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Abstract

Finite-dimensional non-canonical Hamiltonian systems arise naturally from
Hamilton’s principle in phase space. We present a method for deriving vari-
ational integrators that can be applied to perturbed non-canonical Hamilto-
nian systems on manifolds based on discretizing this phase-space variational
principle. Relative to the perturbation parameter ✏, this type of integrator
can take O(1) time steps with arbitrary accuracy in ✏ by leveraging the un-
perturbed dynamics. Moreover, these integrators are coordinate independent
in the sense that their time-advance rules transform correctly when passing
from one phase space coordinate system to another.

Keywords: variational integrators, geometric mechanics, perturbation
theory

1. Introduction

The most famous variational principle in classical mechanics is Hamil-
ton’s principle of stationary action [1]. According to Hamilton’s principle, a
system’s path in configuration space, q(t) 2 Q, will be a critical point of

A(q) =

Z t2

t1

L(q(t), q̇(t), t) dt (1)

regarded as a functional of paths in configuration space with fixed endpoints.
Here, L is the Lagrangian function associated with the mechanical system in
question. The closely-related Hamilton’s principle in phase space [2] gener-
alizes Hamilton’s principle to arbitrary exact symplectic manifolds. Specifi-
cally, if the symplectic manifold M with symplectic form [3] �d# is the phase
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space of a mechanical system, then the phase space variational principle as-
serts that a system’s path in phase space, z(t) 2 M , will be a critical point
of

S(z) =

Z t2

t1

#z(t)(ż(t))�H(z(t), t) dt (2)

regarded as a functional of paths in phase space with fixed endpoints. Here,
H is the system’s Hamiltonian. This pair of variational principles serves as
the variational workhorse of modern treatments of mechanics. Hamilton’s
principle is often well-suited to the formulation of a problem, as evidenced
by its applications in continuum mechanics [4], whereas the phase space
principle is naturally adapted to perturbation theory, especially in guiding
center and gyrokinetic theory [5, 6].

In this article, we will investigate variational discretizations [7] of per-
turbed non-canonical Hamiltonian systems on manifolds that obey Hamil-
ton’s principle in phase space. These perturbed systems will be specified by
a phase space manifold M ; a symplectic form on M of the form �d#; and a
time-dependent Hamiltonian function Ht = Ht+ ✏ht, where Ht represents an
unperturbed system and ✏ is a small parameter. Trajectories of this type of
system are then given as extremals of the action S given in Eq. (2). A wide
variety of mechanical systems fit this mold, including all perturbed canoni-
cal Hamiltonian systems. Notably, there are perturbed Hamiltonian systems
for which Hamilton’s principle in phase space is the only known variational
formulation [6, 8]. The variational discretizations we will be concerned with
are those that exploit the small value of ✏ to enhance the accuracy of the
discrete Euler-Lagrange equations; see Refs. [9, 10, 11, 12] for generic varia-
tional discretizations of Hamilton’s principle in phase space and Refs. [13, 14]
for specialized methods that can be applied to Hamilton’s principle in phase
space while working in canonical coordinates.

Discretizations of Hamilton’s principle for perturbed systems have been
developed already in Ref. [15]. The discrete Euler-Lagrange equations associ-
ated with these discretizations are capable of recovering previously-discovered
symplectic integrators [16, 17, 18] that exploit the small value of ✏ to e↵ec-
tively enhance their order of accuracy. In particular, these integrators are
capable of achieving up to local O(✏2) accuracy (how to achieve greater ac-
curacy in ✏ with this type of integrator is not discussed in Ref. [15]). On
the other hand, it seems a method for finding discretizations of Hamilton’s
principle in phase space that exploits the small value of ✏ has never been
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discussed. One might hope that the technique used in Ref. [15] could be
easily extended to treat the phase space variational principle, but this is
not the case. The derivation of the discretizations in Ref. [15] depends on
the presence of an exact discrete Lagrangian for its success. Because the
usual notion of exact discrete Lagrangian [7] only applies to Hamilton’s prin-
ciple1, this method cannot be transcribed to produce a similar method for
discretizing Hamilton’s principle in phase space. Thus, there is currently
not a method for developing variational integrators for perturbed guiding
center motion, or any other perturbed system whose only known variational
formulation is in the form of Hamilton’s principle in phase space.

The purpose of this article is to formulate the first discretizations of
Hamilton’s principle in phase space that are adapted to perturbed problems.
These discretizations are contained in our Eqs. (37), (42), (45), and (47). Amongst
them are discretizations whose time-advance rules are accurate to any desired
order in ✏ while allowing for O(1) time steps. Each discretization can be ap-
plied to any perturbed non-canonical Hamiltonian system whose continuous-
time trajectories are extremals of the action S in Eq. (2). Our method for
deriving these discretizations is based on constructing an exact discrete ac-
tion for Hamilton’s principle in phase space, a task that is fundamentally
di↵erent from constructing an exact discrete action for Hamilton’s principle.
The method is completely coordinate-independent, and therefore leads to
time-advance rules that transform correctly when passing from one coordi-
nate chart on the phase space M to another. This coordinate-independence
is achieved by introducing an arbitrary a�ne connection on M . We demon-
strate that by initializing these two-step integration algorithms using the
smooth modified system studied in backward error analysis [19, 20, 21], the
resulting discrete-time trajectories satisfy one-step algorithms that preserve
symplectic forms on M , which is a sharper result on symplecticity than that
provided by the theory developed in Ref. [7] or Ref. [11].

The presentation will be organized as follows. We specify the scope of our
work and precisely define the notion of a discretization of Hamilton’s principle
in phase space in Section 2. We derive an exact discretization of Hamilton’s
principle in phase space suitable to perturbed Hamiltonian systems in Section

1The exact discrete Lagrangian associated with Hamilton’s principle is a function of
pairs of points in configuration space. The phase-space action cannot be regarded as a
function of pairs of points in phase space in the same way because generally there is not
a solution to Hamilton’s equations that connects a pair of points in phase space.

3



3. Using this exact discretization, we develop approximate discretizations of
Hamilton’s principle in phase space that can be applied to practical problems
in Section 4. In section 5, we discuss the symplecticity of the integration
algorithms provided by our discretizations. Section 6 contains two examples.
We conclude with a discussion in Section 7.

2. Problem statement

Let M be a symplectic manifold with symplectic form �d#. Let Ht =
Ht + ✏ht be a time-dependent real-valued function on M , where ✏ is a small
parameter. The time-dependent vector field XHt defined by the formula

iXHt
d# = �dHt (3)

is known as the time-dependent Hamiltonian vector field with Hamiltonian
Ht [3]. Fix t1, t2 2 R with t1 < t2. If � : [t1, t2] ! M is an integral curve of
XHt , i.e.

�0(t) = XHt(�(t)), (4)

then � is a critical point of the functional S(�(t1),�(t2)) : P(�(t1),�(t2)) ! R,
where

P(z1,z2) = {c : [t1, t2] ! M | c(t1) = z1, c(t2) = z2} (5)

and

S(�(t1),�(t2))(c) =

Z t2

t1

#c(t)(c
0(t))�Ht(c(t)) dt. (6)

Conversely, if c 2 P(z1,z2) is a critical point of S(z1,z2), then c must be an
integral curve of the Hamiltonian vector field XHt . The latter pair of facts is
known as Hamilton’s principle in phase space [2]. Note that for many choices
of (z1, z2), S(z1,z2) will not have any critical points; a necessary condition for
the existence of a critical point is that z1 and z2 can be connected by an
integral curve of XHt .

Let ⌧ 2 R be a positive O(1) constant. Assume t1 = N1⌧ and t2 = N2⌧ ,
where N1, N2 2 Z. Between the continuous-time path space, P(z1,z2), and the
discrete-time path space with increment ⌧ ,

P(z1,z2) = {c : [t1, t2] \ (⌧Z) ! M | c(t1) = z1, c(t2) = z2}, (7)
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there is a natural projection map ⇡(z1,z2) : P(z1,z2) ! P(z1,z2), where for each
integer N1  k  N2

⇡(z1,z2)(c)(k⌧) = c(k⌧). (8)

Our goal is to identify a functional S1
(z1,z2)

: P(z1,z2) ! R, which we will refer
to as the exact discrete action, with three properties.

(D1) If � : [t1, t2] ! M is an integral curve of the Hamiltonian vector field
XHt with �(t1) = z1 and �(t2) = z2, then � must be a critical point of the
functional S1

(z1,z2)
� ⇡(z1,z2).

(D2) S1
(z1,z2)

must be of the form

S1
(z1,z2)(c) =

N2�1X

k=N1

L1(ck, ck+1, ⌧k), (9)

where ck = c(⌧k) and L1 : M ⇥M ⇥ R ! R.

(D3) If the exact discrete action is replaced with its l’th order Maclaurin
polynomial in ✏,

Sl
(z1,z2)(c) =

N2�1X

k=N1

Ll(ck, ck+1, ⌧k), (10)

then the discrete Euler-Lagrange equations [7] associated with Sl
(z1,z2)

should

function as a numerical integration algorithm with local O(✏l+1) accuracy.
Remarks on such a functional are in order. Note that the time step of

the integration algorithm associated with Sl
(z1,z2)

is ⌧ , which is not assumed
to be small. The idea at work here is that integral curves of the unperturbed
vector field XHt can be used to approximate integral curves of XHt with
O(✏) accuracy on O(1) time intervals. Thus, when Ht describes an integrable
Hamiltonian system, the practical limit on the size of ⌧ for a fixed value of ✏
should be expected to be ⌧ ⌧ ⌧b, where ⌧b is the perturbation’s characteristic
bounce time. Also note that because the discrete Euler-Lagrange equations
associated with Sl

(z1,z2)
are given by

d(2)Ll(ck�1, ck, ⌧(k � 1)) + d(1)Ll(ck, ck+1, ⌧k) = 0, (11)
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they provide a two-step [22, 19, 20] integration algorithm for a first-order
dynamical system on M . Thus, the standard theory behind variational in-
tegrators [7] implies that this algorithm preserves a symplectic structure on
M ⇥M . However, the flow of the Hamiltonian vector field XHt preserves a
symplectic form on M . In Section 5 we reconcile these qualitatively di↵erent
notions of structure preservation using a minor modification of the “smooth
modified system” concept developed in [19]. Finally, note that by setting
✏ = 0, we move into the setting of generic Hamiltonian systems on M , i.e.
those without an a priori perturbative structure. Thus, when ✏ = 0 and ⌧ is
chosen to be small, S1

(z1,z2)
can be expanded in powers of ⌧ to yield arbitrarily

accurate variational integrators for generic Hamiltonian systems.

3. Derivation of an exact discrete action for Hamilton’s principle
in phase space

In order to derive a functional S1
(z1,z2)

that satisfies properties (D1)–(D3),
we will manipulate the functional S(z1,z2) into the form S1

(z1,z2)
� ⇡(z1,z2) while

making use of the following heuristic approximation principle.

The path space approximation principle: Modifications to the func-
tional S(z1,z2) can be made as long as they do not change the first variation
of S(z1,z2) at integral curves of XHt .

The intuitive justification of this principle is that we are mainly interested in
critical points of the functional S(z1,z2) and a critical point of S(z1,z2) will also
be a critical point of S 0

(z1,z2)
provided these two functionals agree (modulo a

constant) in a neighborhood of the critical point.
As a convenient first step, we will pass into the “interaction picture”.

Passing into the interaction picture amounts to transforming the path space
in such a way that integral curves of the unperturbed vector fieldXHt become
trivially constant curves. Let Ft,s : M ! M be the time-dependent flow map
of the unperturbed Hamiltonian vector field XHt , i.e. the two-parameter
family of mappings characterized by the relations

Ft,t(z) = z (12)

d

dt
Ft,s(z) = XHt(Ft,s(z)). (13)
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Then the interaction picture transformation from the old path space to the
new path space I : P(z1,z2) ! P(z̄1,z̄2), with (z̄1, z̄2) = (z1, Ft1,t2(z2)), is given
by

I(c)(t) = Ft1,t(c(t)). (14)

After performing this change-of-path, the functional S(z1,z2) is transformed
into S̄(z̄1,z̄2) = I⇤S(z1,z2), which is the pushforward of S(z1,z2) along the map-
ping I. Given c̄ 2 P(z̄1,z̄2), S̄(z̄1,z̄2)(c̄) is readily found to be

S̄(z̄1,z̄2)(c̄) =

Z t2

t1

#c̄(t)(c̄
0(t))� ✏(F ⇤

t,t1
ht)(c̄(t)) dt+ const. (15)

The constant term does not a↵ect the location of critical points, and so we
omit it from this point forward. Also note that, by Hamilton’s principle in
phase space, c̄ is a critical point of S̄(z̄1,z̄2) if and only if c̄ is an integral curve
of the time-dependent Hamiltonian vector field X✏Kt , where

Kt = F ⇤
t,t1

ht. (16)

Next, we decompose the time integral in S̄(z̄1,z̄2) as

S̄(z̄1,z̄2)(c̄) =
N2�1X

k=N1

S̄k(c̄), (17)

where

S̄k(c̄) =

Z ⌧(k+1)

⌧k

#c̄(t)(c̄
0(t))� ✏Kt(c̄(t)) dt, (18)

and examine S̄k(c̄) for each k. The goal of this analysis is to devise an
approximation for S̄k(c̄) that depends on c̄ only through c̄k and c̄k+1. Let
Gt,s : M ! M be the time-dependent flow map of the Hamiltonian vector
field X✏Kt . As is readily verified, the identity

Z ⌧(k+1)

⌧k

#c̄(t)(c̄
0(t))� ✏Kt(c̄(t)) dt =

Z

¯̄ck

#+

✓
✏

⌧(k+1)Z

⌧(k+1/2)

G⇤
s,⌧(k+1)ls ds

◆
(c̄k+1)

+

✓
✏

⌧(k+1/2)Z

⌧k

G⇤
s,⌧kls ds

◆
(c̄k) (19)
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holds, where

¯̄ck(t) = G⌧(k+1/2),t(c̄(t)), ⌧k  t  ⌧(k + 1) (20)

and

ls = #(XKs)�Ks. (21)

Thus, S̄k(c̄) could be determined using only the values of c̄ at ⌧k and ⌧(k+1)
were it not for the term

R
¯̄ck #.

Observe that when c̄ is a critical point of S̄(z̄1,z̄2), the curve ¯̄ck is constant
and the integral

R
¯̄ck # vanishes. When c̄ is infinitesimally close to a critical

point,
R
¯̄ck # is given by the first variation of the functional F1 : P(z̄1,z̄2) ! R,

where

F1(c̄) =

Z

¯̄ck

#. (22)

To calculate the variation of F1, we first compute the variation of Fo :
P(z̄1,z̄2) ! R at a trivial curve c̄(t) = const, where

Fo(c̄) =

Z

c̄k

#, (23)

and c̄k = c̄|[⌧k, ⌧(k + 1)]. The result is readily found to be

dFo c̄(�c̄) = #c̄k+1
(�c̄k+1)� #c̄k(�c̄k). (24)

The chain rule then implies that the first variation of F1 at a critical point
of S̄(z̄1,z̄2) is given by

dF1 c̄(�c̄) =#G⌧(k+1/2),⌧(k+1)(c̄k+1)(TG⌧(k+1/2),⌧(k+1)(�c̄k+1))

�#G⌧(k+1/2),⌧k(c̄k)(TG⌧(k+1/2),⌧k(�c̄k)). (25)

Here, T denotes the tangent functor as defined in Ref. [3]. Notably, the first
variation of F1 at a critical point of S̄(z̄1,z̄2) is completely determined by �c̄
and c̄ evaluated at ⌧k and ⌧(k + 1).

Guided by these observations and the path space approximation principle,
we will now replace the term

R
¯̄ck # in S̄k(c̄) with an approximation that can
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be computed using only the values of c̄ at ⌧k and ⌧(k + 1). We will choose
this approximation so that it agrees with

R
¯̄ck # when c̄ is a critical point and

when c̄ is infinitesimally close to a critical point. Let r be an arbitrary
a�ne connection on M . It is well-known [23] that M admits an open cover
{Ui}i2I with two properties: (i) if z1, z2 2 Ui, then there is a unique geodesic
segment contained in Ui with endpoints z1 and z2, (ii) If z1, z2 2 Ui and
z1, z2 2 Uj, then the geodesic segment joining z1, z2 in Ui is equal to the
geodesic segment joining z1, z2 in Uj. Thus, on the open neighborhood of the
diagonal in M ⇥M , O =

S
i2I

Ui ⇥ Ui, we can define a real-valued function

f(z1, z2) =

Z

I(z2,z1)

#, (26)

where I(z2, z1) is the unique directed geodesic segment from z1 to z2 contained
in some Ui. If O cannot be taken to be all of M ⇥ M , assume that f has
been smoothly extended to all of M ⇥M . In terms of this possibly-extended
f our approximation for

R
¯̄ck # is

Z

¯̄ck

# ⇡f(F⌧k,t1(¯̄ck), F⌧k,t1(¯̄ck+1))

�
✓ ⌧kZ

t1

F ⇤
s,t1

Ls ds

◆
(¯̄ck+1)

+

✓ ⌧kZ

t1

F ⇤
s,t1

Ls ds

◆
(¯̄ck), (27)

where

Ls = #(XHs)�Hs. (28)

It is readily verified that this approximation is exact when c̄ is either a critical
point of S̄(z̄1,z̄2) or infinitesimally close to such a critical point. When c̄ is
a critical point, both sides of Eq. (27) obviously vanish. Likewise, regarding
each side of Eq. (27) as a functional of c̄, the two sides’ first variations at a
critical point agree. The latter assertion is easy to check using Eq. (25) and
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the fact that when c̄ is su�ciently close to a critical point, the right hand-side
of Eq. (27) is given by

Z

I(F⌧k,t1
(¯̄ck+1),F⌧k,t1

(¯̄ck))

F ⇤
t1,⌧k

#. (29)

With this approximation in place, we can now easily obtain an expression
in the interaction picture for a functional S̄1

(z̄1,z̄2)
that satisfies (D1) and (D2).

To see this, note that we now have S̄k(c̄) ⇡ L̄1(c̄k, c̄k+1, ⌧k), where

L̄1(c̄k, c̄k+1, t) =f(Ft,t1(¯̄ck), Ft,t1(¯̄ck+1))

�
✓ tZ

t1

F ⇤
s,t1

Ls ds

◆
(¯̄ck+1)

+

✓ tZ

t1

F ⇤
s,t1

Ls ds

◆
(¯̄ck)

+

✓
✏

t+⌧Z

t+⌧/2

G⇤
s,t+⌧ ls ds

◆
(c̄k+1)

+

✓
✏

t+⌧/2Z

t

G⇤
s,tls ds

◆
(c̄k). (30)

Thus, Eq. (17) implies

S̄(z̄1,z̄2)(c̄) ⇡
N2�1X

k=N1

L̄1(c̄k, c̄k+1, ⌧k) = S̄1
(z̄1,z̄2) � ⇡(z̄1,z̄2)(c̄), (31)

where S̄1
(z̄1,z̄2)

: Pz̄1,z̄2 ! R is given by

S̄1
(z̄1,z̄2)(c̄) =

N2�1X

k=N1

L̄1(c̄k, c̄k+1, ⌧k). (32)

This says that S̄1
(z̄1,z̄2)

satisfies (D2). Also note that, by construction, we have

the following equalities when c̄ is a critical point of S̄(z̄1,z̄2).

S̄(z̄1,z̄2)(c̄) = S̄1
(z̄1,z̄2) � ⇡(z̄1,z̄2)(c̄) (33)

dS̄(z̄1,z̄2) c̄ = d
�
S̄1
(z̄1,z̄2) � ⇡(z̄1,z̄2)

�
c̄
. (34)
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Therefore, any critical point of S̄(z̄1,z̄2) is also a critical point of S̄1
(z̄1,z̄2)

�⇡(z̄1,z̄2),

which says that S̄1
(z̄1,z̄2)

satisfies (D1).

In fact S̄1
(z̄1,z̄2)

satisfies (D3) in addition to (D1) and (D2). The proof of
this statement is not substantially di↵erent than the proof of Theorem 2.3.1
in Ref. [7]. We have therefore succeeded in identifying an exact discrete action
S̄1
(z̄1,z̄2)

. However, we currently have this action expressed in the interaction
picture. To remedy this, we will conclude this section by passing out of the
interaction picture.

Passing out of the interaction picture consists of transforming the new
path space P(z̄1,z̄2) back into the old path space P(z1,z2) by applying the map-
ping I�1. Upon performing this change-of-path, the functional S̄1

(z̄1,z̄2)
�⇡(z̄1,z̄2)

transforms into I⇤(S̄1
(z̄1,z̄2)

� ⇡(z̄1,z̄2)). After some tedious, yet straightforward
algebraic manipulations, we have found this pullback is given by

I⇤(S̄1
(z̄1,z̄2) � ⇡(z̄1,z̄2)) = S1

(z1,z2) � ⇡(z1,z2), (35)

where

S1
(z1,z2)(c) =

N2�1X

k=N1

L1(ck, ck+1, ⌧k), (36)

and

L1(ck, ck+1, t) =L̄1(Ft1,t(ck), Ft1,t(ck+1), t)

=f(�t
t+⌧/2,t(ck),�

t
t+⌧/2,t+⌧ (Ft,t+⌧ (ck+1)))

+ Lt(ck)� Lt+⌧ (ck+1) +

0

@
t+⌧Z

t

F ⇤
s,t+⌧Ls ds

1

A (ck+1)

+

0

B@✏

t+⌧Z

t+⌧/2

�t ⇤
s,t+⌧ l

t
s ds

1

CA (Ft,t+⌧ (ck+1))

+

0

@✏

t+⌧/2Z

t

�t ⇤
s,tl

t
s ds

1

A (ck). (37)

The notation introduced in this expression is defined as follows. The mapping
�u

t,s is the time-dependent flow map of the Hamiltonian vector field with
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time-dependent Hamiltonian ✏F ⇤
t,uht. In particular,

�u
t,s = Fu,t1 �Gt,s � Ft1,u. (38)

The function lus is given by

lus = #(XF ⇤
s,uhs)� F ⇤

s,uhs. (39)

Finally,

Lk =

Z ⌧k

t1

F ⇤
s,⌧kLs ds. (40)

The functional S1
(z1,z2)

is therefore a valid exact discrete action, i.e. it satis-

fies properties (D1)–(D3). Note that the terms Lk(ck) � Lk+1(ck+1) in L1
are gauge contributions in the sense that, when summed over k, they only
contribute a constant to S1

(z1,z2)
. Therefore they can be omitted from L1

without a↵ecting the location of critical points.

4. Truncations of S1
(z1,z2)

While the discrete Euler-Lagrange equations associated with S1
(z1,z2)

are
rigorously satisfied by the integral curves of XHt by property (D1), they gen-
erally do not serve as a particularly useful numerical integration algorithm.
This is because calculating L1 is generally very di�cult; the flow maps Ft,s

and �u
t,s must be known in advance. Thus, it is important to have manageable

approximations for S1
(z1,z2)

on hand when developing variational integrators.
To this end, we will now present general expressions for the first few terms
in S1

(z1,z2)
’s power series in ✏. The utility of such expressions follows from

property (D3): if S1
(z1,z2)

is replaced by its l’th order Maclaurin polynomial in
✏, the resulting discrete Euler-Lagrange equations will function as a two-step
numerical integration algorithm with local O(✏l+1) accuracy. We will adopt
the convention that Sl

(z1,z2)
denotes S1

(z1,z2)
’s l’th order Maclaurin polynomial

in ✏.

l = 0:

When l = 0, the truncated discrete action is given by

S0
(z1,z2)(c) =

N2�1X

k=N1

L0(ck, ck+1, ⌧k), (41)

12



where

L0(ck, ck+1, t) =f(ck, Ft,t+⌧ (ck+1))

+ Lt(ck)� Lt+⌧ (ck+1) +

0

@
t+⌧Z

t

F ⇤
s,t+⌧Ls ds

1

A (ck+1). (42)

Recall that the function f is defined in Eq. (26). Also recall that L⌧k(ck) �
L⌧(k+1)(ck+1) is a gauge term and can therefore be omitted. The discrete
Euler-Lagrange equations associated with L0 provide a two-step integration
algorithm for XHt with local O(✏) accuracy. In particular, S0

(z1,z2)
serves as

an exact discrete action for the unperturbed system XHt . Therefore, L0 can
be used to derive variational integrators for generic non-canonical Hamilto-
nian systems without a perturbative structure as follows. Choose ⌧ to be
a small parameter. Then L0 can meaningfully be expanded in a Maclaurin
series in ⌧ . From the general theory developed in Ref. [7], it follows that if L0

is replaced with its n’th order Maclaurin series in ⌧ , the associated discrete
Euler-Lagrange equations will serve as an (n+ 1)’th order integrator.

l = 1:

In order to derive an expression for S1
(z1,z2)

, it is necessary to make use of
the following identity. Let Ku

s = F ⇤
s,uhs. If g : M ! M is an arbitrary

smooth function, then

�u ⇤
t,s g =g + ✏

tZ

s

�u ⇤
a,s

⇣
LXKu

a
g
⌘
da

=g + ✏

tZ

s

LXKu
a
g da+ ✏2

tZ

s

aZ

s

LXKu
b
LXKu

a
g db da+O(✏3), (43)

where LX denotes the Lie derivative along the vector field X. Provided
|t� s| = O(1), this identity can be used to obtain an asymptotic expansion
of the quantity �u ⇤

t,s g in powers of ✏.
Applying this identity to Eq. (37), we obtain

S1
(z1,z2)(c) =

N2�1X

k=N1

L1(ck, ck+1, ⌧k), (44)

13



where

L1(ck, ck+1, t) =L0(ck, ck+1, t)

+ ✏

t+⌧Z

t+⌧/2

lts(Ft,t+⌧ (ck+1)) ds+ ✏

t+⌧/2Z

t

lts(ck) ds

�

0

B@✏

t+⌧Z

t+⌧/2

L(2)
XKt

s
f ds

1

CA (ck, Ft,t+⌧ (ck+1))

+

0

@✏

t+⌧/2Z

t

L(1)
XKt

s
f ds

1

A (ck, Ft,t+⌧ (ck+1)). (45)

The discrete Euler-Lagrange equations associated with L1 furnish a varia-
tional integrator for XHt with local O(✏2) accuracy. Keep in mind that the
time step ⌧ = O(1). Practically speaking, for a given value of ✏, ⌧ should
be significantly less than the perturbation’s characteristic bounce time. If ⌧
is chosen to be a small parameter, then these expressions can be expanded
in powers of ⌧ . If this expansion were to be performed and L1 were re-
placed with its n’th order Maclaurin polynomial in ⌧ , the resulting discrete
Euler-Lagrange equations would yield an integration algorithm with local
O(⌧n+1✏2) accuracy.

l = 2:

Upon further application of Eq. (43), the l = 2 result is given by

S2
(z1,z2)(c) =

N2�1X

k=N1

L2(ck, ck+1, ⌧k), (46)

14



where

L2(ck, ck+1, t) =L1(ck, ck+1, t)

� ✏2
t+⌧Z

t+⌧/2

t+⌧Z

s

LXKt
a
lts(Ft,t+⌧ (ck+1)) da ds

+ ✏2
t+⌧/2Z

t

sZ

t

LXKt
a
lts(ck) da ds

+

0

B@✏2
t+⌧Z

t+⌧/2

t+⌧Z

s

L(2)
XKt

a
L(2)
XKt

s
f da ds

1

CA (ck, Ft,t+⌧ (ck+1))

+

0

@✏2
t+⌧/2Z

t

sZ

t

L(1)
XKt

a
L(1)
XKt

s
f da ds

1

A (ck, Ft,t+⌧ (ck+1))

�

0

B@✏2
t+⌧/2Z

t

t+⌧Z

t+⌧/2

L(1)
XKt

s
L(2)
XKt

a
f da ds

1

CA (ck, Ft,t+⌧ (ck+1)). (47)

The discrete Euler-Lagrange equations associated with L2 furnish a varia-
tional integrator for XHt with local O(✏3) accuracy.

5. Symplecticity

Fix a non-negative integer l. In this section we will discuss the sense in
which the numerical integration algorithm associated with Sl

(z1,z2)
is symplec-

tic. This topic is more subtle than it may first appear because the discrete
Euler-Lagrange equations associated with Ll give a two-step integrator for a
first-order dynamical system on M .

First we will illustrate the sense in which the integration algorithm as-
sociated with Sl

(z1,z2)
is symplectic on M ⇥ M by applying the methods of

Ref. [7] in a straightforward manner. Recall that the discrete Euler-Lagrange
equations associated with Ll are given by

d(2)Ll(ck�1, ck, ⌧(k � 1)) + d(1)Ll(ck, ck+1, ⌧k) = 0. (48)
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Thus, we can define a mapping F l
k : M ⇥M ! M ⇥M , where

F l
k(z1, z2) = (z2, f

l
k(z1, z2)), (49)

and f l
k : M ⇥M ! M is defined implicitly by the equation

d(2)Ll(z1, z2, ⌧(k � 1)) + d(1)Ll(z2, f
l
k(z1, z2), ⌧k) = 0. (50)

F l
k allows us to parameterize the space of solutions of the discrete Euler-

Lagrange equations by M ⇥ M . In particular, it can be used to define a
mapping C : M⇥M ! P, where P is the set of mappings [⌧N1, ⌧N2]\(⌧Z) !
M and

C(z1, z2)(⌧N1) = z1 (51)

C(z1, z2)(⌧k) = ⇡1 � F l
k � F l

k�1 � . . . � F l
N1+1(z1, z2), N1 < k  N2 (52)

Using this parameterization, we can define the restricted action on M ⇥M ,
Ŝl
M⇥M : M ⇥M ! R, where

Ŝl
M⇥M(z1, z2) =

N2�1X

k=N1

Ll(C(z1, z2)(⌧k),C(z1, z2)(⌧(k + 1)), ⌧k). (53)

The exterior derivative of Ŝl
M⇥M is readily found to be

dŜl
M⇥M = ✓N1

1 � F l⇤
N2�1,N1

✓N2�1
2 , (54)

where F l
N2�1,N1

= F l
N2�1 � . . . � F l

N1+1 and the one-forms ✓k1 , ✓
k
2 are given by

✓k1(z1, z2)(u(z1,z2)) = dLl(z1, z2, ⌧k)(T⇡1(u(z1,z2))) (55)

✓k2(z1, z2)(u(z1,z2)) = �dLl(z1, z2, ⌧k)(T⇡2(u(z1,z2))). (56)

Likewise, the second exterior derivative of Ŝl
M⇥M is found to be

ddŜl
M⇥M = 0 = d✓N1

1 � F l⇤
N2�1,N1

d✓N2�1
2 . (57)

It is clear from their definitions that the one-forms ✓k1 and ✓k2 di↵er by an
exact di↵erential,

✓k1(z1, z2)� ✓k2(z1, z2) = dLl(z1, z2, ⌧k). (58)
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Therefore we have the conservation law

F l⇤
k,N1

!k is independent of k, (59)

where !k = d✓k1 = d✓k2 . We have thus shown that the time-dependent flow
map F l

k,N1
on M ⇥ M associated with Sl

(z1,z2)
preserves a time-dependent

symplectic form on M ⇥M .
Next we will demonstrate a more refined result on the symplecticity of

the integration algorithm associated with Sl
(z1,z2)

. Assume that there exists a
time-dependent vector field Xt on M whose associated flow map Ft,s satisfies
the discrete Euler-Lagrange equations exactly. In other words, Ft,s satisfies
the equation

d(2)Ll(F⌧(k�1),⌧N1(z),F⌧k,⌧N1(z), ⌧(k � 1))

+d(1)Ll(F⌧k,⌧N1(z),F⌧(k+1),⌧N1(z), ⌧k) = 0. (60)

for each N1  k  N2 and z 2 M . Using Ft,s, we can define a mapping
C : M ! P, where

C(z)(⌧k) = F⌧k,⌧N1(z). (61)

The mapping C then naturally leads to the introduction of the restricted
action on M , Ŝl

M : M ! R, where

Ŝl
M(z) =

N2�1X

k=N1

Ll(F⌧k,⌧N1(z),F⌧(k+1),⌧N1(z), ⌧k). (62)

The identity ddŜl
M = 0 then gives the conservation law

F⇤
⌧k,⌧N1

⌦k is independent of k, (63)

where ⌦k = d✓̃k1 = d✓̃k2 and

✓̃k1(z) = d(1)Ll(z,F⌧(k+1),⌧k(z), ⌧k) (64)

✓̃k2(z) = �d(2)Ll(F⌧(k�1),⌧k(z), z, ⌧(k � 1)). (65)

Note that ✓̃k1 = ✓̃k2 . Thus, we see that the smooth modified system, which is
specified byXt, preserves a time-dependent symplectic form onM . The sense
in which this conservation law applies to the two-step integration algorithm
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specified by Sl
(z1,z2)

is as follows. The two step algorithm specified by the dis-
crete Euler-Lagrange equations requires a pair of initial conditions in order to
produce a discrete-time trajectory. If the second initial condition is supplied
by flowing along Xt for ⌧ seconds starting from the first initial condition,
then the discrete trajectory produced by solving the discrete Euler-Lagrange
equations will automatically lie along an integral curve of Xt. Thus, provided
the second initial condition for our two-step method is chosen carefully, the
two-step method is equivalent to the one-step method given by the flow map
associated with Xt, which we have just shown preserves a time-dependent
symplectic form on M . This result is consistent with the discussions found
in Refs. [21, 19, 20] that explain the advantages of choosing the second initial
condition for a two-step integrator using the smooth modified system.

The question of whether or not the vector field Xt exists seems to be
incompletely resolved. Using the methods of Hairer, who calls Xt the smooth
modified system [19, 20], an asymptotic series for Xt in powers of ✏ can be
developed in a straightforward manner if one assumes the ansatz

Xt = XHt + ✏Y 1
t + ✏2Y 2

t + . . . (66)

While, in general, this series diverges, such divergence does not necessarily
imply that an Xt with the desired properties fails to exist. It is possible,
for instance, that the series (66) can be resummed in the sense of Borel [24]
to give Xt. Note that this existence question is not resolved by the result
proved in Ref. [25]. Indeed, two step variational integrators tend to not be
absolutely stable and therefore cannot be treated with the methods of Ref.
[25].

Regardless of the answer to the existence question, the asymptotic series
in Eq. (66) can often be computed and then truncated at some order. While
this truncated vector field will not have a flow map that exactly satisfies the
discrete Euler-Lagrange equations, by truncating at a su�ciently high order,
it can be made to satisfy the discrete Euler-Lagrange equations with any
desired level of accuracy. This fact has already been exploited to improve
the stability properties of multi-step variational integration methods in [21].
It would be interesting to also exploit the same fact to develop energy and
symplecticity bounds for the discretizations of Hamilton’s principle in phase
space developed here. We leave this to future consideration. Note that exist-
ing proofs of bounded energy errors for variational integrators only apply to
discretizations of Hamilton’s principle, and not to discretizations of Hamil-
ton’s principle in phase space; when the second initial condition supplied to
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a two-step discretization of Hamilton’s principle in phase space is not chosen
to lie along an integral curve of Xt, there are known examples of poor energy
behavior [26, 27].

6. Examples

In this section we will illustrate the use of our discretizations of Hamil-
ton’s principle in phase space to develop variational integrators for a pair
of perturbed Hamiltonian systems. In order to illustrate that L1 gives dis-
crete Euler-Lagrange equations that are exactly satisfied by the appropriate
continuous-time trajectories, we will first treat the harmonic oscillator re-
garded as a perturbed rigid rotor. In this example, L1 is simple to calculate
and it is a simple matter to verify that true solutions to the harmonic os-
cillator di↵erential equation satisfy L1’s discrete Euler-Lagrange equations.
We will then use the first-order (in ✏) approximation for L1, L1, to derive a
variational integrator for a non-canonical Hamiltonian system that describes
the nearly-integrable flow of magnetic field lines in a nominally axisymmetric
geometry. This second example is less trivial than the Harmonic oscillator
in the sense that the field line dynamics are non-linear and L1 is impossible
to calculate; the computation of L1 is already an onerous task to perform
without the aid of symbolic manipulation software.

Example 1:

Consider the canonical Hamiltonian system on R2 specified by the symplectic
form �d#, with # = y dx, and the Hamiltonian function H = y2/2 + ✏x2/2.
Clearly, this system describes the dynamics of a harmonic oscillator with
frequency

p
✏. Equivalently, we can regard H as describing a perturbed rigid

rotor, where H = y2/2 describes the unperturbed dynamics of the rotor, and
✏h = ✏x2/2 describes the perturbation. This second interpretation allows us
to employ our discretizations of Hamilton’s principle in phase space that are
adapted to perturbed problems to develop a variational integrator for this
problem.

In order to identify this integrator, we will calculate L1 explicitly using
Eq. (37). The ingredients that enter into such a calculation are (i) introducing
an a�ne connection on R2, (ii) finding an expression for the function f(z1, z2),
(iii) finding an expression for the unperturbed flow map Ft,s, (iv) finding an
expression for for �u

t,s, and (v) evaluating the necessary time integrals that
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appear in the expression for L1. We will now go through each of these steps
in turn.

(i) We will use the obvious connection on R2 associated with the standard
inner product hu, vi = u1v1 + u2v2. Relative to this connection and between
any pair of points in z1, z2 2 R2, there is a unique geodesic segment equal
to the convex hull of {z1, z2}. The unique parameterization of this geodesic
segment with parameter � 2 [0, 1] and orientation z1 ! z2 is given by

I(z2, z1)(�) = (1� �) z1 + � z2. (67)

(ii) The connection chosen in the previous step renders the computation
of f(z1, z2) analytically tractable. Indeed, we have

f(z1, z2) =

Z

I(z2,z1)

y dx

=

Z 1

0

(y1 + � (y2 � y1)) (x2 � x1) d�

=
1

2
(x2 � x1) (y1 + y2). (68)

(iii-iv) The unperturbed flow map Ft,s is given by

Ft,s(x, y) = (x+ (t� s) y, y). (69)

Determining this flow map is a simple matter because the Hamiltonian un-
derlying the unperturbed dynamics is merely H = y2/2. The flow map of
XH, Ft,s, is also simple to identify because the dynamics of a simple harmonic
oscillator with frequency

p
✏ are very well understood. Indeed, we have

Ft,s(x, y) =

(x cos(
p
✏(t� s)) +

yp
✏
sin(

p
✏(t� s)), y cos(

p
✏(t� s))�

p
✏x sin(

p
✏(t� s))).

(70)

On the other hand, the flow map �u
t,s is associated with the time-dependent

Hamiltonian

✏F ⇤
t,uht(x, y) = ✏(x+ (t� u) y)2/2, (71)
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which is not the Hamiltonian for any commonly encountered dynamical sys-
tem. Nevertheless, it is easy to check that �u

t,s can be expressed in terms of
Ft,s and Ft,s according to

�u
t,s = Fu,t � Ft,s � Fs,u. (72)

Thus, between Eqs. (69) and (70) we have identified an explicit expression
for �u

t,s (that we will not display).
(v) Finally, we can calculate L1 by directly evaluating Eq. (37). Modulo

gauge terms, L1 is given by

L1(z1, z2) =� 1

2
(y2x1 � y1x2) cos(

p
✏⌧)

� 1

2

✓
1p
✏
y2y1 +

p
✏x2x1

◆
sin(

p
✏⌧). (73)

It is simple to verify the the discrete Euler-Lagrange equations that follow
from this expression for L1 are exactly satisfied by the solution to the har-
monic oscillator di↵erential equation. This is true regardless of how large or
small the time step ⌧ is chosen.

In this case, L1 can technically be expanded in powers of ✏ regardless
of the value of ⌧ . This follows from the fact that the radius of convergence
of the Maclaurin series of either sin(x) or cos(x) is infinite. However, whenp
✏⌧ ⌧ 1 these series converge much more rapidly than when

p
✏⌧ � 1. Thus,

we expect that truncating L1’s Maclaurin series in ✏ after only a few terms
will lead to a reasonably-accurate integrator for this perturbed rigid rotor
only when

p
✏⌧ ⌧ 1, which is precisely the condition that ⌧ be much less

than the characteristic bounce time 1/
p
✏.

Example 2:

Next, we will summarize the application of the discretizations developed
in this work to a non-trivial non-canonical perturbed Hamiltonian system.
This system’s phase space is R2 equipped with the non-canonical symplectic
form �d#, where

# = (x2 + y2) (y dx� xdy). (74)

The Hamiltonian, which is time-dependent and periodic, is given by Ht =
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H + ✏ht, where

H =
2

9
(x2 + y2)3 (75)

ht = x sin(t) + x2 sin(t). (76)

This Hamiltonian system can be regarded as a model for magnetic field line
flow in a nominally axisymmetric geometry with small resonant perturbations
[28]. In this interpretation, the time variable is identified with the toroidal
angle, while x and y are identified with a set of Cartesian coordinates in the
poloidal plane centered on the unperturbed magnetic axis. We will demon-
strate that the variational integrators for this system given by L0 and L1

have local O(✏) and O(✏2) accuracy, respectively. Then we will make some
qualitative remarks on the ability of the L1 integrator to resolve second- and
higher-order islands. The time step for the L0 and L1 integrators will be set
equal to 2⇡. Thus, these integrators function as the zero’th and first order
t = 0 Poincaré maps.

In order to find an expression for L1, a connection must be chosen;
f(z1, z2) must be calculated; and the unperturbed flow map must be found.
With knowledge of these quantities, Eq.(45) can be evaluated directly to find
the desired expression. As in the previous example, we adopt the natural flat
connection on R2. Relative to this connection, the function f(z1, z2) is given
by

f(z1, z2) =
1

3
(x2y1 � x1y2)(x

2
1 + x1x2 + x2

2 + y21 + y1y2 + y22). (77)

Finally, the flow map of the dynamical system defined by the Hamiltonian
function H is given by

Ft,s(x, y) =

✓
x cos

✓
1

3
(x2 + y2)(t� s)

◆
+ y sin

✓
1

3
(x2 + y2)(t� s)

◆
,

�x sin

✓
1

3
(x2 + y2)(t� s)

◆
+ y cos

✓
1

3
(x2 + y2)(t� s)

◆◆
.

(78)

We will not display the result of using these quantities to calculate L1 be-
cause the resulting expression has many terms, but we must emphasize that
this tedious calculation is readily performed using a symbolic manipulation

22



tool such as Mathematica. The laborious task of di↵erentiating such a com-
plicated discrete Lagrangian can be handled by either computing the needed
derivatives symbolically before running a simulation or by employing an auto-
matic di↵erentiation tool such as ADOLC [29, 30] at runtime. By employing
automatic di↵erentiation tools, implementation and testing of lengthy ex-
pressions appearing in the discrete euler-lagrange equations and nonlinear
solve can be avoided. On the other hand, precomputing derivatives may lead
to shorter run times.

Figure 1 shows the results of using the discrete Euler-Lagrange equations
associated with L1 to generate the t = 0 Poincaré section for the dynamical
system specified by Ht. Notably, the L1-integrator reproduced the first-order
islands very well. This can be checked upon noting that the unperturbed
frequency as a function of the distance R from the origin in R2 is given by
!(R) = R2/3; first-order perturbation theory predicts an island chain at
R1 =

p
3 and another at R2 =

p
3/2. On the other hand, as the highlighted

portion of the figure indicates, higher-order island chains were not captured
correctly by L1. This shortcoming is to be expected in light of the fact that
the flow map associated with Ht only satisfies the discrete Euler-Lagrange
equations associated with L1 up to terms second-order in ✏. The “incoherent”
fine-scale structure present in the L1 integration came as a result of the onset
of parasitic modes that generally plague multistep integration methods [19].
The same parasitic modes completely destabilized the L1 integration run
shown in Figure 1 after several tens of thousands of iterations. Smaller values
of epsilon can perform larger numbers of iterations before being overtaken
by parasitic modes.

Figure 2 illustrates the O(✏) and O(✏2) errors of the integrators provided
by L0 and L1, respectively. The L1 integrator decreases in error quadratically
with ✏ until reaching the error tolerance of the nonlinear Newton-Rhapson
solver of 10�12. Decreasing ✏ beyond 10�6 therefore shows no further im-
provement in the error of L1.

7. Discussion

In the preceding sections, we presented and applied the first discretiza-
tions of Hamilton’s principle in phase space that are adapted to perturbed
noncanonical Hamiltonian systems. Notably, these discretizations function as
variational integrators with O(1) time steps and local O(✏N) accuracy, where
N is any desired nonnegative integer. Moreover, for each discretization, our
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Figure 1: (a) The t = 0 Poincaré section for Ht calculated using a Runge-Kutta integrator
with very fine temporal resolution. (b) The same Poincaré section computed using the
discrete Euler-Lagrange equations associated with L1. In each case, ✏ = .0075 and the
variables R and ⇥ denote the standard polar coordinates on R2. The large first-order
islands are reproduced well by the L1-integrator, while, as the highlighted portions of the
figures indicate, higher-order islands are not properly reproduced [31].
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Figure 2: “Error” denotes the distance between the predictions of a well-converged 2⇡-
second Runge-Kutta integration and a single iteration of the L0 or L1 integrator. Each
integration method was initialized with the same initial condition.

expression for the associated discrete Lagrangian is manifestly coordinate in-
dependent. This coordinate independence has been achieved by introducing
an arbitrary a�ne connection on the phase space. Thus, our discretizations
may prove to be useful for constructing variational integrators on manifolds.

We have also shown that if these two-step integrators are initialized us-
ing the smooth modified system studied in backward error analysis, then
they function as one-step algorithms that preserve symplectic forms on the
phase space M . We expect that this result will play an important role in
the backward error analysis of the variational discretizations developed here.
For instance, using the fact that the smooth modified system preserves a
symplectic form on M , it should be possible to show that the method for
choosing the second initial condition for two-step methods championed in
[19, 21] leads to better energy behavior than a more conventional Runge-
Kutta-based initialization.

While the integrators identified here formally apply to any perturbed
non-canonical Hamiltonian system, they are much easier to apply to nearly-
integrable systems because the unperturbed flow map can often be deter-
mined analytically in these cases. When the unperturbed flow map is an-
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alytically unattainable, it would have to be determined numerically. This
would entail devising some numerical scheme for evaluating (at least in an
approximate sense) the various integrations along unperturbed orbits that
appear in the discrete Lagrangians presented in Section 4. Whether or not
such a scheme exists that does not involve prohibitively large computational
overhead is currently unknown to us. We leave investigating this issue to
future work.

A theoretical application of the integrators developed here that we will
pursue in the future is coarse-graining Hamilton’s principle in phase space.
Specifically, we would like to derive the stochastic action mentioned in Ref. [32]
by directly manipulating Hamilton’s principle in phase space. Our hope is
that this result will follow by appropriately rescaling time and then looking
at the behavior of S2

(z1,z2)
(Eq. (46)) as ✏ ! 0.
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