SOME PHYSICAL PROPERTIES OF HIGH ENERGY DENSITIES PLASMA WORTH INVESTIGATING BY INTENSE HEAVY ION BEAMS

Vladimir Fortov Institute for High Energy Densities, RAS

- **#** Plasmas at high pressure. Nonideality
- **#** Generations and Diagnostics
- **# Metallizations**
- **# Plasma Phase Transitions**
- **# Dielectrizations**
- **#** Rarefaction Waves-Evaporation
- **# Non-Congruent evaporation**
- # High Strain Rate Effects
- **# Kinetics**

PHASE DIAGRAM OF PLASMA

MAXIMUM PLASMA PRESSURES IN THE "LABORATORY"

Phase Diagram of Matter

Intense beams of energetic heavy ions are an excellent tool to create and investigate extreme states of plasma in reproducible experimental conditions

Powerful Lasers

NIF, Omega, Gekko XII, LMG, ISKRA-6, X-FEL.... low repetition rate small volumes large gradients short life time

Intense Heavy Ion Beams,GS

large volume of sample (N mm3) fairly uniform physical conditions high entropy @ high densities extended life time

HI : high entropy states of matter - without shocks !

Main Directions of Coupled Plasma Research

High Energy Density Plasma

Es ~ 10 - 1000 kJ/g T ~ 0.5 - 20 eV ρ ~ 10-3 - 10 g/cm3 P ~ kbar - Mbar

Properties of matter under extreme conditions (EOS, plasma phase transitions, critical points, strongly coupled plasmas, atomic physics, transport properties: conductivity, r-transport

Non-ideal dense plasma physics Non-congruent phase transitions (U02) stimulated by plasma non-idealityphase equilibrium in 2-phase region

Applic.:IFE research, safety of nuclear reactors space technologies, geophysics, planetary science, plasma technology.

What type of beams will be needed :

- Intensity
- Pulse length :
- Pulse shaping :
- Focusing system:

> 10^12 of 0.4-2 GeV U28+ ions/pp
~ 50 ns - 100 ns - strong bunch compression
temporal, transversal
(parabolic, gaussian, box-shape...)
strong focusing (~1 mm FWHM) annular focal spot

Beam diagnostic:

intensity, temporal, transversal

<u>Requirements – at the limit of technical feasibility</u>

ELECTRONIC SPECTRUM OF COMPRESSED HYDROGEN PLASMA

"SHELL" PHASE TRANSITIONS IN STRONGLY COUPLED PLASMA

NONIDEAL PLASMAS IONIZATION BY:

HYDROGEN PRESSURE IONIZATION

PLASMA QUANTUM MONTE-CARLO SIMULATIONS

Hydrogen, dissociation

T = 10000 K, n = 10¹⁸ cm⁻³, ρ = 1.67 \cdot 10⁻⁶ g/cm³

PLASMA QUANTUM MONTE-CARLO SIMULATIONS

Hydrogen, phase transition

T = 10000 K, n = $3 \cdot 10^{22}$ cm⁻³, ρ = 0.05 g/cm³

PLASMA QUANTUM MONTE-CARLO SIMULATIONS Hydrogen, protons ordering

T = 10000 K, n = 3.10^{25} cm⁻³, ρ = 50.2 g/cm³

HIERARHY OF PHASE TRANSITIONS

Li (T<200 K): $cF4 \xrightarrow{39} hR1+{cl16} \xrightarrow{42} {cl16}$ (11) Rb: $cl2 \xrightarrow{7} cF4 \xrightarrow{14} ? \xrightarrow{17} \{tl19^*\} \xrightarrow{20} tl4 \xrightarrow{46} \{oC16\}$ (7-8\2-6) (10\11) Cs: $cl2 \xrightarrow{2,3} cF4 \xrightarrow{4,2} cF4' \xrightarrow{4,4} tl4 \xrightarrow{12} {oC16} \xrightarrow{72} hP3$ Sr: $cF4 \xrightarrow{3,5} cl2 \xrightarrow{24} cl4 \xrightarrow{35} ? \xrightarrow{46} {tl11*} (9 \ 6-11)$ Ba: $cl2 \xrightarrow{5,5} hP3 \xrightarrow{12,6} {tl11*} \xrightarrow{45} hP3$ (9\6-11) (9\6-11) Si: $cF8 \xrightarrow{11,7} tl4 \xrightarrow{13} ol4 \xrightarrow{15,4} hP1 \xrightarrow{38} oc16 \xrightarrow{40} hP3 \xrightarrow{78} cF4$ $(10\1)$ As: $hR2 \xrightarrow{25} cP1 \xrightarrow{48} \{t|11^*\} \xrightarrow{97} c|2$ (3) (9\6-11) (8) Sb: $hR2 \xrightarrow{6,4} cP1 \xrightarrow{8,6} {111*} \xrightarrow{28} cl2$ (3) (9\6-11) Bi: $hR2 \xrightarrow{2,54} mC4 \xrightarrow{2,7} {tl11*} \xrightarrow{8,8} cl2$ (9\6-11)

Solid state Li plasma AT HIGH PRESSURE

cl16 structure

J. Neaton, N. Ashcroft Nature, 400, 141, 1999

Fortov et al., 2001

bcc \rightarrow 16GPa \rightarrow fcc \rightarrow 41GPa \rightarrow hR1 \rightarrow 48GPa \rightarrow cl16 \rightarrow 165GPa \rightarrow Cmca Hanfland et al., Nature, 408, 174, 2000

Акустическая неустойчивость замыкающей УВ в полной комбинированной волне

(модельное УРС, точечное возмущение скорости (1%) в потоке перед исходной УВ)

PHASE DIAGRAMS OF METAL PLASMA ACCORDING TO LANDAU AND ZEL'DOVICH (1943, ACTA PHYS. CHIM. USSR)

Entropy levels accessible by intense heavy-ion beams and other drivers for metals

D.H.H. Hoffmann, V.E. Fortov et al. Phys. Plasmas 9 (2002) 3651.

HEAVY ION BEAM – COPPER PLASMA

HIGH PRESSURE EVAPORATION

EQUATION OF STATE OF URANIUM DIOXIDE UP TO THE CRITICAL POINT

- 1 Gas-liquid coexistence in PCE-mode (BC=SC)
- BC Boiling curve (total equilibrium(EOS "IN TAS-99")
- SC Saturation curve (total equilibrium(EOS "IN TAS-99")
- 2 Total vapour pressure calculated by E.Fischer (KfK-1989)
- PCP Two pseudo-critical points: that of E.Fischer and PCP presently calculated in PCE-mode
- CP Critical point (CP) presently calculated in total equilibrium

Фазовая Р-Т диаграмма неконгруэнтного испарения диоксида урана (UO2.0) TIME-DEPENDENT PHENOMENA: YIELDING, FRACTURE, POLYMORPHOUS TRANSFORMATIONS, AND CHEMICAL REACTIONS

Goals:

- Fundamental strength properties of a matter; approaching the ideal strength;
- Extremely rapid rearrangements of crystal structures and metastable (superheated) states;
- Catastrophic fractures under compression;
- Chemical-Detonation phenomena.

APPROACHING THE ULTIMATE TENSILE STRENGTH, AMr6

РЕЛАКСАЦИЯ РАСТЯНУТОГО КРИСТАЛЛА

(Параметр симметричности, с)

Г.ц.к. решетка $\mathbf{c} = \mathbf{0}$

Аморфная структура

 $c \ge 0.5$

FROM FISSION ENERGY TO THERMAL ENERGY:

ОБРАЗОВАНИЕ ТРЕКА, БЕЗ УЧЕТА ТЕПЛОПРОВОДНОСТИ

GSI, Relativistic Ion Beam-Plasma Interaction at 4 GeV

PROTON STOPPING POWER IN Xe PLASMA

Heavy ion beam & target: 3D simulation

0.25 mm Pb foil, Beam :U²⁸⁺ 4x10⁹ 500 MeV/u FWHM=1.5 mm 250 ns

Collaborators

- Gesellschaft für Schwerionenforshung (GSI) Darmstadt, Germany
- Technische Universität (TU) Darmstadt, Germany
- Universität Frankfurt Germany
- Institute of High Energy Density RAS Moscow, Russia
- Institute of Problems of Chem. Physics RAS Chernogolovka, Russia
- Institute of Theoretical and Experimental Physics Moscow, Russia
- University of Castilla-La Mancha (UCLM) Ciudad Real, Spain
- LPGP Orsay, France
- **Polytechnical University of Valencia Spain**
- **University of Rostock Germany**

ITEP-TWAC PROJECT IN PROGRESS

 >10¹⁰ C6+ accumulated
 accelerated up to 4 GeV/u

 Ion accumulation mode - 300-700 MeV/u and 10¹² – 10¹³ particles per ~100 ns pulse;

 Ion acceleration mode - up to 4.3 GeV/u and up to 10¹¹ particles/s;

> Medical application mode - ~ 250 MeV/u, 10 ⁹ - 10 ¹⁰ particles/s C⁶⁺.

27.05.03

RF pulse compression for C6+ 213 MeV/u (f₀ = 695 кHz, 10 кV) ITEP

2 K1 5.00 B % K2 500mBΩ Γ 200μc AExt/10J 2.99 B T+▼ 499.600μc

170 ns FWHA

B.Sharkov ITEP

RECENT PROGRESS IN BEAM INTENSITY

Accumulation of 200 MeV/n C6+ ion in U-10 ring

Fast extraction of accumulated beam

B.Sharkov ITEP

