slice may not be able to transversely confine other beam
dices and focus them onto the same focal spot at the target.

= Most of the other slices cannot be focused at all due to the mismatch induced by
the different s-dependences of the current and emittance.

= A fixed drift compression and final focus lattice will be able to focus the entire
beam pulse onto the same focal spot only if the current and emittance of all the
slices depend on s in the same manney.



iww_hm Need Self-Similar Symmetry To Focus the Entire Beam Pulse

= a, b, \, g5, and g, for different Z are generated by the same solution through a
one-parameter group transformation admitted by the envelope equations

AENACEY] AENAW]

\ bls, Z(d =0)] / \ bls, Z(0)] /
Als, Z(0 =0)] — | A[s, Z(9)]
Ex TU NA% - Ov_ Sp TU NA%V_

\ o l5.26=0] )\ ¢ls20)] )

= It is easy to check that the following scaling group is a symmetry group of the
envel ope equations.

\ als, Z(9)] / YAENAE] /
bls, Z(5)] ob[s, Z(6 = 0)]
Ms, Z(0)] | = | 0*\[s,Z(6 =0)]
SENAC)] 6%c, [, Z(0 = 0)]

\ &, 5.2(0)] )\ o%,[s2(6 =0)] ]




>3PPPL  Need Self-Similar Symmetry To Focus the Entire Beam Pulse

= Obtain afamily of matched and focused solutions for different slices from that
of onedlice.

= Itiscalled self-ssmilar symmetry because every field quantity for different slices
has the same s-dependence.

= Theratio of line density between different slicesis s independent,

Ms, Z(0)] 3 |

Als, Z(0)] J

= Because s Is conserved by the group transformation, the s-dependence and the
Z-dependence of \(s, Z) are separable

= Linedensity during drift compression is determined by the longitudinal dynam-
Ics. Need to find self-similar drift compression solutions in the longitudinal
direction.

= Thefunctions \,(s) and h(Z) will be determined from the symmetry groups of
the governing equations for the longitudinal dynamics.



i.ﬂw_hm Longitudinal Dynamics — 1D fluid model

= One dimensional fluid model in the beam frame for
O A(t, z): line density,
O wu,(t, z): longitudinal velocity,
O p.(t, z): longitudinal pressure.

= g-factor model for electric field [Davidson & Startsev, PRSTAB 2004].

= Take g and r;, as constants for present purpose.

= External focusing: —«, z

TELL
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i_._._._.a Longitudinal Dynamics — 1D fluid model

= In the beam frame;

ox 0 .
5 + @NCQL = 0 (continuity),
ou.,, ou.,, g O\ K2 re Op,
— ._” ,
ot S 0z i my° 0z i my3 i my3\ 0z 0 (momentum)
Op. Op-. ou,
o TUg, 35— = 0(energy).

= Nonlinear hyperbolic PDE system

= The energy equation is equivalent to

prASY




>PEPL Lie Group Symmetry Analysis

-

The systematic method for finding similarity solutions (group-invariant solu-
tions) for PDEs isthe Lie group symmetry analysis.
Two types of point symmetries can be used.

O Classical point symmetry, which transfers a solution of the PDEs into an-
other solution.

O Non-classical point symmetry, under which a solution isinvariant.
The symmetry groups of both types are determined by the corresponding in-
finitessmal generators.

O Classical point symmetry: linear and algorithmically solvable dertmining
equations. Infinitessmal generatorsform aLie algebra.

O Non-classical point symmetry: nonlinear and non-algorithmically-solvable
dertmining equations. No infinitesimal Lie algebra.

Once point symmtries are found, similarity solutions can be derived straightfor-
wardly.



wx_.._._._.\ 3D Lie Algebra for Self-Similar Symmetry

= The infinitesmal generators of the classical point symmetry for the nonlinear
PDE system are found to be a4D Lie algebra

d\

— = 2k

&% 27\
du, .

el kou, + ky cos(tv/k) + kssin(tv/k) ,
dp.
= 4k

&mm 2Pz

d

&|M = ko2 — ks cos(tv/k)/VE + kysin(tv/k) /VE

dt

— = k.

o '

= For every set of k;, the PDE system reduces to an ODE system, and there is a
similarity solution.

=  Self-similar symmetry — ¢ is an invariant of the symmetry group transforma-
tion — k; = 0.

= Self-similar solutions by the classical point symmetry form a 3D vector space.



>PPPL An Example

= (ky, ko, k3, ks) = (0,0,sina, cosa). The reduced ODE system can be easily

Integrated,
COS ¢
A(t = A
(t.2) Ycos(a + t\/R)
/
t
u,(t,z) = INN@A ) = —zv/ktan(a + t/k) ,
2(1)
(t2) cos® o
2\, %) = z )
o ! Y cos3(a + ty/k)
cos(a + ty\/K
Nwva =  2b0 A /\|v .
COS (v

= Choose appropriate values for x, o, and ¢ for required compression ratio and
maximum velocity tilt.



>PPPL Nonclassical Point Symmetries

= For the non-classical point symmetry group, the determining equations are non-
linear and difficult to solve for general solutions.

= Case (1). Infinitesimal generator

O Density — flattop.

O Pressure — flattop.

O Velocity tilt — linear.

O Self-similar solution — the same as the previous example.
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>3PPPL Nonclassical Point Symmetries

= Case (2). Infinitessimal generator




> PERL Nonclassical Point Symmetries

= The z-dependence drops ou,

2Ny = const. = Ny /2,
Nw P = const.=W.
&wNw K me
L=,
ds? i my3 (322 ot z3
A 2 U ) P
MO | T ~—u,(t) P .@.S
A
\ m
- |
A Tz \ T2

z(t) 2z(t)



>PPPL Nonclassical Point Symmetries — Parabolic Self-Similar

= Case (3). Infinitessimal generator

d 2\ U, 4p,

— t
&%AV(@NQENu qu N@

I
~—
|
\V)
~—~
|
\V)
—
=
[
~—




>PPPL Nonclassical Point Symmetries — Parabolic Self-Similar

= The z-dependence drops ou,

d\ »
b Uzb A, =

dt Zh

&EN@ Uzb
_ 32y, =

dt Zh b=

dvy, — €%g m>@.+ ko2 Arips
dt myS 2 omy3 my3\ez,

>> A s P2
O T ~~ u,(t) Pa(t)
z(1)
.,
77 e

2(t) A



immﬂm Nonclassical Point Symmetries — Parabolic Self-Similar

= Remarkably, these equations recover the longitudinal envel ope equation:

H&vé H&N@ 3
2 2T )= 2\ = const. = SN,
Nodl | di b = COMSE = 5 N
1 dp, 3 d
|NQ®|T|®HOHVNM@N@HQQS\%@.H:\g

Pzb dt Zb dt

O K; = 3Nye?g/2m~°3*c* — longitudina self-field perveance.
O & = (4r2W/mn332%2N,)"* — longitudinal emittance.



i.ﬂw_h_\. Nonclassical Point Symmetries — Parabolic Self-Similar

= g =10x10"mand K, = 2.88 x 10~° m , corresponding to an average fina
current (1) = 2254 A, 2,y = 0.268 m, and g = 0.81.

= Aninitial longitudinal focusing forceisimposed for s < 150 m so that the beam
acquires avelocity tilt 2z, = —0.0143 at s, = 150 m.
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ig Self-Similar Drift Compression for Neutralized Beams

= Drift compression for neutralized beams modelled by the 1D Vlasov eq.

= A class of salf-similar drift compression solutions can be more easily con-
structed using Courant-Snyder invariant

2’ NW@; A b
Y = 4 0. — 20 ~ |
NWS Nmodwo N@S
%N@S _ Nwodwo
dt? Z2(t)
() = (200 + Zt)” + v7t°

where z;,, = (dz/dt),_, and vy is an effective thermal speed.



3PPPL Self-Similar Drift Compression for Neutralized Beams

= Fothe class of distribution f(x), theline density is

yn\?ién%\%imf?émé u

where Z = z/2,(t), V = 2. /(2p0v10), ad o0 = 232 / (260070) -

= A(t, z) hasthe self-similar form

Mt 2) = M)W Z?).

?SH %bog \%H\g:\ f(v?),

imwvn %\%\\ Ef?é&éu




ig Density Inversion Theorem

= For agiven self-similar line density profile, the corresponding distribution func-
tionis

vn|myﬂsgqﬁ\8@imv 17

0% 72—y

= For the family of self-similar line density profiles

M) = nion(z) = { MOUETT st

1 A vaw QV n—1/2 HJA3V
fx) = ~ U e (LX) ey XS L
0, x >1.

O n=1and\~ 1— Z2thedistribution function f ~ /1 — x when y < 1.
O n=1/2and X\ ~ /1 — Z2 fisaflat-top function of y.
O n < 1/2, the distribution function diverges near y = 1.



wx.ﬂw_hm Density Inversion Theorem

= Another family of self-similar line density profiles

() (1— 2%, Z<1
_ 2\ b ) =~ 4,
A, z) = M(H)h(Z7) = A 0. Z>1.
( 1 (B2 2n— H\wﬂﬁ\w 2n)
’ s W@OCM% —H/\‘§X AH MSV
\ 0, x >1.
= F(3,3 — 2n; 3 — 2n; x) —hypergeometric function.

= 2n > 1 — arbitrarily flat line density profiles.
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>PEPL Longitudinal Pulse Shaping

= The parabolic self-similar drift compression solution requires the initial beam
pulse shape to be parabolic.

= Need to shape the beam pulse into a parabolic form before imposing a vel ocity
tilt.

= Need to solve the pul se shaping problem in general — finding the initial velocity
distribution V(z) = v.(t = 0, z) such that a given initial pulse shape A(z) =
At = 0, z) evolvesinto agiven final pulse shape Ar(2) = A\(t =T, z) at time
t="1T.

= Choose the following normalized variables:

where z,, isthe initial beam half-length, and )\, isthe initial beam line density
at the beam center (z = 0).
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>PEPL Longitudinal Pulse Shaping

= In the normalized variables, the one-dimensional fluid equations, neglecting
pressure effects and external focusing, are given by

ox 0 L
5 T %A Av,) = 0 (continuity),
o T, o 4+ Nﬂww = 0 (momentum),

where K; = \yeg/m~° 3%c? isthe normalized longitudinal perveance.
= K, will betreated as a small parameter.

— To order lowest order,

[N

] LS > PPPL
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>PEPL Longitudinal Pulse Shaping

= Can solved by integrating along characteristics. On the characteristics

= Because dv,/dt = 0 on C, the family of characteristics C' are straight lines in
the (¢, z) plan, which can be represented as
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>PEPL Longitudinal Pulse Shaping

= The solution for v, (¢, z) can be formally written as

where £(t, z) isafunction of ¢ and z.

= From above equations, four useful identities can be derived, i.e.,

0§
Dz
%3
ot
ov,
0z
ov,
ot
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>PEPL Longitudinal Pulse Shaping

— We aso have

dinh _ V1O

dt 1+ V(6

= Since ¢ iIsaconstant on C, it can be integrated to give

t |a\4
In\ = Eyﬁﬂo“mvlf\o Hl_'a\mmvw

= InA(§) +In[1 + V'(&)t],

dt
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>PPPL Longitudinal Pulse Shaping

g

= For the pulse shaping problem, thefinal linedensity profile Ar(z) = A(t =T, 2)
IS specified. We therefore obtain

Ap(z) = Agle + V(OT] = — &)

T 1+ VIOT

which can be viewed as an ordinary differential equation for V' (¢) .

= |t can be simplified using the variable U (&) defined by

Ug) = §+V(ET .
Intermsof U(¢), Ar(U)dU = A(§)dE.

= Finadly, U(¢) is determined by solving the above equation for the given func-
tional forms Ap(z) and A(z). V(&) issimply related to U (€) by
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>PPPL Example: Pulse Shaping without Compression

= Consider two exampleswith the following symmetries and boundary conditions,

v (t,—2) = —u,(t,2), A\t,—2) = A, 2),

V(E = 0)=0,U(E=0)=0.

= Example 1—Pulse Shaping Without Compression:

\HINSQ 0<2z2<1,
Alz) = ¢ 0, 1<z,
A(—2), 2<0,

N
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>PPPL Example: Pulse Shaping without Compression

= Theequation for U can integrated to give

MSITH

=

@ D
n(m 4+ 1) m+1

n -+ 1

EGE

= The parabolic self-similar drift compression solution correspondsto n = 2. In
this case, there are three solutions for U(£). The solution satisfying the right
boundary condition is

U = Ll.awwﬁwﬁ

p = m\|w@+<|%+@%“

P MAS._'CAMI

3m

= For large value of m > 1, A(z) has aflat-top shape with afast fall-off near the
ends of the pulse.
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>PPPL Example: Pulse Shaping without Compression

= Initial pulseshape A(z) = 1—2'° andfinal pulseshape Ar(z) = (45/32)(1—2z%)
are plotted in (a). Theinitial velocity V' (z) isplotted in (b).

2 _ _ _ _ 02 — _ _ _ _ _
M) =B -2 (=) (b)
32
15 | \ 1 ol
& 3
34 O
Q -~
- /
05 | _ 15 1 o1l
A2)=1-2 0.1
°% 0.2 0.4 0.6 0.8 1 02 0.2 0.4 0.6 0.8 1
z z
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>PPRL Example 2: Pulse Shaping with Compression

(1—2", 0<2<1,
Az) = ¢ 0, 1<z,
| A(—2), 2<0,
( 1 1
ﬁIAQNV:_QSAzlf v“ 0<z2z<—,
H n(m + 1) o
Ar(z) = < 0, — <z,
o)
L A(—2), 2<0,
= The equation for U can be integrated to give
(@U(£))" "] m(n +1) §mt

V) = nm+1) - ¢

aU((=1)=1adV(=1) =




= PPPL

g

Example: Pulse Shaping with Compression

= For the case of a beam being shaped but not compressed, o

land V(¢ =

1) = 0. When o > 1, the beam is simultaneously being shaped and compressed,
andV(¢=1)<0.

= Initial pulse shape A(z) = 1 — 2" and final pulse shape Ar(z) = (135/32)(1 —
92%) are plotted in (). Theinitial velocity V' (z) isplotted in (b).

AV
:

t Ar(2) = 39

135
2

(1-92%)

A(z)=1-2"

.N

(a)

N
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SPEPL 1st Order Space-Charge Correction

= We now carry out the analysisto O(K). Let

At z) = Mo(t,2) + A\t 2),

v (t,z) = wv,0(t,z) +v.a(t, 2).




>3PPPL 1st Order Space-Charge Correction

= By the same procedure,
A9 @AQ@S@N
L+ V5t 1+ V5(6)tag | 1+ V(&)
0 Taﬁ Vo(§)t — Inf1 + Vi(£)1]
o L V5 () 1+ V(&)1

m@oa€+§@%w.

A =

— KA (€)

= Attimet =T, we obtan

Ar(z)=X(t=T,2)+ \M(t=T,z).

Since Ar(z) and A(z) are prescribed in the pulse shaping problem, we take
Ari(z) =0and Ai(z) = 0. Thisresultsin

= 0 [Ao(&)] V5(&) — [l +V5(T)/T
s@|w§L§@~ [V @T
|_|NN>QAMV :Amv T |TQ\

Vs () "



SPPRL Correction for Deviation from the Symmetry

= To focus entire beam pulse onto the same focal, the self-similar symmetry con-
dition need to be satisfied.

= Self-similar drift compression scheme satisfies the symmetry condition for the
line density.

= It is difficult to guarantee the symmetry condition for the transverse emittance
due to the complex dynamical behavior.
O Longitudinal compression

O Non-periodic transverse focusing lattice and final focus magnets.
= However, in most heavy ion fusion systems, the transverse emittance is small.

= The deviation from the self-ssimilar symmetry condition due to the transverse
emittance can be treated as a perturbation.

= Deliberately impose another perturbation to the system to cancel out the pertur-
bation due to the un-symmetric transverse emittance.



SPPRL Correction for Deviation from the Symmetry

= Demonstrate this technique using the parabolic longitudinal drift compression
scheme for atypica un-neutralized heavy ion fusion beam.

= The perturbation introduced to cancel out the un-symmetric emittance effect
will be four time-dependent magnets.

= First, adrift compression and final focus lattice is designed for the central dlice
(Z = 0), and then four quadrupole magnets at the beginning of the drift com-
pression are replaced by four time-dependent magnets whose strength varies
around the design value for the central dice.

= The time-dependent magnets essentially provide a dlightly different focusing
|attice for the different dlices.

= Transverse envelope equations for every dice in abunched beam,

0%als, Z) 2K (s, 7) ex(s, Z)
052 Rqals, 2) = a(s,Z2) +b(s,Z) a(s,Z)3
0%b(s, Z) 2K (s, 7) e (s, 72)
o5z NS Z) e s D) b 2P




>PEPL Correction for Deviation from the Symmetry

-

-

K (s, z) isnon-periodic due to the longitudinal compression.
r, need to be non-periodic to reduce the expansion of the beam radius.

Since the quadrupole lattice is not periodic, the concept of a“matched” beam is
not well defined.

However, if the the non-periodicity is small, that is, if the quadrupole lattice
changes slowly along the beam path, we can seek an “adiabatically”-matched
beam which, by definition, islocally matched everywhere.



>PPRL Non-periodic Lattice Design for Central Slice

= Godl:
O Constant vacuum phase advance o, = 7/5 — nB’L? = const.
O Length z, — me.m. Perveance K — x21.8.
O Beamradiusa — x2.33.
O Half lattice period L — xw.

O Filling factor n — x4. nB" — x4.

= Howdo K, L,n, B’, a, and b depend on s?
O K(s) isgiven by the longitudinal dynamics.

O L(s),n(s),and B'(s) are determined by requirements such as constant vac-
uum phase advance.

O a(s) and b(s) are determined by the transverse envel ope equations.
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>PPPL Non-periodic Lattice Design for Central Slice

= A lattice which keeps both the vacuum phase advance and depressed phase ad-
vance constant isless likely to induce beam mismatch.

= Vacuum phase advance ¢, and depressed phase advance ¢ are given by

mﬁ|8m§vnﬁ| w%v% Aw_vw hf

0° =2(1 —coso,) — K A%vw

= Assuming n < 1, we obtain

B’ 2L

2 274 2

n°( )°L* = const., K(—)* = const.,
Bp)

(@)

for constant vacuum phase advance and constant depressed phase advance.

= It isunder-determined. Asone possible choice, let

L = Lyexp(—In wWY n = noexp(21In MWY B’ = const.
Sf Sf



>PPRL Non-periodic Lattice Design for Central Slice

= Letthelatticelengthsare Ly, Ly, ..., Ly = Ly,

2L
N\H E— N\o @N@A| _5M|0vv
Sf
2(Lo + L
bw”bo@N@A|:~M A 0+ vag
Sf

(—In2 2o )
Sf
2(L1+ Lo+ ...+ Ly) = Sy

N\s. = N\o exp

)

= For Ly = 3.36m, Ly = 6.72m, and sy = 421.5m, calculation gives N = 45.

= For an adiabatically-matched solution,

O The envelope islocally matched and contains no oscillations other than the
local envelope oscillations.

O Ontheglobal scale, the beam radius increases monotonically.



i.ﬂw_hm Final Focus Magnets for Central Slice

= Four final focus quadrupole magnets assure that the envelope converge in both
directions at the exit of the last focusing magnet.

= Then the beam enters the neutralization chamber where the space-charge force
IS neutralized, and is focused onto afocal point at

= The transverse spot size is determined by the emittance and incident angle at
S = Sff

= For the central sliceat = = 0, we obtain zs,, = 5.276m, and as, = bro =
1.22mm .
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Transverse Dynamics for Central Slice

NEOFENW

NEOFENW
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ig Time-Dependent Lattice for Entire Pulse

= Other dices (Z = z/z, # 0) should be focused onto the same focal point

Zfol = @B“ A fol = @\& M 1.2mm.

= For the A(s, 2) = \(s)[1 — 22/z%(s)], the self-similar symmetry condition im-
plies that the solution for all of the dices can be scaled down from that of the

centra dice:

If the emittanceis
O negligibly small or
O scales with the perveance according to (e, e,) oc 1 — 22 /z7(s).

=
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i.ﬂw_h_\. Time-Dependent Lattice for Entire Pulse

= However, the emittance in general issmall but not negligible, and does not scale
with the perveance.

= In fact, during adiabatic drift compression, the emittance scales with the beam
size i.e,e, ccaande, o b.

= Self-similar symmetry condition can’t be satisfied.

= Vary the strength of four magnets in the very beginning of the drift compression
for different value of = such that the self-similar symmetry holds at s = s;.

= Numerically, the necessary variation of the strength of the magnets is found by
a 4D root-searching algorithm.

= A small perturbation in the strength of the magnets introduces a small envelope
mismatch in such away that the self-similar symmetry is satisfied at s = s.
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SPPPL Envelope dynamics for the z/z,(s) = 0.968.
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Time-Dependent Lattice for Entire Pulse
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>PPPL Conclusion

= Two of the most important requirements of the drift compression and final focus
systems were considered.

O A large compression ratio needs to be achieved.

O The entire beam pulse needs to be focused onto the same focal spot at the
target.

= |tisnecessary to use asalf-similar drift compression scheme.

O For un-neutralized beams, the Lie symmetry group analysis was applied to
the warm-fluid model to systematically derive the self-similar drift com-

pression solutions.

O For neutralized beams, the 1D Vlasov equation was solved explicitly and
families of self-ssmilar drift compression solutions were constructed.

= A non-periodic lattice has been designed so that it is possible to actively control
the transverse size of the beam.
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i_.aw_h_\. Conclusion

= To compensate for the deviation from the self-similar symmetry condition, four
time-dependent magnets were introduced in the upstream such that the entire
beam pulse can be focused onto the the same focal spot.

= The sdlf-similar longitudinal drift compression scheme, combined with the non-
periodic, time-dependent |attice design, provide the essential elements of aleading-
order drift compression method.

= The next-step investigation will be focused on second-order effects, such as
emittance growth during drift compression, and the two-way coupling between
the longitudinal and transverse dynamics.

——Heavy lon Fusion Virtual National Laboratory — Hy &



