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Abstract

The Paul Trap Simulator Experiment (PTSX) is a compact laboratory device that simulates

the nonlinear dynamics of intense charged particle beams propagating over a large distance

in an alternating-gradient magnetic transport system. The radial quadrupole electric field

forces on the charged particles in the Paul Trap are analogous to the radial forces on the

charged particles in the quadrupole magnetic transport system. The amplitude of oscillat-

ing voltage applied to the cylindrical electrodes in PTSX is equivalent to the quadrupole

magnetic field gradient in accelerators. The temporal periodicity in PTSX corresponds to

the spatial periodicity in magnetic transport system. This thesis focuses on investigations

of envelope instabilities and collective mode excitations, properties of high-intensity beams

with significant space-charge effects, random noise-induced beam degradation and a laser-

induced-fluorescence diagnostic.

To better understand the nonlinear dynamics of the charged particle beams, it is critical

to understand the collective processes of the charged particles. Charged particle beams

support a variety of collective modes, among which the quadrupole mode and the dipole

mode are of the greatest interest. We used quadrupole and dipole perturbations to excite the

quadrupole and dipole mode respectively and study the effects of those collective modes on

the charge bunch. The experimental and particle-in-cell (PIC) simulation results both show

that when the frequency and the spatial structure of the external perturbation are matched

with the corresponding collective mode, that mode will be excited to a large amplitude and

resonates strongly with the external perturbation, usually causing expansion of the charge

bunch and loss of particles. Machine imperfections are inevitable for accelerator systems, and

we use random noise to simulate the effects of machine imperfection on the charged particle

beams. The random noise can be Fourier decomposed into various frequency components

and experimental results show that when the random noise has a large frequency component

that matches a certain collective mode, the mode will also be excited and cause heating

of the charge bunch. It is also noted that by rearranging the order of the random noise,
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the adverse effects of the random noise may be eliminated. As a non-destructive diagnostic

method, a laser-induced-fluorescence (LIF) diagnostic is developed to study the transverse

dynamics of the charged particle beams. The accompanying barium ion source and dye laser

system are developed and tested.
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Chapter 1

Introduction

An improved understanding the dynamics of intense charged particle beams would have a

great impact on the design and stable operation of the next-generation of high-intensity accel-

erators and beam transport systems [1]. In this thesis, the Paul Trap Simulator Experiment

(PTSX) is used to experimentally study charged particle beams with strong space-charge

fields [2–12]. The PTSX apparatus is a cylindrical compact Paul trap [13] used to simulate

the transverse dynamics of intense charged particle beams in alternating-gradient transport

systems [14] based on the analogy between intense charged particle beams propagating in

the magnetic transport system and the nonneutral plasma confined in the Paul trap config-

uration [15]. The PTSX device consists of one two-meter long central cylindrical electrode

and two short 40-cm long cylindrical electrodes at each end of the central electrode. Each

cylinder is sliced into four azimuthal 90◦ sectors. The charge bunch is confined transversely

by applying oscillating voltage ±V (t) on the central electrodes. A DC positive bias voltage,

+V̂ , applied to the short electrodes, confines the charge bunch axially.
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1.1 Nonneutral Plasma VS. Intense Charged Particle

Beams

1.1.1 Nonneutral Plasma

A nonneutral plasma is a many-body collection of charged particles in which there is not

overall charge neutrality [16]. Like electrically neutral plasmas [17–25], nonneutral plasmas

shield electric fields on a scale of the Debye length (Debye shielding) [18] and support various

collective motions of the charged particles such as plasma oscillations, plasma waves, and

instabilities [12]. However, there are inherent differences between electrically neutral plas-

mas and nonneutral plasmas. Nonneutral plasmas are characterized by intense self-electric

fields, and, in high-current configurations, by intense self-magnetic fields [16]. Moreover, the

intense self fields in a nonneutral plasma can have a large influence on detailed plasma behav-

ior and stability properties [16]. Experimental studies of the basic equilibrium and stability

properties of nonneutral plasmas have ranged from investigations of plasma waves in a pure

electron plasma [26], to studies of plasma waves in a pure ion plasma column [27], to the

identification of collective modes in a two-dimensional, nonneutral ion layer confined below

a liquid-helium suface [28,29], to observations of the transport of magnetically confined pure

electron plasmas to global thermal equilibrium [30], to mention a few examples. Experi-

mental devices for the study of nonneutral plasmas include Malmberg-Penning traps [26,31]

for investigation of basic plasma properties (e.g. precision measurement of the magnetic

moment of the antiproton), and Paul Traps which can be used as a mass spectrometer, and

can be utilized to trap antimatter such positrons and antiprotons for the basic atomic and

molecular physics and gamma-ray astronomy [32].

Theoretical studies of the basic equilibrium, stability and transport properties of non-

neutral plasmas have ranged from analytical investigations of the influence of intense self

fields on the filamentation instability [33], to development of a confinement theorem for a

low-density nonneutral plasma column [34], to quasilinear studies of the nonlinear evolution

2



of the diocotron instability for multimode excitation in a nonneutral electron layer [35], to

determination of the influence of intense self fields on the cyclotron maser instability in a

relativistic, nonneutral electron beam [36].

1.1.2 Intense Charged Particle Beams

A charged particle beam is defined as a many-body collection of charged particles propa-

gating in nearly same direction with nearly the same speed [1,37]. A charged particle beam

propagating in a periodic alternating-gradient magnetic transport system has a wide range

of applications such as basic scientific research in high energy and nuclear physics, heavy ion

fusion, spallation neutron sources, tritium production, nuclear waste treatment, and high-

gain X-ray free electron lasers [1,38–40]. Of particular importance, for purpose of designing

high intensity charged particles beams for the present and the next-generation accelerators

and transport systems, are the effects of strong self fields produced by the beam space charge

and current on determining the detailed equilibrium, stability and transport properties, and

the nonlinear dynamics of the system [1]. Both intense charged particle beams and nonneu-

tral plasmas [16] exhibit a broad range of collective phenomena, such as plasma waves and

instabilities.

Many theoretical models have been developed to improve the theoretical understand-

ing collective processes that affect intense beam propagation through periodic focusing sys-

tems [41–50]. One important statistical framework for describing the intense beam prop-

agation is based on the nonlinear Vlasov-Maxwell equation. This kinetic model describes

the self-consistent nonlinear evolution of the beam distribution function fb(x,p, t) in the

six-dimensional phase space (x,p) as the beam particles interact with the focusing field and

the self-generated electric and magnetic fields, Es(x, t) and Bs(x, t), produced by the beam

space charge and current. Through analytical studies based on the nonlinear Vlasov-Maxwell

equations [51–56], and numerical simulations using particle-in-cell (PIC) models and nonlin-

ear perturbative simulations techniques (e.g. 3D Warp code) [57–61], considerable progress
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has been made in developing an improved understanding of the collective progresses and

nonlinear beam dynamics of high-intensity beam propagation in periodic and uniform focus-

ing systems. The nonlinear Vlasov-Maxwell framework constitutes a complete theoretical

description of the nonlinear dynamics and collective processes in intense charged particle

beams, and is extremely useful in describing phenomena depending on detailed properties of

fb(x,p, t).

Another important theoretical framework, based on the macroscopic fluid-Maxwell

equations [15, 33, 62–65], has been developed over the last few decades, and it is usu-

ally applied to investigate collective oscillations and instabilities driven by pressure

anisotropy. Such a macroscopic model treats the charged particle beams as a fluid,

and follows the nonlinear evolution of the macroscopic beam properties including the

number density of beam particles, nb(x, t) =
∫
d3pfb(x,p, t), and the average flow ve-

locity, Vb(x, t) =
(∫

d3pfb
)−1 ∫

d3pvfb(x,p, t), where v = p/γmb is the velocity and

γ = (1 + p2/m2
bc

2)
1/2

is the relativistic mass factor. The effects of heat flow are generally

neglected to achieve the closure of the coupled fluid equations. Compared to the kinetic

model, the macroscopic model is simpler but contains less information, such as detailed in-

formation regarding the beam distribution function in phase space. However, a macroscopic

fluid model proves useful in providing insights into collective processes occurring in intense

charged particle beams.

1.1.3 Analogy Between Nonneutral Plasmas and Charged Particle

Beams

The physics of charged particle beams is analogous to the physics of nonneutral plasmas,

since in the reference frame of the charged particle beams, a charged particle beam can be

considered as a nonneutral plasma. They both exhibit a broad range of collective phenom-

ena, such as plasma waves and instabilities. The study of intense charged particle beams

includes using many theoretical models and techniques developed for investigation of noneu-
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tral plasmas [1]. By comparing the Hamiltonians for the transverse particle motion in both

charged particle beams and nonneutral plasmas, R. C. Davidson et al. have shown that

the transverse dynamics of an intense charged particle beam propagating through a periodic

focusing qudrupole magnetic field (see Sec. 2.2.1) is fully equivalent to the transverse dy-

namics of a nonneutral plasma trapped in an oscillating quadrupole electric field [15], such

as a pure ion plasma trapped in the a linear Paul Trap (see Sec. 2.2.2). An alternative

method of showing the equivalence of the charged particle beams and nonneutral plasmas

using Lorentz transformation is discussed in detail in Sec. 2.2.

1.2 Thesis Motivation

Intense charged particle beams propagating through a periodic magnetic transport system

have a wide range of applications from basics scientific research in high energy physics and

nuclear physics to heavy ion fusion, spallation neutron sources, tritium production, nuclear

waste treatment, and high-gain X-ray free electron lasers. Over the last two decades, high

intensity charged particle beams have been used extensively in both scientific research and

industrial applications [1, 37–40, 66–69]. For example, the Large Hadron Collider (LHC),

the world’s largest and most powerful particle accelerator, consists of a 27-kilometer circum-

ference ring of superconducting magnets with a number of accelerating structures to boost

the energy of the particles. Thousands of magnets of different varieties and sizes are used

to direct beams around the accelerator. For these 7 TeV beams, it is critical to have a

thorough understanding of the equilibrium, instability and other collective properties of in-

tense charged particle beams propagating long distances with the presence of self-generated

electric and magnetic fields. Through analytical investigations based on Vlasov-Maxwell

equations and fluid-Maxwell equations, numerical simulations using particle-in-cell (PIC)

models and nonlinear perturbative simulation techniques, advanced beam instrumentations

and diagnostics [70,71], considerable progress has been made in improving the understanding
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of the collective process and the nonlinear beam dynamics of the charged particle beams.

However, due to the lack of experimental devices dedicated to fundamental beam property

studies, those theoretical and simulation results are hard to verify in order to apply them to

the design of new accelerators with confidence. There are also many limitations for existing

accelerators and in terms of high operating cost, limited beam time and beam parameter

range. An alternative effective method to study the charged particle beam properties is

urgently needed.

Over the last few decades, some well known devices have been developed to study the

fundamental beam properties in general, or for specific beam applications. These include

the University Maryland Electron Ring (UMER) [72], the Spallation Neutron Source (SNS)

at Oakridge National Laboratory, Neutralized Drift Compression Experiment (NDCX) at

Lawrence Berkeley National Laboratory [73], and the Paul Trap Simulator Experiment

(PTSX) at the Princeton Plasma Physics Laboratory [14]. UMER and PTSX provide re-

search opportunities for fundamental studies of collective processes on long time scales such

as beam mismatch, beam halo formation, and emittance growth. SNS is a user facility focus-

ing on the beam application. UMER, SNS, and NDCX are all laboratory-frame experiments,

while PTSX is a beam-frame experiment based on the equivalence between an charged par-

ticle beam and a trapped nonneutral pure ion plasma. The following section will present

some highlights of each experiment.

1.3 Overview of Intense Beam Experiments

1.3.1 University of Maryland Electron Ring (UMER)

The University of Maryland Electron Ring (UMER) is a low-energy, high current recircu-

lator for beam physics research [72] using nonrelativistic (∼10 keV) electron beam created

within a Pierce-type thermionic gun. Beams with a broad range of intensities and initial

conditions circulate many times around the ring. UMER is an extremely versatile platform
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with a beam current of up to 100 mA and a pulse length as long as 100 ns. The beam current

profiles are adjustable in both space and time. Intercepting and nonintercepting diagnostic

equipment is in position, every 20◦ of the ring, which allows time-resolved measurements of

position, beam current density, and emittance. The UMER electron beam is created with

a Pierce-type thermionic gun. The total current may be adjusted by the use of apertures

placed in a rotating wheel adjacent to the anode. The beam shape, quality and duration

may be modified via the gun electronics, i.e., the applied high-voltage pulse or grid bias.

Custom beam current density profiles can be easily created, and each of these custom beams

requires its own matching and steering solution. The beam is controlled in the recirculating

ring with a regular lattice of 35 dipole and 72 quadrupole magnets mounted as shown in Fig.

1.1. Fourteen ring chambers are mounted in UMER. Four quadrupoles (Q), equivalent to

two focusing/defocusing (FODO) periods, and two dipoles (D) are on each chamber. Thus,

there are 36 full FODO quadruple lattice periods in total. Each dipole provides a nominal

10◦ of bend to keep the beam traveling around the ring. The quadrupole magnets are wired

to allow independent control of any of the four individual magnetic pole faces for scanning

purposes. In addition, Helmholtz coils have been mounted on each ring chamber to cancel the

horizontal component of the earth’s magnetic field. Additionally, the conventional measure

of the space charge effect on the beam, the normalized intensity χ (or equivalently ŝ defined

in the next section), which is the ratio of the space-charge force to the external focusing

force, introduced in [38], varies from 0.2 to 0.9 for UMER, which covers the range from the

emittance-dominated regime to the space-charge-dominated regime. It is noted that χ ranges

from 0 to 1, with 0 corresponding to emittance-dominated regime and 1 corresponding to

space-charge-dominated regime. Research topics investigated on UMER include transverse

beam dynamics (matching, halo formation, strongly asymmetric beams, space-charge waves,

etc.), longitudinal dynamics (bunch capture/shaping, evolution of energy spread, longitu-

dinal space-charge waves, etc.), beam diagnostics development, and computer simulation

benchmarking and refinement. Modeling of heavy-ion-fusion (HIF-relevant longitudinal dy-
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Figure 1.1: An electron beam is injected into the 36-FODO lattice circulation ring of UMER.

namics was carried out in UMER and the results have shown that the longitudinal self-fields

in these intense beams are continually evolving. A particle-in-cell (PIC) simulation code has

shown excellent agreement [74] with experimental measurements and allows them to develop

the necessary experimental hardware needed to generate waveforms to longitudinally shape

real beams [75–77]. The first experimental observation of soliton wave trains on an electron

beam resulting from deliberately introducing large-amplitude density perturbations has also

been reported [78].

1.3.2 Spallation Neutron Source (SNS)

The Spallation Neutron Source (SNS) is a one-of-a-kind research facility that provides the

most intense pulsed neutron beams in the world for scientific research and industrial de-

velopment. SNS produces neutrons with an accelerator-based system that delivers short

(microsecond) proton pulses to a target/moderator system, where neutrons are produced by
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a process called spallation. With its more intense, brighter source of neutrons and world-

class instrumentation, SNS provides the neutron scattering community with unprecedented

research opportunities. SNS allows for measurements of greater sensitivity, higher speed,

higher resolution, and in more complex sample environments than have been possible at

other neutron facilities. The SNS consists of an ion source, a linear accelerator, a proton

accumulator ring, target and instrument stations shown in Fig. 1.2. The ion source pro-

duces negative hydrogen (H−) ions that are formed into a pulse beam and accelerated to

an energy of 2.5 MeV, then delivered to a large linear accelerator. The linear accelerator

accelerates the H− beam from 2.5 MeV to 1000 MeV by a series of normal-conducting and

superconducting radio-frequency cavities that accelerate the beam and a magnetic lattice

that provides focusing and steering. Diagnostic elements provide information about the

beam current, shape and timing, as well as other information necessary to ensure that the

beam is suitable for injection into the accumulator ring and to allow the high-power beam

to be controlled safely. The accumulator ring structure bunches and intensifies the ion beam

for delivery onto a mercury target to produce the pulsed neutron beams. Inside the target

vessel, when a high-energy proton hits the nucleus of a mercury atom, 20 to 30 neutrons are

“spalled” or thrown off. Those neutrons are guided out of the target vessel into beam guides

that lead directly to instrument stations. The neutrons are slowed down by passing them

through cells filled with water or through containers of liquid hydrogen at a temperature of

20 K. The pulsed, moderated neutrons are guided through a beam tube to specially designed

instrument stations. The SNS has been used by researchers all over the world across a broad

range of disciplines, such as physics, chemistry, material science, and biology [79–81]. A bet-

ter understanding of the beam equilibrium and stability properties in the linear accelerator

has direct impact on the neutron source quality.
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Figure 1.2: Conceptual layout of the SNS facility. At full power, SNS will deliver 1.4 million
watts (1.4 MW) of beam power onto the target. SNS was designed from the start with the
flexibility to provide additional scientific output in the future by increasing the power output
to 3 MW and by the addition of a second target station.

1.3.3 Neutralized Drift Compression Experiment (NDCX-II)

The Neutralized Drift Compression Experiment (NDCX-II) is a new induction accelerator

facility designed to facilitate user experiments in high energy density laboratory physics, in-

tense beam physics, and materials processing and testing with intense, pulsed ion beams [82]

shown in Fig. 1.3. It is the successor of NDCX-I. For more information about NDCX-I, see

Roy et.al [83]. The injector, 27-cell solenoid transport lattice, induction accelerator mod-

ules and nonneutral pulse compression section produce space-charge-dominated Li+ beams

carrying 20-50 nC. These beams start as 133 kV pulsed, ∼ 1.0 microsecond (FWHM), 65-

mA beams from the injector, and are compressed to 20-30 ns with 0.75-1.3 A peak currents

and amplification factors of 10-20. The 27-cell beamline consists of 21 identical induction

cells and 6 diagnostic cells. Only 7 of the induction cells are active, with the remaining

inactive cells having only transport solenoids providing drift length for longitudinal com-

pression for those commissioning exercises. The 7 active induction cells function to impress
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Figure 1.3: Schematic of NDCX-II [84].

a time-varying energy (or velocity) ramp on the beam and, with the additional drift lengths

between them, to allow the beam to compress longitudinally with concurrent increase in the

peak current. During initial acceleration, the overall pulse length shortens to less than 70

nanoseconds. After further acceleration, the pulse enters a drift tube filled with plasma,

which neutralizes the mutually repulsive charge of the positive ions and allows the pulse the

compress, as its faster-moving tail closes the final distance to the head while focusing on

the target. This process of neutralized drift compression gives the machine its name. By

utilizing neutralized drift compression, the beam is optimized to deposit most of its energy in

the thin target, heating it rapidly to warm dense matter conditions. Recent experiments on

NDCX-II include examining the pulse length and peak fluence dependence on lattice defect

generation and recovery in single crystal silicon and metals, as well as utilizing a thin (1

µm) single crystal silicon (100) membrane to intercept the beam. The membrane thickness

is chosen to block the randomly scattered ions while allowing the channeled ion flux to pass.

See Schenkel et.al [82] for detailed discussion.
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1.3.4 Paul Trap Simulator Experiment (PTSX)

The Paul Trap Simulator Experiment (PTSX) at Princeton Plasma Physics Laboratory

(PPPL) is a compact linear Paul trap that simulates the collective processes and nonlinear

transverse dynamics of intense charged particle beams propagating through a periodic fo-

cusing quadrupole magnetic field shown in Fig. 1.4. The idea of using PTSX to study beam

dynamics was proposed by Davidson et al. [15]. The equivalence between charged particle

beams and pure ion plasmas confined in PTSX is discussed in detail in Chapter 2. Initial

experiments carried out by Gilson et al. have successfully demonstrated quiescent beam

propagation over equivalent distances of tens of kilometers, and accessing a wide operating

range with stable confinement of the charge bunch [14]. A radially scanned charge collector

was used to the measure the radial density profiles of the plasmas, and the experimental

results were in good agreement with a simple force balance model [1], for a wide range of

system parameters. Values of the normalized intensity parameter ŝ = ω2
p(0)/2ω2

q up to 0.8

were achieved, where ωp(r) is the local plasma frequency and ωq is the average smooth fo-

cusing frequency [1]. Like χ in UMER, the normalized intensity parameter ŝ indicates where

the beam is emittance dominated (ŝ � 1 ) or space-charge dominated (ŝ → 1). Details of

the PTSX configuration and the diagnostic tools will be discussed in Chapter 3.

1.4 Thesis Outline

This thesis focuses on the investigation of the transverse dynamics of the charged particle

beams. Chapter 2 presents the derivation of the Lorentz transformations of the external

focusing field and self-generated electric and magnetic fields by the charged particle beams

from the laboratory frame to the beam frame. The equivalence between the Paul trap

configuration and the charged particle beams is discussed in detail, including a discussion of

the limitations of the analogy. In support of the experimental data obtained from PTSX,

several beam dynamics models are presented. Single-particle orbits are first introduced, with
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Figure 1.4: The PTSX device consists of one 2m long central cylinder and two 40cm long
end cylinders.

a brief discussion of the smooth focusing model. To describe an ensemble of particles, the

envelope equations derived using the Kapchinskij-Vladimirskij (KV) distribution function

are presented. The beam equilibrium is presented in the smooth-focusing approximation,

and the corresponding global force balance equation is derived accordingly.

Chapter 3 gives a complete description of the PTSX apparatus. A detailed descrip-

tion of the PTSX electrodes, the cesium ion source, the vacuum system, and the electrode

control system is presented. The operation of the PTSX device is described, together with

the characteristic operating parameters. The cesium ion source which is used for most of

the experiments conducted in the PTSX device is described in detail. The design and the

data collecting mechanism of the radially scanning charge collector is presented. The charge

collector has successfully measured the radial charge density profiles with measurement res-
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olution as low as 1 fC range, which is sufficient enough to detect the formation of halo

particles. As a non-destructive diagnostic, the design of the laser-induced-fluorescence (LIF)

diagnostic is presented, as well as the development of the accompanying barium ion source.

Chapter 4 addresses the investigation of collective processes of charged particle beams

and their interaction with the external perturbations. The excitation of quadrupole and

dipole modes is studied experimentally and the experimental data are compared with

the particle-in-cell (PIC) simulation results and the theoretical results using the simple

Kapchinskij-Vladimirskij (KV) smoothing focusing model. It is demonstrated that, in order

to see a significant resonance effect, not only does the frequency of the external perturbation

need to match the mode frequency, but also the spatial structure of the external perturbation

must match the collective mode structure. The effects of machine imperfection such as

random noise are discussed extensively. It is shown that the random noise will cause beam

degradation in general, and some effective measures can be taken to prevent these negative

effects.

Chapter 5 presents the development of the laser-induced-fluorescence (LIF) diagnostic

and the accompanying new barium source. An overview of the LIF system is presented,

including the excimer and the dye laser system, the laser coupling and transmission system,

the barium ion source and the CCD camera system. It is demonstrated that the combination

of an excimer laser and a dye laser is able to provide the laser light for LIF measurements.

The design and the test of the barium ion source is discussed in detail. The initial test

results of the ion source have verified its ability to provide a stable and high-density pure ion

plasma. The test results of the laser system are presented, together with the initial results

on reconstructing the radial density profiles using the LIF diagnostics.

Chapter 6 summarizes the thesis work and proposes interesting topics for future re-

search.
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Chapter 2

Theoretical Background

2.1 Introduction

Periodic focusing transport systems have a wide range of applications ranging from basic

scientific research in high energy and nuclear physics to applications such as nuclear-waste

treatment, neutron spallation source, heavy ion fusion. Understanding the nonlinear dynam-

ics of the intense charged particle beams with strong space-charge effects is of great impor-

tance. Thanks to the equivalence of the transverse dynamics between the intense charged

particle beams in a periodic focusing transport system and the long thin non-neutral plasma

bunch in the Paul Trap Simulation Experiment (PTSX), we can use PTSX to study the

beam dynamics of the charged particle beams.

In Sec. 2.2, we present a brief discussion of the analogy of the transverse dynamics in

the periodic focusing transport system to that in PTSX from the perspective of a Lorentz

transformation. It is shown that when the laboratory reference frame is transferred to the

beam reference frame, the forms of the electromagnetic forces on the charged particles in the

periodic transport system are equivalent to those on the plasma bunch in PTSX. In Sec. 2.3,

the orbits of a single particle and the envelope equations are briefly reviewed. It is shown

that the single particle orbit can be seen as a combination of a slow smooth-focusing motion
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and a fast motion when the phase advance is small enough. Envelope equations are used to

describe the evolution of the transverse beam envelopes and they provide significant insights

in understanding the collective processes of the charged particle beams. Sec. 2.4 gives a

brief summary and discussion of this chapter.

2.2 Paul Trap Simulator Experiment (PTSX)

In this section, we present a concise theoretical description that illustrates the equivalence

between the Paul trap configuration and intense beam propagation through a periodic mag-

netic quadrupole focusing field.

2.2.1 Intense Charged Particle Beams

We consider an intense charged particle beam consisting of a single charge species propa-

gating in the z-direction with average axial velocity Vb = βbc through a periodic magnetic

quadrupole focusing field, and characteristic directed kinetic energy (γb− 1)mbc
2 in the lab-

oratory frame. Here mb is the rest mass of a beam particle, c is the speed of light in vacuo,

γb = (1− β2
b )
−1/2 is the relativistic mass factor.

Before we move on to discuss the physics of the intense charged particle beam and the

analogy between intense charged particle beams and nonneutral plasma in a Paul Trap

configuration, we briefly introduce the Lorentz transformations that relate the time and

space coordinates between the two different inertial reference frames.

Consider two inertial reference frames K and K ′ with a relative velocity Vb = βbc in the

z direction between them. The time and space coordinates of a point are (ct, x, y, z) and

(ct′, x′, y′, z′) in the frames K and K ′, respectively. Then, the time and space coordinates in

K ′ are related to those in K by [85]
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x′0 = γb(x0 − βbx3)

x′1 = x1

x′2 = x2

x′3 = γb(x3 − βbx0), (2.1)

where we have introduced the notation x0 = ct, x1 = x, x2 = y, x3 = z. If we define a Lorentz

transformation matrix A such that xα = Aαβxβ, the Lorentz transformation matrix A for a

specific transformation from frame K to K ′ is a 4× 4 matrix takes the following form:



γb 0 0 −γbβb

0 1 0 0

0 0 1 0

−γbβb 0 0 γb


(2.2)

The evolution of electromagnetic field is described by the Maxwell equations

∇ · E =
ρ

ε0

∇×B − 1

c2

∂E

∂t
= µ0J (2.3)

∇ ·B = 0

∇× E − ∂B

∂t
= 0 (2.4)
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If we define two 4-vectors Jα and Aα as

Jα = (cρ,J)

Aα = (
Φ

c
,A) (2.5)

where A is the vector potential while Φ is the scalar potential, the inhomogeneous Maxwell

equations Eq.(2.3) take on the covariant form [85],

∂αF
αβ =

4π

c
Jβ (2.6)

and the homogeneous Maxwell equations Eq.(2.4) can be written as

∂αFαβ = 0 (2.7)

where Fαβ and Fαβ are the elements of a second-rank, antisymmetric field-strength tensor

and a dual field-strength tensor, respectively. Fαβ is defined as

Fαβ = ∂αAβ − ∂βAα (2.8)

where ∂α = (∂/∂x0,−∇) and Fαβ is defined as

Fαβ =
1

2
εαβγδFγδ (2.9)

where εαβγδ is the Levi-Civita symbol and Fαβ = gαγF
γδgδβ. The matric tensor gαβ is a

square 4× 4 matrix

g =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(2.10)
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Therefore, Fαβ in matrix form is

Fαβ =



0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0


(2.11)

and Fαβ in matrix form is

Fαβ =



0 −Bx/c −By/c −Bz/c

Bx/c 0 Ez −Ey

By/c −Ez 0 Ex

Bz/c Ey −Ex 0


(2.12)

Since the fields E and B are the elements of a second-rank tensor Fαβ, their values in one

inertial frame can be expressed in terms of the values in another inertial frame K ′ according

to

F ′αβ =
∂x′α

∂xγ
Fγδ

∂x′β

∂xδ
(2.13)

In a matrix notation, the above equation can be written

F′ = A F AT (2.14)

where F and F′ are 4× 4 matrices(2.11) and A is the Lorentz transformation matrix of.

AT is the transpose of A. For the specific Lorentz transformation( 2.2), corresponding to a

boost along the z axis with speed cβb from the unprimed frame to the primed frame, the

explicit transformation equations are
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E ′1 = γ (E1 − βcB2) B′1 = γ

(
B1 +

β

c
E2

)
E ′2 = γ (E2 − βcB1) B′2 = γ

(
B2 +

β

c
E1

)
(2.15)

E ′3 = E3 B′3 = B3

(2.16)

Now consider the electric and magnetic fields of an intense charged particle beam prop-

agating in the z-direction with average axial velocity Vb = βbc through a periodic magnetic

quadrupole focusing field. We assume a thin beam with a, b� S, where S is the axial peri-

odicity of the quadrupole focusing field, a and b are the characteristic x− and y− dimensions

of the beam. Under such assumption, we can approximate the continuous thin beam as an

infinitely long thin conducting wire carrying current I = λVb, where λ is the electric charge

per unit length, in the z− direction. The electric and magnetic fields associated with the

conducting wire in the polar coordinate (r, θ, z) can be written

E(r, θ)s = Es
rêr =

λ

2πrε0
êr (2.17)

B(r, θ)s = Bs
θêθ =

µ0λVb

2πr
êθ (2.18)

Then change the polar coordinate to the Cartesian coordinate using êr = cos(θ)êx +

sin(θ)êy, êθ = − sin(θ)êx + cos(θ)êy and x = r cos(θ), y = r sin(θ), we readily get

Es
x =

λx

2π (x2 + y2) ε0
Bs
x = − µ0λVby

2π (x2 + y2)

Es
y =

λy

2π (x2 + y2) ε0
Bs
y =

µ0λVbx

2π (x2 + y2)
(2.19)
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We also note that Bs
y/E

s
x = Vb/c

2, Bs
x/Ey = −Vb/c2, making use of µ0ε0 = 1

c2
. Bear in

mind that as the beam particles become more and more energetic, the ratio of self magnetic

field to self electric field is getting larger and larger. So far we have done thorough analysis

on the self fields due to the charged particle beams. As for the external quadrupole focusing

field, consistent with the thin beam assumption (a, b � S), the external quadrupole field

can be Taylor expanded about the beam axis at (x, y) = (0, 0). Near the beam axis, the

magnetic quadrupole field is approximated to leading order by [16]

Bq(x) = B′q(z)(yex + xey) (2.20)

where x and y are the transverse displacement of a particle from the beam axis,and the field

gradient coefficient B′q(z) is defined by

B′q(z) ≡
(
∂Bq

x

∂y

)
(x,y)=(0,0)

=

(
∂Bq

y

∂x

)
(x,y)=(0,0)

, (2.21)

and B′q(z) = B′q(z + S) has axial periodicity length S.

Then we compare the electric and magnetic fields in the laboratory frame K and those

in the beam frame K ′ which is moving in the positive z direction. And also we only focus

on the transverse beam dynamics and currently ignore any axial beam physics. The E and

B fields in the K frame are as follow

Ex = Es
x Bx = Bs

x +B′q(s)y =
Vb
c2
Es
y +B′q(s)y

Ey = Es
y By = Bs

y +B′q(s)x =
Vb
c2
Es
x +B′q(s)x (2.22)

Ez ≈ 0 Bz ≈ 0

while in the K ′ frame the E and B fields are
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E ′x = γ(Es
x − VbBy) = γ

(
Es
x

γ2
− VbB′q(s′)x′

)
B′x = γB′q(s

′)y′

E ′y = γ(Es
y + VbBx) = γ

(
Es
y

γ2
+ VbB

′
q(s
′)y′
)

B′y = γB′q(s
′)x′ (2.23)

E ′z ≈ 0 B′z ≈ 0

Note the E ′x in the beam frame has two components, one is from self fields and the other

one is from the external focusing field. And the 1
γ2

factor in the self fields reflect the fact

that the self electric force is canceled out by the self magnetic force. As the beam particles

become more and more energetic (γ → ∞), the self field becomes negligible. To conclude,

in the beam frame K ′, for the transverse motions of charged particles, the transverse forces

decompose to a combination of self fields and quadrupole focusing force. This simplification

not only allows us to study the beam dynamics in a much more convenient frame of reference,

but also permits us to use the analogy between the physics of intense charged particle beams

and that of nonneutral plasma column to study beam dynamics in Paul Trap Simulator

Experiment(PTSX) which will be described in the next section.

2.2.2 Paul Trap Configuration

From the previous section, we note that the particle motion in the beam frame is nonrelativis-

tic, and we can use Lorentz transformation to transform the magnetic fields in the laboratory

frame into electric fields in the beam frame. This enables us to study the nonlinear transverse

beam dynamics in a compact Paul trap configuration [15,86,87].

To simulate an axially continuous intense charged particle beam, we consider a long

nonneutral plasma column with length ∼ 2L and characteristic radius rp � 2L, confined

axially by applied DC voltages +V̂ = const. on end cylinders at z = ±L. The particles

constituting the nonrelativistic pure ion plasma have charge q and mass m. With respect to

transverse confinement of the particles in the x− y plane, there is no applied axial magnetic
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Figure 2.1: (a) Side view and (b) end view of the Paul trap configuration [1].

field (B0 = B0êz = 0). Rather, segmented cylindrical electrodes at radius rw have applied

oscillatory voltage ±V0(t) with alternating polarity on adjacent segments. Here, the applied

voltage V0(t) is oscillatory with V0(t + T ) = V0(t) and
∫ T

0
dtV0(t) = 0, where T = const. is

the period, and f0 = 1/T is the oscillation frequency. For the typical operating conditions

in the Paul trap (rwf0 � c), inductive electromagnetic effects are negligible. Neglecting end

effects (∂/∂z = 0), and representing the applied electric field by Ea = −∇⊥φq(x, y, t), where

∇⊥ ·Ea = 0 and ∇⊥×Ea ' 0, it is readily shown that the solution to ∇2
⊥φq(x, y, t) = 0 that

satisfies the appropriate boundary conditions at r = rw is given by [15]

φq(x, y, t) =
4V0(t)

π

∞∑
l=1

sin(lπ/2)

l

(
r

rw

)2l

cos(2lθ) (2.24)
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for 0 ≤ r ≤ rw and 0 ≤ θ ≤ 2π. Near the cylinder axis (r � rw), Eq. (2.24) readily gives to

lowest order

φq(x, y, t) =
1

2

m

q
κq(t)

(
x2 − y2

)
, (2.25)

where the time-dependent oscillatory quadrupole focusing coefficient κq(t + T ) = κq(t) is

defined by

κq(t) ≡
8qV0(t)

mπr2
w

, (2.26)

which has dimensions of [s−2] (note that the s-dependent focusing coefficient κq(s) defined

in the previous section has dimensions of [m−2]). Most importantly, from Eq. (4.6), the

leading-order correction to Eq. (2.25) is of order (1/3)(r/rw)6. Hence, for sufficiently small

rp/rw, the quadrupole potential in Eq. (2.25) is a very accurate representation of the applied

focusing potential. The external quadrupole electric fields corresponding to Eq.(2.25) are

Eqx =
m

q
κq(t)x

Eqy = −m
q
κq(t)y (2.27)

The total transverse electric fields including the self fields would be

Ex = Es
x +

m

q
κq(t)x

Ey = Es
y −

m

q
κq(t)y (2.28)

Comparing Eq.(2.28) with Eq.(2.24), we note that the transverse motion of the particles

in both configurations are only subject to the electric fields, and both electric fields are a

combination of an external quadrupole focusing field and self fields, where self fields can

be solved consistently using Maxwell equations. Hence, using the Lorentz transformation,

we have shown the analogy between charged particle beams propagating in the quadrupole

24



transport system and the charge bunch confined in PTSX device. Alternatively, in [88], Dr.

Moses Chung analyzed the equivalence of these two systems by comparing Hamiltonians and

Vlasov-Maxwell equations for the transverse particle motion. By making the replacement

suggested by Table 2.1, he demonstrated that a charged particle beam propagating in a

periodic quadrupole focusing system is equivalent to a one-component nonneutral plasma.

This analogy between force forms enables us to study the nonlinear transverse dynamics

of intense charged particle beams propagating in quadrupole transport systems using our

PTSX device.

2.2.3 Limitations of Paul Trap Analogy

As noted earlier, the Paul trap analogy described above is intended to simulate the transverse

dynamics of a continuous and thin beam propagating in a periodic magnetic quadrupole

focusing field. Furthermore, we only focus on the the transverse dynamics of the long

nonneutral plasma column (2L� rp) in Fig. 2.1, and z-variation and axial particle motions

are not included in the description. While such a model is expected to provide a good

description of the transverse dynamics of the nonneutral plasma column for 2L� rp, there

are important limitations on the range of applicability of the Paul trap analogy for simulating

the propagation of a continuous beam through a periodic focusing lattice.

Most importantly, the nonneutral plasma column illustrated in Fig. 2.1 is confined axially,

and the particles execute axial bounce motion between the ends of the plasma column (nearly

at z = ±L). If we denote the characteristic axial velocity of a particle with axial kinetic

energy Eb by vb = (2Eb/m)1/2, then the characteristic bounce time is τb ∼ 4L/vb. At low-to-

moderate density, the characteristic period τq for transverse motion and characteristic plasma

radius rp are approximately related by τq ∼ 2rp/vt, where vt = (Ti/m)1/2 is the thermal speed

of ions with temperature Ti. Therefore, in an approximate sense, the transverse and axial

oscillation periods stand in the ratio τq/τb ∼ (rp/2L)(vb/vt). On a time scale τq ∼ τb, the

finite-length effects of the axial bounce motion of a particle become important, and limit
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ŝ
=

ω̂
2 p

2
ω
2 q

[1
]

S
el

f-
fi

el
d

p
er

ve
an

ce
K
b

=
1

4
π
ε
0

2
N
b
q
2 b
/
γ
2 b

γ
b
m
b
β
2 b
c
2

[1
]

K
=

1
4
π
ε
0

2
N
q
2

m
[m

2
/
s2

]

T
ra

n
sv

er
se

H
am

il
to

n
ia

n

Ĥ
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Table 2.1: Equations for transverse dynamics of charged particle beams propagating in a
periodic focusing quadrupole magnetic system and nonneutral plasmas confined in Paul Trap
configuration [88].
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the validity of the Paul trap analogy with the propagation of a continuous beam through a

periodic focusing lattice. For sufficiently large 2L� rp and moderate vb, however, the axial

bounce period τb can be very long. As illustrative parameters, consider the case where rp = 1

cm, 2L = 200 cm, and the frequency f0 = 1/T of the applied oscillatory voltage V0(t) is set

to f0τq ≥ 4 for stability. Further, we assume that particles are injected with axial kinetic

energy Eb = 5 eV and ion temperature Ti = 0.1 eV. In this case, τb ∼ 20τq ∼ 80T . Hence, a

typical particle in Fig. 2.1 experiences the effects of 80 oscillation periods of the quadrupole

focusing potential (80 equivalent lattice periods) before it executes one axial bounce in the

trap.

Another limiting factor of the Paul trap analogy is the effect of collisions. Collisional

effects in high-energy beams in actual accelerators and transport lines are often negligible.

Therefore, if collisional effects become significant for the nonneutral plasma in the trap, then

the Paul trap analogy is no longer valid. The characteristic collision time for scattering of

ions by background neutral atom is [89]

τin ≈
1

nnσins vt
, (2.29)

where nn is the average neutral density, and σins is the ion-neutral collision cross section,

typically ∼ 5 × 10−15 cm2 and weakly dependent on temperature. If we use the ideal gas

law nn = P/Tr, it is estimated that τin > 2 sec when the base pressure P is kept below 10−7

Torr at room temperature Tr = 300 K. The characteristic collision time for ions colliding

with other ions is given [21]

τii ≈
12π3/2ε20m

2v3
t

niq4 ln Λ
, (2.30)

where ni is the average ion density and ln Λ is Coulomb logarithm, to good approximation

∼ 14 for the PTSX parameters. For the typical operating conditions for the PTSX, it is

estimated that τii > 0.5 sec when ni < 106 cm−3. Hence, by limiting the trapping time of

ions below several hundred milliseconds, we can avoid collisional effects.
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2.2.4 Operating Parameters

The detailed transverse motion of individual particles in the PTSX is approximately com-

posed of both a rapid oscillation with frequency f0 and a slow oscillation with characteristic

frequency ωq. In the smooth-focusing approximation [1,16,38], where there is averaging over

the rapid motion with frequency f0, orbit equations with a constant focusing coefficient are

often used to describe the average effects of the periodic focusing quadrupole field. The

expression for the average focusing frequency ωq in the smooth-focusing approximation is

given by [1]

ωq =

√√√√〈(∫ t̃

t0

dtκq(t)

)2〉
T

−

〈(∫ t̃

t0

dtκq(t)

)〉2

T

, (2.31)

where 〈· · · 〉T denotes the temporal average over one oscillation period.

〈· · · 〉T (t) =
1

T

∫ t+T/2

t−T/2
dt̃ · · · . (2.32)

Two illustrative examples of oscillatory waveforms for the quadrupole focusing coefficient

κq(t) = (8q/mπr2
w)V0(t) are shown in Fig. 2.2. Here, Fig. 2.2(a) corresponds to a sinu-

soidal waveform with κq(t) = κ̂q sin(2πt/T ), where κ̂q = (8q/mπr2
w)V̂0 and V̂0 = |V0(t)|max.

This sinusoidal waveform is least taxing on the bandwidth limit of the electronic system of

the PTSX device [14] and is an approximation to a quadrupole lattice with short magnets

with significant fringe fields. The smooth-focusing frequency for the case of the sinusoidal

waveform is given approximately by

ωq =
8q

mπr2
w

(
V̂0

f0

)
1

2π
√

2
. (2.33)

Figure 2.2(b) corresponds to a periodic step-function lattice with maximum amplitude κ̂q and

filling factor η. This FODO lattice (Focusing-Off-Defocusing-Off) has hard-edged quadrupole

magnets and is an idealization of a magnetic alternating-gradient transport system. The

smooth-focusing frequency for the case of a periodic step-function lattice is given approxi-
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Figure 2.2: Illustrative oscillatory waveforms for the quadrupole focusing coefficient κq(t)
corresponding to (a) the sinusoidal waveform κq(t) = κ̂q sin(2πt/T ), and (b) a periodic step-
function waveform with maximum amplitude κ̂q and filling factor η [1].

mately by

ωq =
8q

mπr2
w

(
V̂0

f0

)
η

4

√(
1− 2

3
η

)
. (2.34)

It is interesting to note that when η = 0.572, both the sinusoidal waveform and the periodic

step-function lattice give the same value of the smooth-focusing frequency. Experiments

performed to date using PTSX have employed a sinusoidal waveform [14].

The actual slow transverse oscillation frequency (depressed betatron frequency) is de-

termined by including the net radial force. The self-electric field of the nonneutral plasma

is repulsive and serves to depress the transverse oscillation frequency. For uniform den-

sity plasma, the depressed betatron frequency νb for slow transverse particle oscillations is

approximately given by

ν2
b = ω2

q −
ω̂2
p

2
. (2.35)
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Here, we denote the uniform plasma density by n̂ and the corresponding plasma frequency by

ω̂p = (n̂q2/ε0m)
1/2

. An important dimensionless parameter ŝ that measures the normalized

beam intensity and self-field force on a particle is defined by

ŝ ≡
ω̂2
p/2

ω2
q

. (2.36)

The factor 1/2 associated with ω̂2
p in Eqs. (2.35) and (2.36) is a geometric factor which

results when a rigorous calculation of the collective oscillation frequency is carried out [1].

For the transverse confinement of a beam particle by applied focusing field, we require that

ŝ < 1, or equivalently ν2
b > 0.

Particles in general travel for several oscillation periods of V0(t) before completing one

slow transverse oscillation, and the advance in phase of the slow transverse oscillation that

the particle undergoes per oscillation period T is called the phase advance σ. Due to the

self-electric field, the phase advance σ is smaller than the vacuum phase advance σv that

is computed in the absence of space-charge effects. The quantity σ/σv is a measure of the

relative strength of space-charge effects as compared to the strength of the applied focusing

field. In the smooth-focusing approximation which is valid for vacuum phase advance σv ≤

2π/5 = 72◦, The exact vacuum phase advance σv is approximately equal to σsfv , which is

defined as:

σv ∼ σsfv =
ωq
f0

. (2.37)

Further, for a uniform density profile, the depressed vacuum phase advance is related to ŝ

by the relation σsf = σsfv (1− ŝ)1/2 in the smooth-focusing approximation.

In storage rings and circular accelerators, it is customary to introduce the tune ν (often,

especially in the European literature, it is denoted by Q), which is defined as the number

of slow transverse oscillations that a particle makes as it circulates once around the ring

with circumference C. In the absence of the beam, the undepressed tune is approximately

ν0 = Cωq/2πVb, where Vb is the axial beam velocity. In the presence of the unform density
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beam, however, the depressed tune ν is given by ν = ν0(1 − ŝ)1/2. The corresponding tune

shift that results from the beam space charge is given by ∆ν = ν − ν0 = ν0

[
(1− ŝ)1/2 − 1

]
,

and tune depression is given by

ν

ν0

= (1− ŝ)1/2. (2.38)

The dimensionless parameter ν/ν0 is complementary to the normalized intensity parameter

ŝ in the way in which it characterizes the relative strength of the space-charge effects. We

also note that ν/ν0 = σsf/σsfv .

As mentioned earlier, transverse confinement of the nonneutral plasma column by the

focusing field requires ŝ < 1 or ω̂p/
√

2 < ωq. On the other hand, to avoid so-called the single-

particle orbit instability associated with an overly strong focusing field, the vacuum phase

advance σv should be less than 180◦. In the smooth-focusing approximation for a sinusoidal

waveform of V0(t), this condition can be expressed as σsfv = ωq/f0 < 0.9080π/
√

2 (= 115.6◦).

Combining these inequalities gives

1√
2

(
n̂q2

ε0m

)1/2

<
8qV̂0

mπr2
wf0

1

2
√

2π
< 0.9080

π√
2
× f0. (2.39)

The inequalities in Eq. (2.39) are expected to assure robust transverse confinement of the

plasma particles in the PTSX. The PTSX device is capable of reaching and exceeding the

right-most inequality in Eq. (2.39). Note that this limit can be expressed as a quadratic

relationship between V̂0 and f0 which are the parameters directly controlled in the laboratory.

Due to electronics limitations, we normally operate the system in the parameter space (f0 <

100 kHz, V̂0 < 400 Volts). Combining these conditions and Eq. (2.39) for a singly ionized

cesium ion yields ωq ≤ 100×103 s−1, and n̂ ≤ 1.5×106 cm−3. The density limit is consistent

with the collisionless plasma condition discussed in Sec. 2.2.3.
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Figure 2.3: In the (f0, V̂0) parameter space, curves of constant vacuum phase advance σsfv are
parabolae, while the curves of constant average focusing frequency ωq are straight lines [90].

2.3 Beam Dynamics in the Paul Trap Simulator Ex-

periment (PTSX)

In this section, we present several beam dynamics models that are relevant to the analysis of

the experimental results of the PTSX in the subsequent chapters. For the quadruple focusing

field, a sinusoidal waveform

κq(t) = κ̂q sin(2πf0t+ Φ) (2.40)

is adopted. Here, an arbitrary constant phase Φ has been introduced in Eq. (2.40). When

the initial beam is in the focusing (F) and defocusing (D) phases, then 2πf0t + Φ = ±π/2,

and when in the drift (O) phase, then 2πf0t+ Φ = 0.
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2.3.1 Single-Particle Orbits

For the quadrupole focusing field given in Eq. (2.40), the single-particle motion in the

absence of space-charge effects and end effects is governed by a pair of uncoupled Mathieu

equations,

d2

dt2
x(t) + κ̂q sin(2πf0t+ Φ)x(t) = 0

d2

dt2
y(t)− κ̂q sin(2πf0t+ Φ)y(t) = 0 (2.41)

Detailed properties of the solutions for x(t) to Mathieu’s equation (2.41) have been ex-

tensively tabulated by Abramowitz and Stegun [91]. The first-order solution x̃(t) can be

approximated as follows:

x̃(t) = xsf (t)

[
1 +

σsfv
π
√

2
sin(2πf0t+ Φ)

]
, (2.42)

with the smooth-focusing motion term xsf (t) given by (for cosφ0 6= 0)

xsf (t) =
x0

cosφ0

[
1 + (σsfv /π

√
2) sin Φ

] cos(ωqt+ φ0). (2.43)

Here, ωq is the smooth-focusing frequency in Eq. (2.33), σsfv = ωq/f0 is the smooth-focusing

vacuum phase advance, and x0 and φ0 are constants determined from the initial conditions

x(t = 0) = x̃(t = 0) = x0 and ẋ(t = 0) = ˙̃x(t = 0). The smooth-focusing term represents

a simple harmonic oscillation with spring constant mω2
q , where the restoring force is the

ponderomotive force associated with rapidly oscillating inhomogeneous electric fields [18].

The approximate solution Eq. (2.42) is valid only for sufficiently small σsfv , and when

σsfv > 115.6◦ [90], the solutions for x(t) to Eq. (2.41) are unstable (i.e., grow without

bound). If one is near the stability limit, then the actual value of vacuum phase advance

σv has to be obtained by integrating Eq. (2.41) numerically over several focusing periods.
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Figure 2.4: Illustrative examples of (a) focusing coefficient κq(t), and time history of (b)
position and (c) velocity of single-particle motion in the PTSX. Here, σsfv = 49.8◦, Φ = 0,
x(t = 0) = x0, and ẋ(t = 0) = 0. The dashed lines correspond to the contributions from the
smooth-focusing motion term in Eq. (2.42) with φ0 = tan−1

√
2. When σsfv is too high, the

single-particle motion is overfocused and becomes unstable (i.e., σsfv → 115.6◦). When σsfv is
too low, the transverse focusing is too weak and single-particle motion becomes vulnerable
to the defocusing space-charge force (i.e., ŝ→ 1) [88].
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Making use of Floquet’s theorem [40] allows us to determine the exact phase advance through

the relation

σv = cos−1

{
x(t) + x(t+ 2T )

2x(t+ T )

}
, (2.44)

which is indeed independent of t, and the single-particle orbit remains stable for σv < 180◦.

As shown in Fig. 2.5, the smooth-focusing vacuum phase advance σsfv is in good agreement

with the exact (numerically-calculated) vacuum phase advance σv for σv ≤ 2π/5 = 72◦,

suggesting that the smooth-focusing approximation is valid provided σv is sufficiently small.

Possible effects on the single-particle orbits due to axial bouncing motions in the PTSX are

discussed in Appendix A of [88].

The above discussions assume the absence of space-charge effects. But, for the next

generation of high intensity accelerators, space charge effects are not negligible. When the

self-field electrostatic potential φs(x, y, t) is considered, Eq.(2.41) becomes

d2

dt2
x(t) + κ̂q sin(2πf0t+ Φ)x(t) = −∂φ

s(x, y, t)

∂x
d2

dt2
y(t)− κ̂q sin(2πf0t+ Φ)y(t) = −∂φ

s(x, y, t)

∂y
(2.45)

The solutions to Eq.(2.45) for the transverse orbits x(t) and y(t), also depend on the

self-field electrostatic potential φs(x, y, t), which is determined self-consistently in terms of

the beam number density n(x, y, t) from Poission’s equation. Generally, the force terms

proportional to -∂φs/∂x and -∂φs/∂y couple the x− and y− motions, making a detailed

analysis of the orbit equations for x(t) and y(t) difficult except in the case of a uniform

focusing field with κq(t) = const. However, for the special case of a uniform density beam,

we will find (Sec. 2.3.2) that ∂φs/∂x (∂φs/∂y) is linearly proportional to x (y), in which

case an analysis of the transverse orbit equations is relatively straighforward, even for the

case of intense self-fields.
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Figure 2.5: Plot of the (exact) vacuum phase advance σv calculated numerically from Eq.
(2.44) versus the vacuum phase advance σsfv determined using ωq as calculated in the smooth-
focusing approximation for the sinusoidal lattice function. The agreement is very good for
σv ≤ 2π/5 = 72◦.

2.3.2 Envelope Equations

To describe an ensemble of particles in a periodic focusing quadrupole field with self-

field force, we consider an axially-uniform long charge bunch with uniform number density

n(x, y, t) = n̂(t) within the elliptical cross-section 0 ≤ x2/a2(t) + y2/b2(t) ≤ 1, and zero

density outside. Here, a(t) and b(t) are the x- and y-direction envelopes (or half-widths)

of the beam. Such a periodically-focused uniform-density beam is obtained self-consistently

for the choice of the Kapchinskij-Vladimirskij (KV) distribution function [1, 48], which is

the only known exact, periodically-focused equilibrium solution to the nonlinear Vlasov-

Poisson equations, including intense self-field effects. In this KV beam, the line density
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N =
∫
dx dy n(x, y, t) = n̂πab = const., and the self-field potential is given by [1, 16]

q

m
φs(x, y, t) = − 2K

a+ b

[
1

a
x2 +

1

b
y2

]
, (2.46)

in the beam interior. where K is the dimensional self-field perveance indicating the relative

strength of the space-charge effects and is defined by K = 1
4πε0

2Nq2

m
. Here, we have taken

φs = 0 at (x, y) = (0, 0) without loss of generality, and assumed a, b� rw, which means that

image-charge effects [92,93] from the conducting wall at radius rw are neglected.

Even though the KV beam is singular and unphysical because it has a highly-inverted

distribution in phase space, it can describe the root-mean-squared (rms) behavior of a beam

with a more realistic transverse phase-space distribution, when the two beams have the same

line density and rms beam qualities (such as rms emittance defined later). This concept of

equivalent beams was first introduced by Lapostolle [94] and Sacherer [95] in 1971 and has

been a useful approximation for beam dynamics analysis. Important parameters in the

concept of equivalent beams include the rms x and y dimensions of the beam, 〈x2〉1/2 and

〈y2〉1/2, and the x and y rms beam velocities, 〈ẋ2〉1/2 and 〈ẏ2〉1/2. Here, the statistical average

of a phase function ξ(x, y, ẋ, ẏ, t) over the four-dimensional phase space is denoted by 〈ξ〉 (t)

and is defined by

〈ξ〉 =

∫
dx dy dẋ dẏ ξ f∫
dx dy dẋ dẏ f

, (2.47)

where f(x, y, ẋ, ẏ, t) is the distribution function. Note that for a KV beam, 〈x2〉1/2 = a(t)/2

and 〈y2〉1/2 = b(t)/2.

To quantitatively describe the beam quality, the concept of rms emittance [94, 95] is

introduced. The rms emittance is not only related to the phase-space volume occupied by

the beam particles (which should be conserved by Liouville’s theorem), but also dependent

on the distortion (filamentation) produced by nonlinear forces [38,39]. If the motions in the

x and y directions are decoupled, as often happens in beam transport systems [71], we can

define two transverse phase planes (x, ẋ) and (y, ẏ), and corresponding x- and y-transverse
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emittances, εx(t) and εy(t), which are given by [38,96]

εx(t) = 4

[〈
x2
〉 〈
ẋ2
〉
−
(

1

2

d

dt

〈
x2
〉)2

]1/2

, (2.48)

εy(t) = 4

[〈
y2
〉 〈
ẏ2
〉
−
(

1

2

d

dt

〈
y2
〉)2

]1/2

(2.49)

Because these emittances are defined in the beam frame (i.e., laboratory frame of the PTSX),

and are not affected by the axial motion, they are said to be normalized. If both transverse

focusing and space-charge forces are linearly proportional to transverse displacement (such

as for the KV beam), the emittances defined by Eqs. (2.48) and (2.49) can be shown to

be conserved by Liouville’s theorem [1]. For the KV beam, the transverse rms emittance is

directly proportional to the phase-space area uniformly occupied by the beam particles by

factor 1/π, and its value is invariant in the smooth-focusing approximation [1].

Making use of Eq. (2.46) to express self-field forces and following the procedures in

Davidson and Qin [1, 97] readily gives

d2

dt2
a(t) + κq(t)a(t)− 2K

a(t) + b(t)
=

ε2x
a3(t)

, (2.50)

d2

dt2
b(t)− κq(t)b(t)−

2K

a(t) + b(t)
=

ε2y
b3(t)

, (2.51)

which describe the evolutions of x- and y-direction envelopes of the KV beam, a(t) and

b(t), in periodic focusing quadruple field κq(t). The envelope equations (2.50) and (2.51)

represent a system of two nonlinear, second-order coupled differential equations which, in

general, must be solved numerically for given initial conditions
(
a(0), ȧ(0), b(0), ḃ(0)

)
. If two

beams have the same perveance (or equivalently, line density or current), rms emittances, and

initial conditions as the equivalent KV beam, then the transverse rms dimensions of the two

beams evolve identically according to Eqs. (2.50) and (2.51). However, there is an implicit

assumption in this model that the rms emittance of the two beams being compared remains
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the same or that the emittance change in time is known a priori [38]. This assumption is in

general not correct, especially when there is a free energy source for emittance growth such

as charge nonuniformity [96] and rms mismatch [98].

When the rms dimensions of a beam have the same oscillation frequency as the focusing

field, the beam is said to be rms-matched and emittance growth is minimized [38]. For a KV

beam, the rms matching condition can be expressed as a(t+ T ) = a(t) and b(t+ T ) = b(t),

resulting in f(x, y, ẋ, ẏ, t + T ) = f(x, y, ẋ, ẏ, t) and 〈a(t)b(t)〉T = r̄2
b = const. On the other

hand, if the beam is rms-mismatched, nonlinear forces can give rise to a filamentation in phase

space causing the rms emittance to increase [39,94]. This process cannot be described solely

by the envelope equations for the equivalent KV beam. When the beam is mismatched in a

quadrupole focusing channel, the two transverse degrees of freedom in Eqs. (2.50) and (2.51)

yield two fundamental oscillation modes, which are the breathing mode and the quadrupole

mode. For the breathing mode, the evolution of 〈a(t)〉T and 〈b(t)〉T are in-phase body-wave

perturbations, and the frequency is approximately given by [1,38]

ωB ≈ 2ωq

[
1− 1

2

(
K

r̄2
bω

2
q

)]1/2

. (2.52)

On the other hand, for the evolution of 〈a(t)〉T and 〈b(t)〉T for the out-of-phase surface-wave

perturbations of the quadrupole mode, the frequency is approximately given by [1,38]

ωQ ≈ 2ωq

[
1− 3

4

(
K

r̄2
bω

2
q

)]1/2

. (2.53)

Note that ωq ≤ ωQ ≤ ωB ≤ 2ωq and ωQ = ωB = 2ωq for K → 0. Generally, beam mismatch

produces a mixed mode composed of both breathing and quadrupole modes. In the mixed

mode, there often appears a slow amplitude modulation in the oscillations of the mean radius√
a(t)b(t) [see Fig. 2.6(b)].
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(a) Φ = π/2. A pure breathing mode is excited.

(b) Φ = 0. A mixed mode is excited.

Figure 2.6: Time evolutions of the x- and y-beam envelopes, a(t) and b(t), mean radius
[a(t)b(t)]1/2, and beam radius rb(t) in the smooth-focusing approximation. Here, we consider
a KV beam with strong injection mismatch for µ = 0.54, s̄ = 0.85, σsf ≈ 49.8◦(1 − s̄)1/2,

and σ ≈ 51.4◦(1− s̄)1/2. Initially,
(
a(0), ȧ(0), b(0), ḃ(0)

)
= (µr̄b, 0, µr̄b, 0) and εx = εy = ε =

r̄2
bωq(1− s̄)1/2 [88]. 40



2.3.3 Beam Equilibrium

A nonneutral collection of ions confined by an external periodic focusing potential will relax

to a quasi-equilibrium state. In this section, we follow the derivations in Sec. 7.3 of [1]. In

equilibrium, local radial force balance on a fluid element of ions with charge q and mass m

in the smooth-focusing approximation is given by [1]

∂

∂r
P⊥(r) = −qn(r)

∂

∂r
φs(r)−mω2

qn(r)r, (2.54)

where n(r) is the equilibrium radial density profile, ωq is the applied smooth-focusing fre-

quency, and r is the radial distance from the beam axis. Here, the space-charge potential

φs(r) is determined self-consistently from Poisson’s equation r−1∂r (r∂rφ
s) = −qn(r)/ε0, and

P⊥(r) = n(r)T⊥(r) is the perpendicular pressure profile which is proportional to transverse

temperature profile T⊥(r). A necessary condition for transverse confinement of the ions is

that the applied focusing force in Eq. (2.54) should be sufficiently strong to exceed the defo-

cusing self-field force, i.e., mω2
qn(r)r > qn(r)Es

r , where Es
r = −∂φs/∂r = (q/ε0r)

∫ r
0
dr r n(r)

is the radial space-charge field. For present purposes, we assume that n(r) is a monotonically

decreasing function of r from the on-axis value n(r = 0) = n̂. Then, for small r, we obtain

Es
r = (q/2ε0)n̂r, and have the requirement

ŝ ≡
ω̂2
p/2

ω2
q

< 1. (2.55)

Here, ω̂2
p = n̂q2/ε0m is the on-axis (r = 0) plasma frequency-squared.

We now consider an anisotropic equilibrium distribution function f 0 in the smooth-

focusing approximation of the form

f 0 = F (H⊥)G(pz), (2.56)
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where the perpendicular Hamiltonian H⊥ can be expressed as

H⊥ =
p2
x + p2

y

2m
+ V (r), (2.57)

with effective potential for the transverse particle motion V (r) being defined by

V (r) =
1

2
mω2

qr
2 + qφs(r). (2.58)

Here, equilibrium properties (∂/∂t = 0) are assumed to be azimuthally symmetric (∂/∂θ = 0)

and independent of axial coordinate (∂/∂z = 0). Assuming the axial momentum distribution

G(pz) to be normalized according to
∫∞
−∞ dpzG(pz) = 1, it follows that

n(r) =

∫
dpxdpydpzf

0 =

∫ ∞
0

πdp2
⊥F

(
p2
⊥

2m
+ V (r)

)
, (2.59)

and

P⊥(r) = n(r)T⊥(r)

=
1

2

∫
dpxdpydpz(pxẋsf + pyẏsf )f

0

=

∫ ∞
0

πdp2
⊥

(
p2
⊥

2m

)
F

(
p2
⊥

2m
+ V (r)

)
. (2.60)

Here, (px, py) = m(ẋsf , ẏsf ), p
2
⊥ = p2

x + p2
y, and use has been made of

∫∞
−∞ dpx

∫∞
−∞ dpy · · · =∫∞

0
πdp2

⊥ · · · . We now operate on Eq. (2.54) with 2π
∫ rw

0
drr2 · · · , and carry out an in-

tegration by parts assuming P⊥(r = rw) = 0. This gives the exact global force balance

equation [1]

mω2
qR

2
b = 2T̄⊥ +

Nq2

4πε0
, (2.61)

which is valid for the entire class of anisotropic equilibrium functions f 0 = F (H⊥)G(pz) ex-

pressed in Eq. (2.56). Here, N = 2π
∫ rw

0
drrn(r) is the line density, R2

b = (2π/N)
∫ rw

0
dr r r2 n(r)

is the mean-square radius of the beam, and T̄⊥ is the effective transverse temperature defined
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by

T̄⊥ =
2π

N

∫ rw

0

drr

〈
p2
⊥

2m

〉
px,py

n(r). (2.62)

The notation 〈· · · 〉px,py denotes the statistical average over the equilibrium distribution func-

tion in the transverse momentum subspace. Note that the effective transverse temperature

T̄⊥ measures the kinetic energy per particle averaged over the transverse phase space (i.e.,

T̄⊥ = m
〈
ẋ2
sf + ẏ2

sf

〉
0
/2) in the smooth-focusing equilibrium, where fast micromotion asso-

ciated with quadrupole focusing frequency f0 has been averaged out, and there is no drift

motion of the fluid element (dRb/dt = 0). In the Paul Trap Simulator Exepriment, the

smooth-focusing frequency ωq can be calculated using the amplitude and the frequency of

the oscillating voltage waveforms. The rms radius Rb and line charge density N can be

calculated from the radial density profiles of the charge bunch. Then we can use the global

force equation Eq. 4.7 to compute the effective transverse temperature T̄⊥.

2.4 Summary and Discussion

In this chapter, the analogy between the transverse dynamics of intense charged particle

beams propagating through a magnetic alternating-gradient focusing system and that of a

charge bunch in a Paul Trap configuration were investigated using the Lorentz transforma-

tion. In Sec. 2.2, it is shown that when the laboratory reference frame is transferred to the

beam reference frame which moving together with the beam, the forms of electromagnetic

forces on the charged particles in the periodic transport system are equivalent to those on the

charge bunch in the PTSX. Therefore, the PTSX provides a convenient and cost-effective way

to study the transverse dynamics of the intense charged particle beams. For the transverse

confinement of a charged particle, we required that the normalized beam intensity ŝ < 1.

Typically, we choose ŝ ∼ 0.2. To avoid the so-called single-particle orbit instability associ-

ated with overly strong focusing field, we require σsfv < 115.6◦. In Sec. 2.3, we discussed

several simplified beam dynamics models including single particle orbit model(Sec. 2.3.1),
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envelop equation model based on a KV beam (Sec. 2.3.2) and thermal equilibrium model

(Sec. 2.3.3) to gain some insights on the characteristics of the intense charge particle beams.

To describe the evolution of the intense charge particle beams self-consistently, one needs to

solve the nonlinear Vlasov-Maxwell equations numerically employing particle-in-cell (PIC)

models and nonlinear perturbative simulation techniques [59,60,99].
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Chapter 3

Experimental Setup

3.1 Introduction

Paul Trap Simulator Experiment (PTSX) is a compact Paul Trap simulating the propagation

of intense charged particle beams in the periodic magnetic alternating-gradient transport

systems. In this chapter, we briefly describe the working principles of the Paul Trap Simulator

Experiment (PTSX) apparatus. Sec. 3.2 gives a general overview of the basic equipment and

operation of the PTSX device, Sec. 3.3 describes the cesium ion source which has been used

for the initial phase of PTSX experiments, Sec. 3.4 describes the charge collector diagnostic

for measuring the radial ion density profile.

3.2 The Paul Trap Simulator Experiment Device

The Paul Trap Simulator Experiment (PTSX) device is a linear Paul Trap [13] constructed

from a 2.8 m-long, rw = 10 cm-radius, gold-plated stainless steel cylinder as shown in Figs.

3.1 and 3.2. The cylinder is divided into two 40 cm-long end cylinders and a 2L = 2 m-

long central cylinder. All cylinders are azimuthally divided into four 90◦ sectors so that

when an oscillating voltage V0(t) is applied with alternating polarity on adjacent segments,

the resulting electric field becomes an oscillating quadruple field near the trap axis. This
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Figure 3.1: Schematic design of the PTSX device showing the electrodes, the charge collector
and the cesium ion source [88].

quadrupole electric field exerts a ponderomotive force that confines the pure ion plasma

radially. To trap the plasma axially, the two end electrodes are biased to a constant positive

voltage +V̂ . The gold plating of the electrodes increases the surface conductivity so that

small patches of charge do not build up on the surface and influence the behavior of the

trapped plasma. Note that, to place the charge collector along the null of the quadrupole

potential and to facilitate the laser-induced fluorescence (LIF) diagnostic set up (Sec. 5.3),

the electrodes are installed after rotating 45◦ azimuthally from the configuration used in the

theoretical analysis (compare Figs. 2.1 and 3.1). The aluminum rings and insulating spacers

support the electrodes, and in-vacuum insulated wires are attached to each electrode surface

using lead-free silver solder [Fig. 3.2(b)]. Adjustments of the set screws that move the ball-

bearings on the aluminum rings together with the use of a theodolite, allow alignment of the

center of the electrodes to within 1 mm.
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(a) Central and source end electrodes. (b) Diagnostic end electrodes.

Figure 3.2: The gold-plated stainless-steel electrodes confine the cesium ions within the
central electrode.

The cesium ion source is located on the trap axis near the center of one of the short

electrode sets so that ion injection is not affected by the fringe fields (Sec. 3.3). The charge

collector is mounted on a linear motion feedthrough at the other set of short electrodes, and

moves in the transverse direction along a null of the applied potential in order to minimize

the perturbation on the quadrupole potential configuration (Sec. 3.4). The construction of

the PTSX device was completed in 2003 after a two-year construction period [7, 90], and

initial experiments successfully demonstrated quiescent beam propagation over equivalent

distances of tens of kilometers over a wide operating range [14].

3.2.1 Operation Principle

The PTSX device manipulates the plasma using an inject-trap-dump-rest cycle, and the

one-component plasmas created in the trap are highly reproducible. The time duration

of the injecting (ti), trapping (tt), dumping (td), and resting (tr) phases can be varied

independently, and the total cycle time is tcycle = ti + tt + td + tr. For the applied voltage

waveform, a sinusoidal waveform V0(t) = V̂0 sin(2πf0t) is used.

Figure. 3.3 represents a complete trapping cycle. Each stage is discussed in details as

follows:
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Figure 3.3: Operation sequence of the PTSX. The shaded regions in the plasma columns
indicate the overlapping of two counter-streaming beams. [88]
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Figure. 3.3 (a) shows that during injection, the short electrodes on the source end

(injection electrodes) are made to oscillate with the same voltage waveform, ±V0(t), as the

central electrodes, which allows the ions to stream into the trap. Because ions are injected

from the ion source with a circular, stationary cross section into a transverse focusing system

in which the matched state has a pulsating elliptical beam envelope, the injected plasma

column is always somewhat mismatched to the alternating-gradient (AG) focusing lattice (see

Figs. 1.1 and 2.2). This type of mismatch is inherent and unavoidable with the ion source

as presently configured. We can minimize this injection mismatch by setting rs ∼
√

2Rb,

where rs is the radius of the emission surface and Rb is the rms radius of the matched beam.

Figure 3.3 (b) show that, during injection, the short electrodes on the diagnostic end

(dump electrodes) are biased to a DC voltage +V̂ so that the ions bounce off the potential

barrier. In order to minimize the number of ions present in the vicinity of the injection

electrodes when the injection electrodes are switched to their static trapping voltage +V̂ ,

the time duration of injecting (ti) is kept less than the axial bounce time (τb) and ion injection

is stopped a short time ∆ti before the end of the injecting stage. Although, the ion source

is operated in a steady-state manner, ion injection can be controlled by adjusting the bias

voltage on the emission surface (Vs). Hence, to stop the ion emission, Vs is switched to a

negative bias voltage.

In Figure 3.3 (c), after injection is finished, the plasma is allowed to relax for several

bounce periods so that the residual mismatch oscillation is damped away. The time duration

of trapping (tt) is tt . 300 ms to prevent collisional effects from playing a significant role.

Due to axial potential leak from the end electrodes into the central electrodes, the plasma

length Lp is less than the trap length 2L. The characteristic parameters of the typical

trapped plasma in PTSX are summarized in Table 3.1.

The charge collector is a destructive diagnostic that requires dumping the plasma out of

the trap each cycle. During dumping, the dump electrodes are made to oscillate with the

same voltage waveform as the central electrodes, which allows the ions to stream out of the
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Quantity Symbol Characteristic value

Background gas pressure P 5× 10−9 Torr

Applied AC focusing voltage V̂0 150.4 V

Applied DC bias voltage V̂ 36 V
Applied magnetic field B0 0 G
Plasma length Lp 170 cm
Plasma rms radius Rb 0.85 cm
Debye length (on-axis) λD 0.88 cm
Plasma density (on-axis) n̂ 0.89× 105 ions/cm3

Plasma line density N 1.6× 105 ions/cm
Plasma parameter ND 2.6× 105 ions
Applied AC focusing frequency f0 60 kHz
Smooth-focusing frequency ωq/2π 8.4 kHz
Plasma frequency (on-axis) ω̂p/2π 5.4 kHz
Breathing mode frequency ωB/2π 15.8 kHz
Quadrupole mode frequency ωQ/2π 15.3 kHz
Normalized intensity ŝ 0.2
Phase advance in vacuum σsfv 48◦

Ion-neutral collision time τin & 2.0 sec
Ion-ion collision time τii & 0.5 sec
Axial bounce time τb 1.9 msec
Axial beam energy Eb 3 eV
Axial beam current Ib 5.4 nA
Axial beam velocity vb 2.09× 103 m/s
Ion thermal velocity vt 0.27× 103 m/s
Ion temperature Ti 0.1 eV
Space-charge potential φs(0)− φs(rw) 0.13 V

Table 3.1: Characteristic parameters of the PTSX pure ion plasma. The plasma parameter
ND is the number of particles in a Debye sphere [18].
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trap through the axial drift motion. Due to the finite axial beam velocity, the collected charge

signal is effectively averaged over dozens of oscillation periods T = 1/f0. The reproducibility

of this process allows us to construct a radial charge profile out of multiple measurements at

different radial positions of the collector for each shot. In addition, by trapping the plasma

with different time durations, the time evolution of the trapped plasma properties can also

be measured. No bias voltage is applied to the collector plate, otherwise ion motion will be

affected by the position of the charge collector. The time duration of dumping (td) should be

longer than the axial bounce time (τb), and is normally set to td ≥ 15 ms to make sure the

trap becomes empty. In the dumping stage, the inherent beam mismatch is present when the

charge bunch with line density N/2 is separated from the initially matched beam with line

density N . The degree of beam mismatch can be given by µ = Rbi/Rbf ≈ (1+δb)/(1+δb/2).

Here, Rbi(f) is the initial (final) rms beam radius, and δb is the thermal beam intensity

parameter introduced in Chapter 2. For the case of moderately low space-charge density

beams (ŝ = 0.2 ∼ 0.3), it is estimated that µ . 10% and the matched beam profile is

projected onto the charge collector without significant perturbation.

Two resting stages are added at the end of the dumping stage to prepare a new cycle.

Even though most of the ions have streamed out of the trap during the dumping process, it is

observed that there remains a small number of residual ions with extremely low axial velocity.

These residual ions are negligible in contributing to a radial charge profile. However, to get

rid of any possible accumulated effect of these ions, we switch the voltages of the central and

dump electrodes to ground for the time duration ∆tr. The residual ion cloud in the trap will

expand toward the grounded electrodes at the thermal speed vt, and will be neutralized at

the room-temperature electrode surfaces [Fig. 3.3(e)]. Normally, we set ∆tr = 5 ms, which

is much longer than the characteristic expansion time rw/vt ∼ 0.4 ms.

Finally, we switch the voltage of the dump electrodes from ground to +V̂ and make

the system ready for the new cycle [Fig. 3.3(f)]. The time duration of resting (tr) can be

arbitrarily chosen for tr > ∆tr, and is used to set the total cycle time tcycle to a desired value.
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Detailed analysis and further discussion of the injection process outlined here are pre-

sented in Chapter 4 of this thesis.

3.2.2 Vacuum System

The PTSX vacuum chamber is 134.5 in. in overall length, and consists mainly of a 10 in.

O.D. electropolished stainless-steel chamber with Conflat (CF) metal-seal flanges (Fig. 3.4).

Aluminum rings with teflon and vespel insulating spacers support the electrodes while keep-

ing them electrically isolated from the vacuum chamber. A centrally-located, six-way cross

accommodates the laser-induced fluorescence (LIF) diagnostic described later in this chap-

ter. The chamber is enclosed by custom-made baking jacket (Fig. 3.5) whose temperature

is monitored by two thermocouples (TC) and adjusted by proportional-integral-derivative

(PID) controllers. Considering the permissible temperature ranges of the lead-free solder

(. 220 ◦C) and insulating spacers (. 260 ◦C) used inside the vacuum chamber, the maxi-

mum baking temperature is set to be 200 ◦C. The PTSX device is evacuated using a turbo-

molecular pump (TMP) with a pumping speed of 1000 `/sec, which is backed by an oil-free

(dry) scroll-type roughing pump (RP) with a pumping speed of 600 `/min. The maximum

forevacuum pressure of the TMP is 10 Torr, and the ultimate pressure is 7.5 × 10−11 Torr.

The pumping utilizes a “T” section near the injection electrodes in order to ensure good

conductance. Changes in operating pressure are measured with a nude ionization gauge

(IG) near the dump electrodes. As shown in Fig. 3.6, the foreline and vent pressures are

measured by convectron gauges (CG). In order to prevent neutral collisions from affecting

the plasma behavior, the base pressure of PTSX is kept below 5×10−9 Torr after a week-long

bake at 200 ◦C. When the ion source is on, the operating pressure rises up to 10−8 ∼ 10−7

Torr. Even in this case, the characteristic ion-neutral collision time is τin & 2 sec, and the

trapped plasma is collisionless to very good approximation.
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Figure 3.4: Schematic drawing of the PTSX vacuum flanges. Electrodes inside the flanges
are indicated by the dashed lines. All dimensions are in inches [88].

Figure 3.5: Photograph of the PTSX device.
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Figure 3.6: Schematic diagram of the PTSX vacuum system. Solid lines represent the flow
of gas, while dotted lines represent the electrical signals [88].

3.2.3 Electrode Control System

To apply the oscillatory voltage ±V0(t), a National Instruments 5411 Arbitrary Function

Generator Card (NI PCI-5411) with a 20 MHz clock rate and a 2 M-sample, 16-bit waveform

memory is used. This PCI card has a single analog output connector whose voltage levels are

±5 V with 12-bit resolution for nominal 50 Ω load termination. The memory architecture

of the card imposes certain restrictions on the waveform size and resolution. The minimum

size of a single waveform is 256 samples and the number of samples must be divisible by 8.

For a 20 MHz clock rate, the time resolution becomes ∆t = 1/(20 MHz) = 50 nsec. These

requirements adjust the actual frequency of a single waveform according to

n1

f0 + ∆f
= {256 + 8(n2 − 1)}∆t, (3.1)
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Figure 3.7: Schematic diagram of the PTSX electrode control system. [88]

where f0 is original desired frequency, f0 + ∆f is adjusted frequency, and n1 and n2 are

positive integers that minimize |∆f |. For example, if we set f0 = 60 kHz, then from Eq.

(3.1), n1 = 1, n2 = 11, and the final frequency is adjusted to f0 + ∆f = 59.5238 kHz. Such a

slight adjustment in frequency is not noticeable for most of the PTSX experiments, except for

the aliasing pattern in the on-axis density oscillation presented in Chapter 4 of this thesis.

By looping a single waveform many times and linking different waveforms together, a long

arbitrary waveform is generated to simulate a wide variety of periodic-focusing quadrupole

lattice patterns.

To create the train of TTL (Transistor-Transistor Logic) pulses that controls the timing

of the injecting, trapping, and dumping of the plasma, a National Instruments 6534 Digital

I/O Card (NI PCI-6534) is used. We use 3 channels of the PCI card that switch on and

off the bias voltages of the injection electrodes, dump electrodes, and emission surface. The

output of each channel is either 5 V for “On”, or 0 V for “Off”. For example, an “On” signal
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(5 V) switches the voltages of the short electrodes from ±V0(t) to a DC bias +V̂ , and closes

the trap so that no ions can pass through. On the other hand, an “Off” signal (0 V) switches

the voltages from +V̂ to ±V0(t), allowing ions to pass through the short electrodes.

To prevent an unwanted phase slipping between the waveform from the NI PCI-5411 and

the TTL pattern from the NI PCI-6534, the two cards are made to share a common 20 MHz

clock. Moreover, to ensure synchronization, a marker pulse is added to the very beginning of

the first waveform of the NI PCI-5411. This marker pulse is used to initially trigger the NI

PCI-6534 via the RTSI (Real-Time System Integration) bus line to start the TTL pattern

generation.

As illustrated in Fig 3.7, the waveform signal from the arbitrary function generator is

transferred into +V0(t) and −V0(t) by unit-gain non-inverting and inverting op amps. These

+V0(t) and −V0(t) signals are sent to a set of solid-state SPDT (Single Pole Double Throw)

switches. Based on the TTL pattern from the digital I/O card, the switches allow the end

electrodes to receive either the DC voltage +V̂ for trapping, or ±V0(t) for injecting and

dumping the plasma. The amplitude of the DC voltage +V̂ is adjusted by a potentiometer

from 36 to 150 V. The central electrodes always have a voltage waveform ±V0(t), but can

be biased to ground by setting |V0(t)|max ≡ V̂0 = 0 V.

The signals are then sent to high-voltage operational amplifiers (Apex Microtechnology

PA94) with ±400 V supply voltages (Fig. 3.8). The system can apply signals up to V̂0 = 400

V and f0 = 100 kHz to the electrodes. These limits are set by the supply voltage limit, the

100 mA continuous output current limit, and the frequency bandwidth of the operational

amplifiers. To eliminate high-frequency noise on the voltage input Vin, an input bypass

capacitor has been added, setting the 3dB point of the low-pass filter at f3dB ≈ 400 kHz.

The voltage gain of this inverting amplifier is −Vout/Vin = 100. To ensure stable operation of

the amplifier at such a high gain, a compensation capacitor CC of 2.2 pF and a current limit

resistor RLIM of 7.5 Ω are added. For overvoltage protection, general-purpose 1N914 diodes

are used on the input voltages and unidirectional zener diodes are used in the supply voltages.
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Figure 3.8: Schematic circuit diagram of the PTSX electrode driver.

Each electrode of the PTSX device represents a capacitive load and draws increasing current

at higher frequencies. The capacitances of the long and short electrode sectors are measured

to be ∼ 270 pF and ∼ 90 pF, respectively [7]. These capacitances are measured by a simple

capacitive voltage divider with respect to ground. To achieve stability in driving purely

capacitive loads, a load resistance of 1.875 kΩ is added on the voltage output, making the

load not purely capacitive, and all the BNC cables (∼ 30.5 pF/ft) which deliver voltage

signals to the electrodes are made to have the same lengths of about 30 cm. A variac sets

the power supply voltage. Even though a heatsink, a thermal washer, and a cooling fan

maintain the temperature of the system properly, the extra heat produced by high-voltage

and high-speed operation occasionally damages the operational amplifier (on the average

once a year for 8 copies of the electrode driver).
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3.3 Cesium Ion Source

Cesium ions (Cs+) were used in the initial phase of the PTSX experiment because of cesium’s

large mass (133 amu) and the commercial availability of sources. The ion source consists of

a 0.6 in. diameter aluminosilicate cesium emitter (Heatwave Labs TB-118) surrounded by

a Pierce electrode, followed by an acceleration grid and a deceleration grid (Fig. 3.9). This

triode grid system has flexibility to change the extraction field strength without changing the

beam energy. In practice, we usually ground the bias voltage on the deceleration grid and

fix the bias voltage on the Pierce electrode. By varying the bias voltage on the acceleration

grid, we can inject a reasonable range of ion currents while keeping the charged particle

energy constant. Cesium oxide, Silicon oxide, and Aluminum oxide are melted into the

emitter surface, which is an extremely porous tungsten disc welded to the molybdenum

heater body. When the emitter surface is heated, cesium oxide decomposes and cesium ion

is produced through contact ionization with tungsten which has a high work function (∼

4.55 eV). The heater is a non-inductively wound coil of molybdenum wire solidly potted into

the molybdenum body with high purity alumina (Al2O3). A DC power supply is connected

to the heater, keeping the source temperature 900 ∼ 1200 ◦C with 7 ∼ 13 A of applied

current. The thermionic electron emission from the emission surface is negligible. In any

event, electrons cannot be confined in PTSX due to their small mass.

The Pierce electrode is made of copper and has a 67.5◦ opening angle to compensate for

possible beam divergence due to space-charge forces [100]. Because the ion beam energy is

relatively low in the PTSX experiment, 85% transparent electroformed copper meshes have

been used for the fabrication of the acceleration and deceleration grids. To avoid the possible

formation of a virtual cathode (i.e., an axial potential structure generated by space charge),

we set the distance between the emission surface and acceleration grid (d1) to be larger than

the distance between the acceleration and deceleration grids (d2), i.e., d1 > d2 [101]. While

the two grids and the Pierce electrode are electrically insulated using machinable ceramic

spacers, the emission surface is biased with the voltage of the Pierce electrode. The amount
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(a) Aluminosilicate cesium ion source. (b) Pierce electrode.

(c) Acceleration (or deceleration) grid. (d) Ion source assembly.

Figure 3.9: Photographs of the cesium ion source.

of charge injected can be controlled easily by adjusting the voltages on the emitter surface

(Vs), acceleration grid (Va), and deceleration grid (Vd) of the ion source. Normally, we set

Vs > Va > Vd ≥ 0 V to minimize the effects of virtual cathode. The voltage difference

between the emitter surface and the acceleration grid determines the extraction voltage

Ve = Vs − Va, and the voltage difference between the emitter surface and the deceleration

grid adjusts the axial beam velocity vb =
√

2q(Vs − Vd)/m.

In Fig. 3.10, we present the axial beam current Ib = qNvb measured by allowing the ions

to stream directly from the source to the large copper plate at the diagnostic end electrodes
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Figure 3.10: The current extracted from the source actually collected on the large copper
plate at the diagnostic end electrodes (solid circles) and estimated from the Child-Langmuir
law (open circles).

for different values of extraction voltage Ve. For the case of space-charge-limited flow [16,21],

it is expected that Ib ≈ ICL from current density conservation. Here, the Child-Langmuir

current ICL is estimated by ICL ≈ (4ε0/9d
2
1)(2q/m)1/2V

3/2
e × πr2

s × (0.85)2, where rs is the

radius of the emission surface, and (0.85)2 term represents transparency of the grids. Figure

3.10 shows, however, that Ib depends linearly on Ve rather than the V
3/2
e scaling of the

Child-Langmuir law for Ve . 10 V. On the other hand when Ve & 10 V, Ib is saturated and

becomes much smaller than ICL. Despite the departure from the Child-Langmuir law, this

control allows us to fill the trap with a wide range of ion densities.

3.4 Radially Scanning Charge Collector

3.4.1 Mechanical Description

The primary diagnostic on PTSX is a radially scanning charge collector on the dumping end

of the device. The charge collector is mounted on a linear motion feedthrough with a 6-in.

stroke that allows the assembly to go from 2 in. beyond the device center to being completely

60



withdrawn from the trap. The original charge collector was based on a commercially-available

Faraday cup that consists of a stack of three 0.75-in. by 1.5-in. plates that support the cup

and has small apertures. In order to reduce the effect of stray charge striking the edges

of these plates and confounding the measurements, the assembly was enclosed in a copper

box that measured 1 in. across by 3 in. tall, and was not symmetrically placed about the

collection aperture. This resulted in a boundary condition for the electric potential that

varied as the Faraday cup was moved, and this was evidenced in the data as an offset in

the position of the peak charge density. To assure a boundary condition that is independent

of the position of the Faraday cup, a slotted 8-in. diameter copper disk was placed in

front of the Faraday cup. Although this eliminated the dependence of the measurement

on the position of the Faraday cup, the dumped plasma now broadened significantly as it

approached the diagnostic. The time-dependent oscillating voltage that normally confines

the plasma radially, gradually became a constant axial field in the vicinity of the copper

disk, and there is no longer a transverse confining field.

The original Faraday cup has been replaced by a charge collector with a simpler design on

PTSX [102]. Figure 3.11(a) shows a schematic of the final charge collector, and Figs. 3.11(b)

and (c) show photographs of the final collector in place in PTSX. The 5 mm diameter

head of a copper nail now serves as the collection surface. A coaxial wire is connected

to the body of the nail, and the wire and nail are inserted into a thin, alumina rod that

insulates the collector from the conductive support rod. The ceramic rod, in turn, is inserted

into a 3/16 in. diameter, stainless steel support rod. The base of this rod is clamped

into a block that sits atop the arm of the linear motion feedthrough. Thus, the collection

surface sits approximately halfway into the dumping electrodes, thereby avoiding fringe fields.

Since this thin support rod is grounded and moves in a null of the fully time-dependent

voltage, the charge collector has a minimum impact on the potential structure within the

dumping electrodes. Measurements show that the radial charge profile no longer exhibits the

broadening associated with the equipotential copper disk used previously, and the profile is
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(a) The charge collector plate is placed transversely at a null of the applied quadrupole
potential and axially away from the the fringe fields. All dimensions are in mm.

(b) The charge collector is guided in the horizontal
direction by a pair of copper plates attached to a
slotted copper disk at the end of the PTSX device.

(c) The 5 mm diameter head of a copper nail serves
as the collection plate.

Figure 3.11: Schematic drawing and photographs of the charge collector.

well-centered. Moreover, because of the low axial kinetic energy of the ions, there is no need

for an additional structure to suppress secondary electron emission.

3.4.2 Model 6514 Electrometer

The Model 6514 electrometer [103] makes charge measurements with 10 fC resolution. In the

electrometer, an accurately known capacitor is placed in the feedback loop of the amplifier

so that the voltage developed is proportional to the charge, which is the integral of the input
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current. The voltage is then scaled and displayed digitally as charge. The integration time

of the A/D converter affects the amount of reading noise, as well as the ultimate reading rate

of the charge measurement [104]. The integration time is specified in terms of the number of

power line cycles (PLC), where 1 PLC for 60 Hz is 16.67 ms. If the A/D converter integrates

for an amount of time equal to an integer number of 1 PLC, then the signal components

from the power line noise, which tend to be periodic, can be cancelled. In the PTSX device,

charge measurement is optimized for a 6 PLC reading rate which corresponds to a 100 ms

integration time. In addition, to reduce the periodic noise from the AC/DC switching of the

end electrodes, the cycle time tcycle is set to be a divisor of the integration time. Figure 3.12

indicates that setting tcycle to be a divisor of the integration time averages out coupling from

the electrodes and makes background signal less noisy.

In the charge measurement using the electrometer, the input offset current is usually

very low. However, for low level charge measurements, as in the PTSX device, even this

small offset current can generate a significant error factor after long-time integration. The

typical input offset current in the Model 6514 electrometer is about 4 fA, which will cause

the offset in the charge measurement Qoffset to be about 0.4 fC for tcycle = 100 ms. Due

to the temperature dependence of the input offset current and a number of other external

current sources in the system, it is very difficult to determine the exact offset current of

the entire system and subtract it from the actual reading. A general rule of thumb is to set

Qoffset ∼ 1 fC and cut off the charge measurement when Q(r) < Qoffset, allowing an additional

uncertainty associated with subtracting the offset. Other unwanted currents can result from

triboelectric effects, electrostatic interference, and magnetic fields. Triboelectric currents are

generated by charges created between a conductor and an insulator due to friction [104]. In

the PTSX device, insulated cable delivering collected charges inside the vacuum chamber

creates some noise when subjected to expansion and contraction. One easy solution is to wait

several seconds after moving the position of the charge collector. Electrostatic interference is

recognizable when hand or body movements near the experiment cause erroneous or unstable
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(a) Integration time = 50 msec (3 PLC).

0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
I n t e g r a t i o n  t i m e  =  1 0 0  m s e c  ( 6  P L C )

  T u r n i n g  o f f  e l e c t r o d e s
  T u r n i n g  o n  e l e c t r o d e s

Ba
ckg

rou
nd

 sig
na

l (A
. U

.)

C y c l e  t i m e ,  t c y c l e   ( m s )

(b) Integration time = 100 msec (6 PLC).

Figure 3.12: The background signal measured without trapped ions is linearly proportional
to the cycle time of PTSX operation. When the electrodes are turned on, the background
signal becomes noisy (open circles). Setting the cycle time to be a divisor of the integration
time averages out coupling from the electrodes (indicated by arrows). Considering that the
dumping time is td ≥ 15 ms, the cycle time is usually set to be tcycle ≥ 25 ms.

readings. Magnetic fields from neighboring experiments can also introduce fluctuations in

the readings.
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In calibrating the internal voltage offset of the electrometer, which drifts with time and

temperature, we perform zero check and zero correction for every charge measurement. The

zero check feature provides a mean for internal zero verification, and the zero correction

feature corrects the internal offset so that the display reads zero with no input signal. When

turning on the zero check feature, the accumulated charges in the charge collector and the

BNC cable dissipate through the 10 MΩ resistor. After turning off the zero check feature, a

new measurement cycle begins. However, the residual charges remaining in the system often

cause sudden changes in the charge reading (known as zero check hop). This effect gives rise

to a nonlinear increase in charge in the initial phase of the measurement (see Fig. 3.13),

which becomes significant particularly for low charge level. A convenient way to deal with

this effect is to avoid the nonlinear regime by starting the charge measurement several seconds

after the zero check. The measured charge signal is transferred to a LabVIEW program of

PC in the ASCII data format through a GPIB interface. The Model 6514 electrometer can

be used within one minute after it is turned on. However, it should be allowed to warm up

for at least one hour to achieve optimum performance.

3.4.3 Radial Profile and Inferred Quantities

If the true density profile n(r′) is uniform in the z direction and axisymmetric in the smooth-

focusing approximation, the total charge collected per cycle Q(r) by the collector plate

centered at radius r can be related to n(r′) as

Q(r) = qLp

∫ rc

0

ρdρ

∫ 2π

0

dθn(r′), (3.2)

where r′ = (r2 + ρ2 − 2rρ cos θ)1/2 is the local radius, rc is the size of the circular collecting

plate, and Lp is the plasma length, which can be estimated either from numerical simulations

or the analytical formula for the axial potential distribution (see Appendix A of [88]). To

increase the collected charge signal out of a low beam current density, the size of the charge
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Figure 3.13: Illustrative example of repeated charge measurement. The resolution of the
accumulated charge measurement is 10 fC, which is set by the electrometer. We wait for
5 sec (or more, if necessary) and collect data only in the linear regime for 10 sec, which
corresponds to 100 trapping cycles for tcycle = 100 ms. Due to the finite speed of the GPIB
communication between the electrometer and the LabVIEW interface, the total number of
data readout Nt is about 20 out of 100 cycles.

collector has been chosen to be rc = 2.5 mm, which is much larger than the opening of the

commercial Faraday cup (rc . 0.5 mm). By noting that the typical density profile in the

PTSX device is close to Gaussian, we obtain

n(r̄) ≈ Q(r)/q

πr2
cLp

, (3.3)

where for r . rc, r̄ ≈ [r2 + r2
c/2]

1/2
, and for r > rc, r̄ ≈ r [1 +O(r2

c/r
2)]. The exact on-

axis density n̂ = n(r = 0) can be approximately determined by extrapolation from the two

nearest data points to r = 0.

The mean-square radius of the trapped plasma column can be calculated from either n(r)

or Q(r) according to

R2
b =

〈
r2
〉

=
1

N

∫ rw

0

dr2πrr2n(r) ≈ 1

Qb

∫ rw

0

dr2πrr2Q(r), (3.4)
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where N = 2π
∫ rw

0
drrn(r) is the line density, and Qb = 2π

∫ rw
0
drrQ(r) is the total charge in

the trap for one cycle. The integrals are evaluated numerically using the Simpson rule with

relative errors of order (δri/Rb)
5, where δri is the radial spacing between measurements,

which is typically 2.54 mm. Since the collected charge is necessarily averaged over many

focusing periods, the values of Rb calculated from Eq. (3.4) can be interpreted as the

rms radius of the beam in the smooth-focusing approximation. The effective transverse

temperature T̄⊥ of the ions is inferred from global force balance equation as [1]

T̄⊥ =
1

2

[
mω2

qR
2
b −

Nq2

4πε0

]
. (3.5)

This temperature is a measure of the average (random) kinetic energy of the beam particles

in the smooth-focusing equilibrium. For a matched beam in thermal equilibrium, T̄⊥ is ap-

proximately equal to the thermal temperature of the ion source, i.e., T̄⊥ ≈ Ts. Furthermore,

the average transverse emittance in the beam frame can be estimated as

ε ≈ 2Rb

(
2T̄⊥
m

)1/2

. (3.6)

3.5 Summary and Discussion

In this chapter, the Paul Trap Simulator Experiment (PTSX) apparatus has been described

in detail. For the PTSX device to confine and detect the pure ion plasma with parameters

relevant for the simulation of the intense beam in the alternating-gradient (AG) focusing

system, the device configuration, electrode control system, vacuum system, ion source, and

charge collector have been carefully designed and installed. Initial experiments with a cesium

ion source and a radially scanning charge collector diagnostic, which will be presented in

Chapters 4 of this thesis, demonstrate the wide operating range and the large degree of

flexibility of the PTSX device.
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Chapter 4

Collective Mode Excitation and

Machine Imperfection Effects

4.1 Introduction

In this chapter, we present a brief review of the theoretical models for collective modes

of charged particle beams and discuss the excitation of those collective modes and their

effects on beam parameters. Effects of machine imperfections on beam qualities will be

also be discussed. In Sec. 4.2, we discuss the theoretical models for collective modes. In

Sec. 4.3, excitation of quadrupole modes and the characteristics of the quadrupole modes

are presented. In Sec. 4.4, excitation of dipole modes and the characteristics of the dipole

modes are discussed. In Sec. 4.5, effects of machine imperfections will be presented.

4.2 Quadrupole and Dipole Modes

The long thin charge bunch in PTSX and the charged particle beams in periodic trans-

port systems support a wide range of collective modes, and these modes can be studied

in the context of different models. A Kapchinskij-Vladimirskij (KV) distributed beam or

charge bunch has uniform number density and Gaussian distributed velocities, with charged
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particles entailed by beam envelopes defined by x2/a2(t) + y2/b2(t) ≤ 1, where a(t) and

b(t) are the x-direction and y-direction envelopes of the beam. Using the assumption of a

KV distribution, a great deal of analytic progress has been made in collective mode stud-

ies [1, 51,56,105–109]. The frequencies of the surface modes with azimuthal mode number l

can be found using the KV Vlasov-Poisson smooth-focusing model in which the KV distribu-

tion is used and the time- dependent periodic quadrupole lattice is replaced by a continuous

focusing force [1]. Alternatively, a KV smooth-focusing envelope model can be used to derive

the expressions of the frequencies of l = 0 body mode and l = 2 quadrupole mode [38]. We

can also numerically study the dependence of mode frequencies of l = 0 body mode and l = 2

surface mode on space charge using the KV smooth-focusing envelope model with fully time

dependent quadrupole lattice. Finally, particle-in-cell (PIC) codes can be employed to cre-

ate steady state, matched beam distributions that can be perturbed to study the collective

modes numerically [57]. For the l = 0 body mode, l = 1 dipole mode and l = 2 quadrupole

mode, the analytical expressions for their frequencies can be written as [1, 38]

fdipole = fq =
ωq
2π

(4.1)

fquadrupole = 2fq

(
1− 3

4
ŝ

) 1
2

(4.2)

fbody = 2fq

(
1− 1

2
ŝ

) 1
2

(4.3)

where ωq is the average smooth transverse focusing frequency and ŝ = ω2
p/2ω

2
q is the nor-

malized intensity which measures the strength of the space charge effect. The dipole mode

corresponds to the bulk transverse displacement of the plasma column, and the body mode

corresponds to the axisymmetric perturbation of the envelope of the charge bunch, while

the quadrupole mode corresponds to the elliptical perturbation of the surface of the charge

bunch. In order for the external perturbation to interact with the collective modes, both the

spatial structure and the frequency of the external perturbation must be the same as those

of the collective modes. In the following sections, we will discuss the excitation of collective
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modes and study the interaction between the external perturbation and the collective modes

under a wide range of perturbation schemes.

4.3 Excitation of Quadrupole Modes

4.3.1 Beat Drive Scheme

Experimental Results

Quadrupole modes exist naturally in intense charged particle beams. Usually, the amplitudes

are very small and they don’t cause degradation of charged particle beams. Therefore, to

see the effects of quadrupole modes at large amplitude, we need to excite those quadrupole

modes externally. Here, two ways to excite the quadrupole modes are considered. One is the

beat drive scheme which is discussed in this section. The other scheme is the linear drive

scheme which is discussed in Sec. 4.3.2. In our experiments, a combination of sine waves is

applied to the four PTSX electrodes:

V (t) = V0 sin(2πf0t) + V1 sin(2πf1t) (4.4)

where V0 is the normal unperturbed voltage amplitude applied to the PTSX electrodes, f0

is the corresponding frequency, V1 is the perturbed voltage amplitude, usually expressed as

a fraction of V0, and f1 is the summation of f0 and the desired mode frequency fmode, i.e.

f1 = f0+fmode. In PTSX, the typical values for V0 and f0 are 140 V and 60 kHz, respectively.

The beating between the V0 sin(2πf0t) and the V1 sin(2πf1t) term will create another slow-

motion beating term with frequency fbeat = f1−f0. In other words, we introduced an external

perturbation of frequency fbeat = f1 − f0. The typical value of V1 is about 0.5% − 1.5% of

V0.

When the external perturbation frequency equals f0+fmode, the fmode component external

perturbation due to the beating between f0 + fmode and f0 resonates strongly with the
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Figure 4.1: On-axis Charge density as a function of f1−f0. The results show strong response
of the plasma near 2fq, while little response was observed when f1 − f0 was far away from
2fq.

collective modes of the charge bunch. The strong resonation acts as an extra energy source

which causes the heating of the charge bunch. The on-axis charge density is reduced due

to the expansion of the plasma which can be observed in experiments. The experimental

results of beat drive scheme are shown in Fig. 4.1. Since the spatial structure of the external

perturbation is more likely to excite quadrupole mode, the plasma responds strongly near

2fq, the expected quadrupole mode frequency, while there is little response near fq, the

expected dipole mode frequency. There are two noticeable peaks near the quadrupole mode

frequency and this is likely due to coupling to other modes that have frequency near 2fq.

For example, quadrupole mode and the breathing mode have frequencies near 2fq. The

normalized intensity dependence of the quadrupole mode frequency shown in Fig. 4.1 was

measured and the quadrupole mode frequency was plotted as a function of the normalized

intensity ŝ as shown in Fig. 4.2. The experimental data and the polynomial regression agree

well with each other. We also plotted theoretical quadrupole mode frequency together with

the experimental data for further comparison. The first term of the regression expression

is extremely close to 2fq which agrees with the simple KV smooth-focusing model at small
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Figure 4.2: Comparison among experimental data, polynomial regression, and the theoretical
model for quadrupole mode.

normalized intensity ŝ. Experimental data shows weaker dependence of mode frequencies on ŝ

than the theoretical mode. There exists systematic difference between the experimental data

and the theoretical model which is demonstrated by consistently higher experimental mode

frequencies. See Sec. 4.3.2 for detailed explanation of this discrepancy. The experimental

results shown in Fig. 4.1 and 4.2 were obtained by applying 0.5% perturbation on the PTSX

electrodes. We saw a strong response of the plasma near the frequency 2fq, and didn’t

see rich mode frequencies at other frequencies. The primary modes (e.g. quadruple mode

and breathing mode) are still relatively easy to identify. As we increased the amplitude of

the perturbation, the mode excitation and mode coupling became much more complicated

when the collective mode was driven to the nonlinear regime. Fig. 4.3 shows on-axis charge

density as a function of the beating frequency. Compared to a small perturbation (i.e. 0.5%),

the mode structure at a large perturbation(i.e. 1.5%) is more complex and it is difficult to

identify which modes have been excited. It is still hard to explain to the mechanism of this

behavior at large external perturbations and a much more suitable theoretical model other

than simple KV smooth-focusing model is needed to explain the experimental results. In
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Figure 4.3: On-axis charge density shows much more complicated behavior at 1.5% pertur-
bation than 0.5% perturbation at ŝ = 0.44.

order to gain some insights, we turn to the Warp 3D simulation which is discussed in the

following section.

Warp Simulation Results

In Sec. 4.3.1, we presented the experimental studies of the quadrupole mode excitation using

a beat drive scheme. Fig. 4.1 shows the plasma has a strong response near 2fq, the expected

quadrupole mode frequency, while there is little response at other perturbation frequencies.

Fig. 4.2 compares the dependence of the quadruple mode frequency on normalized intensity

ŝ from experiments with the simple KV smooth-focusing model predicts. The KV model

agrees with the experimental results qualitatively, while there exists quantitative discrep-

ancies between the experimental results and the theoretical results. Since the assumptions

of the KV model are very strong and don’t apply to our circumstances, we turn to Warp

3D simulations to support the experimental results and better under the excitation of the

quadrupole mode. In the Warp 3D simulations, we used 0.5% perturbation amplitude all

throughout and scanned the perturbation frequency using different initial normalized inten-
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sities ŝ. The charge bunch was injected to the PTSX main chamber and trapped for 100 ms

in total. In the first 5 ms, normal oscillating voltage was applied to the PTSX electrodes

and the charge bunch gradually relaxed to a steady state. 30 ms external perturbation was

applied afterwards, which was followed by 15 ms relaxation time where normal oscillating

voltage was applied. We measured the final radial charge density profile, from which we

computed other important quantities such as rms radius, transverse temperature, and emit-

tance. The rms radius is computed first from the complete radial density profile. Using the

global force balance equation, the transverse temperature kT is calculated. Emittance is

computed using rms radius and kT .

Figure 4.4 shows the on-axis number density as a function of f1− f0 for several different

values of initial ŝ. Similar to what is shown in the experimental data, the simulation data

show strong response near 2fq and the mode structures shown in the simulation are similar

to what we saw in the experiment. But unlike the experimental data, there is only one

primary peak for most of the simulation data, and this is hard to explain. Since the spatial

structure of the perturbation is more favorable to the excitation of the quadrupole mode,

we treat only the conspicuous mode as the quadrupole mode. Not only did the simulation

confirm the existence of the quadrupole mode, it also provided a tool to study the dependence

of the quadrupole mode frequency on ŝ. Figure 4.5 shows the comparison of dependence of

quadrupole mode on ŝ between experiment, simulation and KV smooth-focusing model. The

simulation and the experiment agreed well with each other, while both of them differed from

the KV model significantly.

In addition to studying the dependence of mode frequencies on ŝ, we also use Warp 3D

simulations to study the properties of the charge bunches such as rms radius, transverse

temperature, emittance under external perturbation. Fig. 4.6 shows the changes of rms

radius, transverse temperature and emittance as perturbation frequency changed. When

the perturbation frequency equals to f0 + fmode, strong resonance occurred and the charge

bunch was heated by the extra energy which caused the expansion of the charge bunch.

75



(a) On-axis number density vs f1 − f0 in the whole
frequency range

(b) On-axis number density vs f1−f0 between 7 kHz
and 9 kHz

(c) On-axis number density vs f1 − f0 between 13
kHz and 17 kHz

Figure 4.4: On-axis number density as a function of f1−f0 under different ŝ. Different initial
ŝ are chosen to study the mode frequency dependence on ŝ. The charge bunch shows strong
response to the perturbation near 2fq, while having little response at other frequencies.
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Figure 4.5: Comparison of dependence of quadrupole mode frequency on ŝ between exper-
iment, simulation and KV smooth-focusing model. The experiment and simulation results
agree well with each other, while both of them differs from the KV smooth-focusing model
significantly.
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Both the rms radius and the transverse temperature increased accordingly. Some particles

are eventually lost when they drift too far away from the center. So usually particle loss

is accompanying the resonance. The resonance intensity decreased as f1 − f0 moved away

from the mode frequency which resulted in the quasi-bell shape of the plots. The final radial

density profiles with initial ŝ = 0.18 at different perturbation frequencies were plotted and

compared to one another to show the effects of charge bunch expansion. Fig. 4.7 shows

the radial density profiles at different perturbation frequencies with initial ŝ = 0.18. As

the resonance occurred, the charge bunch expanded and the on-axis charge density dropped

accordingly. Since the resonance between the external perturbation and the collective modes

of the charge bunch causes beam degradation, resonance should be avoided. It is still unclear

how exactly the external perturbations interacts with the collective modes of the charge

bunch. This will be further investigated in future research.

4.3.2 Linear Drive Scheme

Experimental Results

We have discussed above the excitation of collective modes and the interaction between the

external perturbation and the collective modes using the beat drive scheme. In this section,

a linear drive scheme is used to excite the collective modes. The oscillating voltage applied

to the PTSX electrodes is also a summation of sine waves expressed as:

V (t) = V0 sin(2πf0t) + V1 sin(2πf1t) (4.5)

where V0 is the normal unperturbed voltage amplitude applied to the PTSX electrodes, f0

is the corresponding frequency, V1 is the perturbed voltage amplitude, usually expressed as

a fraction of V0, and f1 is the frequency of the perturbation. In PTSX, the typical values for

V0 and f0 are 140 V and 60 kHz, respectively. Typically, V1 is 0.1%− 1% of V0. As opposed

to the beat drive scheme, the linear drive scheme uses the perturbation voltage to directly
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(a) Rms radius vs f1 − f0

(b) Transverse temperature vs f1 − f0

(c) Emittance vs f1 − f0

Figure 4.6: The properties of charge bunches changed significantly when strong resonance
between collective modes and perturbation occurred.
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(a) Rms radius vs perturbation frequency at ŝ = 0.18

(b) Radial density profiles at selected perturbation frequencies

Figure 4.7: The radial density profiles at different perturbation frequencies under initial ŝ
= 0.18. At resonance frequency, the radial density profile is lower than normal case and the
charge bunch is broader.

excite the collective modes, leading us to choose f1 to match the collective mode frequencies,

i.e. f1 = fmode. Further, the amplitude of the perturbed voltage for the linear drive scheme

is also smaller compared to that of the beat drive scheme. In our case, the typical perturbed
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voltage amplitude is 0.12% of V0. When the external perturbation frequency is the same as

the collective mode frequency, strong resonance may occur between the external perturbation

and the collective modes. The resonance serves an extra energy source and heats the plasma.

As the plasma is expanding radially due to the heating, the on-axis charge density will

decrease which can be easily observed in experiments. For a strong resonance to occur, not

only does the perturbation frequency have to match a collective mode frequency, but also the

spatial structure of the perturbation has to match that of a collective mode. The theoretical

model of collective modes described in Sec. 4.2 predicts that the collective mode frequency is

a decreasing function of normalized intensity ŝ. The experimental results are shown in Fig.

4.8 for the case of a quadrupole perturbation. As expected, since the spatial structure of the

perturbation matched the quadrupole mode, the charge bunch responds strongly near 2fq,

the expected quadrupole mode frequency, while there is little response near fq, the expected

dipole mode frequency. This feature is clearly demonstrated by Fig. 4.8(b) and Fig. 4.8(c).

Note that there are two conspicuous peaks near the quadrupole mode frequency and this

is likely due to coupling to other modes that have frequencies near 2fq. For example, the

quadrupole mode and the breathing mode both have frequencies near 2fq.

The normalized intensity dependence of the quadrupole mode frequency shown in Fig.

4.8 was measured by repeating the experiment for various amounts of injected charge. There

are two primary peaks which shift as the ŝ varies. The frequencies of the primary peaks

in data such as those in Fig. 4.8 are plotted as a function of normalized intensity ŝ in

Fig. 4.9. Both the linear regression and the quadratic regression of the breathing mode

data agree well with the experimental data but exhibit noticeable discrepancy at small

normalized intensity ŝ. There are a couple of possible reasons to explain that discrepancy.

First of all, only four data points were used in the regression, which made the regression

inevitably subject to relatively large regression error due to small sample size. Another

possible reason relates to the difficulty of properly identifying the breathing mode. Since the

spatial structure of the external perturbation is more favorable to exciting the quadrupole
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(a) On-axis charge density vs perturbation frequency in
the whole frequency range

(b) On-axis charge density vs perturbation frequency be-
tween 7.5 kHz and 8.5 kHz

(c) On-axis charge density vs perturbation frequency be-
tween 14.5 kHz and 17.5 kHz

Figure 4.8: On-axis charge density as a function of perturbation frequency at different
normalized intensity ŝ.

82



mode, it is difficult to determine if the breathing mode has been excited. Taking into account

the possibility of mode coupling near 2fq, it is even harder to identify the breathing mode.

Both the linear regression and the quadratic regressions of the quadrupole mode data agree

well with the experimental data and the polynomial regressions also agree well at small ŝ.

To further compare the experimental data with the simple KV theoretical model, we plot the

experimental data with the theoretical model together in Fig. 4.10. We choose the linear

regression plots for both quadrupole and breathing modes for comparison purpose. The

first terms of both regressions are extremely close to 2fq, which agrees with the simple KV

smooth-focusing model at small normalized intensity ŝ. Experimental data shows weaker

dependence of mode frequencies on ŝ than the theoretical model and the dependence of the

breathing mode is on ŝ is much weaker than that of the quadrupole mode. Although the

experimental data agree with the theoretical model qualitatively, the mode frequencies from

the experiments are consistently higher than the theoretical values and it shows systematic

difference between them. This difference may be explained both by the measurement errors

of operating parameters and oversimplicity of the theoretical model. For example, for the

linear regression of the quadrupole mode frequencies at various ŝ, the interception coefficient

is about 16.125 kHz, which corresponds to the quadrupole mode frequency at zero ŝ (i.e.

2wq). The corresponding 2wq used in the theoretical model is about 15.9 kHz, which is

about 1.5% smaller than 16.125 kHz. The wq used in the theoretical mode is computed

using the measured values oscillating voltage amplitude V0, the oscillating voltage frequency

f0, the radius of the PTSX electrodes R. Take the measurement of the voltage amplitude for

example, the fluctuation of the measurement is about 1.4%. All being said, the measurement

error could be partially responsible for the discrepancy between the experiment and the

theory. With regard to the concerned KV smooth-focusing model, the charge bunch number

density n(x, y, s) is uniform within the elliptical cross-section x2/a2(s) + y2/b2(s) = 1, while

n(x, y, s) is zero outside the elliptical cross-section [1]. In our case, the radial density profile

in equilibrium is approximately Gaussian which is far cry from uniform. This oversimplicity
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Figure 4.9: Comparison between experimental data and polynomial regressions for both
quadrupole mode and breathing mode.

Figure 4.10: A simple KV smooth-focusing model predicts a decrease of quadrupole mode
frequencies as a function of the normalized intensity ŝ. The experimental data exhibits weak
dependence on ŝ

of the theoretical model is probably a major reason why the theoretical model doesn’t fully

explain the experimental results quantitatively.

The experimental results shown in Fig. 4.8, 4.9 and 4.10 were obtained by applying

0.12% perturbation on the PTSX electrodes. We saw strong response of the plasma near

the 2fq frequency, and didn’t see rich mode structures at other frequencies. In that case,

the primary modes are still relatively easy to identify. As we increased the amplitude of
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Figure 4.11: On-axis charge density as a function of the perturbation frequency. The per-
turbation amplitude is 0.5% and the unperturbed normalized intensity ŝ is 0.44.

the perturbation, it is highly possible that the collective modes were driven to the nonlinear

regime and the mode coupling became more complicated. As we see from Fig. 4.11, at

0.5% perturbation amplitude, the possible nonlinear behavior and the complex coupling of

collective modes results in a huge drop of the on-axis density near 2fq and it is difficult to

tell which specific modes have been excited. It is still unclear why this behavior occurs and

it is hard to draw meaningful conclusions without further investigation of this behavior in

the future research.

Warp Simulation Results

In Sec. 4.3.2, we applied a sum of sine waves on PTSX electrodes to study the excitation

of quadrupole mode. Figure 4.8 shows the charge bunch has a strong response near 2fq,

the expected quadrupole mode frequency, while there is little response at other perturbation

frequencies. Figure 4.10 compares the dependence of mode frequencies on ŝ from experiments

with the simple KV smooth-focusing model predicts. Although the KV model qualitatively

agrees with the experimental results, some assumptions of the KV model don’t apply to

our experimental circumstances which probably can explain the quantitative discrepancies
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between the KV model and the experimental results. To better understand the excitation

of quadrupole modes in PTSX, we employed the 3D Warp simulation tool. In the 3D Warp

simulation, we used 0.12% perturbation amplitude all through and scan the perturbation

frequency under different initial normalized intensity ŝ. The charge bunch was injected into

the PTSX main chamber and was allowed 5 ms to relaxed to a steady state before the

external perturbation kicked in. After 30 ms of perturbation, the charge bunch was given

15 ms to relax to another equilibrium state. We measured complete radial charge density

profile, from which we computed other important quantities such as rms radius, transverse

temperature, and emittance.

Figure 4.12 shows the on-axis number density as a function of perturbation frequency

under different initial ŝ. As shown in the experimental data, the simulation data also shows

strong response near 2fq and the mode structures shown in the simulation are quite similar

to what we saw in the experiments. It is unclear why some mode structures have only

conspicuous mode instead of two like we saw above in the experiments (Fig. 4.8). Based on

the spatial structure of the perturbation, the quadrupole mode the most likely mode to be

excited, so we treat only conspicuous mode in some mode structures as the quadrupole mode.

Not only did the simulation confirm the existence of the quadrupole mode, it also provided

a tool to study the dependence of quadrupole mode frequency on ŝ. Figure 4.13 shows the

comparison of dependence of quadrupole mode on ŝ between experiment, simulation and KV

smooth-focusing model. The simulation and the experiment agreed pretty well with each

other, while both of them differed from the KV model quantitatively.

Besides studying the dependence of mode frequencies on ŝ, we can also use a 3D Warp

simulation to study the properties of charge bunch such as rms radius, transverse temper-

ature, emittance under external perturbation. Fig. 4.14 shows the changes of rms radius,

transverse temperature and emittance as perturbation frequency changed. At the mode fre-

quency, strong resonance occurred and the charge bunch was heated by the extra energy

which also led to the expansion of the charge bunch. Both the transverse temperature and
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(a) On-axis number density vs perturbation frequency in
the whole frequency range

(b) On-axis number density vs perturbation frequency
between 7.5 kHz and 8.5 kHz

(c) On-axis number density vs perturbation frequency
between 14.5 kHz and 17.5 kHz

Figure 4.12: On-axis number density as a function of perturbation frequency under different
ŝ. Different initial ŝ are chosen to study the mode frequency dependence on ŝ. The charge
bunch shows strong response to the perturbation near 2fq, while having little response at
other frequencies. 87



Figure 4.13: Comparison of dependence of quadrupole mode frequency on ŝ between exper-
iment, simulation and KV smooth-focusing model. The experiment and simulation results
agree pretty well with each other, while both of them differs from the KV smooth-focusing
model quantitatively.

the rms radius increased accordingly. If the particles stray too far away from the center,

they eventually lose confinement. So usually when the resonance occurs, particles are lost.

The resonance intensity decreased as the perturbation frequency moved away from the mode

frequency which resulted in the quasi bell shape of the radial density profiles. To further de-

scribe the expansion of charge bunch during resonance, we plotted the radial density profiles

of the charge bunch at different perturbation frequencies and compared them head-to-head.

Fig. 4.15 shows the radial density profiles at different perturbation frequencies with initial

ŝ = 0.18. As the resonance occurred, the charge bunch expanded and the on-axis density

dropped according. Since the resonance between the external perturbation and the collective

modes of the charge bunch causes the beam degradation, we should try our best to avoid

the resonance as best as we can. It is still unclear how exactly the external perturbation

interacts with the collective modes of the charge bunch. This will be further studied in the

future research.
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(a) Rms radius vs perturbation frequency

(b) Transverse temperature vs perturbation frequency

(c) Emittance vs perturbation frequency

Figure 4.14: The properties of charge bunch changed significantly when strong resonance
between collective modes and perturbation occurred.
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(a) Rms radius vs perturbation frequency at ŝ = 0.18

(b) Radial density profiles at selected perturbation fre-
quencies

Figure 4.15: The radial density profiles at different perturbation frequencies under initial ŝ
= 0.18. At resonance frequency, the radial density profile is lower than normal case and the
charge bunch is broader.

4.4 Excitation of Dipole Modes

4.4.1 Experimental Results

In Sec. 4.3, we discussed the excitation of the quadrupole mode using a beat drive and

a linear drive scheme. We also presented the effects of external perturbations on beam

characteristics. In this section, we will focus on another important collective mode: the

dipole mode. In order to excite the dipole mode, the spatial structure and the frequency of

the the perturbation should be the same of those of the dipole mode. While the frequency
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Figure 4.16: Decomposition of the set of voltages { +(1+x), -1, +1, -1}as a combination of
perturbed quadrupole field, a dipole field, and a uniform perturbation.

can be easily controlled by the arbitrary function generators, the spatial structure of the

perturbation is controlled by applying a slightly different waveform on one of the PTSX

electrodes. As described in Sec. 3.2, the oscillating quadrupole field is produced by the four

PTSX electrodes when the four electrodes have voltages {+V0,−V0,+V0,−V0} sin(2πft)

applied to them, and the potential inside the PTSX chamber can be written as [15]

V (r, θ, t) =
4V0(t)

π

∞∑
l=1

sin(lπ/2)

l

(
r

rw

)2l

cos(2lθ) (4.6)

For the general case, where the four PTSX electrodes have voltages {V1, V2, V3, V4} applied

to them, and the potential inside the cylinder has the form V (r, θ) =
∑∞

l=0Cl(r/rw)l cos (lθ),

the normalized amplitude of each multipole component can be written as Al = 1
4

∫ 2π

0
V (rw, θ)

cos(lθ). We choose the normalization so that a set of voltages {+1, -1, +1, -1} produces a

quadrupole term with strength A2 = 1. Accordingly, this set of voltages {+1, -1, +1, -1}

generates a quadrupole term A2 = 1, a 12-pole term A6 = 1/3, and higher-order terms.

A simple way to create a dipole perturbation while still well preserving the normal

quadrupole field is to apply a set of voltages {+(1 + δ),−1,+1,−1} to the four PTSX

electrodes [12]. Since the potential is additive, the above set of voltages can be de-
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Figure 4.17: Uniform perturbations are applied to the plasma under different oscillating
voltage amplitudes ranging from 130 V to 217 V. The on-axis charge density is almost
constant and doesn’t independent on the uniform perturbation amplitude. It suggests the
uniform perturbation doesn’t have any effect on the plasma.

composed as {+(1 + δ),−1,+1,−1} = (1 + δ/4){+1,−1,+1,−1} + δ/2{+1, 0,−1, 0} +

δ/4{+1,+1,+1,+1}, that is, as the sum of a perturbed quadrupole perturbation plus

a dipole perturbation, and a uniform perturbation as shown in Fig. 4.16. In this case,

A0 = δπ/8, A1 = δ/4, A2 = 1 + δ/4, A3 = δ/12, A5 = δ/20, A6 = 1/3 + δ/12, etc. The

effects of hexapole and higher order terms can be safely neglected since the trapped charge

bunch is confined near the center of the cylinder where r/rw < 0.25. The δ/4 increase in

the quadrupole field can be compensated for by lowering the voltage amplitude on all four

electrodes by δ/4 if desired. Note that the A0 term, corresponding to a uniform potential

perturbation applied to the PTSX electrodes, does not contribute to the electric field

force felt by the trapped charge bunch. Experiments were carried out in which uniform

potential perturbations were applied to the PTSX electrodes, and no effect on the plasma

was observed as seen in Fig. 4.17 [12]. Uniform perturbation with various amplitudes were

applied to the PTSX electrodes. No matter what the main quadrupole voltage magnitude

was, the uniform perturbation didn’t have any effect on the plasma.
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Figure 4.18: The plasma has a strong response to the external perturbation at dipole mode
frequency fq, while there is little response at other perturbation frequencies. The small
response near 2fq is probably due to the excitation of quadrupole mode.

In order to see the response of plasma to dipole perturbations with different frequencies,

we scanned the perturbation frequency. Since the collective modes of interest are near either

fq or 2fq, where the fq is the smooth-focusing frequency, the perturbation frequency was

scanned within vicinity of those frequencies. The dipole perturbation amplitude is 0.5%

of the main quadrupole voltage amplitude. The on-axis charge was measured after the

perturbation was turned off and plotted as a function of perturbation frequency. As shown

in Fig. 4.18, the dipole perturbation had a strong resonance with the dipole mode of the

charge bunch, while having little effect on the charge bunch at other frequencies. It is noted

that there is a local minimum on Fig. 4.18 near 2fq. It is likely to be the quadrupole mode.

The mode amplitude is very small mainly because the spatial structure of the perturbation

is not favorable to the excitation of the quadrupole mode.

In order to study the beam qualities under different perturbation amplitudes, we fixed

the perturbation frequency at the dipole mode frequency to make sure that the dipole mode

would be excited. Then various perturbation amplitudes were applied to one PTSX electrode.

The radial density profiles were measured at each perturbation amplitude. The rms radius
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Rb and line charge density N were computed from the complete radial density profile. Using

the following global force balance equation [1],

mω2
qR

2
b = 2kT +

Nq2

4πε0
, (4.7)

the transverse temperature kT was computed. The emittance was calculated as 2
√

2Rb

√
kT .

As expected, when the resonance between the external perturbation and the dipole mode

occurred, the plasma was heated by the extra energy, causing the beam’s temperature to

rise and the beam to expand, eventually causing the emittance growth. As the perturbation

amplitude increased, the damaging effect was more conspicuous as shown in Fig. 4.19. It is

demonstrated that even a small amplitude dipole perturbation can cause a strong response

from the plasma. In Fig. 4.19 (d), we can see that even a 10 ms dipole perturbation of 0.7%

amplitude can cause a more than 20% increase of the emittance. Since the plasma is quite

sensitive to the dipole perturbation, we should try our best to avoid the dipole perturbation.

To study the dependence of the dipole mode on the space charge, we varied the bias

voltage on the emitting surface of the cesium ion source to obtain a range of charge densi-

ties. Since the dipole mode corresponds to the movement of the whole plasma column, its

frequency should be independent of the space charge. As demonstrated in Fig. 4.20, the

dipole mode frequency remained the same for various charge densities.

Finally, as discussed before, the way we applied the dipole perturbation introduced an

extra minor quadrupole perturbation. To verify that the damaging effect at dipole mode

frequency was caused by the perturbation of dipole spatial structure instead of the perturba-

tion of quadrupole spatial structure. We separated the two perturbations and studied their

effects separately. This will be discussed in Sec. 4.5.
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(a) The rms radius vs perturbation amplitude (b) Normalized intensity vs perturbation amplitude

(c) Transverse temperature vs perturbation ampli-
tude

(d) Emittance vs perturbation amplitude

Figure 4.19: As the perturbation time and the perturbation amplitude increase, the dipole
perturbation has increasingly damaging effect on the charge bunch.

4.4.2 Warp Simulation Results

In the previous section, we have shown the experimental results using an external dipole

perturbation. As expected, the plasma had a strong response at the dipole mode frequency

and the plasma expanded due to the extra heating from the resonance, causing the decrease of

on-axis density and the broadening of the radial density profile. As the perturbation duration

and amplitude increased, the damaging effects became more conspicuous. We also showed

that the dipole mode frequency is independent on the space charge, which agrees with the
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Figure 4.20: The dipole perturbation is applied to the plasma under different bias voltage
Vs on the cesium ion source ranging from 1.6 V to 2.5 V. Vs determines the injected charge
density which determines the space charge field strength. The measured on-axis density is
normalized with respect to the unperturbed value for each Vs. The plots clearly show that
the dipole mode is independent on the space charge.

theory. To further interpret the experimental results, we used the 3D Warp simulation results

for the comparison with the experimental data. In the experiments, the dipole perturbation

was applied by adding perturbation on one PTSX electrode, which also introduced smaller

amplitude quadrupole perturbation and a uniform perturbation. In the 3D Warp simulation,

we use the same technique to simulate what happens in the experiments. The 3D Warp is

a particle-in-cell (PIC) simulation code. The simulation is set up in the following manner:

The number of the macro particles as 80,000, the transverse grid size as 10/32 cm. The time

step is 1/20 of the lattice period, where the lattice period in our case is 16.67 µ s. The dipole

perturbation duration is chosen to be 30 ms which is the same as in the experiments. The

perturbation amplitudes and the initial normalized intensity ŝ are varied to simulate various

scenarios in the experiments. The total simulation duration is 50 ms. In the first 5 ms,

the plasma is allowed to relax to an equilibrium state. Afterwards, the 30 ms perturbation

kicks in. Then the plasma is given another 15 ms to relax to a new equilibrium. The radial

density profiles are measured in the end of the simulations. The corresponding quantities
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including the rms radius, the transverse temperature, the emittance, the line-charge density

are computed from the radial density profiles using the global force balance equation [1].

Figure 4.21 shows the changes of the beam density, rms radius and temperature as a

function of the perturbation frequency at 0.1% perturbation amplitude. As expected, the

plasma shows a strong response to the external perturbation at the dipole mode frequency.

The plasma was heated by the extra energy from the resonance which caused the expansion

of the plasma and the decrease of on-axis density. To further investigate the transverse

particle distribution of the plasma at different perturbation frequencies, we plotted the radial

density profiles of the plasma perturbed at the dipole mode frequency and at frequencies far

away from the dipole mode frequency. Figure 4.22 (a) shows the radial density profiles of the

plasma after being perturbed at the dipole mode frequency and at other frequencies. It shows

when the plasma is perturbed at frequencies far from the dipole mode frequency, the plasma

is barely affected and the shape of the profile is quite Gaussian. However, while the plasma

is perturbed at dipole frequency, the strong resonance between the plasma and the external

perturbation causes the plasma to expand significantly, rendering a broad, non-Gaussian

density profile. The rms radius of the perturbed plasma at the dipole mode frequency is

almost twice that of the perturbed plasma at other frequencies. To further investigate the

two-dimensional distribution of the particles during the external perturbation, we plotted

the transverse particle distributions before and after the dipole perturbations. Figure 4.22

(b) is the transverse particle distribution some time before the perturbation. If we look at

the particle distribution for a few lattice periods, we will see the particle bunch is oscillating

at lattice frequency in both transverse directions and the average shape looks like an eclipse.

If there is no external perturbation, the particle bunch will remain in equilibrium and the

line-charge density will be conserved. Figure 4.22 (c) shows the particle distribution after 5

ms perturbation. The shape of the distribution is really strange and the origin of the shape

is unclear. To further investigate the incremental changes of the particle distribution, we

plotted the incremental changes of the particle distribution after 5 ms perturbation with
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(a) On-axis density vs perturbation frequency

(b) Rms radius vs perturbation frequency

(c) Line-charge density vs perturbation frequency

Figure 4.21: There is a strong response at the dipole mode frequency when 0.1% external
perturbation with dipole structure is applied. For other frequencies, there is little response
from the plasma.
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an interval of 15 time steps. Figure 4.23 and Fig. 4.24 show the continuous change of the

particle distribution. Although it is still unclear why those specific shape of distribution

came up, it is clear that the whole charge bunch is oscillating in the X direction with a

period of approximately 150 time steps. In our experiments, the lattice frequency is 60 kHz

and the time step is 1/20 of the lattice period. So the oscillating frequency of the charge

bunch in the X direction is approximately 60*20/150 = 8 kHz. This is exactly dipole mode

frequency as calculated from the operating parameters. It is evident the the dipole mode has

been excited and as time goes by, the strong resonance between the plasma and the external

perturbation will cause the plasma to expand significantly.

So far, we have shown from the simulations that the perturbation at dipole mode fre-

quency caused an expansion of the plasma and a decrease of the on-axis density. To further

study to what extent the perturbation affects the plasma, we perturbed the plasma in the

simulations at different amplitudes ranging from 0.05% to 0.35% and examine the changes

of the on-axis density and line-charge density at different perturbation amplitudes. Figure

4.25 (a) shows the on-axis density as a function of the perturbation amplitude. It is expected

that as the perturbation amplitude increases, the stronger resonance causes the plasma to

expand to a larger extent and results in a bigger drop of the on-axis density. Figure 4.25 (b)

and (c) combined illustrate that when the perturbation amplitude is small, the expansion of

the plasma is small enough to conserve most of the charged particles. As the perturbation

amplitude grows, some particles are driven too far away from the axis and eventually lose

confinement. In terms of applying our findings in the dipole mode excitation to the design of

the next-generation high-intensity accelerators, we should strive to avoid this kind of large

amplitude perturbation at dipole mode frequency.

Finally, we used the 3D Warp simulation to study the dependence of the dipole mode

frequency on the space charge effect by varying the normalized intensity parameter ŝ. Figure

4.26 shows that the dipole mode frequency is completely independent on the normalized
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(a) Radial density profiles at various perturbation
frequencies

(b) Particle distribution of the plasma before exter-
nal perturbation at dipole mode frequency

(c) Particle distribution of the plasma after 5 ms ex-
ternal perturbation at dipole mode frequency

Figure 4.22: The radial density profile after perturbation at the dipole mode frequency is
much broader than those perturbed at other frequencies.
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(a) Initial particle distribution (b) Particle distribution after 15 steps

(c) Particle distribution after 30 steps (d) Particle distribution after 45 steps

(e) Particle distribution after 60 steps (f) Particle distribution after 75 steps

Figure 4.23: Particle distributions after 5 ms dipole perturbation. The consecutive particle
distributions with incremental 15 time steps are shown above.
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(a) Particle distribution after 90 steps (b) Particle distribution after 105 steps

(c) Particle distribution after 120 steps (d) Particle distribution after 135 steps

(e) Particle distribution after 150 steps

Figure 4.24: Particle distributions after 5 ms dipole perturbation. This continues the
Fig. 4.23. The particle distribution is oscillating in the X direction with a period of about
150 time steps. 102



(a) On-axis density driven at dipole mode frequency us-
ing various perturbation amplitudes

(b) Line-charge density for ŝ = 0.12 at different frequen-
cies is conserved at small perturbation amplitudes

(c) Line-charge density driven at dipole mode frequency
using various perturbation amplitudes

Figure 4.25: 3D Warp simulation shows that the effects of dipole perturbation increases as
the amplitude grows. Large amplitude perturbation can cause particle loss.
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intensity parameter ŝ. It is consistent with the theory prediction and the experimental

results.

Figure 4.26: The dipole mode frequency is independent on the self field.

4.5 Machine Imperfection Effects

4.5.1 Coherent Periodic Resonances

Charged particles can circulate in a ring machine many times and, if there is a lattice per-

turbation inside a ring, the particles will experience that perturbation in a coherent periodic

way. Assuming the frequency of this perturbation is fring and there exists a characteris-

tic mode frequency fq for the charge bunch traveling around the ring, when the condition

fq = νfring is satisfied, where ν is an integer, there would be adverse effects for the charge

bunch due to the interaction of perturbation and the inherent collective modes of the charge

bunch. The integer ν is a called the tune of the transport system. For dipole mode with

frequency fq, avoiding integer ν prevents the adverse effects of dipole mode interacting with

the coherent lattice errors. For quadrupole mode with frequency 2fq, avoiding both half-
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integer and whole-integer avoids the adverse effects of quadrupole mode interacting with the

coherent lattice errors.

In the experiments conducted on PTSX, coherent periodic perturbation is applied by

changing the waveform amplitude every N th period by a fixed amount, corresponding to

a N-lattice-period ring machine. The size of the perturbation every N th period is usually

expressed as a percentage of the regular waveform amplitude V0. To study the interaction

of the dipole mode with the perturbation, the perturbation is applied to a single PTSX

electrode, while for the quadruple mode case, the perturbation is applied to all four PTSX

electrodes. The tune ν can be changed either by varying the ring lattice period N or changing

the waveform voltage amplitude, corresponding to changing fring and fq, respectively. For

both dipole and quadruple mode cases, we start the experiments by tuning the PTSX device

to ν = 2 for N = 12 given a lattice frequency of 60 kHz. This adjustment is made by

varying the waveform voltage amplitude V0 in the neighborhood of values corresponding to

approximately ν = 2. The desired tune is found by choosing the V0 such that the measured

on-axis charge of the trapped charge bunch decreases significantly. For dipole mode, the

frequency is 10kHz, while for the quadrupole mode, the frequency is approximately 20 kHz

when the normalized intensity ŝ is small. The data in Fig. 4.27 shows that the adverse

effects of the quadrupole perturbation are strong when the tune ν is an half-integer or whole

integer value. Similar data have shown that the adverse effect is strong when the tune ν is

a whole-integer value.

In the above experiments, the tune is changed by varying the ring period. Alternatively,

the tune can be changed by changing the mode frequency. Experiments were conducted

for both quadrupole and dipole perturbations where the periodicity of the ring is fixed at

N = 12, while varying the waveform voltage amplitude from 0 V to 350 V. Without resonant

effects between collective modes and external perturbation, the on-axis charge is expected to

increase with V0 when the transverse confining force is small. When V0 becomes so large such

that the vacuum phase advance σv exceeds 180 degrees, the transverse particle confinement
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Figure 4.27: The quadrupole mode period is three lattice periods for a vacuum phase advance
σv = 60. Whenever the ring period is a multiple of three, the quadrupole mode is strongly
excited [12].

is lost and the on-axis charge drops significantly. Figure. 4.28 shows that this is the case,

with added structure due to mode excitations.

4.5.2 Random Noise

Random noise, and its effects on intense charged particle beams, are almost unavoidable in

high-intensity accelerators. Random noise includes machine imperfections, such as variations

in the strength of the quadruupole magnets, misalignment of quadrupole magnets, jitter

of power supplies, hardware irregularities that establish fluctuating image-charge forces,

etc [110]. In general, random noise serves as a continuous supply of free energy to the

beam particles, which results in degradation of an intense beam’s quality including emittance

growth, larger rms radius, higher transverse temperature, enhanced halo formation especially

over long propagation distances [88, 110, 111]. Various multiparticles Particle-In-Cell (PIC)

simulations have been made to improve the understanding of the random-noise-induced beam

degradation [110–113]. Strenuous experimental efforts have been made to verify the effects

of random noise on intense beams using random quadrupole noise [5, 6]. In this chapter,

we will focus on the effects of random dipole noise. In the alternating-gradient focusing
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(a) half and whole-integer tune for quadrupole mode.

(b) whole-integer tune for dipole mode.

Figure 4.28: Half and whole-integger turn for quadrupole mode. (a) 2% coherent quadrupole
perturbation is applied with V0 scanned from 40 V to 350 V. Quadrupole mode excitations
were observed at half-integer and whole-integer tunes. When V0 is larger than 350 V, the
single particle orbit stability is lost [12]. (b)2% coherent dipole perturbation is applied with
V0 scanned from 40 V to 350 V. Dipole mode excitations were observed at whole-integer
tunes. When V0 is larger than 350 V, the single particle orbit stability is lost [12].
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system, the quadrupole magnets may each have a random transverse misalignment, and

this will lead to a dipole magnetic field error in the misalignment direction. In this case,

the error can be characterized by a random number ∆n for each of n sets of magnets in

the transport system. For the experiments presented here, the numbers ∆n are Gaussian

distributed with unit variance and a given amplitude. In PTSX, where a sinusoidal waveform

is used, the amplitude of the nth half-period waveform is V0(1 + ∆n), with V0 being the

unperturbed waveform voltage amplitude. The amplitude of the Gaussian distribution from

which the ∆n are generated is called the noise amplitude denoted as a percentage of V0.

In our experiments, the ions are allowed 1200 lattice periods to relax to equilibrium state,

then 1800 periods of noisy perturbation are applied, followed by 4000 lattice periods for the

ions to relax to another equilibrium state. At the end of the trap, the ions are dumped

onto a charge collector which measures the on-axis charge which is used to infer the on-

axis number density of the previously trapped ions. Previous experiments investigated the

effects of random quadrupole noise on the trapped charge bunch with moderate normalized

intensity ŝ ∼ 0.2. In those experiments, the effects of the random noise increased as the noise

amplitude increases from 0.5%, 1.0% to 1.5%, while for each amplitude the effects increased

as the noise duration increased. It was demonstrated that the random noise caused the

rms radius growth, transverse temperature rise, on-axis charge density decrease, emittance

growth and finally loss of particles. It should be noted that the data presented in the Refs. [6]

and [5] were obtained by generating a list of ∆n repeatedly to measure the range of possible

outcomes. Once the range of the possible outcomes was established, 20 ∆n series were

selected to give the average outcome. Thus, the data in Refs. [6] and [5] demonstrated the

average effects of certain noise amplitude and duration.

In our experiments, the external perturbation was applied to one of the long PTSX

electrodes. In this case, the perturbation field is predominantly dipole, with small quadrupole

field. The data in Fig. 4.29 show that a doubling of transverse temperature and the transverse

emittance occurs for only 0.5% amplitude dipole noise. It is not surprising that a smaller
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Figure 4.29: 30 ms random noise perturbation applied to a single electrode causes the rms
radius, effective transverse temperature, and emittance to increase, while the normalized
intensity decreases [12].

amplitude of dipole noise is needed because the dipole field is non-zero near the axis while

the quadrupole noise has zero field near the axis. To verify that the results of experiments

with external perturbation applied to one single electrode were due to the dipole field effect,

we can either eliminate the quadrupole field component of the random noise or conduct the

experiments with only the quadrupole part and no dipole contribution. The data in Fig.

4.30 demonstrate that the effect of random noise applied to a single PTSX electrode is due

to the dipole component because removing the quadrupole part of the noise doesn’t change

the experimental results, while applying only the quadrupole part of the noise has no effect

on the trapped charge bunch. It should be noted that this is due to the small effect of

quadrupole noise while the noise amplitude is small as compared to Moses’ data [88]. When

the quadrupole noise amplitude is big enough, it can have significant effect on the trapped

ion plasma which has already been demonstrated in Sec. 4.3.

When applying a dipole perturbation of 0.5% amplitude and 1800 lattice periods to one

single PTSX electrode, a set of random numbers ∆n was chosen which made the on-axis

charge decrease significantly from 0.4 pC to 0.1 pC. The 1800 lattice periods corresponds to
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Figure 4.30: The quadrupole part of perturbation applied to a single PTSX electrode can
be applied separately and has no effect on the trapped charge bunch with with with the
chosen noise amplitude. This verifies that the effect of random noise applied to a single
PTSX electrode is due to the dipole component [12].

30 ms perturbation so that the frequency resolution of the Fourier transform of the waveform

is δf = 33 Hz. Due to the 50 ns clock time of the internal function generator, the maximum

frequency in the Fourier spectrum is 10 MHz. The spectrum of the waveform was modified by

removing all the frequency components from zero up to frequency f which is demonstrated

in Fig. 4.31. Figure. 4.32 (a) shows that the damaging effect of dipole noise is eliminated

and the on-axis charge is restored to the unperturbed value of 0.4 pC, when the filter removes

the frequency component at 8.0667 kHz, which corresponds the dipole mode frequency. The

normalized intensity is ŝ ∼ 0.19 in this case. Note that there is no further increase in the

on-axis charge when the filter also removes the frequency components near the quadrupole

mode frequency 2fq. To further investigate if the damaging effect of the dipole noise if due to

the resonance between the plasma bunch and the dipole noise at the dipole frequency 8.0667

kHz, we filter only one 33.3 Hz-wide frequency component of waveform spectrum each time.

In Fig. 4.33 (a), where the normalized intensity ŝ ∼ 0.19, it is demonstrated that only when
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(a) First 15 periods of waveform before passing the filter.

(b) First 100 kHz of the FFT of the waveform. Frequency
components between 6 kHz and 12 kHz are removed.

(c) First 15 periods of the waveform after passing the
filter.

Figure 4.31: Demonstration of frequency components removal in Labview. An example of
10% perturbation is used to make it easy to see.

the frequency component of the spectrum at dipole mode frequency 8.0667 kHz was removed

did the on-axis charge return to the unperturbed level.

Filtering the waveform applied to the PTSX electrodes is quite simple, while filtering

spectrum of errors of a set of quadrupole magnets would be rather difficult. Instead of

filtering the spectrum errors, it is possible to change the spectrum by manipulating the

waveform in the time domain by shuffling the random numbers in a given list of ∆n. For

example, in a 30 ms dipole perturbation, there are 3600 random numbers. By shuffling the
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(a) s = 0.19. (b) s = 0.39

Figure 4.32: All frequency components from zero up to frequency f were removed by a
low-pass filter. When the dipole mode frequency component at 8.0667 kHz was removed, the
dipole perturbation effect was eliminated and the on-axis charge was back to unperturbed
level.

(a) s = 0.19 (b) s = 0.39

Figure 4.33: Only one 33.3 Hz-wide frequency component of the waveform spectrum was
removed each time by a low-pass filter. When the dipole mode frequency component at
8.0667 kHz was removed, the dipole perturbation effect was eliminated and the on-axis
charge was back to unperturbed level.

random numbers, we can find proper orders of the random numbers which yield a spectrum

with near-zero amplitude at the dipole mode frequency 8.0667 kHz. In Fig. 4.34, it is shown

that the on-axis charge is almost a monotonic function of the amplitude of dipole mode
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Figure 4.34: While the amplitude of the frequency component at the dipole frequency 8.0667
kHz increases, the on-axis charge decreases. We can shuffle the random numbers of a given
list ∆n to make the amplitude of the dipole mode frequency component near zero.

frequency component. By re-ordering the random numbers which yields a spectrum with

near-zero amplitude at the dipole mode frequency 8.0667 kHz, we can effectively eliminate

the damaging effects of the dipole noise. Simply sorting the list of random numbers ∆n

also suffices to remove the frequency component of at the dipole mode frequency, but it

could bring some undesirable changes such as the gradual changes in the transverse focusing

frequency.

Similar experiments for a quadrupole perturbation with 1% amplitude and a duration of

1800 lattice periods were conducted and the results were shown in Fig. 4.35. The changes of

the on-axis charge are more gradual as the width of the filter window is increased than the

dipole mode case and also exhibits a plateau above 17.5 kHz. The results show that there

are two broad peaks at 16.4 kHz and 16.9 kHz near the quadrupole mode frequency 2fq.

Due to their breadths, removing a single 33 Hz-wide frequency component is not sufficient

to eliminate the adverse effect of the quadrupole noise. However, a filter window with 1

kHz width centered at 16.5 kHz is sufficient to restore the on-axis charge to its unperturbed

value.
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Figure 4.35: All the frequency components from zero up to frequency f were removed by a
low-pass filter. When all components below 17.5 kHz were removed, the damaging effects of
the quadrupole noise were eliminated.

In this section, we have shown that both dipole mode and quadrupole modes can be

excited using either dipole noise or quadrupole noise. The dipole mode is quite narrow and

by eliminating an individual 33 Hz-wide frequency component at the dipole mode frequency

is sufficient to eliminate the adverse effect of the dipole noise. By re-ordering the random

numbers of a given list ∆n, we are able to choose the proper order of the random numbers

which yields a spectrum with near-zero amplitude at the dipole mode frequency and restore

the on-axis charge to its unperturbed value. The quadrupole data shows there are two broad

peaks near the quadrupole mode frequency 2fq. Due to their finite breadths, a wider filter

window is needed to completely eliminate the damaging effect of quadrupole noise.

4.6 Summary and Discussion

The high intensity charged particle beams propagating in the magnetic alternating-ingredient

focusing system support a wide range of collective modes. These collective modes play an

important role in furthering our understanding of the beam dynamics of the charged particle

beams. Among those collective modes, we focus on the quadrupole and dipole modes which
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have definite structures and easily excited by external perturbation. In Sec. 4.2, we briefly

described the motivation for collective mode studies and the classic KV smooth-focusing

model for quadrupole and dipole modes. Analytic expressions of the quadrupole and dipole

modes were obtained using the KV model. In Sec. 4.3, we discussed the excitation of the

quadrupole mode using a beat drive and a linear drive scheme, respectively. The quadrupole

mode was successfully driven in both cases and effects of external perturbation on beam

characteristics were investigated. We found the plasma bunch had a strong response to the

external perturbation when the quadrupole mode of the charge bunch resonated with the

external perturbation. The charge bunch was heated and expanded due to the resonance and

usually particle loss was accompanied. 3D Warp simulation was conducted to facilitate our

understanding of the experimental results. As expected, the simulation results agreed well

with the experimental results and they both show weak dependence of the mode frequency

on the normalized intensity ŝ, while the theoretical model shows strong dependence of the

mode frequency on the ŝ. The theoretical KV models assumes uniform number density

in space and Gaussian distribution in transverse velocity. While in our case, the radial

number density profile is more like a Gaussian distribution. Although the KV model is

not tailored to our beam profile, it is so far the closest theory we can refer to. In Sec.

4.5, we discussed the application of quadrupole and dipole modes in studying the effects of

coherent periodic resonances and random noise. When the coherent periodic perturbations

resonate with the collective modes particularly dipole or quadruole modes, the beam was

degraded and the degradation extent depends on the perturbation duration time and the

perturbation amplitudes. The random noise applied can be decomposed a finite summation

of sin waves of a wide range of frequencies. It is demonstrated that not all random noise is

damaging to the charge bunch and it is damaging while it has the sin wave components of the

collective mode frequencies. We also show that some random noise is introduced by the faulty

magnets and we can eliminate certain sin wave components by rearranging the magnets. This

finding has practical benefits in designing and manufacturing the next-generation accelerator
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magnets because the inaccuracy tolerance of the magnet field strength is increased and the

manufacturing cost is lowered accordingly. Despite significant progress made on the study of

collective modes, there are still a multitude of questions unanswered such as the mechanism

of the resonance between the collective mode and the external perturbation and the cause

of the rich mode structures near 2fq for some quadrupole excitation data. These will be

interesting topics for future research.
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Chapter 5

Laser-Induced-Fluorescence (LIF)

Diagnostic

5.1 Introduction

Previous experiments using a cesium ion source and a radially scanning charge collector in

PTSX have been very successful in studying beam compression, injection mismatch, machine

imperfection effects [88] and collective modes (Chapter 4). However, the scanning charge

collector is a destructive diagnostic method. The presence of the collector disk affects the

nearby electric field distribution which reduces the measurement accuracy of the ion density

profile. In addition, the measured density profile is a time-averaged density profile of the

plasma bunch, meaning that it is impossible to infer the instantaneous density profile at a

specific position. For in-situ and non-destructive measurements of the transverse density

profile and the velocity distribution of the plasma in the PTSX device [114], which are

essential for the detailed study of beam mismatch and collective oscillation of beam envelope,

a laser-induced-fluorescence (LIF) diagnostic system has been developed. LIF has a wide

range of applications in many areas such as the study of molecular structures, detection of

selective species, flow visualization, beam density and velocity distribution measurements,
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and so on. The optical transitions of barium ions are more suitable for LIF than those of

cesium ions, and so barium ions have been chosen as the preferred ion species [2, 115].

In Sec. 5.2, the development of the new barium ion source and the initial test results of

the source are presented. We discuss the test results of the new barium ion source under

two circumstances. In one instance, the barium ion source was tested in an independent

chamber, while in another case, the barium ion source was tested in the PTSX chamber. We

found out in both circumstances, the barium ion source remained stable for a sufficiently

long period of time to carry out experiments. In Sec. 5.4, we compare the LIF data with

the experimental data obtained by the charge collector and show the reconstructed radial

density profile.

5.2 Development of New Barium Ion Source

5.2.1 Theoretical Consideration

Barium ions are produced at a hot metal surface by contact ionization. Traditionally, rhe-

nium and tungsten have been used for the hot metal plate to produce both ions by contact

ionization, and also electrons by thermionic emission. Iridium is chosen for its higher work

function than rhenium and tungsten and high melting point. Iridium’s work function is 5.40

eV, and its melting point is 2466 ◦C.

Fig. 5.1 shows the available optical transition lines of singly ionized barium ions. The

transition from the excited state 62P1/2 to 52D3/2 metastable state or that from the excited

state 62P3/2 to 52D5/2 metastable state is considered because there is only one available laser

source and most of the barium ions are created in the ground state, which will be shown later

in the section. About 24.5% of the ions excited from the ground state 62S1/2 to the excited

state 62P1/2 decay to the 52D3/2 metastable state almost immediately (8 ns), emitting red

light (649.69 nm), while about 27% of the ions excited from the ground state 62S1/2 to the

excited state 62P3/2 decay to the 52D5/2 metastable state, emitting orange light (614.17 nm).
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Figure 5.1: Energy level diagram for Ba+ with transition wavelengths in air, natural lifetimes
τ , and energy level differences between the ground state and metastable states [116].

The ionization probability for contact ionization can be calculated using the Saha-

Langmuir equation for thermal equilibrium conditions [117]. Since the two metastable states

of barium ions lie within about 0.7 eV of the ground state (see Fig. 5.1), the possibility

of the ion being excited into metastable states must be considered as well. Therefore, the

ionization probabilities for the ground state ions (Pi) and the metastable ions (P ∗i ) are

estimated by

Pi =
gi

ga exp ((Ei −W ) /T ) + gi +
∑
∗ g
∗
i exp (−∆E∗/T )

, (5.1)

P ∗i =
g∗i exp (−∆E∗/T )

ga exp ((Ei −W ) /T ) + gi +
∑
∗ g
∗
i exp (−∆E∗/T )

. (5.2)

where W and T are the work function and temperature of the hot metal plate (iridium in this

case), Ei is the ionization potential of the atom, and ∆E∗ is the energy difference between

the ground and metastable states. The quantities ga, gi, and g∗i are statistical weights of

the atoms, ground state ions, and metastable ions, respectively. The statistical weight g can

be calculated from the total angular momentum quantum number J using the relationship,

119



g = 2J + 1. The work function of several typical metals is presented in Table. 5.1. Since the

ionization energy of barium is very high (Ei=5.21eV ), iridium, with a higher work function

(W=5.4eV ), is chosen as the hot plate metal to increase the ionization probability.

It is interesting to note that for the case of contact ionization of barium vapor on iridium,

Ei(= 5.21 eV) < W(= 5.40 eV) and P ∗i is decreases monotonically with T . This might

suggest that iridium ionizer could be operated at a very low temperature. However, Eq.

(5.2) is only valid when the metal surface temperature is above the critical temperature

(or threshold temperature) Tc [118, 119]. When T < Tc, the evaporation rate of atoms

decreases and the surface coverage of adsorbed atoms increases, which in turn, causes the

effective work function of the composite surface to decrease and finally results in a sharp

drop in net ion current [118, 119]. Therefore, it is essential to maintain the surface of the

ionizer above the critical temperature. The critical temperature for contact ionization on

iridium differs for different ion species. For most cases, Tc & 1200 ◦ C [119]. Empirically,

the ionizer temperature of the newly developed barium ion source is set to 1200 ◦C. The

ionizer temperature can go higher than 1200 ◦C if necessary and it will still be well below the

melting point for iridium. For an ionizer temperature of 1200 ◦C, it is estimated from Eqs.

(5.1) and (5.2) that the fraction of barium ions produced by the hot platinum surface will

be 97.2% in the ground state (62S1/2), 1.66% in the 52D3/2 metastable state, and 1.14% in

the 52D5/2 metastable state. In general, there are two schemes of using the optical transition

lines for the LIF diagnostic purpose. The first scheme is to pump the ions from the ground

state (62S1/2) to the exited state (62P1/2 or 62P3/2), then observe the emission light when the

ions decay from the excited state to the metastable state. The second scheme is to pump the

ions from the ground state (62S1/2) to the exited state (62P1/2 or 62P3/2), then observe the

emission light when the ions decay from the excited state to the ground state. The advantage

of the first scheme lies in observing the emission of a different wavelength from the incident

light. In that case, the background reflection from the incident light can be suppressed by

adding an extra filter with limit bandwidth. But the downside of the first scheme is also
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Table 5.1: Work Function for Various Materials

Material Symbol Work Function (eV)

Molybdenum Mo 4.15
Tungsten W 4.54
Iridium Ir 5.40
Platinum Pt 5.32
Rhenium Re 4.85
Tantalum Ta 4.12

significant. Because the typical ion density in PTSX is about 105 cm−3, assuming all the

ions are pumped from the ground state 62S1/2 to either excited state 62P1/2 or 62P3/2, given

the decay ratio of about 25%, the effective ion density for detection for the first scheme

will be about 103 ∼ 104 cm−3, which is slightly above the detection limit for typical LIF

diagnostics [120]. The downside of the second scheme results from observing the emission

of the same wavelength of the incident light. But by adding a stack of razor blades as a

laser dump and an anti-reflection coating, the stray light can be significantly reduced. The

advantage of the second scheme is due to the higher effective ion density due to the higher

decay ratio (∼ 75%). In our experiment, we chose the second scheme and chose 493.4077

nm as our target wavelength. Even if the effective ion density for the second scheme is much

larger than the first scheme, it is not much higher than the typical detection limit. Hence,

suppression of background signals and sufficiently long integration times are essential for

meaningful LIF data.

5.2.2 New Barium Ion Source Assembly

The new barium ion source increases the barium ion density in the PTSX vacuum chamber

as well as decreasing the number of neutral barium atoms that enter the PTSX vacuum

chamber as compared to the previous barium source [88]. The main components of the

barium ion source include an atomic oven, an iridium hot-plate ionizer, an extraction mesh,

121



Figure 5.2: Schematic diagram of the new barium ion source assembly.

and copper plates shown in Fig. 5.2. Figure 5.3 shows photographs of the new barium ion

source.

The atomic oven is a 0.5′′ diameter one-end-open tube with a resistive band heater

wrapped around the tube. The barium in the oven can be heated to temperatures up to

800◦C. It is common to heat the oven up to high temperatures for a short while to decompose

oxides and hydroxides that may come from handling materials. Lower temperatures between

400◦C and 500◦C are usually sufficient to produce ion densities near 106cm−3. The barium

vapor coming out of the atomic oven will free-stream to the iridium hot plate which is held

at 1200◦C. Barium atoms which make contact with the hot plate will become singly-charged

ions through contact ionization with approximate 82% probability. The other neutral atoms

which fail to be ionized leave the iridium plate isotropically. In contrast, the positve dc bias

voltage applied to the iridium plate is able to expel the barium ions produced from contact

ionization and send them into the 12′′-long, 4′′-diameter guiding pipe. Once in the pipe, the
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(a) Iridium hot plate. The 1” × 1” iridium plate is mounted on
two copper pieces in a way that the movement of copper pieces
doesn’t distort the iridium plate.

(b) Extraction grid and copper plates. The extrac-
tion grid is mounted to the four copper plates using
ceramic screws for insulation purpose.

(c) Barium ion source in opera-
tion. The assembly includes an
iridium plate(right), an oven(center),
an extraction grid and four copper
plates(left).

Figure 5.3: Photographs of the barium ion source.
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Figure 5.4: Warp 3D simulation shows the electric field near the center is mostly quadrupole
with 2.77 cm being the distance between the 2.5′′ copper plate and the center of the 4′′ pipe.

ions are transversely confined by driving four copper plates inside the pipe with oscillating

quadrupole voltages. The four plates are formed from a 2.5” diameter pipe that is quartered

and mounted with the quadrants inverted so that they approximate the hyperbolic shape

required an ideal quadrupole field. Using Warp 3D simulations for guidance, we chose 2.77

cm as the distance between the edge of the 2.5” copper plate to the center of the 4” pipe

in such a manner that the electric field near the center is mostly quadrupole. As shown

in Fig. 5.4, the electric potential from Warp 3D simulation agrees well with a polynomial

fit in which only the quadrupole term is considered. The Warp 3D results also agree well

with a polynomial fit in which both quadrupole and octuple terms are considered. These

two polynomial fits share the same coefficient for the quadrupole term and the coefficient for

the octuple term is much smaller than that of the quadrupole term. In our case, the ratio

of these two coefficients is 5.7×10−5. Adding more terms into the polynomial fit doesn’t

improve the fit which indicates that the electric potential is mostly quadrupolar.

Adding a 12′′-long guiding pipe between the main PTSX vacuum chamber and the bar-

ium ion source is a significant improvement compared to the previous barium ion source.
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Neutral atoms which enter the pipe adhere to the pipe wall rather than contaminate the

main chamber. The driving voltages on the copper plates have the same frequency as, but

10 times smaller amplitude than, the voltages applied to the main PTSX electrodes. The

reason why the driving voltages are 10 times smaller than those on the PTSX electrodes is

that the relative size of the copper plates is much smaller and it doesn’t need large voltage

to maintain the same smooth-focusing frequency as we have in PTSX electrodes. Fig. 5.5

shows the use of four cylindrical copper rods to create the quadrupole focusing field in the

pipe. In this way, the ions will be well-confined transversely and both the vacuum phase

advance and the average focusing frequency within the four copper plates will be the same as

in PTSX. The long guiding pipe is extended into the main PTSX vacuum chamber so that

the ions are still confined by the quadrupole field generated by the 40-cm injection electrode

right after exiting the driven copper plates. The size of the copper plates and the relative

position with respect to the guiding pipe are shown in Fig. 5.6

Vacuum conditions of the new ion source are worth considerations since, when the new

ion source is ready to use, the six-way cross will be attached to the main PTSX vacuum

chamber. This raises a question whether the pressure in the PTSX chamber will still be low

enough for meaningful experiments. The general operating pressure in the PTSX chamber

is of the order of 10−10 – 10−9 Torr, while the pressure in the six-way cross is of the order

of 10−7 – 10−6 Torr. When these two chambers are connected by a pipe, there would be

gas flowing from the six-way cross to the PTSX chamber due to the pressure gradient. The

quantity describing the capability of a pump pulling out gas molecules is the throughput Q

= P chamber × S pump, where Pchamber is the gas pressure with the units of Torr and Spump is

the pumping speed with the units of `/s. The gas flow from the six-way cross to the PTSX

chamber is given by Qpipe = (Poven-Pchamber) × C, where Poven is the gas pressure inside the

six-way cross, and C is the conductance of the pipe for gas flow. For the low-pressure regime,

the conductance C is approximated by C = πvd3/12l, where v, d, l are the thermal velocity

of gas molecules, the diameter and length of the pipe, respectively. All the other gas sources
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Figure 5.5: Four copper plates are used to approximate the hyperbolic contours of the electric
equipotentials in PTSX.

including possible leakage and vapors escaping the chamber walls are included in another

term Qoutgas, where Qoutgas is known from the pumping speed and operating pressure. In

equilibrium, we have Pchamber × Spump = Qpipe + Qoutgas. Assuming Poven is 10−6 Torr,

Pchamber will be of the order of 10−8 – 10−7 Torr which is adequate for experiments.

5.2.3 Test Results of the New Barium Ion Source

Testing Ion Source Independently

The new barium ion source was initially tested in an independent chamber whose configura-

tion has been shown in Sec. 5.2. The radial number density of barium ions measured on the

charge collector is determined by parameters such as bias voltage on the iridium hot plate,

the bias voltage on the extraction grid, the hot plate temperature, the oven temperature, the

oscillating voltage amplitude and frequency applied to the copper plates. Those parameters
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Figure 5.6: Configurations of the copper plates. Each copper plate spans 90 degrees and
symmetrically distributed.

need to be selected carefully to optimize the performance of the barium ion source. Not

only do we care about the on-axis charge density, we also care about the shape of the radial

density profiles. Ideally, we would like to see a Gaussian or quasi-Gaussian distribution of

radial charge density. Bearing that goal in mind, typically we vary the values of a partic-

ular parameter while keeping others constant, then we measure the radial density profiles,

and plot them on the same graph. By comparing the characteristics of those radial density

profiles, we choose the operating range of a particular parameter.

The first parameter we aimed to optimize was the bias voltage Vs on the iridium plate. Vs

determines the axial velocity of the barium ions, and ideally we desire small axial velocity to

allow the ions to go through many lattice periods before being dumped into the end of PTSX

chamber. In that case, the ion beam is allowed enough time to reach a quasi-equilibrium

state before being measured. For the previous cesium ion source, the typical Vs is 3 V. We
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would like to use similar Vs for the barium ion source, so the values of Vs being tested did

not exceed 10 V. Figure 5.7 shows the radial number density profiles at different Vs under

various oven temperatures. The data for the three graphs shown in Fig. 5.7 used the same

hot plate temperature Tiridium = 1100◦C, the same oscillating voltage amplitude applied to

the copper plates V0 = 13.5 V, and the same oscillating voltage frequency f0 = 60 kHz.

Note that the radial density profiles of barium ions are not as symmetric as those acquired

using the cesium ion source. This is probably due to the fact that the barium ions are

not produced symmetrically. The neutral barium vapor coming out of the oven does not

make contact with the iridium hot plate uniformly which results in an asymmetric initial

radial density distribution. The initial asymmetric ion distribution is expected to relax to

a Gaussian or quasi-Gaussian distribution during the propagation in the PTSX chamber.

Further, when the on-axis density initially increases as Vs increases, then drops once the Vs

passes a turning point. We also noticed that when the bias voltage is small (Vs < 4 V), the

radial density profiles are more symmetric than those acquired under higher bias voltages.

Fig. 5.7 indicates the optimal bias voltage on the iridium plate Vs is between 2 V and 4

V. With regard to the dependence of radial density profiles on oven temperature, we notice

that the radial density profiles obtained at Toven = 420◦C are more symmetric than those

acquired at Toven = 320◦C and Toven = 365◦C.

To further study the characteristics of the barium ion source, we used the same data

for Fig. 5.7 and computed important quantities including the normalized intensity ŝ, the

rms radius rrms, the line charge density N , and the transverse temperature T . Figure 5.8

shows the computed quantities. Note that the normalized intensity ŝ initially increases as

Vs increases, and gradually decreases once it exceeds certain value. Since ŝ is an indicator

of the relative strength of space charge field to the external focusing field, for the study

of high intensity charged particle beams which have strong space charge field, a high ŝ is

desired in our experiments. The operating range of 2 V to 4 V for Vs is desired to achieve a

relatively high ŝ. From the rms radius point of view, the rms radius generally increases as
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(a) Toven = 320◦C.

(b) Toven = 365◦C.

(c) Toven = 420◦C.

Figure 5.7: Radial density profiles at different Vs under various oven temperatures. Tem-
perature on the iridium hot plate is Tiridium = 1100◦C, the oscillating voltage amplitude
applied to the copper plates is V0 = 13.5 V, and the oscillating voltage frequency is f0 = 60
kHz.
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the bias voltage increases. Since the electric field from the bias voltage is not perfectly axial,

barium ions are also accelerated perpendicularly which results in larger radial dispersion at

higher bias voltage. The 2 V to 4 V operating range of Vs is acceptable in terms of obtaining

moderate rms radius. With regard to the line charge density, it also favors low operating

values of bias voltage. For the transverse temperature T , low Vs values are also desired. In

summary, low Vs (2 V to 4 V), moderate oven temperature (Toven = 420◦C) are desired for

the operation of the barium ion source.

Another critical parameter for the barium ion source is the oscillating voltage amplitude.

It should be large enough to confine the charge particles but small enough to keep the

particle orbit stable. Fig. 5.9 shows the dependence the radial density profiles on the

oscillating voltage amplitude V0. The other important parameters in obtaining the data for

Fig. 5.9 include oscillating voltage frequency f0 = 60 kHz, the bias voltage on the iridium

plate Vs = 1.123 V, the oven temperature Toven = 414◦C, and the iridium plate temperature

Tiridium = 1300◦C. The on-axis number density initially increases as the increasing focusing

field allows more particles to be confined, then it decreases gradually as large strong focusing

field causes the charge particle orbit to be unstable which eventually results in particle loss.

The data in Fig. 5.9 suggest that the desired oscillating voltage amplitude at 60 kHz should

be around 13 V.

The stability of the barium ion source is of critical importance to us. Typically any

experiment conducted on the barium ion source will last from a few minutes to a few hours.

To make sure the data acquired are consistent during the experiment, we need to make sure

the ion source is stable and the experimental results are reproducible within a certain degree.

To test the stability of the ion source, we first choose the typical operating values for the

ion source and measure the radial density profiles at different time spanning a few hours.

Ideally, the profiles will overlap with each other with minor deviation. Fig. 5.10 shows the

radial density profiles measured at different time are almost identical to each other which

suggests a stable ion source.
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(a) Toven = 320◦C.

(b) Toven = 365◦C.

(c) Toven = 420◦C.

Figure 5.8: Quantities relevant to the radial density profiles shown in Fig. 5.7. Tiridium =
1100◦C, V0 = 13.5 V, f0 = 60 kHz.
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Figure 5.9: Radial density profiles at different oscillating voltage amplitudes V0.

Figure 5.10: Radial density profiles at different time. Toven = 414◦C, Tiridium = 1300◦C,
Vs = 1.123 V, f0 = 60 kHz.

Testing Ion Source in the PTSX Chamber

Sec. 5.2.3 discussed the test of the new barium ion source in an independent chamber, and

the test results indicate a stable source with high number density of barium ions over a long

period of time. In this section, we discuss the test results of the new ion source after it was
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Figure 5.11: Scan of the driving voltage amplitude on the copper plates. The voltage am-
plitude which gives the maximum streaming current ia about 14 V, which is about 1/10 of
the voltage amplitude applied to the PTSX electrodes.

installed onto the PTSX chamber. The maximum oscillating voltage amplitude the previous

circuit could provide was 13.5 V which barely meets our needs. A new circuit was designed

and the maximum voltage amplitude can go up to 19 V, which provides much more flexibility

of optimization of the ion source. The driving voltage is set to have the same frequency as

we have in the PTSX chamber which is 60 kHz. Then we scanned the voltage amplitude to

find the voltage amplitude which yields the largest streaming current. Figure 5.11 shows the

streaming current as a function of the voltage amplitude on the copper plates. We notice that

maximum streaming current occurred around 14 V, which is 1/10 of the voltage amplitude

on the PTSX electrodes. At 14 V, the smooth-focusing frequency at the copper plates and

the PTSX electrodes are matched and the ion transportation is optimized.

After the voltage amplitude is optimized, we would like to optimize the bias voltage on

the iridium plate. We fixed the voltage amplitude to be 14 V and frequency to be 60 kHz.

The bias voltage Vs on the iridium plate is scanned. Figure 5.12 shows the streaming current

as a function of a bias voltage on the iridium plate. The higher the bias voltage is, the higher
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Figure 5.12: Scan of the bias voltage on the iridium plates at a fixed voltage amplitude on
the copper plates. The higher the bias voltage is, the higher the streaming current is. But
higher bias voltage corresponds to more energetic ion particles which is not desired. The
bias voltage is chosen to be around 11 V as a trade off.

the streaming current is. But higher bias voltage means more energetic ion particles which

is not desired. As a trade off, a bias voltage around 11 V is chosen.

After the bias voltage Vs and the driving voltage amplitude V0 were optimized, we mea-

sured the radial density profiles in the streaming mode to see if the charge bunch has a nice a

shape and the on-axis density is high enough. Figure 5.13 shows the number density profiles

and the Gaussian fit of the experimental data. The radial density profile is approximately

Gaussian except that the tail is a bit fatter than typical Gaussian shape. That could be

due to the higher bias voltage we used to inject the ions. The on-axis number density is

approximately 2.8 × 105 cm−3, which is almost three times the typical number density for

the cesium ion source. The rms radius is about 1.12 cm and the transverse temperature is

about 0.16 eV. The effective normalized intensity ŝ is about 0.72 which is much higher than

our typical ŝ for the cesium ion source (0.2). The radial density profiles suggest that the ion

source is working properly together with the PTSX electrodes.
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Figure 5.13: The number density profile is approximately Gaussian and the high on-axis
density is favorable to the LIF diagnostic. The on-axis density is about 2.8e+5 cm−3, the rms
radius is about 1.12 cm, the transverse temperature is 0.16 eV and the effective normalized
intensity is about 0.72.

The next step is to verify if the ion source can be operated over a long period while

remaining stable. Figure 5.14 shows the radial density profiles measured in the streaming

mode at different times. The radial density profiles approximately overlap with each other

which suggests the barium ion source is stable over a long period.

So far, we have established a solid baseline for the source operation in the streaming

mode. To make the most use of the ion source, we need to operate the ion source in the

trapping mode. So the next step we will focus on optimizing the ion source in the trapping

mode. Similar to the cesium ion source operation, a complete trap cycle includes the source

duration tsource, the loading time tload, the trapping time ttrap, the dump time tdump and

the rest time trest. The most important parameters are the source duration and the loading

time. The source duration is set in the way that the ions fill most of the space between the

two sets of the short electrodes, in the mean time reducing the number of fast ions. The

loading time is set in the way that any remaining ions inside the short chamber will have

enough time to exit the chamber before the positive DC bias voltages are applied to the

short electrodes. The trapping time is set to make sure that there are many ions left and the
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Figure 5.14: Radial density profiles measured at different times demonstrate the stability of
the barium ion source.

radial density profile is not too broad. Figure 5.15 shows the radial density profiles under

using different tsource and tload while keeping the total trapping cycle 100 ms unchanged.

It is noted that every single radial density profile measured in the trapping mode is much

broader than those measured in the streaming mode. It is probably because the charge

bunch is mismatched in the first place and after 100 ms relaxation, the collective instability

due to the mismatch causes the charge bunch to expand transversely. Among the available

combinations, we chose tsource = 0.7 ms and tload = 1.2 ms to achieve the optimized radial

density profiles in the trapping mode.

5.3 Laser and CCD Camera System

5.3.1 Setup of Laser and CCD Camera System

The LIF laser beam is produced by and excimer-pumped dye laser which is shown in Fig.

5.16. The excimer laser uses a mixture of xenon (Xe) and hydrogen chloride (HCl) as the

working gas. The dye is a mixture of Coumarin powder and methanol. The XeCl dimer lases
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(a) tsource = 0.7 ms.

(b) tsource = 0.8 ms.

(c) tsource = 0.9 ms.

Figure 5.15: The radial density profiles in the trapping mode using tsource and tload. We
pick tsource = 0.7 ms and tload = 1.2 ms as the typical values because this combination give
the highest ŝ, the smallest rms radius and the lowest transverse temperature.

137



Figure 5.16: Laser system. The small laser on the top a counter is the dye laser. The giant
laser on the floor is the excimer laser.

at a wavelength of 308 nm. Then, this laser beam intersects the dye along the propagation

path where the laser beam stimulates the dye to emit photons by fluorescence with another

wavelength which form the second laser beam in the dye laser. The second laser beam is

used in the LIF diagnostic experiments. The repetition rate of the excimer laser is 10 Hz

and, the laser beam energy per pulse is about 100 mJ and the pulse duration is about 10 ns.

Figure 5.17 shows the inside of the dye laser and the optical layout. The grating shown

in Fig. 5.17 (a) is able to select a specific wavelength and filter the other wavelengths. In our

case, our desired wavelength is 493.4077 nm. The bandwidth of the dye laser is 0.15 cm−1,

which corresponds to about 0.003 nm linewidth, because bandwidth is defined as ∆λ/λ2.

The two white ceramic containers shown in Fig. 5.17 (a) are preamplifier dye cell (left) and

main amplifier dye cell (right), respectively. The output light from the preamplifier dye cell

go through a telescope system lying between those two dye cells before entering the main

amplifier dye cell. If there is a coherent laser signal, we will be able to measure it right it

goes through the preamplifier dye cell.

The second laser beam is carried by optical fiber to PTSX main chamber. The typical

laser pulse energy from the eximer laser is about 100 mJ. The dye laser conversion efficiency

is about 17%. The typical optical fiber conversion efficiency is about 35%. So the laser
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(a) Photo of dye laser

(b) Optical layout of dye laser

Figure 5.17: The dye laser system. The grating shown on (b) is able to select a specific
wavelength and filter the other wavelengths. The linewidth for this dye laser is about 0.003
nm.
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pulse energy available for the barium ions is about 11.9 mJ, which is enough to excite all

the barium ions from the ground state to the excited state (See 5.3.2). At the fiber output,

a commercial laser beam line generator has been installed to increase the detection volume

and fully utilize the available barium ions. The line generator, which uses a Powell lens,

transforms the collimated laser beam into a sheet with a uniform output intensity. A Powell

lens with 30◦ fan angle can result in a detection volume with a width of ∼ 11.1 cm near the

PTSX center (see Fig. 5.18 (a)). In order to test if the Powell lens is able to make laser

sheet, we couple the light from a green test laser into an optical fiber, a collimating lens

and the Powell lens sequentially. Figure 5.18 (b) shows the output is a bright green line

after the Powell lens, which proves that the Powell lens is working properly. To suppress the

stray light, i.e., the part of the incoming laser light reaching the detection system through

reflection at windows, electrodes, and the vacuum vessel walls, an anti-reflection coating is

applied to the entrance window, a laser collimator is installed, and a stack of razor blades has

been employed as a beam dump. In addition, the line generator is enclosed by a light-tight

blackened aluminum box so that no background room light enters into the entrance window.

The fluorescence light passes through the 1′′ diameter hole in the central electrode [Fig.

5.18(c)], a glass vacuum window and a C-mount lens with a diameter comparable to the

1-in. O.D. hole. Finally, a Princeton Instruments ICCD-MAX intensified CCD camera

captures the fluorescence image digitally. The CCD camera has 16-bit A/D converter with

512 × 512 pixel resolution, and uses a microchannel plate (MCP) image intensifier fiber-

optically coupled to the CCD array. The thermoelectric cooler mounted on the heat removal

block and the external fan keep the temperature to −20 ◦C. In order that the overall

detection system has a wide field-of-view (FOV) and covers the entire transverse dimension of

the plasma column, a custom-made reentrant viewport [Fig. 5.18(c)] has also been installed.

5.3.2 Signal-to-Noise Ratio Estimation

The fluorescent signal is estimated using the following equation [2]
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(a) Laser sheet

(b) Observation of laser sheet using a
test laser

(c) Viewport

Figure 5.18: Initial tests of the laser system showing: (a) the image of the background light
including the shape of the laser sheet. (b) display of the laser sheet using a test laser. (c)
the viewport from the CCD camera. The dark circle in the image (a) is the inner hole made
in the central electrode shown in (c).
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S ≈ n2A23V
Ω

4π
ηTηQg

Nτ

Np

(5.3)

where S is the average number of read-out photoelectrons per pixel, the density of excited

state n2 is assumed radially Gaussian-distributed, A23 is the spontaneous transition rate

between the excited state and the metastable state, V is the volume from which the signal

is collected(assuming a volume of 2.54 mm × 0.8 mm × 70 mm), and Ω is the solid angle

subtended by the aperture stop in the collection optics. The transition efficiency of the

collection optics (glass, filter and lens) ηT is assumed to be 35%, and the quantum efficiency

of the intensifier ηQ is about 15%, g is the gain of the CCD camera system, Nτ is the number

of pulses and Np is the number of pixels where photoelectrons are read out.

The major source of background light is the glowing iridium ionizer, which is operated at

approximately 1200 ◦C. To reduce the scattered light from the ion source, the background

of the observation path has to appear black. For this purpose, a so-called viewing dump has

been installed. In order not to affect the performance of the electrodes, conductive carbon

particles (Aquadag) are applied as a coating. This coating reduces the scattered light by two

orders of magnitude. The focal length of the lens and the length of the extension tube have

been adjusted so that the CCD camera is focused onto the darkest region of the viewing

dump.

Another source of noise is the read-out noise from the CCD camera system. For a

Princeton Instruments ICCD-MAX intensified CCD camera, that read-out noise, in terms

of number of electrons per pixel, is about 1 ∼ 2. The background emission from collisional

transitions can be neglected in PTSX. Given another major source of noise, the statistical

noise
√
S is usually much larger than the read-out noise, the signal-to-noise ratio is simplified

as S/
√
S =

√
S. For typical operating parameters PTSX together with the maximum gain

of the CCD camera system, the signal-to-noise ratio is estimated to be about 25, which is

adequate.

142



To improve the signal-to-noise ratio, long integration time and high gain are utilized.

We can also operate the CCD camera system in a gated mode that allows the CCD camera

system to only collect signal when needed, further reducing the background light noise.

5.3.3 Test of the Laser System

The key of the LIF diagnostic is to have a stable pulsed laser output centered at 493.4077

nm. The perfect alignment of the optical components is critical to generating a stable laser

output at desired wavelength. The first step is to choose a suitable dye for the dye laser.

Coumarin 480 is chosen because it is able to take in the 308 nm pump beam from our excimer

laser, but also because its peak wavelength is close to our desired wavelength and the range

of wavelength is wide enough to cover our desired wavelength. Note that the detailed peak

wavelength and the range of the fluorescence spectrum is depending on the concentration

level of the dye. According to the manual, the concentration level of dye in the main dye

cell is 1/3 of that in the preamplifier dye cell. The concentration level is fixed at 2.3g/L for

the preamplifier dye cell in order that the peak wavelength of the dye fluorescence spectrum

in the preamplifier dye cell is centered around 480 nm and the range of the spectrum (460

nm ∼ 510 nm) is wide enough to cover the desired wavelength (493.4077 nm). The major

diagnostic tool for the laser test discussed in this section is a spectrometer USB2000 from

the Ocean Optics. This spectrometer is designed to take in weak signals and in our case,

the spectrometer saturates quite often. To verify the fluorescence spectrum of dye in the

preamplifier dye cell, an optical fiber is pointed towards the side of the preamplifier dye cell.

When the gratings is uncovered, the desired wavelength is selected and be preamplified in

the dye cell. Due to the reflection by the dye cell window, some of the the desired laser signal

is leaking out of the side window and can be captured by the optical fiber if pointed at the

right angle. Figure 5.19 shows the fluorescence spectrum of the dye from the preamplifier

dye cell together with the laser signal at the desired wavelength. The peak around 480 nm

is the fluorescence peak and the peak near 493 nm is the desired laser signal. It is also noted
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(a) Fluorescence spectrum of the dye from the preamplifier dye cell
together with the laser signal at the desired wavelength.

(b) Blowup of Fig. (a) near 480 nm.

Figure 5.19: The fluorescence spectrum of the dye from the preamplifier dye cell is centered
around 480 nm and the peak around 493 nm which is saturated is our desired laser signal.
The spectrum shows the dye is working properly as expected.

that the peak around 493 nm is saturated which means the real intensity of the laser signal

is probably much larger than the fluorescence noise.

To verify that there is desired laser signal, we measured the output right after the pream-

plifier dye cell before going through the telescope system. We measured the output signal
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with and without the grating being blocked. If there is desired laser signal, when the grating

is blocked, the desired laser signal will disappear and the whole spectrum of the output signal

will be significantly from that measured with the grating unblocked. We chose 493.4077 as

our desired wavelength keep in mind that the fluorescence of the dye cell centers around 480

nm. Figure 5.20 shows the output light spectrum right after the preamplifier dye cell with

and without the grating being blocked. It is noted that when the grating is open, there is a

strong peak near 493.4077 nm, which is our desired wavelength, while there is a small peak

near 480 nm, which should be the fluorescence noise from the preamplifier dye cell. When

the grating is grating is blocked, the desired laser signal disappeared. The peak near 480

nm is much bigger than when the grating is unblocked. It is noted that both the energy

for the desired laser and the energy for the fluorescence come from the pump laser. When

no energy goes to the desired laser signal, more energy goes to the fluorescence, making the

fluorescence much bigger.

After we verified the laser output in the preamplifier stage, we need to verify the laser

output in the main amplifier stage. After all, this is the stage where the laser signal gets

significant amplification. Similar to what we did in the preamplifier stage, we measured the

output light spectrum right after the main amplifier with and without the grating being

blocked. When the grating is unblocked, there is strong peak near 493.4077 nm on the

spectrum, while the peak around 480 nm is very small. Since the the desired laser signal

is saturated on the spectrum, the real laser signal is at least 10 times stronger than the

fluorescence signal. When the grating is unblocked, there is no desired laser signal, and we

notice the output light spectrum is a bit different from the fluorescence spectrum from the

preamplifier dye cell. There are two close peaks near 480 nm. Since at the main amplifier

stage, both the fluorescence spectrums from the preamplifier and the main amplifier stage can

be observed, the occurrence of two close peaks is probably due to the different concentration

levels of the dye. The dye we used is Coumarin 480, and the fluorescence spectrum of this

dye depends on the concentration level. Since the concentration level in the main amplifier
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(a) Output light spectrum right after the preamplifier dye cell with
the grating blocked.

(b) Output light spectrum right after the preamplifier dye cell with
the grating unblocked.

Figure 5.20: The output light spectrum right after the preamplifier dye cell differs signif-
icantly depending on if the grating is blocked. (a) the grating is blocked, and the desired
laser signal disappears, leaving only the fluorescence noise. (b) the grating is unblocked and
the desired laser signal is saturated while the fluorescence signal is extremely small. The
desired laser signal is at least 10 times stronger than the peak fluorescence signal.

dye cell is only 1/3 of that in the preamplifier dye cell, it is no wonder that the fluorescence

spectrums are slightly different.
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(a) Output light spectrum right after the main amplifier dye cell
with the grating blocked.

(b) Output light spectrum right after the main amplifier dye cell
with the grating unblocked.

Figure 5.21: The output light spectrum right after the amplifier dye cell differs significantly
depending on if the grating is blocked. (a) the grating is blocked, and the desired laser signal
disappears, leaving only the fluorescence noise. (b) the grating is unblocked and the desired
laser signal is saturated while the fluorescence signal is extremely small. The desired laser
signal is at least 10 times stronger than the peak fluorescence signal.
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The laser signal is coupled into an optical fiber after the main amplifier stage using the

coupling system shown in Fig. 5.22 (a) and it travels more than 50 meters before getting the

target. The focusing lens has very short focal length (1 cm) to make sure most of the laser

beam will be coupled into the fiber before the signal gets too divergent. The optical fiber

we used is a step index 0.39 NA TECS-Clad multimode optical fiber shown in Fig. 5.22 (b).

The diameter of the silica core of the optical fiber is chosen to be 1 mm to make sure most

of the light will be coupled into the fiber. The end of the fiber facing the focusing lens is flat

polished and the other end has a FC/PC connector.

The output from the optical fiber should be tested before it is sent into the PTSX

chamber. Figure 5.23 shows the laser signal is well preserved during the transmission. Finally,

the laser signal from the optical fiber will go through a collimating lens and a Powell lens

shown in Fig. 5.24. The laser sheet from the Powell lens enter the PTSX chamber through

the glass window below the beam scraper to excite the barium ions. We observed the output

after the Powell lens from the dye laser and we did see a bright blue line on a paper. Although

we did see a laser sheet coming out of the Powell lens, we were not sure how much the laser

pulse energy was because it was very difficult to measure the total energy of a laser sheet.

5.4 LIF Diagnostic in PTSX

The purpose of the LIF diagnostic is to to have a non-destructive diagnostic tool for the

charged particle beams and study the beam mismatch, halo formation and etc. While the

LIF diagnostic has the potential to be used for measurements of radial density profiles

and velocity distribution function [2], the very first step would be reconstructing the radial

density profiles. Since we have a stable barium ion source and a working dye laser, we are

ready to make them work together and take data. The laser system and the CCD camera

are controlled by the external triggering signals. The timing of external triggers is critical

since the laser pulse is extremely short (10 ns). The initial tests show that it takes the CCD
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(a)

(b)

Figure 5.22: The laser coupling system. (a) The laser beam is focused by a focusing lens
with short focal length (1 cm) to a tiny point before entering the optical fiber. The optical
fiber has a large numerical aperture (0.39) to make sure even the incident angle of the laser
beam is large, it can still be transmitted without significant signal loss. (b) The cross section
of the multimode optical fiber. The diameter of the silica core is 1 mm and the numerical
aperture is 0.39.
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Figure 5.23: The output light spectrum after being transmitted by the optical fiber. The
spectrum clearly shows that after being transmitted by the optical fiber, there is still strong
desired laser signal, and the fluorescence noise is much smaller compared to the laser signal.

Figure 5.24: The collimating lens and the Powell lens will convert a narrow laser beam into
a broad laser sheet.
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camera approximately 1 ms to respond to the trigger and get ready to take images, while

the laser system has a much faster response. So we allow the camera to be triggered 1 ms

ahead of the laser system. The CCD camera is operated in shutter mode and the initial

tests showed that the exposure time can be as short as 1 µs to catch the short laser pulse.

Theoretically, to minimize the background noise, we could set the exposure time to 1 µs.

Practically, we set the exposure time to 10 ms to make sure that we will catch the short laser

pulse. The maximum repetition rate is 10 Hz but the CCD camera can operate at most at

2 Hz. So we set the cycle time to be 0.5 s to make sure that the camera have enough time

to respond.

Experimental Results

First of all, we need to establish the background noise level. The CCD camera is covered

with a black blanket around the lens and the black box where the optical fiber and the

Powell lens are mounted is enclosed. In this way, the external stray light is minimized.

The background noise is mainly coming from the glowing iridium plate and the reflection of

the incident light on the interior surfaces of the PTSX electrodes. The background level is

measured with the iridium plate being hot but not allowing any barium ions to enter the

PTSX chamber by applying negative bias voltage on the iridium plate. In the mean time,

the dye laser is running. In this way, a complete background noise from the glowing iridium

plate and the running laser can be captured. The exposure time is set to be 10 ms and the

integration time is 50 s. Figure 5.25 (a) shows the accumulated image of 100 shots from the

CCD camera. The dark circle in the image is the inner hole made in the central electrode.

To obtain the average background level for each shot, we divided this accumulated image

by 100. Then in the future, this average background level per short will be subtracted from

each incoming shot.

Since the internal linewidth from the dye laser is about 0.003 nm, we need to scan the

wavelength near the 493.4077 nm to capture the correct wavelength. Figure ?? shows the
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accumulated image of 1000 shots which correspond to 500 s integration time. The background

noise is already subtracted for each shot. If there is a strong emission signal from the barium

ions decaying from the excited state to the ground state, we should be able to see a series of

light belts with different intensities aligned along the horizontal direction. It is because the

the radial density profiles are Gaussian distributed, and the light intensity is proportional

to the number density. However, we didn’t see that pattern from Fig. 5.25 (b), neither did

we see the pattern from other images taken at wavelengths near 493.408 nm.

In order to extract meaningful LIF signal from the CCD camera images, we plotted the

average line readout from the CCD camera as a function of the distance from the axis. As

discussed in Sec. 5.3.1, the CCD camera has 16 bit A/D converter with 512 × 512 pixel

resolution. The distance from the axis is expressed as the number of pixel ranging from 1 to

512 with 256 corresponding to the axis approximately. Figure 5.26 shows the average line

output of the background signal and the LIF signals after subtracting the background signal.

The wavelength of the input laser was scanned near 493.408 nm at a step of 0.001 nm, in

order to compensate the limited linewidth. Figure 5.26 (a) shows the background signal

level is very low near the center of the diagnostic area where the barium ions would be. The

higher background signal measured away from the center is probably due to the reflection

of the input laser from the PTSX electrodes. In Fig. 5.26 (a), the laser signals for various

input laser wavelengths, didn’t show the bell curve shape corresponding to the radial density

profile of the barium ions. Figure 5.26 (b) is a sub-figure of Fig. 5.26 (a), which focuses on

the center of the diagnostic area where the barium ions would be. It is quite clear from Fig.

5.26 (b) that no meaningful LIF signal was observed from the CCD camera images. There

are a couple of possible reasons why we didn’t extract meaningful data from the images. One

reason could be the inaccurate wavelength from the dye laser. The wavelength is controlled

by a software, and there could be a calibration error. Since the linewidth of the natural

transition of the barium ions is extremely small, even a tiny miss-calibration will lead to

totally different results. Another reason could be not enough laser power. Although we
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(a)

(b)

Figure 5.25: Background and LIF signal images. (a) The background level of the LIF
diagnostic. The dark circle in the image corresponds to the inner hole made in the central
electrode shown in Fig. 5.18 (c). (b) The image taken at 493.408 nm with background
subtracted. The integration time is 500 s. There aren’t significantly bright spots in the
center of the image. 153



(a)

(b)

Figure 5.26: The average line output from the CCD camera. The background signal level
near the center is very low, as well as the LIF signal after subtracting the background signal.
Fig. (b) is the blow up of Fig. (a) focusing on the center of the image where the barium
ions would be. The laser signal didn’t show the bell curve shape corresponding to the radial
density profile of the barium ions.

did see a bright laser sheet coming out of the Powell lens, we haven’t been able to measure

the actual output energy due to lack of equipment for measuring pulsed laser energy. It is

also possible that the integration time of the CCD camera is not long enough to acquire a

stronger LIF signal. Another reason could be the poor alignment of the Powell lens with
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respect to the gap between the PTSX electrodes. If the Powell lens is not aligned properly, it

is possible that only a small portion of the laser beam goes to the PTSX chamber, resulting

a weak signal.

5.5 Summary and Discussion

In this chapter, we talked about the development of the LIF diagnostic. The accompanying

barium ion source was developed and tested both independently and in the PTSX chamber.

The new barium source is able to be operated for a long period while remaining stable. The

excimer pumped dye laser was developed and tested. The experimental results showed that

the dye laser was able to produce the laser pulses at the desired wavelength. The Powell

lens also seemed to be able to generate a laser sheet to increase the detection volume. The

CCD camera was able to capture the laser signal even with 1 µs exposure time. But in the

experiment we decided to increase the exposure time to 10 ms to make sure we will catch

the signal. Although we haven’t been able to reconstruct the radial density profiles yet, we

have some ideas about where it could be wrong, and with dedicated effort, we believe the

goal of reconstructing the radial density profiles will be achieved in the near future.
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Chapter 6

Conclusions and Future Research

Studies of nonlinear dynamics of intense charged particle beams in the Paul Trap Simulator

Experiment (PTSX) have been presented in this thesis. Excitation of the quadrupole and

dipole modes have been conducted using various external perturbations such as coherent

periodic perturbations and random noise. It is demonstrated that the resonances between

the collective modes and the external perturbations will cause degradation of charged particle

beams and that some effective measures can be taken to prevent these negative effects. As

a non-destructive diagnostic, a laser-induced-fluorescent (LIF) diagnostic was developed, as

well as the accompanying barium ion source. The initial experiments using LIF technique

haven’t been able to reconstruct the radial density profiles of the pure ion plasma confined

in PTSX.

6.1 Conclusions

In this thesis, several important beam physics topics related to the equilibrium and stabil-

ity properties of charged particle beams have been explored in the PTSX device. This is

achieved based on the equivalence between the physics of charged particle beams and that

of nonneutral plasmas. Thanks to the versatility of the PTSX device in controlling the ion
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injection and the external focusing fields, the transverse dynamics of charged particle beams

with a broad range of characteristic parameters can be studied using the PTSX device.

In Chapter 4, excitation of the quadrupole and dipole modes was studied and effects

of resonance between the collective modes and the external perturbations on beam equilib-

rium and stability properties were investigated. It is demonstrated that both quadrupole

and dipole modes can be successfully excited and, in order to see a significant resonance

effect, not only does the frequency of the external perturbation need to match the mode

frequency, but also the spatial structure of the external perturbation must match the collec-

tive mode structure. When strong resonance occurs, the resonance serves as an extra energy

source which heats the charge bunch and causes transverse expansion. The rms radius is

increased due to the expansion and usually particle loss occurs since some particles lose con-

finement when they drift too far away from the beam center. The collective mode frequency

dependence on the normalized intensity parameter ŝ as measured from the experimental

data was compared to the theoretical prediction using the smooth-focusing model [1]. The

smooth-focusing model provides strong explanatory power on the experimental data quali-

tatively, but there exists quantitative discrepancies between the experimental data and the

theoretical predictions. This is probably due to the simplicity of the smooth-focusing model.

Particle-in-cell (PIC) simulations were conducted and the simulation results agreed well with

the experimental data on quadrupole and dipole modes excitations. Random noise can be

viewed as a collection of numerous sine waves at different frequencies under Fourier trans-

formation analysis. The study of machine imperfection effects using random noise indicates

that it is the interaction between the collective modes of the charge bunch and the compo-

nents of random noise at the mode frequencies that causes the strong response of the charge

bunch to external random noise. For a specific case of random noise described in Sec. 4.5.2,

a rearrangement of the random noise can eliminate the detrimental frequency components

at the mode frequencies for the random noise. This discovery has important applications in
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making accelerator construction more cost-effective by loosening the field strength tolerance

requirements of the magnets.

In Chapter 5, a new nondestructive laser-induced-fluorescence diagnostic was described,

as well as the development of the accompanying barium ion source. The barium ion source

is chosen because barium’s optical transition spectrum is more suitable to LIF, as compared

to the cesium ion source. It is demonstrated that the new barium ion source is able to

provide a stable high-density barium ion source required to perform the LIF measurements.

Due to the inherent low signal intensity, strenuous efforts have been made to reduce the

background noise. The initial experimental data haven’t shown the ability to reconstruct

the radial density profiles of the charge bunch confined in the PTSX device. It could be

hampered by a low signal-to-noise ratio, or by not selecting the correct wavelength in the

dye laser system due to poor calibration of the software.

6.2 Future Research

The PTSX device is a versatile device that can be used study a broad range of nonlinear dy-

namics topics in charge particle beams propagating in a periodic magnetic transport system.

Apart from the topics described in this thesis, several future research tasks can be suggested

as follows.

Throughout the thesis, the main experiments on cesium ions have been conducted using a

typical normalized intensity ŝ ∼ 0.2, which corresponds to the intense beam characteristic of

proton accumulator rings or booster synchrotrons. This is because the charge bunch exhibits

long-term stability near ŝ ∼ 0.2. At current settings, higher ŝ is achievable but lacks long-

term stability. For the next-generation high-intensity accelerators, which has significant

space-charge effects, the corresponding normalized intensity parameter ŝ is typically much

higher than current values. Hence, it is recommended to develop a new ion injection scheme

to obtain an initial stable beam equilibrium with higher normalized intensity (e.g., ŝ > 0.5).
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The typical rms radius at the present settings is larger than the initial beam size. One

proposed scheme is to adopt an ion source with larger initial beam size to match the typical

rms radius. In that case, we can achiever a higher on-axis charge density, which corresponds

to a higher normalized intensity ŝ.

In this thesis, we use PTSX to simulate dynamics of charged particle beams propagating

in the periodic alternating-gradient (AG) magnetic transport systems. The featured mag-

netic field in this transport system is characterized by Eq. 2.20 and 2.21, and the magnetic

field gradient B′q(z) = B′q(z + S) has axial periodicity length S. Recently, the study of con-

tinuously rotating quadrupole focusing channels has drawn a lot attention and it is expected

to be a better focusing system than the conventional AG magnetic transport systems [43]. In

the continuously rotating quadrupole focusing channel, the magnetic field gradient is chang-

ing continuously in the direction of the beam path (e.g., in z direction). The magnetic field

in this case is described as follows [43]

Bq(x, y, z) = B′q(z) cos 2θz(yex + xey)−B′q(z) sin 2θz(xex − yey) (6.1)

where B′q(z) is the filed gradient defined in Eq. 2.21 and θ = 2πz/λ. Here, λ is the periodicity

of the pole configuration, which is twice the periodicity of the focusing field S, i.e., λ = 2S.

To simulate this magnetic filed configuration, we need two sets of quadrupoles which can

be easily achieved by modifying the present PTSX configuration. By further slicing the

PTSX cylinders into 8 segments which is described in Fig. 6.1, we can easily simulate the

beam dynamics in the focusing channels with continuously rotating quadrupole field. The

versatility of the PTSX device has been once again demonstrated.

In Chapter 5, we haven’t been able to reconstruct the radial density profiles of the

pure ion plasmas confined in the PTSX device. There are a couple of areas we can explore

to find the solutions. First of all, we have to check the calibration of the software which

controls the wavelength selection in the dye laser system. Because the natural linewidth
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Figure 6.1: Configurations of the linear Paul Trap with eight electrodes to simulate the
rotating quadrupole field [43].

of the 493.4077 transition line for the barium ions is extremely small (∼1.0×10−5), even a

tiny miss-calibration can lead to totally different results. Second of all, we should somehow

find a way to check the output laser energy after the laser sheet is coming out of the Powell

lens. Although the calculation suggests more than enough energy, we should make sure

that is true. Thirdly, we should find a better way to align the Powell lens with respect to

PTSX electrodes. The opening between the PTSX electrodes is relatively small and a small

mismatch will also lead to undesired results. In order to gain more detailed information of

the transverse velocity distribution of the charge bunch, there is much more work to do [88].

With more detailed velocity distribution of the charge bunch, it will provide more insights

into improving understanding of the equilibrium and stabilities properties of charge particle

beams. This is an important research topic in the future.
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