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Abstract

In accordance with the Keller-Maslov global WKB theory, a semiclassical scalar wave field is

best encoded as a triple consisting of (i) a Lagrangian submanifold Λ in the ray phase space, (ii)

a density µ on Λ, and (iii) an overall phase factor φ. We present the Hamiltonian structure of

the Cauchy problem for such a “geometric semiclassical state” in the special case where the wave

operator is Hermetian. Variational, symplectic, and Poisson formulations of the time evolution

equations for (Λ, µ,φ) are identitfied. Because we work in terms of the Keller-Maslov global WKB

ansatz, as opposed to the more restrictive ψ = a exp(iS/ε), all of our results are insensitive to

the presence of caustics. In particular, because the variational principle is insensitive to caustics,

the latter may be used to construct structure-perserving numerical integrators for scalar wave

equations.
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I. INTRODUCTION

The eikonal assumption, ψ = a exp(iS/ε), for scalar waves ψ that obey the linear wave

equation

Dψ = 0, (1)

where D is a Hermetian operator, and ε is the semiclassical ordering parameter, pervades

much of the literature on semiclassical wave propagation. The reason for this is clear; eikonal

waves share many properties with their idealized brethren, the plane waves. Unfortunately,

eikonality is not a physically-robust property. As soon as caustics develop, the eikonal ansatz

breaks down. In order to overcome this difficulty, while retaining many of the useful concep-

tual tools the eikonal assumption provides, J. B. Keller [1] and V. P. Maslov [2] introduced

a new class of semiclassical wave solutions for Eq. (1). For lack of standard terminology,

we will refer to these generalized eikonal waves as “Keller-Maslov waves”, or KMWs. Away

from caustics, KMWs are superpositions of eikonal waves with distinct wave vectors. Near

caustics, their momentum-space wavefunctions are eikonal. Detailed mathematical accounts

of Keller and Maslov’s theory (written in English) can be found in Refs. [3–5]. Also see

Ref. [6].

The purpose of this article is to describe the structure of the phase space for KMWs. We

will identify the appropriate phase space as a set. Then we will show that the dynamics of a

KMW in this phase space are Hamiltonian. In particular, we will give explicit expressions for

the KMW Lagrange and Poisson brackets. Along the way, we will also identify a variational

principle for KMWs that can be viewed as a generalization of the one studied in Ref. [7].

These results have notable practical and conceptual implications. The conceptual impli-

cations stem from the fact that caustic points and non-caustic points are on equal footing

in the KMW phase space. In particular, any result that can be expressed in terms of this

phase space is automatically insensitve to the presence of caustics. For example, by thinking

along these lines, the theory of ponderomotive forces on waves developed in Ref. [8] can

be generalized to allow for caustics. On the practical side, our results should prove to be

useful when numerically computing semiclassical solutions of wave equations. The Hamil-

tonian and variational structures we identify suggest how to develop structure-preserving

integrators for this purpose. Because such integrators would be formulated in the KMW

phase space, they would automatically handle caustic formation in a robust manner.
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We will begin by identifying the KMW phase space as a set in Section II. In Section III,

we will present a variational formulation for KMW dynamics in this phase space. In Sec-

tion IV, we will use this variational principle to express the KMW dynamical equations as

a Hamiltonian system. Finally, in SectionV we will discuss our results. In particular, we

will make a case for formulating semiclassical wave integrators in terms of the KMW phase

space.

II. WHAT IS THE PHASE SPACE FOR A KELLER-MASLOV WAVE?

A physical system’s phase space is its collection of allowablemechanical states. A system’s

mechanical state at time t consists of the minimal collection of temporally-local observables

that uniquely determines the system’s time evolution. For instance, by watching a planar

pendulum swing, its spatial location and velocity vector can be measured at any instant of

time to. According to Newton’s second law, which a penduluum obeys with great accuracy,

the pendulum’s evolution for t > to is completely determined by this information. Therefore,

a model for the phase space of the pendulum is the set of positions and velocities that the

pendulum could possibly achieve, which is the tangent bundle of the circle, TS1.

Mathematically, the phase space for a system described by a PDE on the spacetime,

M , can be deduced using an approach invented in the context of gauge theories. First the

covariant phase space [9] (also see Ref. [10]) for the PDE is identified. This is a subset of the

infinite-dimensional space of field configurations that consists of solutions of the PDE. Then

a space-time decomposition, M ≈ Q × R, is introduced and the covariant phase space is

identified with the space of PDE initial data on Q. This space of initial data is the system’s

phase space. The remainder of this section is devoted to applying this methodology to

KMWs.

KMWs are precisely defined in terms of a certain PDE on spacetime. Specifically, an

abstract or geometric KMW consists of a triple (L,m,φ), where L is a connected Lagrangian

submanifold [11, 12] L ⊂ T ∗M that satisfies the corrected Bohr-Sommerfeld condition, m

is a positive N -density with weight 1 [13] on L (N = dim(M) = dim(L)), and φ is a real

number modulo επ/2. The physically-realizable abstract KMWs are those that satisfy the
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geometric PDE on spacetime,

D|L = 0 (2)

LXD
m = 0, (3)

where D : T ∗M → R is the principal symbol of the operatorD, XD is the Hamiltonian vector

field on T ∗M with Hamiltonian function D, and LXD
denotes the Lie derivative along XD.

To see how this pair of equations arises directly from an asymptotic analysis of Eq. (1) in the

limit ε→ 0, see Refs. [3, 4]. A concrete KMW ψ is any wave field that can be recovered from

an abstract KMW by applying Maslov’s canonical map (see Refs. [3, 4] for particularly lucid

descriptions) I(L,m,φ) to the triple (L,m,φ)[14]. Because the set of KMWs is identified

with the set of abstract KMWs, it is permissible to work in terms of the abstract KMW

instead of the concrete wave field. From this perspective, Eqs. (2) and (3) can be viewed as

the system of PDEs that govern KMW behavior.

While a detailed description of how a wave field ψ can be constructed from an abstract

KMW is beyond the purview of this article, it is useful to briefly describe this construction

in the absence of caustics. In the absence of caustics, a KMW is merely an eikonal wave,

ψ = a exp(iS/ε). The three constituents, (L,m,φ), of the abstract KMW that generate this

wave via Maslov’s canonical map are given as follows. The Lagrangian submanifold L is

the surface in the cotangent bundle of spacetime T ∗M swept out by the differential of the

phase function, dS. The density m is essentially the squared wave amplitude a2. Finally,

the phase factor φ is the integration constant necessary to reconstruct the phase function S

from knowledge of the differential of S.

Because Eqs. (2) and (3) comprise a PDE for KMWs, the covariant phase space for

KMWs is the set of all (L,m,φ), where L is a Lagrangian submanifold of T ∗M satisfying

the corrected Bohr-Sommerfeld condition and Eq. (2), and m is a positive 1-density on L

satisfying Eq. (3). In short, the covariant phase space consists of all physically-realizable

abstract KMWs. The phase space proper may therefore be identified by introducing an

arbitrary space-time splitting M ≈ Q×R and parameterizing physically-realizable abstract

KMWs by appropriate initial data on Q.

To this end, it is convenient to introduce a representation for our “fields” (L,m,φ) in terms

of generalized potentials. This approach parallels the procedure used in electrodynamics

whereby the field strength F is represented in terms of the 4-potential A as F = dA. We
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set

L = Φ(L× R) (4)

m = Φ∗µ|dt| (5)

φ = φto (6)

where L is a connected N -dimensional manifold, µ|dt| is a positive density on L × R, φt is

a time-dependent real number modulo επ/2, and Φ : L × R → T ∗(Q× R) ≈ T ∗Q × R× R

is a Lagrangian embedding of L× R. We will assume Φ is of the form

Φ(x, t) = (ιt(x), t, Kt(x)), (7)

where ιt : L → T ∗Q is a Lagrangian embedding of L into T ∗Q satisfying the corrected

Bohr-Sommerfeld condition and

Kt(x) = φ̇t +

∫ x

p

(

d

dt
ι∗tϑ

)

− ϑιt(x)(ι̇t(x)). (8)

The symbol ϑ denotes the canonical 1-form on T ∗Q (in canonical coordinates ϑ = pi dqi)

and p ∈ L is an arbitrary, but distinguished point in L. All abstract KMWs that extend

over the entire time axis can be expressed in this form. The time-dependent embedding

ιt : L → T ∗Q, the time-dependent number φt : L → R mod επ/2, and the time-dependent

density µt on L play the role of potentials for KMWs.

Because these potentials admit the gauge transformation

ιt '→ ιt ◦ ηt (9)

φt '→ φt +

∫ ηt(p)

p

ι∗tϑ (10)

µt '→ η∗tµt, (11)

where ηt is an arbitrary time-dependent diffeomorphism of L that is isotopic to the identity,

there are many possible physically-consistent dynamical laws they might satisfy. However,

it is straightforward to show that, given a set of potentials for a physically-realizable KMW,

there is always a gauge transformation that leads to potentials satisfying the equations

ι̇t(x) = XEt(ιt(x)) (12)

φ̇t = (ϑ(XEt)−Et) (ιt(p)) (13)

d

dt
(ι∗t (ρt)µt) = 0, (14)
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where Et is a time-dependent function on T ∗Q that is defined implicitly by the relation

D(z, t,−Et(z)) = 0, XEt is the Hamiltonian vector field on T ∗Q with Hamiltonian Et, and

ρt(z) = ∂D/∂U(z, t,−Et(z)). Note that this definition of Et requires ∂D/∂U(z, t, U) )= 0

along L in T ∗M .

Equations (12), (13), and (14) prescribe an initial-value problem on Q that can be used

to generate KMWs. For conveniece, we will refer to them as the KMW potential equations

of motion, or the KMWP equations of motion. This is not an entirely-physical initial-value

problem, however. Initial conditions that are related by time-independent gauge trans-

formations generate the same abstract KMW. In other words, at a given time t, the triple

(ιt,φt, µt) is not a physically-meaningful quantity. Nevertheless, the orbit of (ιt,φt, µt) under

the action of the time-independent gauge transformations, which we will denote [(ιt,φt, µt)],

is a physical quantity. The evolution of an orbit determines the evolution of a KMW, and

vice versa. Therefore, the phase space for KMWs, P, is the quotient of (ι,φ, µ)-space by

time-independent gauge transformations. It can also be shown that KMWP equations of

motion uniquely determine a dynamical system on the KMW phase space. This follows from

the symmetry of Eqs. (12), (13), and (14) under time-independent gauge transformations.

We summarize this result with the following theorem. Let L be an N = dim(Q)-

dimensional manifold with distinguished point p ∈ L and den(L) the set of positive densities

on L. Fix an integral de Rham class a ∈ H1(L,R) and let I be a connected component of

the collection of Lagrangian embeddings ι : L → T ∗Q that satisfy

επ

2
µι + [ι∗ϑ] = 2πε a, (15)

where µι is the Maslov class of the embedding ι [15]. Set Po = I ×
(

R mod επ
2

)

× den(L).

Theorem 1. There is a free left Diff(L)o-action on the space of KMW potentials, Φ :

Diff(L)o × Po → Po, given by

Φη(ι,φ, µ) =

(

ι ◦ η−1,φ+

∫ η−1(p)

p

ι∗ϑ, η∗µ

)

. (16)

Here Diff(L)o is the group of diffeomorphisms of L that are isotopic to the identity. The

phase space for KMWs is P = Po/Diff(L)o.

Notice that the phase space for KMWs is the base of an infinite-dimensional principal-

Diff(L)o bundle. This allows us to replace statements pertaining to the phase space P with
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gauge-invariant statements pertaining to the space of potentials Po. Because calculations

are somewhat less cumbersome when performed in Po, we will adopt this practice in what

follows.

The quotient Po/Diff(L)o can be described in concrete terms. Suppose we are given a

point (ι,φ, µ) ∈ Po. The following gauge-invariant geometric data can be extracted from

this point. The image of L under ι, Λ ≡ ι(L), is gauge invariant because the effect of a gauge

transformation on ι amounts to a relabeling of L. For the same reason, the pushforward

m = ι∗µ is a gauge-invariant positive density on Λ. This “quantum relabeling symmetry”

plays a similar role in KMW theory as particle relabeling symmetry plays in Euler-Poincaré

theory [16]. Let E = Λ × R mod επ
2 be the trivial R mod επ

2 -bundle over Λ. Equip E with

the principal connection A = dφ− ι∗Λϑ, where φ is the R mod επ
2 coordinate on E and ιΛ is

the canonical inclusion Λ → T ∗Q. The phase factor φ determines a gauge-invariant parallel

section, s, of E. Explicitly, for l ∈ Λ, s(l) = (l, φ̃(l)), where

φ̃(l) = φ+

∫ l

ι(p)

ι∗Λϑ. (17)

The gauge-invariant triple (Λ, φ̃, m) can be seen to completely characterize the orbit

[(ι,φ, µ)]. Thus Po/Diff(L)o consists of Lagrangian submanifolds of T ∗Q equipped with

a positive density and a parallel section of the R mod επ
2 -bundle E [17].

If we were to modify the definition of P by dropping the Maslov class from the corrected

Bohr-Sommerfeld condition and allowing for multi-valued φ̃, the resulting space would be

the cotangent bundle of the collection of isodrastic Planckian manifolds [18]. The KMW

phase space, P, is therefore the cotangent bundle of the collection of quantizable isodrastic

Planckian manifolds. Here, “quantizable” refers to imposing the corrected Bohr-Sommerfeld

condition. In Ref. [18], Weinstein studied isodrastic Planckian manifolds in order to develop

a classical analogue of Berry’s phase [19]. In fact, Weinstein introduced these Planckian

manifolds with a good understanding of their relationship with semiclassical scalar waves.

It is therefore interesting that Ref. [18] does not explicitly relate the space of isodrastic

planckian manifolds to the phase space for KMWs. In particular, it is interesting that

this work contains no discussion of the relationship between the Weinstein symplectic form

(see Eq. (2) in Ref.[18]) on the set of isodrastic weighted Lagrangian submanifolds and a

Hamiltonian formulation of semiclassical scalar wave dynamics. As we will see, the Weinstein

symplectic form is closely related to the symplectic form on the KMW phase space in the
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special case where D generates the Schrödinger equation.

III. VARIATIONAL PRINCIPLE FOR KMWS

We now turn to the task of demonstrating that the KMW phase space is actually an

infinite-dimensional symplectic manifold and that KMW dynamics are Hamiltonian relative

to this symplectic structure. We will exhibit the symplectic structure relevant to general

KMW dynamics by developing and then manipulating an appropriate variational principle.

This section is devoted to the development of the variational principle.

Our method for identifying this variational principle has its roots in Ref. [7] , which derived

a spacetime-covariant variational principle for eikonal vector-valued waves. Starting from

a standard (see Refs. [20, 21]) spacetime-covariant variational principle for Eq. (1), we will

implement the Keller-Maslov ansatz by treating it as an (asymptotic) holonomic constraint.

This will lead directly to a spacetime-covariant variational principle for KMWs. We will then

break the manifest space-time covariance in order to finally arrive at a variational principle

for the KMW time evolution laws.

As is readily verified, solutions of Eq. (1) are critical points of the action functional

S(ψ) = Re

∫

M

ψ∗
R(m)DψR(m) dm, (18)

where R ⊂ M is an arbitrary compact subset of the spacetime, ψR(m) = ψ(m) when

m ∈ R, ψR(m) = 0 when m )∈ R, and dm is the measure on spacetime relative to which D

is self-adjoint, i.e.

ϕ ∈ L2(M) ⇒
∫

ϕ∗(m)Dϕ(m) dm =

∫

(Dϕ(m))∗ϕ(m) dm. (19)

The localized wavefunction ψR appears in the action instead of ψ itself in order to ensure

that the action integral converges. When varying the action, it is required that ψ is held

fixed on the boundary of R. Note that when D = i! ∂
∂t
−Ĥt is the wave equation operator for

the Schrödinger equation, this variational principle is essentially the Dirac-Frenkel principle

[22].

Now suppose we restrict our attention to solutions of the wave equation that are asymp-

totically KMWs. With the term “asymptotic”, we refer to the typical semiclassical limit,
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where the ratio, ε, of the wave spatio-temporal scale to that of the background tends to

zero. These KMWs should be critical points of the action function S in the limit ε → 0.

Therefore, if we constrain the ψ in S(ψ) to be a KMW and then calculate the leading-

order contribution to the action, we should expect that the result will serve as a variational

principle for KMWs.

Computing the leading-order contribution to the action involves a number of somewhat-

subtle applications of the method of stationary phase (Refs. [5, 23] are helpful in this regard).

The result is simply

S(L,m,φ) ≡ lim
ε→0

S(I(L,m,φ))

=

∫

L

DmR, (20)

where R ⊂ L is an arbitrary compact subset of L, mR(l) = m(l) if l ∈ R, and m(l) = 0 if

l )∈ R. It is straightforward to verify that critical points of S are precisely the physically-

realizeable KMWs. Thus, we have indeed identified a spacetime-covariant variational prin-

ciple for KMWs, as we expected.

This spacetime variational principle can now be used to construct a variational principle

for the time evolution laws satisfied by KMWs. First, we introduce an arbitrary space-time

splitting M ≈ Q × R and express the abstract KMW (L,m) in terms of the potentials

(ιt,φt, µt) introduced in the previous section. We then set R = Φ(L × [t1, t2]), where Φ :

L × R → T ∗M is constructed in terms of the potentials as in the previous section. Note

that, because L need not be compact, this choice of R is not necessarily compact. If L is

not compact, then we add the condition that µt should be integrable, i.e.
∫

L
µt < ∞. With

these choices in place, the action for KMWs can now be expressed as

S[t1,t2](ι·,φ·, µ·) =
∫ t2

t1

∫

L

D(ιt(x), t, Kt(x))µt(x) dt, (21)

where, as in the previous section

Kt(x) = φ̇t +

∫ x

p

(

d

dt
ι∗tϑ

)

− ϑιt(x)(ι̇t(x)). (22)

Note that we are regarding S[t1,t2] as a functional of paths in (ι,φ, µ)-space with fixed end-

points.
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While it can be inferred from the analysis presented so far, we will now prove directly

that this action functional has as critical points those curves t '→ (ιt,φt, µt) that satisfy the

dynamical equations for the KMW potentials, Eqs. (12), (13), and (14).

Theorem 2. Let ιt : L → T ∗Q, φt, and µt, be a time-dependent Lagrangian embedding that

satisfies the corrected Bohr-Sommerfeld condition, a time-dependent real number modulo

επ/2, and a time-dependent positive N-density with weight 1 on L, respectively. If these

quantities satisfy

ι̇t(x) = XEt(ιt(x)) (23)

φ̇t = (ϑ(XEt)−Et) (ιt(p)) (24)

d

dt

(

ι∗t

(

∂D

∂U

)

µt

)

= 0, (25)

then the curve t '→ (ιt,φt, µt) is a critical point of the action

S[t1,t2](ι·,φ·, µ·) =
∫ t2

t1

∫

L

D(ιt(x), t, Kt(x))µt(x) dt, (26)

regarded as a functional of curves in (ι,φ, µ)-space with fixed endpoints.

Proof. We will merely compute an arbitrary variation of S[t1,t2] and then verify that this

variation is zero at curves in (ι,φ, µ)-space of the specified form. Let (t, ε) '→ (ιεt,φ
ε
t, µ

ε
t) be

an arbitrary two-parameter curve in (ι,φ, µ)-space with fixed endpoints and set (ιt,φt, µt) =

(ι0t ,φ
0
t , µ

0
t ). The variations δφt =

d
dε

∣

∣

0
φε
t and δµt =

d
dε

∣

∣

0
µε
t are arbitrary real numbers and

densities, respectively. On the other hand, διt =
d
dε

∣

∣

0
ιεt, which is a section of the pullback

bundle ι∗tT (T
∗Q), is constrained by the corrected Bohr-Sommerfeld condition. The corrected

Bohr-Sommerfeld condition [3, 4] requires that a certain linear combination of the Maslov

class of ιεt, m
ε
t ∈ H1(L,R), and the Lagrange class [ιε∗t ϑ] ∈ H1(L,R) be integral. Because the

Maslov class is neccessarily parameter-independent for any parameter-dependent Lagrangian

embedding, this condition is equivalent to the requirement that ιεt always remain within a

distinguished connected component of a level set of the mapping ι '→ [ι∗ϑ]. Therefore, the

de Rham class [ιεtϑ] ∈ H1(L) must satisfy

d

dε

∣

∣

∣

∣

0

[ιεtϑ] = 0. (27)
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By de Rham’s theorem, this last condition is equivalent to d
dε

∣

∣

0
ιε∗t ϑ being exact. For the

same reasons, d
dt

∣

∣ι∗tϑ must also be exact. The exactness of this pair of differential forms then

implies that there must be functions δgt, ht : T ∗Q → R such that

διt(x) = Xδgt(ιt(x)) (28)

ι̇t(x) = Xht(ιt(x)). (29)

With this in mind, it is readily seen that the first variation of the action is given by

d

dε

∣

∣

∣

∣

0

S[t1,t2](ι
ε
· ,φ

ε
· , µ

ε
· ) = (30)

∫ t2

t1

∫

L

(

ι∗t {Et − ht, δgt}

)

∂D

∂U
µt dt

+

∫ t2

t1

∫

L

ι∗t δgt

(

d

dt

(

∂D

∂U
µt

))

dt

+

∫ t2

t1

∫

L

(

ϑιt(p)(διt(p))− δgt(ιt(p))− δφt

)

d

dt

(

∂D

∂U
µt

)

dt

+

∫ t2

t1

∫

L

D δµt dt,

where ∂D/∂U(x, t) = ∂D
∂U

(ιt(x), t, Kt(x)) and D(x, t) = D(ιt(x), t, Kt(x)).

If (ιt,φt, µt) satisfies the desired equations, then it is simple to verify that ht = Et+const,

and Kt = −ι∗tEt. Under these conditions, the right-hand-side of Eq. (30) vanishes.

IV. KMW DYNAMICS AS A HAMILTONIAN SYSTEM

With the variational principle in the previous section, we have formulated KMW dynamics

as a gauge theory. We can therefore draw upon the general result [24] (see also Refs. [10, 25]

for more recent discussions of the idea) that gauge-theoretic dynamical equations always

possess a Hamiltonian structure. In this section, we will apply this result in order to explicitly

identify the Hamiltonian structure underlying KMW dynamics.

Recall that Po denotes (ι,φ, µ)-space. Associated with the KMWP equations of motion

on Po, is the time-advance map Ft,to : Po → Po. By definition, if (ιt,φt, µt) is a solution of

the KMWP equations of motion, then Ft,to(ιto ,φto , µto) = (ιt,φt, µt). This mapping satisfies

the so-called time-dependent flow property [11],

Ft3,t2 ◦ Ft2,t1 = Ft3,t1 . (31)
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It can also be used to define a mapping from Po, regarded as a space of initial conditions

for the KMWP equations of motion, into the space of paths in Po; an initial condition is

mapped into its corresponding solution of Eqs. (12), (13), and (14). If C(Po) is the set of

all conceivable paths t '→ (ιt,φt, µt), then we denote this mapping Fto : Po → C(Po) (note

that there is only one subscript, and therefore no possibility of confusion with Ft,to). By

definition, Fto(ι,φ, µ) is the path given by

Fto(ι,φ, µ)(t) = Ft,to(ι,φ, µ). (32)

By composing the map Fto with the action S[to,t] from the previous section, we obtain

the restricted action Ŝt,to : Po → R,

Ŝt,to(ι,φ, µ) ≡ S[to,t] ◦ Fto(ι,φ, µ). (33)

Let us calculate the first exterior derivative of the restricted action. On the one hand, the

result must be zero because D = 0 along a solution of Eqs. (12), (13), and (14). On the other

hand, the restricted action is given as a composition of mappings. Therefore, the exterior

derivative can be computed using the chain rule. Indeed, if (t, ε) '→ (ιεt,φ
ε
t, µ

ε
t) is an arbitrary

two-parameter curve in Po (free endpoints), then

d

dε

∣

∣

∣

∣

0

S[to,t](ι
ε
· ,φ

ε
· , µ

ε
· ) = (34)

∫ t

t0

∫

L

(

ι∗t {Et − ht, δgt}

)

∂D

∂U
µt dt

+

∫ t

to

∫

L

ι∗t δgt

(

d

dt

(

∂D

∂U
µt

))

dt

+

∫ t

to

∫

L

(

ϑιt(p)(διt(p))− δgt(ιt(p))− δφt

)

d

dt

(

∂D

∂U
µt

)

dt

+

∫ t

to

∫

L

D δµt dt

+

∫

L

(

δφt + δgt(ιt(p))− ϑιt(p)(διt(p))− ι∗t δgt

)

∂D

∂U
µt

∣

∣

∣

∣

t

to

.

Here, as in the previous section, we have

διt(x) = Xδgt(ιt(x)) (35)

ι̇t(x) = Xht(ιt(x)). (36)
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If (ιεt,φ
ε
t, µ

ε
t) is a solution of KMWP equations of motion, then only the boundary terms on

the right-hand-side of Eq. (34) are nonzero. Therefore, if (δι, δφ, δµ) is a tangent vector at

(ι,φ, µ), the chain rule gives

dŜt,to(δι, δφ, δµ) =
d

dε

∣

∣

∣

∣

0

Ŝt,to(ι
ε,φε, µε) (37)

=
d

dε

∣

∣

∣

∣

0

S[to,t](Ft,to(ι
ε,φε, µε))

= (F∗
t,to

Θt −Θto)(δι, δφ, δµ),

where Θt is the time-dependent one-form on Po given by

Θt(δι, δφ, δµ) =−

∫

L

ι∗(δg ρt)µ (38)

−pφ,t(ι, µ)
(

ϑι(p)(δι(p))− δg(ι(p))− δφ
)

;

ρt : T ∗Q → R is given by ρt(z) =
∂D
∂U

(z, t,−Et(z)); and

pφ,t(ι, µ) =

∫

L

(ι∗ρt)µ. (39)

Because Ŝt,to = 0, Eq. (37) implies that the one-form Θt is “frozen-in” to the flow on Po,

F∗
t,toΘt = Θto . (40)

This infinite-dimensional frozen-in law is very nearly a statement of the fact that the dynam-

ical equations for the potentials are a Hamiltonian system. Indeed, by taking the exterior

derivative of the frozen-in law, we obtain the conservation law

F∗
t,todΘt = dΘto . (41)

Moreover, by taking the time derivative of the frozen-in law, we obtain an equation remi-

niscent of the time-dependent Hamilton’s equations,

iXtdΘt = −dEt − Θ̇t, (42)

where Xt is the vector field on Po defined by Eqs. (12), (13), and (14), and Et : Po → R is

the energy functional

Et(ι,φ, µ) = Θt(Xt)(ι,φ, µ) = −

∫

L

ι∗(Et ρt)µ. (43)
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In fact, the two-form −dΘt is not a symplectic form because it is degenerate. There-

fore Eq. (42) is not an instance of Hamilton’s equations. However, the tangent vectors that

annihiliate −dΘt are precisely the infinitesimal generators of time-independent gauge trans-

formations. Moreover, −dΘt is preserved by time-independent gauge transformations. This

pair of properties is shared by dEt, Θt, and Θ̇t as well. It follows that the two-form −dΘt, the

one-forms Θt, Θ̇t, and the energy functional Et induce corresponding objects on the quotient

space P = Po/Diffo(L). Let Π : Po → P be the projection map that sends the potentials

(ι,φ, µ) to the corresponding orbit [(ι,φ, µ)]. There is a unique one-form on P, θt, that

satisfies

Π∗θt = Θt (44)

Π∗θ̇t = Θ̇t. (45)

Likewise, there is a unique functional on P, et, that satisfies

Π∗et = Et. (46)

By Eq. (42), these quantities are related by

ixtdθt = −det − θ̇t, (47)

where xt is the dynamical vector field on the KMW phase induced by KMWP equations

of motion. With Eq. (47) we have formally succeeded in realizing KMW dynamics as a

time-dependent Hamiltonian system.

Explicit expressions for the presymplectic form −dΘt, the one-form θt, the symplectic

form −dθt, and the Poisson brackets on P (defined by the symplectic form −dθt) are given

in the following theorems.

Theorem 3. The KMW presymplectic form −dΘt on the space of potentials, Po, is given

14



by

(dΘt)(X1, X2) = (48)
∫

L

ι∗({δg1, δg2} ρt + δg1 {ρt, δg2}− δg2 {ρt, δg1})µ

+

∫

L

ι∗(δg1 ρt)δµ2 − ι∗(δg2 ρt)δµ1

+LX1
pφ,t

(

δφ2 − -δg2(ι(p))

)

−LX2
pφ,t

(

δφ1 − -δg1(ι(p))

)

,

where Xi(ι,φ, µ) = (Xδgi ◦ ι, δφi, δµi) for i = 1, 2; -f = ϑ(Xf)− f ; and

LXi
pφ,t =

∫

L

ι∗({ρt, δgi})µ+ ι∗(ρt)δµi. (49)

Proof. Using the exterior calculus identity

(dΘt)(X1, X2) = LX1
(Θt(X2))− LX2

(Θt(X1)) (50)

−Θt([X1, X2]),

the result can be computed directly from Eq. (38).

Theorem 4. (Weinstein) If (Λ, φ̃, µ) ∈ P, there is an isomorphism

T(Λ,φ̃,µ)P ≈

(

C∞(T ∗Q)× den(Λ)

)

/W. (51)

Here W is the subspace of C∞(T ∗Q)× den(Λ) consisting of elements of the form

(f, LXf
µ), (52)

where f is an arbitrary function on T ∗Q that is zero along Λ and ιΛ : Λ → T ∗Q is the

canonical inclusion.

Proof. This theorem is a minor extension of Lemma 4.1 in Ref. [18]. The isomorphism is

given explicitly as follows. Let v ∈ T(Λ,φ̃,µ)P and choose a curve in P, (Λt, φ̃t, µt), that is

tangent to v at t = 0. Because Λt must satisfy the corrected Bohr-Sommerfeld condition for

each t, there must be some Hamiltonian function h ∈ C∞(T ∗Q) with Hamiltonian flow Ft

such that Λt = Ft(Λ). Set ft = Ft|Λ : Λ → Λt. We can therefore define the quantities

δφ =
d

dt

∣

∣

∣

∣

0

f ∗
t φ̃t − ι∗Λ-δg (53)

δµ =
d

dt

∣

∣

∣

∣

0

f ∗
t µt. (54)

15



Note that δφ is constant.

Any h′ ∈ C∞(T ∗Q) whose Hamiltonian flow F ′
t also satisfies Λt = F ′

t (Λ) must differ from

h by a function c ∈ C∞(T ∗Q) that is constant along Λ, δg′ = δg + c. Thus,

δφ′ = δφ+ LXcφ̃− ι∗Λ-c (55)

δµ′ = δµ+ LXcµ. (56)

Note that the Lie derivatives in these expressions are well-defined; because c is constant

along Λ, Xc is tangent to Λ (See Ref. [11], Ch. 5). Set δg = h − δφ. The pair (δg, δµ)

specifies a unique element of

(

C∞(T ∗Q)× den(Λ)

)

/W . Using Eqs. (55) and (56), It is not

difficult to see that this element only depends on the tangency class of the curve (Λt, φ̃t, µt).

We have therefore constructed a linear map T(Λ,φ̃,µ)P →

(

C∞(T ∗Q)×den(Λ)

)

/W given by

v '→ (δg, δµ) +W. (57)

It is straightforward to verify that this map is an isomorphism.

Theorem 5. If (Λ, φ̃, µ) ∈ P, there is an isomorphism

T ∗

(Λ,φ̃,µ)
P ≈

(

den(Λ)× C∞(T ∗Q)

)

/V. (58)

Here V is the subset of den(Λ)× C∞(T ∗Q) consisting of elements of the form

(LXf
µ,−f), (59)

where f is an arbitrary smooth function on T ∗Q that is zero along Λ. The pairing between

the covector α = (κ, p̃µ) + V and the tangent vector v = (δg, δµ) +W is given by

〈α, v〉 =

∫

Λ

ι∗Λδg κ (60)

+

∫

Λ

ι∗Λ({p̃µ, δg})µ+

∫

Λ

ι∗Λp̃µ δµ.

Proof. We will show that Eq. (60) defines a weakly nondegenerate pairing. First observe that

Eq. (60) defines a bilinear mapping

(

den(Λ)×C∞(T ∗Q)

)

/V ×

(

C∞(T ∗Q)×den(Λ)

)

/W →

R. To see this, it is only necessary to verify that the right-hand-side of Eq. (60) is independent

of the representatives of α and v. This is a simple exercise in integration-by-parts.
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To see that this bilinear map is weakly nondegenerate, fix a representative of v, (δg, δµ),

and suppose that 〈α, v〉 = 0 for each α ∈

(

den(Λ)×C∞(T ∗Q)

)

/V . Then 〈α, v〉 = 0 for all

α of the form α = (κ, 0) + V . Because κ is an arbitrary density on Λ,

ι∗Λδg = 0, (61)

i.e. δg = f , where f is some function that vanishes along Λ. This implies that, for arbitrary

α,

〈α, v〉 =

∫

Λ

(ι∗Λp̃µ)(δµ− LXf
µ). (62)

Therefore, because p̃µ is arbitrary,

δµ = LXf
µ. (63)

This proves v = (δg, δµ) +W = (f, LXf
µ) +W = 0 +W .

A very similar argument shows that if 〈α, v〉 = 0 for each v, then α must be zero.

Theorem 6. The time-dependent KMW symplectic form, −dθt on P is given by

dθt(X1, X2) = (64)
∫

Λ

ι∗Λ({δg1, δg2} ρt)µ

+

∫

Λ

ι∗Λ(δg1 {ρt, δg2}− δg2 {ρt, δg1})µ

+

∫

Λ

ι∗Λ

(

δg1 ρt

)

δµ2 − ι∗Λ

(

δg2 ρt

)

δµ1,

where X1, X2 are arbitrary tangent vectors at (Λ, φ̃, µ) ∈ P,

Xi = (δgi, δµi) +W. (65)

Proof. By Eq. (44),

dθt(X1, X2) = dΘt(X̃1, X̃2), (66)

where X̃i is any vector tangent to Po that satisfies TΠ(X̃i) = Xi. For each i = 1, 2, we may

set

X̃i = (Xδgi ◦ ι, -δg(ι(p)), ι
∗δµ) ∈ T(ιo,φo,µo)Po, (67)

where Π(ιo,φo, µo) = (Λ, φ̃, µ). The result follows by directly computing dΘt(X̃1, X̃2) using

Theorem 3.
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Theorem 7. Let F,G be functionals on the KMW phase space P. For Z = (Λ, φ̃, µ) ∈ P,

set

dF (Z) =

(

δF

δg
,
δF

δµ

)

+ V (68)

dG(Z) =

(

δG

δg
,
δG

δµ

)

+ V. (69)

The time-dependent KMW Poisson bracket is given by

{{F,G}}t (Z) = (70)
∫

Λ

1

ι∗Λρt

{(

ι∗Λ
δF

δµ

)

δG

δg
−

(

ι∗Λ
δG

δµ

)

δF

δg

}

−

∫

Λ

ι∗Λ

(

ρt

{

1

ρt

δF

δµ
,
1

ρt

δG

δµ

})

µ.

Proof. The frozen-time Hamiltonian vector field, XQ, associated with a functional Q : P →

R is defined by the formula

iXQ
dθt = −dQ. (71)

The KMW Poisson brackets can be expressed in terms of frozen-time Hamiltonian vector

fields as

{{F,G}}t = −dθt(XF , XG) = −dG(XF ). (72)

Using the previous theorem, it is straightforward to verify that the Hamiltonian vector field

XF is given by the formula

XF (Z) = (δgF , δµF ) +W, (73)

where

δgF = −
1

ρt

δF

δµ
(74)

δµF =
1

ι∗Λρt

(

δF

δg
+ ι∗Λ

{

ρt,
1

ρt

δF

δµ

}

µ

)

. (75)

Using these explicit expressions for XF (Z) and Eq. (60), the expression given above for the

KMW Poisson bracket can be verified by calculating −dG(XF ) directly.
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If ρt does not depend on time, then the KMW Poisson brackets and the KMW symplectic

form are independent of time. In this special case, given a time-dependent Hamiltonian

function Ht, the associated time-dependent Hamiltonian vector field can be computed using

the formula

LXHt
Q = {{Q,Ht}} , (76)

where Q is an arbitrary functional on P.

If ρt does depend on time, then the time-dependent Hamiltonian vector field associated

with Ht cannot be determined using Eq. (76). Instead it must be determined using the

time-dependent Hamilton equations mentioned earlier in the section

iXHt
dθt = −dHt − θ̇t. (77)

In terms of the time-dependent Poisson tensor, Pt, defined by the time-dependent KMW

Poisson brackets, XHt is given by

XHt = Pt(dHt + θ̇t). (78)

Using Eq. (78) and the expression

θ̇t(Z) = (−(ι∗Λρ̇t)µ, 0) + V, (79)

we obtain the following theorem

Theorem 8. Given a time-dependent functional Ht : P → R, the associated time-dependent

Hamiltonian vector field, XHt, is given by

XHt(z) = (δgHt , δµHt) +W, (80)

where

δgHt = −
1

ρt

δHt

δµ
(81)

δµHt =
1

ι∗Λρt

(

δHt

δg
− ι∗Λρ̇t µ+ ι∗Λ

{

ρt,
1

ρt

δHt

δµ

}

µ

)

. (82)

In particular, when Ht = et, these expressions yield the KMW dynamical equations on P

δget = Et (83)

δµet = −ι∗Λ

(

ρ̇t
ρt

+
1

ρt
{ρt, Et}

)

µ. (84)

19



V. DISCUSSION

In the previous sections, we first explicitly identified the phase space for Keller-Maslov

waves (KMWs), which are a generalization of eikonal waves first introduced by Keller [1],

and later by Maslov [2]. We then proceeded to formulate the KMW dynamical equations

as an infinite-dimensional Hamiltonian system. Theorem1 characterizes the KMW phase

space, P. Theorems 2, 6, and 7 specify the KMW variational principle, symplectic form, and

Poisson brackets, respectively.

In light of these results, we clearly see how the Hamiltonian structure underlying KMW

dynamics varies from wave equation to wave equation. If D(q, p, t, U) is the principal symbol

of the wave equation operator D, then the KMW Poisson bracket and energy functional only

depend on D via the derived quantities Et and ρt, where Et(q, p) is defined implicitly by

D(q, p, t,−Et(q, p)) = 0, (85)

and ρt(q, p) is given by

ρt(q, p) =
∂D

∂U
(q, p, t,−Et(q, p)). (86)

The quantity Et is proportional to the wave frequency. The quantity ρt is the multiplicative

factor that relates wave action density (regarded as a density on the wave’s Lagrangian

submanifold Λ), It, to the squared modulus of the wave amplitude, µt, i.e. It = (ι∗Λρt)µt.

When

D = i!
∂

∂t
− Ĥt, (87)

where Ĥt is the quantum Hamiltonian operator, ρ = −1. In this case the KMW symplectic

form becomes very closely related to the symplectic form introduced byWeinstein in Ref. [18].

Weinstein’s symplectic form is defined on an isodrast in the space of weighted Lagrangian

submanifolds. This sort of space can be obtined from the KMW phase space by restricting

attention to KMWs that have fixed total wave action, pφ, where

pφ(Λ, µ) = −

∫

Λ

µ, (88)

and then factoring out the symmetry given by global rotation of the phase factor φ̃. On

this reduced KMW phase space [11], the KMW symplectic form is equal to Weinstein’s

symplectic form.
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There is already precedent for developing numerical algorithms for semiclassical wave

propagation in terms the KMW phase space. References. [26–28] provide recent illustrations

of this fact. In particular, these works demonstrate that simulation of semiclassical wave

propagation in the presence of caustics can be significantly simplified by working in terms

of the abstract KMW (Λ, φ̃, µ) ∈ P. The results of the present study therefore suggest

the relevance of the following question. Is it possible to formulate numerical integrators for

semiclassical wave propagation that preserve the KMW symplectic (or Poisson) structure?

One fruitful way to address this question may be to “discretize” the variational principle

given in Theorem2 in the spirit of Ref. [29].
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