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Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field
systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a
discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field
system, which is naturally discrete in particles. The electromagnetic field is spatially discretized
using the method of discrete exterior calculus with high-order interpolating differential forms for a
cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It
is also gauge invariant and conserves charge. The system is then solved using a structure-preserving
splitting method discovered by He et al. [preprint arXiv:1505.06076 (2015)], which produces five
exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations.
The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-
term simulations of particle-field systems with extremely large number of degrees of freedom on
massively parallel supercomputers. The algorithms have been tested and verified by the two physics
problems, i.e., the nonlinear Landau damping and the electron Bernstein wave. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935904]

I. INTRODUCTION

The importance of numerical solutions for the Vlasov-
Maxwell (VM) system cannot be overemphasized. In most
cases, important and interesting characteristics of the VM
system are the long-term behaviors and multi-scale struc-
tures, which demand long-term accuracy and fidelity of
numerical calculations. Conventional algorithms for the VM
systems used in general do not preserve the geometric struc-
tures of the physical systems, such as the local energy-
momentum conservation law and the symplectic structure.
For these algorithms, the truncation errors are small only for
each time-step. For example, the truncation error of a fourth
order Runge-Kutta method is of the fifth order of the step-
size for each time-step. However, numerical errors from
different time-steps accumulate coherently with time, and
the long-term simulation results are not reliable. To over-
come this difficulty, a series of geometric algorithms, which
preserve the geometric structures of theoretical models in
plasma physics have been developed recently.

At the single particle level, canonical Hamiltonian equa-
tion for charged particle dynamics can be integrated using
the standard canonical symplectic integrators developed in
the late 1980s.1–9 Since the Hamiltonian expressed in terms
of the canonical momentum is not separable, it is believed
that symplectic algorithms applicable are in general implicit.
Recent studies show that this is not the case, and high order

explicit symplectic algorithms for charged particle dynamics
have been discovered.10–12

For the most-studied guiding center dynamics in magne-
tized plasmas, a non-canonical variational symplectic integra-
tor has been developed and applied.13–19 It is also recently
discovered that the popular Boris algorithm is actually a
volume-preserving algorithm.20 This revelation stimulated
new research activities.21,22 For example, high-order volume-
preserving methods23 and relativistic volume-preserving
methods24 have been worked out systematically.

For collective dynamics of the particle-field system gov-
erned by the Vlasov-Maxwell equations,25,26 Squire et al.27,28

constructed the first geometric, structure-preserving algorithm
by discretizing a geometric variational principle.25 It has
been applied in simulation studies of nonlinear radio-
frequency waves in magnetized plasmas.29,30 Similar meth-
ods apply to Vlasov-Poisson system as well.31–33 We can
also discretize directly the Poisson structures of the Vlasov-
Maxwell system. A canonical symplectic particle-in-cell
(PIC) algorithm is found by discretizing the canonical
Poisson bracket,34 and non-canonical symplectic methods are
being developed using the powerful Hamiltonian splitting
technique11,35,36 that preserves the non-canonical Morrison-
Marsden-Weinstein bracket37–40 for the VM equations. Of
course, geometric structure-preserving algorithms are
expected for reduced systems as well. For example, an
structure-preserving algorithm has been developed for ideal
MHD equations,41 and applied to study current sheet forma-
tion in an ideal plasma without resistivity.42 The superiority
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of these geometric algorithms has been demonstrated. This
should not be surprising because geometric algorithms are
built on the more fundamental field-theoretical formalism
and are directly linked to the perfect form, i.e., the variational
principle of physics. The fact that the most elegant form of
theory is also the most effective algorithm is philosophically
satisfactory.

In this paper, we present an explicit, high-order, non-
canonical symplectic PIC algorithm for the Vlasov-Maxwell
system. The algorithm conserves a discrete non-canonical
symplectic structure derived from the Lagrangian of the
particle-field system.25,26 The Lagrangian is naturally dis-
crete in particles, and the electromagnetic field is discretized
using the method of discrete exterior calculus (DEC). An
important technique for interpolating differential forms over
several grid cells are developed, which generalizes the
construction of Whitney forms to higher orders. The result-
ing Lagrangian is continuous in time and assumes a
non-canonical symplectic structure, the dimension of which
is finite but large. Because the electromagnetic field is inter-
polated as differential forms, the time-domain Lagrangian is
also gauge invariant and conserves charge. From this
Lagrangian, we can readily derive the non-canonical sym-
plectic structure for the dynamics, and the system is solved
using a splitting method discovered by He et al.11,12 The
splitting produces five exactly soluble sub-systems, and
high-order structure-preserving algorithms follow by combi-
nations. We note that for previous symplectic PIC meth-
ods,27–30,34 high-order algorithms are implicit in general, and
only the first order method can be made explicit.34 The
explicit and high-order nature of the symplectic algorithms
developed in the present study makes it especially suitable
for long-term simulations of particle-field systems with
extremely large number of degrees of freedom on massively
parallel supercomputers.

The paper is organized as follows. The non-canonical
symplectic PIC algorithm is derived in Sec. II with an
Appendix on Whitney forms and their generalization to high
orders. In Sec. III, the developed algorithm is tested and veri-
fied by two physics problems, i.e., the nonlinear Landau
damping and the electron Bernstein wave.

II. NON-CANONICAL SYMPLECTIC PARTICLE-IN-CELL
ALGORITHMS

We start from the Lagrangian of a collection of charged
particles and electromagnetic field25,26

L ¼
ð ð ð

dx
!0

2
" _A xð Þ "r/ xð Þ
" #2 " 1

2l0

r% A xð Þð Þ2
$

þ
X

s

d x" xsð Þ
1

2
ms _x2

s þ qsA xð Þ ' _xs " qs/ xð Þ
$ %!

;

(1)

where AðxÞ and /ðxÞ are the vector and scalar potentials of
the electromagnetic field, xs, ms, and qs denote the location,
mass, and charge of the s-th particle, and !0 and l0 are the
permittivity and permeability in vacuum. We let !0 ¼ l0 ¼ 1
to simplify the notation.

This Lagrangian is naturally discrete in particles, and we
choose to discretize the electromagnetic field in a cubic
mesh. To preserve the symplectic structure of the system, the
method of DEC43 is used. The DEC theory in cubic meshes
can be found in Ref. 44. For field-particle interaction, the
interpolation function is used to obtain continuous fields
from discrete fields. The spatially discretized Lagrangian Lsd

can be written as follows:

Lsd ¼
1

2

X

J

" _AJ "
X

I

rdJI/I

$ %2
 

"
X

K

X

J

curldKJAJ

$ %2

!

DV þ
X

s

1

2
ms _x2

s

$

þ qs _xs '
X

J

Wr1J xsð ÞAJ "
X

I

Wr0I xsð Þ/I

$ %!

; (2)

where DV is the volume of each cell, integers I, J, and K are
indices of grid points, and rd and curld are the discrete gra-
dient and curl operators, which are linear operators on the
discrete fields AJ and /I. Functions Wr0J and Wr1I are inter-
polation functions for 0-forms (e.g., scalar potential) and
1-forms (e.g., vector potential), respectively. They should
be viewed as maps operating on the discrete 0-form /I and
1-form AJ to generate continuous forms. More precisely,
Wr1J ðxsÞAJ are the components of the continuous 1-form
interpolated from the discrete 1-form AJ . The idea of form
interpolation maps is due to Whitney, and the interpolated
forms are called Whitney forms. The original Whitney
forms45 are first order and only for forms in simplicial meshes
(e.g., triangle and tetrahedron meshes). In the present study,
we have developed high-order interpolation maps for a cubic
mesh. The details of the construction of rd, curld; Wr0I ; Wr1J ,
and the interpolating function for 2-forms (e.g., magnetic
fields) Wr2K are presented in the Appendix. The major new
feature of the form interpolation method adopted here is that
the interpolation for electric field and magnetic field are dif-
ferent. Even for components in different directions of the
same field, the interpolation functions are not the same. This
is very different from traditional cubic interpolations used in
conventional PIC methods,46–48 where the same interpolation
function is used for all components of electromagnetic fields.
The advanced form interpolation method developed in the
present study guarantees that the geometric properties of the
continuous system are preserved by the discretized system.

The action integral is

S ¼
ð

dtLsd; (3)

and the dynamic equations are obtained from Hamilton’s
principle

dS

dAJ
¼ 0; (4)

dS

d/I
¼ 0; (5)

dS

dxs
¼ 0: (6)
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Equations (4) and (5) are Maxwell’s equations, and Eq. (6) is
Newton’s equation with the Lorentz force for the s-th parti-
cle. For the dynamics to be gauge independent,16 it requires
that the discrete differential operators and interpolation func-
tions satisfy the following relations:

r
X

I

Wr0I ðxÞ/I ¼
X

I;J

Wr1J ðxÞrdJI/I; (7)

r%
X

J

Wr1J ðxÞAJ ¼
X

J;K

Wr2KðxÞcurldKJAJ: (8)

The gauge independence of this spatially discretized system
implies that the dynamics conserves charge automatically.

Since the dynamics are gauge independent, we can
choose any gauge that is convenient. For simplicity, the tem-
poral gauge, i.e., /I ¼ 0, is adopted in the present study. To
obtain the non-canonical symplectic structure and Poisson
bracket, we look at the Lagrangian 1-form c for the spatially
discretized system defined by S ¼

Ð
c. Let q ¼ ½AJ ; xs), and

the Lagrangian 1-form can be written as

c ¼ @Lsd

@ _q
dq" Hdt; (9)

where d denotes the exterior derivative. In Eq. (9),

@Lsd

@ _q
¼ _AJDV;ms _xs þ qs

X

J

Wr1J xsð ÞAJ

' (
; (10)

and

H ¼ @Lsd

@ _q
_qT " Lsd; (11)

¼ 1

2
DV

X

J

_A
2

J þ
X

K

X

J

curldKJAJ

$ %2
 !

þ
X

s

1

2
ms _x2

s ;

(12)

is the Hamiltonian. The dynamical equation of the system
can be written as25,49

i½ _q;€q;1)dc ¼ 0; (13)

where ½ _q; €q; 1) represent vector field _q @
@qþ €q @

@ _q þ
@
@t : The

non-canonical symplectic structure is

X ¼ d
@Lsd

@ _q
dq

$ %
; (14)

and the dynamical equation (13) is equivalent to

d

dt

AJ

xs

_AJ

_xs

2

66664

3

77775
¼ X"1

@

@AJ

@

@xs

@

@ _AJ

@

@ _xs

2

6666666666664

3

7777777777775

H: (15)

The corresponding non-canonical Poisson bracket is

F;Gf g ¼
@F

@AJ
;
@F

@xs
;
@F

@ _AJ

;
@F

@ _xs

' (
X"1 @G

@AJ
;
@G

@xs
;
@G

@ _AJ

;
@G

@ _xs

' (T

;

(16)

or more specifically

F;Gf g¼
1

DV

X

J

@F

@AJ
' @G
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" @F

@ _AJ

' @G

@AJ

$ %

þ
X

s

1
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@F

@xs
' @G

@ _xs
" @F

@ _xs
' @G

@xs

$ %
þ
X

s

qs

msDV

% @G

@ _xs
'
X

J

Wr1J xsð Þ
@F

@ _AJ

" @F

@ _xs
'
X

J

Wr1J xsð Þ
@G

@ _AJ

 !

"
X

s

X

J

qs

m2
s

@F

@ _xs
' r%Wr1J xsð ÞAJ
) *

% @G

@ _xs
: (17)

Now, we introduce two new variables EJ and BK , which
are the discrete electric field and magnetic field

EJ ¼ " _AJ; (18)

BK ¼
X

J

curldKJAJ: (19)

In terms of EJ and BK , the partial derivatives with respect to
AJ and _AJ are

@F

@AJ
¼
X

K

@F

@BK
curldKJ ; (20)

@F

@ _AJ

¼ " @F

@EJ
: (21)

Note that curldKJ in Eq. (20) is a matrix. Using Eq. (8), the
Poisson bracket in terms of EJ and BK can be written as

F;Gf g ¼
1

DV

X

J

@F

@EJ
'
X

K

@G

@BK
curldKJ

 

"
X

K

@F

@BK
curldKJ '

@G

@EJ

!

þ
X

s

1
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@F

@xs
' @G

@ _xs
" @F
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' @G
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$ %

þ
X

s

qs

msDV

@F

@ _xs
'
X

J

Wr1J xsð Þ
@G

@EJ

 

" @G

@ _xs
'
X

J

Wr1J xsð Þ
@F

@EJ

!

þ

"
X

s

qs

m2
s

@F

@ _xs
'
X

K

Wr2K xsð ÞBK

' (
% @G

@ _xs
; (22)

and the Hamiltonian is

H ¼ 1

2
DV
X

J

E2
J þ DV

X

K

B2
K þ

X

s

ms _x2
s

$ %
: (23)

The evolution equations is
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_F ¼ fF;Hg; (24)

where

F ¼ ½EJ;BK ; xs; _xs): (25)

This is a Hamiltonian system with a non-canonical sym-
plectic structure or Poisson bracket. In general, symplectic
integrators for non-canonical systems are difficult to con-
struct. However, using the splitting method discovered by
He et al.,11,12 we have found explicit high-order symplectic
algorithms for this Hamiltonian system that preserve its
non-canonical symplectic structure. We note that splitting
method had been applied to the Vlasov equation previously
without the context of symplectic structure.50 We split the
Hamiltonian in Eq. (23) into five parts

H ¼ HE þ HB þ Hx þ Hy þ Hz; (26)

HE ¼
1

2
DV
X

J

E2
J ; (27)

HB ¼
1

2
DV
X

K

B2
K; (28)

Hr ¼
1

2

X

s

ms _r2
s ; for r in x; y; z: (29)

It turns out that the sub-system generated by each part can
be solved exactly, and high-order symplectic algorithms
follow by combination. The evolution equation for HE is
_F ¼ fF;HEg, which can be written as

_EJ ¼ 0; (30)

_BK ¼ "
X

J

curldKJEJ; (31)

_xs ¼ 0; (32)

€xs ¼
qs

ms

X

J

Wr1J xsð ÞEJ: (33)

The exact solution HEðDtÞ for any time step Dt is

EJðtþ DtÞ ¼ EJðtÞ; (34)

BKðtþ DtÞ ¼ BKðtÞ " Dt
X

J

curldKJEJðtÞ; (35)

xsðtþ DtÞ ¼ xsðtÞ; (36)

_xs tþ Dtð Þ ¼ _xs tð Þ þ qs

ms
Dt
X

J

Wr1J xs tð Þð ÞEJ tð Þ: (37)

The evolution equation for HB is _F ¼ fF;HBg, or

_EJ ¼
X

K

curldKJBK; (38)

_BK ¼ 0; (39)

_xs ¼ 0; (40)

€xs ¼ 0; (41)

whose exact solution HBðDtÞ is

EJðtþ DtÞ ¼ EJðtÞ þ Dt
X

K

curldKJBKðtÞ; (42)

BKðtþ DtÞ ¼ BKðtÞ; (43)

xsðtþ DtÞ ¼ xsðtÞ; (44)

_xsðtþ DtÞ ¼ _xsðtÞ: (45)

The evolution equation for Hx is _F ¼ fF;Hxg, or

_EJ ¼ "
X

s

qs

DV
_xsexWr1J xsð Þ; (46)

_BK ¼ 0; (47)

_xs ¼ _xsex; (48)

€xs ¼ _xsex %
X

K

Wr2K ðxsÞBK: (49)

The exact solution HxðDtÞ of this sub-system can also be
computed as

EJ tþ Dtð Þ ¼EJ tð Þ

"
ðDt

0

dt0
X

s

qs

DV
_xs tð ÞexWr1J xs tð Þ þ _xs tð Þt0ex

" #
;

(50)

BKðtþ DtÞ ¼ BKðtÞ; (51)

xsðtþ DtÞ ¼ xsðtÞ þ Dt _xsðtÞex; (52)

_xsðtþ DtÞ ¼ _xsðtÞ þ _xsðtÞex

%
ðDt

0

dt0
X

K

Wr2KðxsðtÞ þ _xsðtÞt0exÞBKðtÞ: (53)

Exact solutions HyðDtÞ and HzðDtÞ for sub-systems corre-
sponding to Hy and Hz are obtained in a similar manner.
These exact solutions for sub-systems are then combined to
construct symplectic integrators for the original non-
canonical Hamiltonian system specified by Eqs. (22) and
(23). For example, a first order scheme can be constructed as

H1ðDtÞ ¼ HEðDtÞHBðDtÞHxðDtÞHyðDtÞHzðDtÞ; (54)

and a second order symmetric scheme is

H2ðDtÞ ¼ HxðDt=2ÞHyðDt=2ÞHzðDt=2ÞHBðDt=2ÞHEðDtÞ

HBðDt=2ÞHzðDt=2ÞHyðDt=2ÞHxðDt=2Þ: (55)

An algorithm with order 2ðlþ 1Þ can be constructed in the
following way:

H2ðlþ1ÞðDtÞ ¼ H2lðalDtÞH2lðblDtÞH2lðalDtÞ; (56)

al ¼ 1=ð2" 21=ð2lþ1ÞÞ; (57)

bl ¼ 1" 2al: (58)

III. NUMERICAL EXAMPLES

We have implemented the second-order non-canonical
symplectic PIC algorithm described above using the C
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programming language. The code is parallelized using MPI
and OpenMP. To test the algorithm, two physics problems
are simulated. The first problem is the nonlinear Landau
damping of an electrostatic wave in a hot plasma, which has
been investigated theoretically51–53 and numerically.17,54,55

The density of electron ne is 1:2116% 1016m"3, and the elec-
tron velocity is Maxwellian distributed with thermal speed
vT ¼ 0:1c, where c is the speed of light in vacuum. The com-
putation is carried out in a 672% 1% 1 cubic mesh, and the
size of each grid cell is Dl ¼ 2:4355% 10"4m. There is no
external electromagnetic field, and there are 40 000 sample
particles in each cell when unperturbed. The initial electric
field is E1 ¼ E1 cos ðkxÞex, where k ¼ 2p=224Dl is the wave
number, and the amplitude is E1 ¼ 36 kV/m. The simulation
is carried out for 15 000 time-steps, and the electric field is
recorded during the simulation. We plot the evolution of
electric field to observe the Landau damping phenomenon
(Figs. 1 and 2). The theoretical damping rate of electric field
is xi ¼ "1:3223% 109rad=s, and it is evident that the simu-
lation result agrees well with the theory.

Another test problem is the dispersion relation of elec-
tron Bernstein waves.56 In this problem, an electromagnetic
wave propagates perpendicularly to a uniform external mag-
netic field B0 ¼ B0ez with B0 ¼ 5:13 T. Other system param-
eters are

ne ¼ 2:4% 1020m–3; (59)

vT ¼ 0:07c; (60)

Dl ¼ 2:5% 10"5m; (61)

Dt ¼ Dl

2c
: (62)

The computation domain is a 768% 1% 1 cubic mesh, and
the averaged number of sample points per grid is 4000. An
initial electromagnetic perturbation is imposed, and after
simulating 6000 time steps, the space-time spectrum of Ex is
plotted in Fig. 3, which shows that the dispersion relation
simulated matches the theoretical curve perfectly.

As a symplectic method, the non-canonical symplectic
PIC algorithm is expected to have good long-term properties.
To demonstrate that, we run another test, where the system pa-
rameters are same as the previous problem for the Bernstein
wave, except that the number of sample particles is 40 per grid
and the simulation domain is a 48% 1% 1 cubic mesh. Both
the second and the first order split methods are tested. The sim-
ulation is run for 2.5 % 106 time-steps, and the evolution of
total energy errors is plotted in Fig. 4. It is clear that the energy
errors are bounded within a small value during the entire long-
term simulation for both split methods, and the second order
method is more accurate than the first order method.

IV. SUMMARY AND DISCUSSION

We have developed and tested a non-canonical symplec-
tic PIC algorithm for the VM system. The non-canonical
symplectic structure is obtained by discretizing the electro-
magnetic field of the particle-field Lagrangian using the
method of discrete exterior calculus. A high-order interpolat-
ing method for differential forms is developed to render

FIG. 1. The time evolution of an electrostatic wave in a hot plasma.

FIG. 2. Logarithmic plot of the time evolution of the absolute value of the
electric field. The slope of the solid green line is the theoretical damping rate.

FIG. 3. The dispersion relation of electron Bernstein wave (contours)
obtained by the non-canonical symplectic PIC method. The red dots are cal-
culated from the analytical dispersion relation.
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smooth interpolations of the electromagnetic field. The effec-
tiveness and conservative nature of the algorithm has been
verified by the physics problems of nonlinear Landau damp-
ing and electron Bernstein wave.

ACKNOWLEDGMENTS

This research was supported by ITER-China Program
(2015GB111003, 2014GB124005, and 2013GB111000),
JSPS-NRF-NSFC A3 Foresight Program in the field of
Plasma Physics (NSFC-11261140328), the National Science
Foundation of China (11575186, 11575185, 11505185, and
11505186), the CAS Program for Interdisciplinary
Collaboration Team, the Geo-Algorithmic Plasma Simulator
(GAPS) Project, and the U.S. Department of Energy (DE-
AC02-09CH11466).

APPENDIX: HIGH ORDER INTERPOLATION FORMS
FOR A CUBIC MESH

The interpolation forms for a cubic mesh is inspired by
the Whitney forms,45 which were originally developed as the
first order interpolation forms over simplicial complex and

has become an important tool in DEC.43,45,57 In DEC theory,
the discrete forms are defined on chains.43 For example, the
discrete 0-forms are defined on vertexes of the grid, the dis-
crete 1-forms are defined on edges, and the discrete differen-
tial operators such as rd and curld are discrete exterior
derivatives dd acted on these discrete forms. The Whitney
map /W is a map that allows us to define continuous forms
based on these discrete forms.43 With this map, the following
relation holds for any discrete form a:

/Wdda ¼ d/Wa; (A1)

where d is the continuous exterior derivative.
DEC solvers for Maxwell equations in cubic meshes are

given by Stern et al.44 For our purpose, we need to construct
appropriate discrete differential operators rd, curld; divd, as
well as interpolation functions Wr0I ðxÞ, Wr1J ðxÞ; Wr2K ðxÞ,
and Wr3LðxÞ in a cubic mesh such that

r
X

I

Wr0IðxÞ/I ¼
X

I;J

Wr1J ðxÞrdJI/I; (A2)

r%
X

J

Wr1J ðxÞAJ ¼
X

J;K

Wr2K ðxÞcurldKJAJ; (A3)

r '
X

K

Wr2K ðxÞBK ¼
X

K;L

Wr3LðxÞdivdLKBK ; (A4)

hold for any /I; AJ , and BK .
To accomplish this goal, we start from choosing an

interpolation function Wr0I ðxÞ ¼ Wr0
ðx" xIÞ for 0-forms

(e.g., scalar potential) as follows:

Wr0
ðxÞ ¼ W1ðxÞW1ðyÞW1ðzÞ; (A5)

where xI is the coordinate of the I-th grid vertex and the cell
size is chosen to be 1 for simplicity. It is required that W1ðxÞ
satisfies the following conditions:

W1ðxÞ ¼ 0; if jxj >¼ 1; (A6)

W1ðxÞ þW1ðx" 1Þ ¼ 1; if 0 * x < 1: (A7)

For example, W1 can be chosen to be piece-wise linear over
one grid cell, i.e.,

W1ðxÞ ¼
0; jxj + 1 ;

1" jxj; jxj < 1 :

(

(A8)

For x, y, and z in ½i0; i0 þ 1); ½j0; j0 þ 1); ½k0; k0 þ 1), the x com-
ponent of the left hand side of Eq. (A2) Tx is

Tx ¼
X

i2fi0;i0þ1g;j2fj0;j0þ1g;k2fk0;k0þ1g
/i;j;kW01ðx" iÞ

%W1ðy" jÞW1ðz" kÞ;
¼

X

j2fj0;j0þ1g;k2fk0;k0þ1g
ð/i0;j;kW01ðx" i0Þ þ /i0þ1;j;k

%W01ðx" i0 " 1ÞÞW1ðy" jÞW1ðz" kÞ;
¼

X

j2fj0;j0þ1g;k2fk0;k0þ1g
ð/i0;j;k " /i0þ1;j;kÞW01ðx" i0Þ

%W1ðy" jÞW1ðz" kÞ :

(A9)

FIG. 4. Total energy error as a function of time for a magnetized hot plasma
obtained by the second (a) and the first (b) order non-canonical symplectic
PIC method. Both energy errors are bounded within a small value.
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The y and z components can be also deduced in the similar
way

Ty ¼
X

i2fi0;i0þ1g;k2fk0;k0þ1g
ð/i;j0;k " /i;j0þ1;kÞW1ðx" iÞ

%W01ðy" j0ÞW1ðz" kÞ; (A10)

Tz ¼
X

i2fi0;i0þ1g;j2fj0;j0þ1g
ð/i;j;k0 " /i;j;k0þ1ÞW1ðx" iÞ

%W1ðy" jÞW01ðz" k0Þ: (A11)

Equations (A9)–(A11) indicate that W01ðx" iÞW1ðy" jÞ
W1ðz" kÞdx, W1ðx" iÞW01ðy" jÞW1ðz" kÞdy, and W1ðx" iÞ
W1ðy" jÞW01ðz" kÞdz can be viewed as the bases for 1-form
interpolation map, and that the discrete gradient operator rd

can be defined as linear operator on /I as

ðrd/Þi;j;k ¼ ½/iþ1;j;k " /i;j;k;/i;jþ1;k " /i;j;k;/i;j;kþ1 " /i;j;k):
(A12)

For a given discrete 1-form field AI, the interpolated 1-form
field is

X

i;j;k

½Axi;j;kWð1Þ1 ðx" iÞW1ðy" jÞW1ðz" kÞdx

þAyi;j;kW1ðx" iÞWð1Þ1 ðy" jÞW1ðz" kÞdy

þAzi;j;kW1ðx" iÞW1ðy" jÞWð1Þ1 ðz" kÞdz); (A13)

where

Wð1Þ1 ðxÞ ¼
"W01ðxÞ; 0 * x < 1
0; otherwise

+
(A14)

is the one-cell interpolation function. The components of this
interpolated 1-form field are written as

X

i;j;k

Wr1;i;j;kðxÞAi;j;k

,
X

i;j;k

Axi;j;kWð1Þ1 ðx" iÞW1ðy" jÞW1ðz" kÞ

Ayi;j;kW1ðx" iÞWð1Þ1 ðy" jÞW1ðz" kÞ

Azi;j;kW1ðx" iÞW1ðy" jÞWð1Þ1 ðz" kÞ

2

66664

3

77775

T

:

(A15)

By the same procedure, we find that the discrete differ-
ential operators curld and divd should be defined as

curldAð Þi;j;k ¼
Azi;jþ1;k " Azi;j;kð Þ " Ayi;j;kþ1 " Ayi;j;kð Þ
Axi;j;kþ1 " Axi;j;kð Þ " Aziþ1;j;k " Azi;j;kð Þ
Ayiþ1;j;k " Ayi;j;kð Þ " Axi;jþ1;k " Axi;j;kð Þ

2

64

3

75

T

;

(A16)

ðdivdBÞi;j;k ¼ ½ðBxiþ1;j;k " Bxi;j;kÞ þ ðByi;jþ1;k " Byi;j;kÞ

þ ðBzi;j;kþ1 " Bzi;j;kÞ): (A17)

For a given discrete 2-form field BI, the interpolated 2-
form field is

X

i;j;k

½Bxi;j;kW1ðx" iÞWð1Þ1 ðy" jÞWð1Þ1 ðz" kÞdy ! dz

þByi;j;kWð1Þ1 ðx" iÞW1ðy" jÞWð1Þ1 ðz" kÞdz ! dx

þBzi;j;kWð1Þ1 ðx" iÞWð1Þ1 ðy" jÞW1ðz" kÞdx ! dy); (A18)

whose components can be written as

X

i;j;k

Wr2;i;j;kðxÞBi;j;k

,
X

i;j;k

Bxi;j;kW1ðx" iÞWð1Þ1 ðy" jÞWð1Þ1 ðz" kÞ

Byi;j;kWð1Þ1 ðx" iÞW1ðy" jÞWð1Þ1 ðz" kÞ

Bzi;j;kWð1Þ1 ðx" iÞWð1Þ1 ðy" jÞW1ðz" kÞ

2

6664

3

7775

T

:

(A19)

For a discrete 3-form field qI, the interpolated 3-form
field is

X

i;j;k

qi;j;kWð1Þ1 ðx" iÞWð1Þ1 ðy" jÞWð1Þ1 ðz" kÞdx!dy!dz; (A20)

and the corresponding scalar is denoted as

X

i;j;k

Wr3;i;j;kðxÞqi;j;k,
X

i;j;k

qi;j;kWð1Þ1 ðx" iÞWð1Þ1 ðy" jÞWð1Þ1 ðz"kÞ:

(A21)

We can verify that

ðcurldrd/Þi;j;k ¼ 0; for any i; j; k and /; (A22)

ðdivdcurldAÞi;j;k ¼ 0; for any i; j; k and A: (A23)

In Ref. 44, the discrete electromagnetic fields in cubic
mesh seem different from ours on first look. But the differ-
ence is merely in the notation for indices. For example, for
the discrete 1-form, we can alternatively use half-integer
indices to rewrite Eq. (A12) as

½ðrd/Þxiþ1=2;j;k; ðrd/Þyi;jþ1=2;k; ðrd/Þzi;j;kþ1=2)
¼ ½/iþ1;j;k " /i;j;k;/i;jþ1;k " /i;j;k;/i;j;kþ1 " /i;j;k) ; (A24)

which is then identical with the notation in Ref. 44.
The above interpolation forms are defined over one grid

cell. For the simulations reported here, in order to achieve
higher accuracy, we have developed and deployed high-
order interpolation forms over two grid cells. The interpola-
tion 0-forms are

Wr0
ðxÞ ¼ W1ðxÞW1ðyÞW1ðzÞ; (A25)

where W1ðxÞ satisfies

W1ðxÞ ¼ 0; if jxj >¼ 2; (A26)

W1ðxþ 1Þ þW1ðxÞ þW1ðx" 1Þ þW1ðx" 2Þ ¼ 1;

if 0 * x < 1: (A27)

The W1 adopted in the algorithm is
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W1 xð Þ ¼

0 ; x > 2 ;
15

1024
x8 " 15

128
x7 þ 49

128
x6 " 21

35
x5 þ 35

64
x4 " xþ 1 ; 1 < x * 2 ;

" 15

1024
x8 " 15

128
x7 þ 7

16
x6 " 21

35
x5 þ 175

256
x4 " 105

128
x2 þ 337

512
; 0 < x * 1 ;

" 15

1024
x8 þ 15

128
x7 þ 7

16
x6 þ 21

35
x5 þ 175

256
x4 " 105

128
x2 þ 337

512
; "1 < x * 0 ;

15

1024
x8 þ 15

128
x7 þ 49

128
x6 þ 21

35
x5 þ 35

64
x4 " xþ 1 ; "2 < x * "1 ;

0 ; x * "2 :

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

(A28)

It can be proved that this piece-wise polynomial function is
3rd order continuous in the whole space. For this two-cell
interpolation scheme, the rd defined in Eq. (A12), curld
defined in Eq. (A16), and divd defined in Eq. (A17) remain
the same, but the function Wð1Þ1 in Eqs. (A13), (A15), and
(A18)–(A21) needs to be replaced by the Wð2Þ1 function
defined as

Wð2Þ1 ðxÞ ¼"
W01ðxÞþW01ðxþ 1ÞþW01ðxþ 2Þ ; "1* x< 2 ;

0 ; otherwise:

(

(A29)

It can be proved that Eqs. (A2)–(A4), (A22), and (A23) hold
for this two-cell interpolation scheme.
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