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Abstract

Backward error initialization and parasitic mode control are well-suited for
use in algorithms that arise from a discrete variational principle on phase-
space dynamics. Dynamical systems described by degenerate Lagrangians,
such as those occurring in phase-space action principles, lead to variational
multistep algorithms for the integration of first-order di↵erential equations.
As multistep algorithms, an initialization procedure must be chosen and the
stability of parasitic modes assessed. The conventional selection of initial con-
ditions using accurate one-step methods does not yield the best numerical
performance for smoothness and stability. Instead, backward error initial-
ization identifies a set of initial conditions that minimize the amplitude of
undesirable parasitic modes. This issue is especially important in the context
of structure-preserving multistep algorithms where numerical damping of the
parasitic modes would violate the conservation properties. In the presence of
growing parasitic modes, the algorithm may also be periodically re-initialized
to prevent the undesired mode from reaching large amplitude. Numerical ex-
amples of variational multistep algorithms are presented in which the back-
ward error initialized trajectories outperform those initialized using highly
accurate approximations of the true solution.
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1. Introduction

The primary advantage of multistep algorithms is the ability to achieve
accuracy greater than first-order in step size h while requiring only a sin-
gle additional function evaluation at each time step. Multistep methods are
thus a common technique for the numerical solution of ordinary di↵eren-
tial equations (ODEs), encompassing the well-known Adams-Bashforth and
Adams-Moulton families of algorithms [1, 2, 3]. The presence of additional
steps in the update rule, however, leads to unique considerations for sta-
bility and initialization [3, 4]. Generating the additionally-required initial
conditions using an arbitrary one-step method may not achieve the desired
accuracy [5] or yield su�ciently smooth solutions [3, 4, 6]. Multistep algo-
rithms also exhibit parasitic modes - unphysical behavior originating from
eigenvalues that do not lie near 1 on the unit circle [3, 4, 6, 7, 8, 9, 10]. Often
these parasitic modes are apparent when computing conserved quantities,
manifesting as even-odd or n-cycle oscillations imposed upon some smoother
trend. Left unmitigated, the parasitic mode amplitude can grow to dominate
the numerical error. The potential pitfalls of parasitic modes may suggest
only strictly stable multistep algorithms should be used to ensure all of the
parasitic modes decay with time. However, important structure-preserving
classes of algorithms exhibit marginally stable parasitic modes [3], and the
numerical advantages of conservative algorithms may outweigh the disadvan-
tages of parasitic mode mitigation.

One context in which conservative multistep methods naturally emerge
is variational integration [11] of dynamical systems described by degenerate
Lagrangians [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Degenerate Lagrangians
appear in contexts in which constraints are present, such as electric circuit
models [22], and in di↵erential equations resulting from Hamilton’s princi-
ple on phase space [23]. These phase-space action principles appear in the
descriptions of interacting point vortices [24], the guiding-center motion of
charged particles in magnetic fields [25, 26], and Hamiltonian descriptions of
magnetic field line flow [27]. Unless the phase-space action principle can be
represented in canonical coordinates [28, 29], it is unknown how to discretize
Hamilton’s principle on phase space in such a manner as to obtain one-step
numerical methods. Harnessing the benefits of structure-preserving varia-
tional algorithms in systems with degenerate Lagrangians therefore requires
consideration of the multistep aspect of the algorithms.

Backward error analysis is a powerful tool for understanding the behavior

2



of multistep methods and identifying initial conditions which lead to smooth
numerical behavior. The backward error analysis for multistep algorithms is
presented by Hairer in Ref. [4], with similar discussions present in the text-
book by Hairer, Lubich, and Wanner [3]. By seeking a “modified” di↵erential
equation which is nearby the physical system being modeled, comparison of
the modified system to the original illuminates features that are present in
the numerical dynamics but not the physical flow. For multistep methods,
a “smooth” modified system emerges by assuming the absence of parasitic
modes, thereby describing the time evolution of the desired component of
the numerical solution. To explain the more general behavior of the multi-
step method, it is necessary to consider a “full” modified system that also
accounts for the parasitic modes. The nonlinear parasitic mode stability
and initial parasitic mode amplitude may be deduced from the full modified
system. The minimum parasitic mode amplitudes occur when initial condi-
tions lie along solutions to the smooth modified system, and sampling initial
conditions along solutions to truncations of the smooth modified system can
greatly improve the resulting numerical behavior [6].

In this paper, we illustrate the benefits of initializing multistep vari-
ational integrators using initial conditions sampled along solutions of the
smooth modified system described by Hairer [4]. This “backward error ini-
tialization” procedure retains several terms in the smooth modified system
to reduce the initial parasitic mode amplitude. Numerical examples demon-
strate the advantages compared to standard generation of initial conditions
for multistep algorithms. To further mitigate the growing unphysical modes
that can arise in the numerical trajectories, we make the novel suggestion
of performing parasitic mode control by periodically re-initializing the algo-
rithm using the backward error procedure. In the past, parasitic mode control
has been performed by advancing partial steps with Runge-Kutta algorithms
and averaging away the predominantly undesirable behavior [30, 31]. Com-
pared with Runge-Kutta based smoothing, backward error re-initialization
yields points that nearly lie on or near a trajectory of the smooth modified
system. While the re-initialization step is not structure preserving, the par-
asitic modes are restarted with minimal amplitude, allowing many steps of
the standard algorithm between re-initialization steps. Finally, formal sig-
nificance of the smooth modified system flow is established by identifying a
symplectic structure which is preserved on the original phase space instead
of the standard structure which exists in a space of larger dimension.

The organization of the manuscript is as follows. In Section 2, the back-
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ward error initialization method is reviewed for simple multistep algorithms
and its relevance to variational multistep methods established. Section 3
discusses the control of parasitic modes by monitoring and re-initializing
the undesired modes. In Section 4, numerical examples are presented that
demonstrate the utility of backward error initialization and parasitic mode
control. Each of the example algorithms emerge from a discrete variational
principle, but are intentionally chosen to be familiar from a more conven-
tional multistep perspective. Section 5 delivers closing remarks.

2. Initialization using Backward Error Analysis

In this section, we describe the selection of initial conditions dictated
by backward error analysis and motivated by reducing parasitic mode am-
plitudes observed in variational multistep algorithms. The backward error
analysis follows the work of Ref. [4]. First the initial condition selection pro-
cedure is presented, then discussions provide context for the smooth mod-
ified system of multistep algorithms. The ideal multistep trajectory given
by the flow of the smooth modified system is shown to conserve a symplec-
tic structure on the original phase space. This is a stronger result than the
standard symplectic structure preserved by multistep variational integrators
[11, 12, 17], which is on a product of the phase space with itself.

2.1. Selecting Initial Conditions

Consider an initial value problem specified by a first-order di↵erential
equation in the form:

ẋ = f(x), (1)

with initial condition x(t = 0) = x0. In our cases of interest, this ODE
will be in Hamiltonian form and is assumed time-independent for simplic-
ity. We seek to model the initial value problem using a multistep numerical
method with time increments of size h. That is, we approximate the con-
tinuous solution x(t) at discrete times t = 0, h, ..., Nh, and the notation
xj is used to denote the numeral approximation of x(t = jh). The k-step
multistep method is then an h-dependent map �h(xn, ..., xn+k�1) = xn+k.
Let the update rule be the real-valued function Fh(xn, ..., xn+k) such that
Fh(xn, ...,�h(xn, ..., xn+k�1)) = 0. That is, Fh is zero when a set of k values
satisfies the numerical algorithm. For the backward error analysis that fol-
lows, we will restrict ourselves to linear multistep methods where the update
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rule takes the form:

Fh(xn, ..., xn+k) =
kX

j=0

↵jxn+j � h�jf(xn+j) = 0, (2)

where ↵j, �j are real parameters such that ↵k 6= 0, |↵0| + |�0| > 0. While
not all variational multistep algorithms are linear in this sense, two of the
examples in Sec. 4 are of this form and the simplicity of notation over treat-
ment of more general multistep algorithms is advantageous for familiarizing
the reader with multistep backward error analysis and initialization.

Following Refs. [3, 4, 7], the smooth modified system is the unique ODE
of the form:

˙̃x = f(x̃) + hf2(x̃) + h2f3(x̃) + ..., (3)

such that, for any truncation order N , any solution x̃(t) of the smooth mod-
ified system retaining terms up to fN satisfies Fh(x̃((n � k)h), ..., x̃(nh)) =
O(hN+1). In the preceding definition, f(x̃) must be that of Eq. (1) for con-
sistency and the fi(x̃) are smooth, h-independent functions. The coe�cients
fi must be recursively determined by the update rule and original ODE. The
modified system is a possibly non-convergent asymptotic series, requiring
truncation after an appropriate number of terms to obtain minimum error
[3]. For the purposes of generating practical initial conditions, the optimal
truncation order is likely to be greater than the chosen truncation order, so
we defer convergence discussion to the References [3, 4]. Note that because
Eq. (3) is a first order ODE of the same dimension as that of the original
system, solutions to the smooth modified system are uniquely identified by
a single initial condition.

Backward error initialization is given by the following procedure:

1. Assume a smooth modified system of the form Eq. (3).
2. Taylor expand the update rule Fh about t0, substituting the smooth

modified system for the time derivatives of x.
3. Determine the unknown functions fi by collecting in orders of h in the

expanded update rule.
4. Retain one or more non-zero coe�cients fi to identify a truncated

smooth modified system.
5. Use an accurate one-step method to solve the initial value problem

defined by the truncated smooth modified system and the single initial
condition x0. Advance forward in time for k � 1 steps.
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6. Supply the resulting numerical trajectory x̃0, x̃1, ..., x̃k�1 as the set of
initial conditions for the k-step method.

The critical distinction between backward error initialization and conven-
tional multistep initialization is to seek the best approximation of the solution
to the smooth modified system rather than the original ODE.

At this point, it is important to note that while solutions of the (trun-
cated) smooth modified system Eq. (3) satisfy the update rule (to one order
in h greater than the truncation order), arbitrary numerical trajectories ob-
tained through iteration of the numerical map do not necessarily lie on or
near solutions of the smooth modified system. In essence, the ansatz that the
numerical solution behaves like the smooth function x̃(t) is not su�ciently
general to capture the full behavior realizable by the numerical algorithm.
Because initial conditions do not typically lie along solutions to the smooth
modified system, a more general modified system is required to account for
the observed numerical behavior.

2.2. Full Modified System

Instead, one must make the more general ansatz that the numerical tra-
jectory possesses some number of non-smooth modes. The ODE describing
the time evolution of the functions appearing in the more general ansatz is
denoted the “full” modified system in contrast to the smooth modified sys-
tem. To derive the full modified system, suppose the solution takes the form
[3]:

x̃(t) = ỹ(t) +
X

⇣l2I

⇣
t/h
l z̃l(t), (4)

where ỹ(t), z̃l(t) are smooth functions and I is a set of points on the unit circle
that depends on the multistep method. The set I is typically determined
by solving for the eigenvalues of the algorithm applied to the trivial function
f(x) = 0 and forming all possible combinations of those eigenvalues. That is,
let h ! 0 in the update rule and solve the characteristic polynomial equation
Fh=0(1, ⇣, ..., ⇣n�1) = 0. A multistep method is deemed “zero-stable” if |⇣| 
1 for all of these roots. Symmetric multistep methods are zero-stable if and
only if |⇣| = 1 for all ⇣. Assuming the algorithm is consistent, multistep
methods will possess a root at ⇣ = 1, denoted the principle root, and k � 1
distinct “parasitic” roots ⇣l=2,...,k that lie on or within the unit circle away
from 1. The set I is composed of all N -multicombinations of the parasitic
roots with finite N and excluding the values at 1. In certain circumstances,
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one must include finite h terms in the characteristic polynomial [32]. For
variational multistep methods, assuming the algorithm is linearly stable, all
parasitic roots will lie on the unit circle. For the two-step methods of interest
in the numerical examples, I = {�1}. Also note that our definition of I is
slightly di↵erent from that of Ref. [3].

The full modified system describing the evolution of the ansatz Eq. (4) is
given by Theorem XV.3.5 in [3], which says that for any truncation order N ,
any solution of:

˙̃y = f1,1(x̃) + hf1,2(x̃) + ...+ hN�1f1,N�1(x̃)

˙̃zl = fl,1(x̃) + hfl,2(x̃) + ...+ hN�1fl,N�1(x̃) for 2  l  k

z̃l = hfl,2(x̃) + ...+ hNfl,N+1(x̃) for l > k, (5)

satisfies the update rule to order O(hN+1), assuming the initial conditions
are consistent with the original ODE.

The solution ansatz Eq. (4) and full modified system Eq. (5) clarify the
presence of parasitic modes and the impact of the excess initial conditions
on multistep method trajectories. The equation describing ˙̃y in Eq. (5) is
strongly related to the smooth modified system Eq. (3), however, di↵erent fi
coe�cients can appear when ⇣mi ⇣nj = 1 for some powers m,n. In contrast to
the smooth modified system, the full modified system is of dimension k-times
larger than the original system. The number of initial conditions required to
specify a solution to the full modified system matches the number of initial
conditions required to begin using the multistep method. To the extent which
a set of initial conditions does not lie on a solution to the smooth modified
system, the parasitic modes zl will be initialized with non-zero amplitude. In
particular, initial conditions that exactly satisfy a smooth modified system
truncated at order O(hN�1) will yield parasitic modes of initial amplitude
scaling as O(hN+1). Initial conditions sampled from the true solution yield
parasitic modes of initial amplitude scaling as O(hm+1), where m is the
accuracy order of the multistep method, due to the agreement of the smooth
modified system up to the first non-zero fi at i = (m+ 1).

2.3. Smooth Modified System for Linear Multistep Methods

As an example calculation relevant to several of the numerical examples,
suppose the multistep method is linear as in Eq. 2. Calculation of the smooth
modified system then follows the discussion of [4] and is reproduced here for
the convenience of the reader. Equipping ourselves with the smooth modified
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system Eq. (3), we assume f is su�ciently continuous that the derivatives
exist and are smooth at the needed orders. The goal is to recursively solve for
the unknown functions fi(x) for i � 2. We will do so by Taylor expanding the
terms appearing in the multistep method, substituting the modified system
for the time derivatives of x, and matching by orders of h. It is then helpful
to expand x̃(t0 + jh) for some integer j:

x̃(t0 + jh) = x̃0 + jh ˙̃x0 +
j2h2

2
¨̃x0 + ...

= x̃0 + jh(f(x̃0) + hf2(x̃0) + h2f3(x̃0) + ...)+

j2h2

2
(f 0(x̃0) + hf 0

2(x̃0) + ...)(f(x̃0) + hf2(x̃0) + ...) (6)

where the zero subscript denotes evaluation at time t = 0 and we have sub-
stituted the smooth modified system for the time derivatives. We similarly
expand the f evaluations that will appear in the multistep method:

f(x̃(t0 + jh)) = f(x̃0) + f 0(x̃0)(x̃(t0 + jh)� x̃0)+

f 00(x̃0)(x̃(t0 + jh)� x̃0, x̃(t0 + jh)� x̃0) + ...

= f + f 0[jh(f + hf2 + ...) +
j2h2

2
(f 0 + ...)(f + ...) + ...]

+ f 00[jh(f + ...) + ...][jh(f + ...) + ...] + ..., (7)

where all functions evaluations occur at x̃0 in the final line.
Substituting Eq. (6) for the ↵ terms and Eq. (7) for the � terms in the

linear multistep method Eq. (2), we collect in orders of h. The first two
powers of h yield consistency relations:

h0 :
kX

j=0

↵j = 0

h1 :
kX

j=0

j↵j � �j = 0. (8)

With the added assumption that the algorithm is normalized, namely
P

j j↵j =P
j �j = 1, the h2 term defines f2:

f2(x̃) =
�1

2

kX

j=0

(j2↵j � 2j�j)f
0(x̃)f(x̃). (9)
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For symmetric algorithms f2 and indeed fi for any even i is zero. The first
potentially non-zero term of the modified system for symmetric methods
occurs at order O(h2):

f3(x̃) =
1

3!

(
f 00(x̃)f(x̃)f(x̃)

"
(
X

j

3j2↵j)(
X

j

j2↵j

2
� j�j) +

X

j

3j2�j � j3↵j

#
+

f 0(x̃)f 0(x̃)f(x̃)

"
6(
X

j

j2↵j � j�j)(
X

j

j2↵j

2
� j�j) +

X

j

3j2�j � j3↵j

#)
.

(10)

One may recursively solve for increasing orders in the modified system in
terms of the original function f , its derivatives, and the constants defining
the multistep method. Compact representations of these expressions are
derived in Ref. [4] using B-series and rooted trees, and an example routine
is presented in Chapter IX of Ref. [3] for calculating these functions using a
symbolic package. We reproduce the explicit definitions for convenience and
clarity in the numerical examples.

Recalling that solutions of the smooth modified system truncated at or-
der O(hN�1) result in parasitic modes with initial amplitudes scaling like
O(hN+1), a significant impact on the numerical trajectory results from solv-
ing the truncated smooth modified system forward in time to generate the
initial conditions. Numerical examples will be shown in Section 4. For sym-
metric linear multistep methods, because all odd fi are zero, retaining the
correction f3 yields parasitic modes that scale as O(h5). In contrast, initial-
ization with the true solution exhibits O(h3) parasitic modes. To implement
these improved initial conditions, one must provide the Hessian and Jaco-
bian of the ODE function f and an implementation of an accurate one-step
method such as fourth-order Runge-Kutta or implicit midpoint. The Jaco-
bian is likely to already have been implemented for the nonlinear solution
of implicit multistep methods, and use of symbolic packages or automatic
di↵erentiation tools can calculate the second order derivatives with minimal
e↵ort.

Given the end goal of using the solution of the smooth modified sys-
tem, one may naively attempt a forward error analysis to bypass the smooth
modified system calculation. Namely, one could attempt an expansion of the
solution x̃(t) in powers of h and recursively solving for the unknown functions.
This approach dates back to the so-called “underlying one-step method” of
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Kirchgraber [33], known in other literature as the “step transition operator”
[34]. In essence, seeking an operator that maps from the single point xj to
the next point xj+1, and after iterating k times the set of points is a solu-
tion to the k-step method. While it is, essentially, the underlying one-step
method that we are attempting to approximate by determining the smooth
modified system, the modified system typically exhibits better convergence
properties when ordered by step size h than the underlying one-step method
[3]. Thus it is more robust to truncate and numerically solve the smooth
modified system than it is to directly seek the underlying one-step method.

2.4. Smooth Modified System for Phase Space Variational Integrators

In the context of variational integrators applied to phase-space action
principles, the smooth modified system flow preserves a symplectic structure
on the original phase space. That is, while the multistep variational integra-
tor in more generally preserves a two-form on a higher dimensional space,
the idealized trajectory satisfying the smooth modified system does preserve
a quantity on the phase space of interest, as will be shown in the remainder
of this section.

For comparison, it is important to review the conservation properties
of the continuous system whose dynamics are governed by the phase-space
action principle. Suppose a phase space Q of dimension 2n. Let local
coordinates be denoted z1, ..., z2n. The phase-space Lagrangian is a map
L : TQ ! R, given in coordinates by:

L(z, ż) = #iż
i �H(z), (11)

where # = #idz
i is a one-form on Q and the Lagrangian has been assumed

to not depend explicitly on time for simplicity. The action functional S is
given by:

S(z(t), ż(t)) =

Z
L(z(t), ż(t))dt. (12)

Stationarity of the action integral yields (possibly non-canonical) Hamilton’s
Equations:

⌦ż =
@H

@z
, (13)

where ⌦ = �d#. Solutions of the non-canonical Hamilton’s equations pre-
serve ⌦. That is, letting '⌧ be the time ⌧ flow map associated to the Hamil-
tonian vector field in Eq. 13, '⇤⌦ = ⌦. When the phase-space Lagrangian
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takes the canonical form z = [p, q]T ,# = [0, p], ⌦ reduces to the canonical
symplectic structure dp^ dq. In more general coordinates, ⌦ = #j,idz

i ^ dzj.
Importantly, notice ⌦ is a two-form on the phase space Q.

In constructing a variational integrator by discretizing the phase-space
action principle, one might originally aspire to preserve ⌦ at discrete times
tk. However, the standard discretization procedure preserves a symplec-
tic structure on a space twice the dimension of the original configuration
space. In particular, if Ld(zk, zk+1) ⇡ R (k+1)h

kh L(z(t), ż(t))dt, the discrete
flow map given by the discrete Euler-Lagrange equations preserves ⌦d =
@Ld(zk,zk+1)

@zik@z
j
k+1

dzik ^ dzjk+1 [11]. Previous investigations of variational integra-

tors on phase-space Lagrangians have related this symplectic structure on
Q⇥Q to the continuous structure on Q by taking the limit of zero step size
h ! 0 [17, 12]. However, the notion of an idealized trajectory satisfying
the smooth modified system suggests the underlying one step method of the
multistep variational integrator may likely preserve a structure on Q. Estab-
lishing this correspondence is an important first step for obtaining rigorous
results regarding the long-term behavior of multistep variational integrators.
Standard proofs that symplectic algorithms exhibit bounded energy error for
exponentially long times require the discrete symplectic structure to be on
the original phase-space. The good long-term energy behavior observed in
multistep variational integrators [12, 14, 15, 16] is then likely due to cases
where parasitic modes remain small and numerical trajectories remaining
close to the flow of the smooth modified system.

We assume the existence of an underlying one-step method to the multi-
step variational algorithms, considered to be the flow of the continuous vector
field that is approximated to arbitrary accuracy in h by the smooth modified
system. If this map or vector field do not in fact exist, the results of this
section need to be interpreted in an asymptotic sense. That is, one may only
be able to preserve the symplectic structure to arbitrary order accuracy in
numerical step size h.

To investigate the conservation properties of the solution to the smooth
modified system, we restrict the discrete path space to solutions of the smooth
modified system and propagate this trajectory through the action principle.
That is, suppose a consistent discretization of the phase-space Lagrangian L
denoted by Ld(zk, zk+1). Also, let �⌧ be the time ⌧ flow map corresponding to
the vector field that the asymptotic smooth modified system approximates.
Starting with a single initial condition z0, if z1 = �h(z0), z2 = �2

h(z0), then
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z0, z1, z2 satisfy the discrete Euler-Lagrange equations specifying the multi-
step method.

Next, the discrete action for a discrete Lagrangian is given by:

Sd(z0, ..., zN) =
N�1X

k=0

Ld(zk, zk+1). (14)

Let S̄ be the discrete action after restricting the path space to solutions of
the smooth modified system:

S̄d(z0) = Sd(z0,�h(z0), ...,�Nh(z0)) =
N�1X

k=0

Ld(�kh(z0),�(k+1)h(z0)), (15)

where we can identify the discrete path of S̄d with the single initial condition
that uniquely identifies the rest of the discrete trajectory. Applying the
variational principle and letting vz0 be an arbitrary tangent vector at z0:

dS̄d(z0) [vz0 ] =
N�1X

k=0

d1Ld(�kh(z0),�(k+1)h(z0)) [T�kh(vz0)] +

d2Ld(�kh(z0),�(k+1)h(z0))
⇥
T�(k+1)h(vz0)

⇤
, (16)

where di is the exterior derivative with respect to the i-th variable and T� :
TQ ! TQ is the tangent map of � [35]. Re-arranging the summation:

dS̄d(z0)(vz0) =
N�1X

k=1

⇥
d2Ld(�(k�1)h(z0),�kh(z0)) + d1Ld(�kh(z0),�(k+1)h(z0))

⇤
[T�kh(vz0)]

+ d1Ld(z0,�h(z0))[vz0 ] + d2Ld(�(N�1)h(z0),�Nh(z0))[T�Nh(vz0)].
(17)

The summation vanishes because the discrete trajectory satisfies the discrete
Euler-Lagrange Equations by construction. At this point, it is also helpful
to define a pair of one-forms on Q:

#a(z)[vz] = d1Ld(z,�h(z))[vz]

#b(z)[vz] = d2Ld(��h(z), z)[vz]. (18)

Using the one-forms #a,#b, Eq. (17) reduces to:

dS̄d(z0)(vz0) = #a(z0)[vz0 ] + (�⇤
Nh#b)(z0)[vz0 ]

= (#a + �⇤
Nh#b)(z0)[vz0 ]. (19)
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Because the sequence of points ��h(z0), z0,�h(z0) satisfies the discrete Euler-
Lagrange equations, #b(z0) = �#a(z0). Applying an additional exterior
derivative yields:

⌦d = �⇤
(N�1)h⌦d, (20)

where ⌦d = d#a is given in coordinates by:

⌦d =
@2Ld(z,�h(z))

@qi0@q
j
1

@�j
h

@zk0
dzk ^ dzi. (21)

Here q0, q1 identify the first and second arguments of Ld, respectively.
The identification of a conserved quantity on the original phase space

Q lends additional merit to the solution of the smooth modified system as
significant in the context of phase space variational integrators. While any
practical implementation will deviate from the flow of the smooth modified
system, the identification of a conserved quantity onQ helps to relate discrete
phase space variational integrators to their continuous counterpart.

3. Parasitic Mode Control

Preferably, the parasitic modes of the symmetric multistep method are
oscillatory with small amplitude. Backward error initialization may then be
applied once at the beginning of the simulation to yield a smooth numer-
ical trajectory. In other circumstances, users may seek the advantages of
symmetric or symplectic multistep algorithms in potentially unstable sys-
tems. The nonlinear stability of the parasitic modes requires analysis of
the complicated full modified system, making it advantageous to establish a
mechanism for controlling slowly growing parasitic modes. Here we suggest
a method for actively monitoring and damping the parasitic mode. While
the mode-reducing re-initialization step is not structure preserving, the high
accuracy to which the mode is eliminated minimizes the frequency such a
step must be performed.

Precedence exists for monitoring and actively smoothing parasitic mode
behavior [31, 30]. The method in Ref. [31], for instance, monitors the parasitic
behavior of the explicit midpoint algorithm until a pre-determined threshold
is crossed. The o↵ending data point is then advanced a half-step backward
in time using second order Runge-Kutta while the data point preceding the
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threshold crossing is advanced a half-step forward:

x+
k�1/2 = ��h/2(xk)

x�
k�1/2 = �h/2(xk�1). (22)

Here, �h is the numerical map generated by the Runge-Kutta algorithm with
numerical step size h. These two approximations for xk�1/2 are then averaged
in an attempt to smooth the oscillatory even-odd behavior:

xs
k�1/2 =

1

2
(x+

k�1/2 + x�
k�1/2). (23)

Finally, one can return to using the two-step algorithm by extrapolating the
smoothed position forward and backward to the original points in time:

xs
k = �h/2(x

s
k�1/2)

xs
k�1 = ��h/2(x

s
k�1/2), (24)

where the s superscript stands for “smoothed”.
We suggest controlling growing parasitic modes instead by re-initializing

the algorithm using the backward error initialization procedure once the
mode amplitude exceeds the pre-determined threshold. Compared with the
Runge-Kutta stepping and averaging procedure, backward error re-initialization
minimizes the parasitic mode amplitude and therefore maximizes the time
between undesirable mode control steps. Because the parasitic mode behav-
ior is more precisely described by backward error analysis, truncation of the
smooth modified system is a more robust method of smoothing the undesired
modes. It is also more easily applicable to k�step methods for arbitrary k.

The proposed re-initialization procedure does result in di↵usion in phase
space and in conserved quantities due to the e↵ectively time-dependent mod-
ified system. However, whereas the parasitic mode might otherwise grow
linearly or exponentially, the re-initialization procedure will result in a ran-
dom walk exhibiting a root mean square distance from the original orbit
proportional to

p
t with a small di↵usion coe�cient. Mode control through

re-initialization can delay the accumulation of parasitic mode errors for many
numerical steps. Assuming the parasitic mode amplitude is monitored via
a conserved quantity, like energy E, suppose the acceptable energy error
threshold is �E, where the error is relative to the most recent initialization
step. The energy di↵usion coe�cient may be estimated as D ⇡ �2E/�t, so it
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is advantageous to increase the time �t between re-initialization steps. By
setting the threshold for re-initialization fairly small, we can also reduce
�E. Naively, one might expect the averaging step used in the Runge-Kutta
smoothing/delousing to significantly reduce the e↵ective di↵usion step size
�E compared with instantaneous re-initialization with backward error analy-
sis. However, the oscillations are often not centered about zero, reducing the
benefit of the averaging step.

When seeking the advantages of applying a geometric integrator, such
as a variational algorithm, it is desirable that any mode controlling steps
retain the underlying conservation properties. Unfortunately, truncation of
the smooth modified system violates preservation of the discrete symplectic
structure. In the proof of Section 2.4, if the flow map of the smooth modified
system �⌧ is replaced with a flow map �0

⌧ corresponding to the vector field of
a truncated smooth modified system, the discrete Euler-Lagrange equations
will no longer be exactly satisfied by the discrete trajectories and the errors
can accumulate in the conserved symplectic structure. However, when ex-
act preservation of the discrete symplectic structure leads to large-amplitude
parasitic modes, the error introduced by the di↵usive re-initialization steps is
preferable to the continued amplification of parasitic modes. As will be pre-
sented in Fig. 2, a multistep symplectic algorithm exhibiting growing parasitic
oscillations can accumulate energy error equally rapidly as a non-conservative
Runge-Kutta algorithm. By actively controlling the mode via backward error
re-initialization, the energy error is improved by several orders of magnitude.

4. Numerical Examples

For the first two examples, consider the explicit midpoint algorithm:

xk+1 � xk�1 = 2hf(xk). (25)

This algorithm is a typical test case for exhibiting parasitic modes [3, 31, 13].
For canonically Hamiltonian systems, explicit midpoint applied to the equa-
tions of motion results from a discrete variational principle. To variationally
derive explicit midpoint, begin with the canonical phase-space Lagrangian:

Lps(p, q, ṗ, q̇) = pq̇ �H(p, q). (26)
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Letting x = [p, q] in the above Lagrangian, a trapezoidal rule discretization
of the action takes the form:

Sd(x0, ..., xk, ..., xN) ⇡
Z

Lps(x, ẋ)dt =
N�1X

k=0

Ld(xk, xk+1)

=
N�1X

k=0

h

2


Lps(xk,

xk � xk�1

h
) + Lps(xk+1,

xk+1 � xk

h
)

�
.

(27)

Requiring the action to be stationary with respect to variation at arbitrary
xk yields the explicit midpoint algorithm Eq. (25).

Typically, it is ill-advised to apply a discretization of the form discussed
in Ref. [11] to obtain an integrator from a canonical phase space Lagrangian,
precisely because it yields a two-step method for the first-order ODE and
introduces parasitic oscillations. For canonical phase-space Lagrangians, al-
ternative discretization methods exist for obtaining one-step variational al-
gorithms [28, 29]. However, it is unknown how to obtain one-step variational
integrators for first-order ODE systems resulting from non-canonical phase-
space Lagrangians, so understanding the behavior of the multistep algorithms
in familiar and simple canonical settings is useful for treating more advanced
cases.

4.1. Linear Oscillator

For instance, when explicit midpoint is applied to the linear oscillator
problem: 

ẋ1

ẋ2

�
=


x2

�x1

�
, (28)

the parasitic mode is oscillatory but remains bounded for all simulation time.
Explicit midpoint’s characteristic polynomial possesses roots at ⇣ = 1,�1,
resulting in the smooth mode and one that oscillates between positive and
negative on alternating time steps due to the ⇣

t/h
l term in Eq. (4). This be-

havior can be seen in Fig. 1 (a), which displays the energy error for explicit
midpoint when initialized with the true solution to the ODE compared to
explicit midpoint initialized without parasitic modes. The trajectory initial-
ized with the non-parasitic initial conditions conserves energy to machine
precision (line of triangles at 0.0), while the single parasitic mode exhibited
by the black and white circles appears as two distinct trajectories. The exact
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“non-parasitic” initial conditions were determined by solving for the general
solution to the linear recursion relation given by the multistep method. For
arbitrary nonlinear ODEs, one will not be able to calculate the exactly non-
parasitic initial conditions because this would require keeping all orders of h
in the smooth modified system.

In Fig. 1 (b), the parasitic mode amplitude is compared in trajectories
initialized using the true solution to the ODE and a truncated version of the
smooth modified system. The numerical test confirms the O(h5) scaling in
the amplitude of the parasitic mode when initial conditions are chosen using
backward error analysis. The parasitic mode resulting from initialization
using the analytic solution only scales with O(h3) due to the modified system
matching the original system at only the h0 and h1 terms.

[Figure 1 about here.]

4.2. Nonlinear Pendulum

Next, we apply explicit midpoint to the nonlinear pendulum problem:

ẋ1

ẋ2

�
=


x2

� sin(x1)

�
. (29)

The nonlinearity introduces more complicated behavior in the parasitic mode,
as shown in Fig. 2. While the parasitic root is linearly marginally stable, the
amplitude is observed to grow slowly in time. Analysis of the instability re-
quires solving the full modified system Eq. (5). At short times the mode grows
linearly, observable only at small scales in the phase-space trajectory (Fig. 2
(a)) or in the energy error. At moderate times, clearly distinct trajectories
emerge for the even- and odd-step solutions (Fig. 2 (b)), and the energy error
is dominated by the parasitic mode. At maximum energy error, the phase
plot no longer resembles the true solution, but instead diagonal lines formed
by the even and odd trajectories as can be seen in Fig. 2(c). Eventually, the
mode oscillates with a slow period and large amplitude, restoring a more
reasonable phase-space trajectory. The maximum amplitude of the mode is
observed to be the same regardless of initial conditions, however, the early-
time linear growth rate and the period of the slow oscillation depend on the
initial amplitude of the parasitic mode and therefore on the full set of initial
conditions. At h = 0.15, the backward error initialized mode had a period
100 times longer than the true solution initialization.
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Numerical results using both backward error initialization and mode sta-
bilization are given in Fig. 2(d). Without re-initialization, the energy error
accumulated via the parasitic mode grows at nearly the same rate as energy
error accumulates for a fourth-order Runge-Kutta integrator. However, this
can be partially mitigated by re-initializing whenever the energy error be-
comes noticeably dominated by the parasitic mode. This results in a random
walk in energy, the maximum deviation of which is plotted in the bottom
right hand figure of Fig. 2. By initializing the parasitic mode to small am-
plitude using backward error initialization and by periodically re-initializing
the system, di↵usion in energy takes extremely long to accumulate and ex-
plicit midpoint yields a reasonable numerical solution for very long simulation
times despite the parasitic instability.

[Figure 2 about here.]

4.3. Planar Point Vortices

Finally, we apply the backward error initialization procedure to systems
of planar point vortices. For n point vortices interacting in the x� y plane,
the equations of motion are given by [24]:

ẋi = � 1

2⇡

NX

j=1, 6=i

�j(yi � yj)

(xi � xj)2 + (yi � yj)2
,

ẏi =
1

2⇡

NX

j=1, 6=i

�j(xi � xj)

(xi � xj)2 + (yi � yj)2
, i = 1, 2, ..., n (30)

where the �j are constants and the summation does not include the singular
term arising when i = j. To demonstrate backward error initialization for a
not linear multistep algorithm, we apply a “two-step midpoint” algorithm.
Letting z = [x, y], the method is given by:

zk+1 � zk�1 = h


f(

zk�1 + zk
2

) + f(
zk + zk+1

2
)

�
. (31)

This algorithm is again variational, corresponding to a midpoint discretiza-
tion of the phase-space Lagrangian Ref. [12]:

Ld(zk, zk+1) = hLps(
zk + zk+1

2
,
zk+1 � zk

h
). (32)
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This algorithm is simply the implicit midpoint scheme composed with itself,
and exhibits stable parasitic modes when applied to the planar point vortices
problem [13].

While two-step midpoint is not a linear multistep algorithm but instead a
more general symmetric multistep method, backward error initialization im-
proves the smoothness of the conserved quantities by reducing the amplitude
of the parasitic modes. Rigorous estimates of long-time behavior of these
more general multistep methods have recently been presented in Ref. [6]. We
calculate the O(h2) smooth modified system for this algorithm to be:

˙̃x = f(x̃) + h2

�1

24
f 00(x̃)f(x̃)f(x̃) +

1

12
f 0(x̃)f 0(x̃)f(x̃)

�
. (33)

Figure 3 compares two-step midpoint trajectories initialized using second-
order Runge-Kutta (as in Ref. [12]) with backward error initialized trajecto-
ries. Better approximations of the true solution exhibit less severe parasitic
oscillations, but the parasitic modes remain apparent on this scale of energy
error even for excellent approximations of the true solution. In contrast,
the numerical trajectory of the smooth modified system possesses an un-
detectably small parasitic oscillation. The parasitic mode amplitudes are
identified by comparing the test trajectory to a trajectory initialized using
the underlying one-step method, implicit midpoint. In general, however, one
will not know the underlying one-step method, so backward error initializa-
tion provides a practical and generally applicable tool for prescribing initial
conditions that yield smooth trajectories.

[Figure 3 about here.]

5. Conclusion

Backward error analysis yields insightful explanations of the behavior of
multistep methods. Aside from understanding the stability and presence of
parasitic modes, it also guides the selection of superior sets initial conditions
for achieving the desired numerical trajectory. The standard for multistep
methods is initialization using approximations of the true solution gener-
ated by one-step methods. It is our belief that the advantages that can be
gained by approximating the truncated smooth modified system are worth
the marginal e↵ort required to obtain them. Algorithms possessing a vari-
ational formulation on a phase-space Lagrangian, in particular, will behave

19



better when initialized using backward error analysis. Control of the para-
sitic modes is critical for taking advantage of the good long term behavior
of variational integrators applied to non-canonical Hamiltonian systems, and
smooth initial conditions combined with re-initialization steps are powerful
techniques for enhancing the long term numerical fidelity.

Of course, the method is not without limitations and disadvantages. For
one, initialization using backward error analysis requires implementation of
higher-order derivatives of the ODE function than would otherwise be neces-
sary. This drawback increases with increasingly accurate multistep systems.
For a method accurate to O(hp), the first non-zero function in the modi-
fied equation will be fp+1, and will typically depend on all derivatives f (n)

with n  p. Symbolic or automatic di↵erentiation tools are almost certainly
necessary for this task unless n is small, and might require the inclusion of
otherwise unneeded packages or libraries in the ODE solving program. An-
other drawback is the potentially slow speed of the initialization and mode
control re-initialization steps. Accurate solution of the modified system using
a one-step method may require sub-stepping or a Runge-Kutta method with
many function evaluations compared to the single function evaluation used
in the multistep method. Given the rarity of initialization or re-initialization
compared to the typical multistep update, this should not significantly im-
pact total computation time.

These drawbacks aside, the modeling of dynamical systems using mul-
tistep methods can likely be improved in a variety of application domains
by considering the smooth modified system derived using backward error
analysis.
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 

Figure 1: Comparison of initialization techniques for explicit midpoint Eq. (25) applied

to the linear oscillator Eq. (28). a) Parasitic even-odd mode manifest in the energy as

a function of time for x0 = [1, 0]

T
, h = 0.1. The black and white circles respectively

represent even and odd steps of a single trajectory initialized with the exact solution,

x1 = [cos(h),�sin(h)]

T
. The parasitic mode is eliminated and energy is conserved energy

to machine precision in the triangle trajectory which is initialized with the initial condition

x1 =

⇥p
1� h

2
,�h

⇤T
. b) Comparison of parasitic mode amplitude when initial conditions

are chosen by backward error analysis and the true solution. The truncated backward error

initial condition is x1 =

⇥
cos(h+ h

3
/6),� sin(h+ h

3
/6)

⇤T
.
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 

 

Figure 2: Explicit midpoint applied to the nonlinear pendulum problem, Eq. (29), with

step size h = 0.15 and initialized using fourth-order Runge-Kutta for parts a, b, c. a)
At early times, such as after 1 ⇥ 10

4
steps, the phase portrait is reasonable and the

parasitic mode is only observable at very small scales. b) After 8 ⇥ 10

5
, the growing

parasitic mode greatly distorts the phase-space trajectory. The even- and odd-numbered

time steps have diverged onto distinct trajectories. The accumulated energy error is 0.25.

c) After 2 ⇥ 10

6
steps, the energy error reaches a maximum amplitude of 0.46 and the

phase portrait has completely deteriorated. d) Demonstration of controlling the parasitic

mode by re-initializing the system when the energy error reaches 5 ⇥ 10

�4
compared to

the most recent initialized energy. The maximum energy error on the y�axis refers to the

maximum energy error in all preceding steps. The step size was h = 0.1.
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

Figure 3: Two-step midpoint Eq. (31) applied to a system of four planar point vortices de-

scribed by Eq. (30). Both figures used a first initial condition of z0 = [x

1
0, x

2
0, ..., y

1
0 , y

2
0 , ...] =

[�1, 1,�1, 1, 2, 2,�2,�2] and a step size of h = 1. a) Two-step midpoint trajectory ini-

tialized using second-order Runge-Kutta as in Ref. [12]. b) Two-step midpoint trajectory

initialized using the truncated smooth modified system of Eq. (33)
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