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1 Final HIB Transport

/ Brief summary for HIB Final Transport (A part)

D.A. Callahan: Fusion Eng. & Design (1996), UCRL-JC-121279(1995)
“Chamber Transport Physics”

E. Lee — Divergence analyses + Solenoidal Transport
/ Unneutralized ballistic transport in vacuum: sensitive to HIB charge state

/ Preformed plasma Sheet & Column:
- Good performance, require an plasma generation device
- Near the target, hot electrons can not be focused, as HIB is.
-> Autoionizing target -> a target with a plastic

/ Pinched scheme: 100% charge & 99% current Neutralization
- small hole at the reactor wall & cost effective
- stability in pinch position & beam dynamics

/Channel transport
- External magnetic field and Z-discharged plasma
- channel formation & expansion




J.L.Vay & C. Deutsch: PoP (1998), more....

“Charge compensated HIB propagation”

| Koshkarev Scheme: Pt+ & Pt- -> combined to compensate charge
/ 3D PIC simulations: BPIC

C.L. Olson: NIM A464(2001), ...

“Camber Transport”

/ Detail comparison among various transport schemes
/ Transport issues are well summarized




R.R.Peterson & M.E. Sawan: UWFDM-1040(1997), more....
“Preformed plasma channel”

/ Channel Formation

/ static & filamentation instabilities
/ Channel expansion

/ Energy loss

-> Transportable window through the plasma ~5mm channel

W.M. Sharp, et al.: PoP, Fusion Sci. & Tech. 43, 393(2003), ...
Bangerter, Langdon, et al., ...for Photoionization

/ Precise HIB final transport LSP simulations

including electron emission from wall, photoionization by target radiation,§

preneutralization by a plasma, ...

/ Foot pulse transport

-> Plasma neutralization is effective. ...




S.Yu Roy, et al: PoP, 11(2004)2890, et al.
“NTX Experiments Charge compensated HIB propagation”
/ Beautiful suppression of beam divergence by a plasma

Stability problems
R.L. Davidson, H.Qin, et al.
S.M. Lund, et al.
T.Kikuchi, T.Katayama, K.Horioka, et al.

D.R.Welch: LSP code
A.Friedman, D.P. Grote et al, WARP code

W.B. Herrmannsfeldt: Beam-pipe electron trapping
S. Kawata, T. Kikuchi, T. Someya, S.Kato, et al.:
“Insulator guide transport”

/ electron supply by a surface plasma at the ceramics wall
-> - at the final 10-20cm near the target at the chamber center?
- collisions
-> - simple & no additional plasma generation device




HIB transport through a tube liner

Neutralization of beam space charge
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Physical Mechanism for
the Insulator Guide-based HIF Transport

Insulator Guid
(Ceramics)

Electric Field

lon Beam

1. Local electric field creation

Plasma
[Origin of plasma  ~~_E

IS an absorbed gas or vapor.l

2. Discharges and plasma production

\ .

Electrons Emitted
3. Electron extraction




Input Pb*lon Beam Waveform

Max of beam current: 5 kA
Particle energy: 8 GeV

Pulse width: 10 nsec

Beam particle temperature: 10 eV
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Simulation Results(with insulator guide)

Pb lon maps Electron maps
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History of the Total Space Charge
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Charge neutralization is self-regulated :




Improvement of Focusing

Change of radius at Z=210cm
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Temperature

temperature(MeV)
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Bunched beam ~ a few 10 nsec

n,,~10%%/cc, 4~10Ge)\,, 1~5kA _ _
One of Main Approaches for HIB Final Tr
/ Neutralized Ballistic FINAL

BEAM TRANSPORT (NBT)

Photolonized
electrons

/e-e Collisions: small v,,~10-2~103%/sec

/Stabilities: e-e, b-e

/Neutralized beam dynamics at the middle
-> rb:5-10mm nc_neutralm:l'oldf/CC
-> n,~10%3/cc >> n_~1011~10%2/cc n,.~10%~10%/cc

-> may induce ambipolar field beam expansion Transport=30~80NSec



Neutralized Ballistic FINAL BEAM TRANSPORT

/Neutralized beam dynamics at the very end
->r,=1~3cm =>r,=2-3mm

It makes Te high: Te~10~100keV <- Te~TeOx(r,,/r,)*3~22xTe0

-> n,,~10%?/cc => n ~10%%/cc >> N pere~1011~10%%/cC
-> AL e >> Ty Apepyee~0.1Mmm~0.3mm~ 10% of beam radius

-> may induce ambipolar field beam expansion

€p
2

d<p =478(Ng — 1) =47 e(eT ~1) for Region A
dxz H

Here we can assume N ~ ni in A

42 &

=47e(n 47zn ee T ) for Region B
dX2 (ne)= € (r >grb)

n " —> An Exact solution for this nonlinear Eq.:




ep

2 —rr
%ngme(ne)zmmoe(e T ) for Region B
e@=T[1-2 /nfl+ %kmr}]
—> (E=2Z0vTKpe Z@e forr>r,
1+./exp/ 2 (Kper)

At the beam surface & at the middle stage
Z,eE[eV/cm]~1.35x10-3Zb(nT,)**[eV]~(2MeV/cm~10MeV/cm)

Welch, Rose, et al., NIM in
Phys.Res.A 464(2001)134
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e@=T[L-2 /L+ [Z5Pkoer}]

2/exp/ 2 forr>r,
1+ /exp/ 2(Kpel)

After integration of qE between r, and ry+Ay,

->
T1.5
E Lz, L e
L Nbe rb for }\‘Debye-e<r

> &,1&; ~(3~100keV)/(4-10GeV)
for 100cm transport dr ~ 1~5mm Increase in rbf
-> may be serious.

On the other hand
If Npe << Nepambere: NO problem for the ambipolar expansion.
Mainly chamber background electrons contribute

bea#n charge neutralization.
For example: T.,=10eV, n,=10'%/cc, Z,=5

—> QE =Z5TKpe

Ape ~1.4x10-4cm
g, ~0.05eV  Well neutralized!




Kinetic Energy [keV]

PIC Simulation
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Transport Window in Neutralized Ballistic Transport (NBT)
against Ambipolar-Field Expansion &
Beam-Chamber Gas Two-stream Instability
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For NBT

If we have low-Te electrons together with high-Te neutralizing electrons,
low-Te electrons dominates the charge neutralization.

1.5
T
E| Lz L e

The Tp

_ 1 N
Teffective = 1, 1 ~Tlow 0" Ne_not "Ne_jow

Tlow Thigh

Therefore if HIB is surrounded by low-temperature electrons,
NO PROBLEM!




Possible solutions:

1) Neutralized ballistic transport
with careful chamber density control and
with careful beam co-moving electron temperature control

/ Lower electron temperature -> T -> Cool electron supply
Nbe|., 4> Nce|, . at the middle stage!

| Suppress charge stripping & Low I, ->
Z,, Ny, -> Low chamber gas density / pressure
But high enough for charge neutralization

2) Through High density chamber plasma n,, < n

chamber-e

for all region
/ can avoid ambipolar field expansion
/ instability analyses
/ blast wave interactions with a liquid wall, ...




2. HIBs illumination Nonuniformity on a pellet

Assumptions:

/ Ballistic transport inside the target

/ Each beam is divided into beamlets, for example 316 beamlets
|/ perfect charge neutralization




Target center
X¥



Wednesday Afternoon, June 9, T. Someya, et al., “HIB Illumination on a Targ
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Conclusions:

1. Ambipolar field HIB expansion is pointed out.

- Its physics is clarified
- Possible solutions are presented
- Transport window is also presented

2. 3-D HIB illumination code was developed

- A Hydro code is now under reconstruction
- will be coupled to our 3-D HIB illumination code
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