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Abstract

Dynamic stabilization of the ablative Rayleigh-Taylor instability of a heavy

ion fusion target induced by a beam wobbling system is studied. Using

a sharp-boundary model and Courant-Synder theory, it is shown, with an

appropriately chosen modulation waveform, that the instability can be sta-

bilized in certain parameter regimes. It is found that the stabilization effect

has a strong dependence on the modulation frequency and the waveform.

Modulation with frequency comparable to the instability growth rate is the

most effective in terms of stabilizing the instability. A modulation with two

frequency components can result in a reduction of the growth rate larger than

the sum of that due to the two components when applied separately.
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1. Introduction

In heavy ion fusion, the compression dynamics of the target is subject to

the well-known Rayleigh-Taylor (RT) instability. To reduce the deleterious

effects of the RT instability on target performance and increase the coupling

efficiency, it is necessary to reduce the initial seed for instability growth by

making the target illumination by ion beams as symmetric and smooth as

possible. Recent heavy ion fusion target studies show [1], with the appropri-

ate beam energy ramp and implementation of beam smoothing techniques,

that it may be possible to achieve ignition with direct drive and an energy

gain of 100 at less than 1 MJ driver energy. With the newly envisioned X-

target and/or shock ignition methods [2], it may be possible that a potential

energy gain of 1000 could be achieved. In laser-driven inertial fusion research,

a sophisticated smoothing system using distributed phase-plate technology

has been developed [3]. Recently, a similar technology using oscillating wob-

bler fields has been proposed for ion-beam-driven inertial fusion energy [1, 4–

10] to achieve the desired uniform illumination over an annular region (see

Fig. 1). The improvement of stability properties can be attributed to two

factors. First, uniform illumination reduces the initial seeding amplitude of

the RT instability [1, 11–13]. Second, at a given location on the target, the

energy/momentum input is pulsating rapidly with time, which results in a

dynamic stabilization effect on the instability .

The dynamical stabilization of the Rayleigh-Taylor instability was first

studied by Wolf [14] and by Troyon [15]. For applications to inertial confine-
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Figure 1: Schematic of wobbler system and solenoidal focusing lattice for heavy ion fusion.

ment fusion, the concept has been investigated by Boris [16] and Betti et al.

[17]. In particular, Betti et al. [17] derived an ordinary differential equation

for the interface oscillation associated with the ablative RT instability with

time-dependent acceleration and ablation [see Eq. (1)]. For heavy ion fusion

application, Kawata et al.[11, 18, 19] showed that time-dependent accelera-

tion effectively reduces the growth of the RT instability. On the other hand,

Piriz et al. [20] concluded that time-modulation of the acceleration is inef-

fective using a model of time-modulation consisting of a sequence of pulsed

accelerations with the shape of δ-functions.

In this paper, we show that the time-modulated acceleration rendered

by the wobbler system for heavy ion fusion drivers can significantly reduce

the growth rate of the ablative Rayleigh-Taylor instability with an appro-

priate choice of the time-modulation waveform. As the theoretical model,

we adopt a sharp-boundary model with an ablative front [17, 21], and start

from the differential equation derived by Betti et al. [17]. The difficulty

in correctly describing the dynamical behavior of the instability in this case
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is the time-dependence of the acceleration, the driving force of the instabil-

ity. It turns out that Courant-Snyder theory [22] for a second-order ordinary

differential equation with general time-dependent coefficient is an ideal theo-

retical tool to tackle this problem, even though the original Courant-Snyder

theory was intended only for stable cases. Using this method, we find that

the stabilization effect has a strong dependence on the modulation frequency.

In particular, modulation with frequency comparable to the growth rate is

most effective in terms of stabilizing the instability. It is also found that the

reduction in growth rate has a complicated dependence on the modulation

waveform. For example, a modulation with two frequency components can

result in a reduction of the growth rate larger than the sum of the reductions

due to the two components when applied separately. With a properly chosen

modulation waveform, the instability can be completely stabilized in certain

parameter regimes.

The basic idea of dynamic stabilization can be amply illustrated by the

example of the inverted pendulum on a moving platform shown in Fig. 2. If

the platform is fixed, the pendulum is obviously unstable. However when

a time-dependent force F (t) is applied, the platform will move accordingly,

and with an appropriate choice of the functional form of F (t) it is possible

to stabilize the dynamics of the inverted pendulum. In general, the types

of time-dependent force F (t) can be divided into three categories: feedback

controlled, pre-described, and random. For the first type, the driving force

is generated dynamically according to the position of the pendulum. This

is how an acrobat stabilizes an upside-down wine bottle on one finger. An

acrobat can train his motor system and visual system into an excellent feed-
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Figure 2: Inverted pendulum on a moving platform.

back control system for the upside-down wine bottle, but it is not possible to

design a feedback control system for the RT instability in a heavy ion fusion

target. This is because the timescale of the instability is several nanosec-

onds, which is too fast for any possible beam feedback control. The third

type, random modulation, is probably the easiest to implement while also

being the most ineffective with the same modulation amplitude. The wob-

bler system for heavy ion fusion fits into the second category. Needless to

say the challenge is to find a systematic method to determine the optimal

time-modulation waveform for the driving beam.

Note that in Refs. [11, 19], the stabilizing effects due to the second type

of modulation is referred as “dynamic mitigation”. In this paper, we don’t

adopt this terminology, and use the general phrase “dynamic stabilization”

for the stabilizing effect due to any type of time-modulation.

The paper is organized as follows. In Sec. 2, we introduce the sharp-

boundary model for the ablative Rayleigh-Taylor instability. The Courant-
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Snyder theory for unstable solutions of second-order ordinary differential

equations with time-dependent coefficients is described in Sec. 3, and the

dynamic stabilization of the ablative RT instability with wobbling beams for

heavy ion fusion applications is studied in Sec. 4.

2. Sharp-boundary model for the ablative Rayleigh-Taylor insta-
bility

In this section, we describe the sharp-boundary model for the ablative

Rayleigh-Taylor instability and the corresponding governing differential equa-

tion that will be used in the study of the dynamic stabilization of the insta-

bility in Sec. 4. In this model, the heavy medium and the light medium are

separated by a sharp-boundary interface (see Fig. 3). The density is constant

on either side of the interface, but discontinuous across the interface, which

is accelerated in the ex direction with an acceleration g(t) by the ablative

force. In the frame moving with the interface, an object with mass m is sub-

ject to an inertial force mg(t) in the −ex direction. The density and ablative

velocity in the moving frame in the two regions are denoted by (ρ1, v1) and

(ρ2, v2), respectively. The values of g(t), v1 and v2 are positive.

The ablative Rayleigh-Taylor instability can be characterized by the un-

stable perturbation of the interface, η(y, t) ∼ η(t) exp(iky−iωt), between the

heavy and light medium. It is assumed that k > 0 without loss of generality.

In the limit of A ≡ (ρ2−ρ1)/(ρ2 +ρ1)→ 1, the ordinary differential equation

for η(t) derived by Betti et al. [17] is

d2η

dt2
+ kvA

dη

dt
− kAgη = 0 , (1)

where g is the acceleration, and vA ≡ v2 > 0 is the ablative velocity of
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the heavy medium. Both g and vA are time-dependent, determined by the

time-dependent energy deposition by the driver at the ablative front. In the

present study, we treat g(t) and vA(t) as prescribed functions. The first-

order derivative term in Eq. (1) can be transformed away by the following

transformation from η to ξ,

η = ξ exp

(
−1

2

ˆ t

0

kvA(t′)dt′
)
. (2)

In terms of ξ, the differential equation is

d2ξ

dt2
−
[
kAg +

1

4
k2v2A +

k

2

dvA
dt

]
ξ = 0 . (3)

From Eq. (2), it is evident that η is more stable than ξ due to the factor

exp
(
−1

2

´ t
0
kvA(t′)dt′

)
, which is the well-known effect of ablative stabiliza-

tion. Once the ablative velocity vA(t) is prescribed, this stabilization effect

is determined, and we only need to focus on the dynamics of ξ.

The coefficient of ξ in Eq. (3) can be viewed as a time-dependent drive

for ξ. To separate the time-dependent part of the drive from the time-

independent part, we write

g(t) = g0 + δg(t), vA(t) = vA0 + δvA(t). (4)

Then, it can be shown that

kAg +
1

4
k2v2A +

k

2

dvA
dt

= γ20 + δγ2 , (5)

γ0 ≡
√
kAg0 +

1

4
k2v2A0 . (6)

Here γ0 is the growth rate when there is no time-modulation, and δγ2 is the

time-dependent part of the drive. If we normalize the time t by the 1/γ0,
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Figure 3: Sharp-boundary model for the ablative Rayleigh-Taylor instability.

then by using the normalized time s ≡ tγ0, Eq. (3) can be simplified to give

d2ξ

ds2
− h(s)ξ = 0 , (7)

h(s) ≡ 1 + δh(s) , δh(s) ≡ δγ2/γ20 . (8)

We assume here that δh(s) has a prescribed functional form determined by

the time variation of the beam energy. According to the study by Betti et

al. [17] and Takabe et al. [23], the typical size of δh(t) is in the range of

3.5 ≤ δh(t) ≤ 5.5. We will use Eq. (7) to study the dynamic stabilization

of the ablative RT instability with a time-dependent drive in the next two

sections.

3. Courant-Snyder theory

Equation (7) is a second-order ordinary differential equation with a time-

dependent coefficient. It describes a harmonic oscillator with time-dependent

spring constant, which can be viewed as the second simplest physics problem

and has many important applications [24, 25]. The well-studied Matthew’s

equation is a special case of Eq. (7). If δh(s) is piece-wise constant or a series
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of δ-functions, then the solution of Eq. (7) can be constructed piece-wise [20].

However, it is not desirable to restrict to a specific class of functions, since

our goal is to find the most optimal functional form of the modulation such

that the dynamic stabilization effect is maximized.

It turns out that the Courant-Synder theory for a second-order ordinary

differential equation with a time-dependent coefficient is an effective tool to

tackle Eq. (7), even though the Courant-Synder theory [22] was first devel-

oped for stable charged particle dynamics in a focusing lattice. It applies

to the unstable case studied here with only little modification. Here we list

the main result of the Courant-Synder theory without a detailed derivation,

which can be found in Refs. [22, 26].

The solution of Eq. (7) can be expressed as a linear map M(s) of the

initial conditions (ξ0, ξ̇0) at s = s0 [22, 26], i.e., ξ

ξ̇

 = M(s)

 ξ0

ξ̇0

 . (9)

The linear map is given by

M(s) =

 w 0

ẇ
1

w

 cosφ sinφ

− sinφ cosφ

 w−10 0

−ẇ0 w0

 , (10)

where w(s) is a solution of the envelope equation

d2w

ds2
− h(s)w = w−3 (11)

with initial conditions (w0, ẇ0) at s = s0, and φ(s) is the phase advanced

associated with w(s),

φ(s) =

ˆ s

s0

1

w2(s′)
ds′ . (12)
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In general, we can choose h(s) to be a periodic function of s ≡ γ0t with

normalized period S = γ0T , where T is the unnormalized period. Then the

one-period map M(S) completely determines the dynamic behavior of ξ. The

eigenvalues of M(S) determines the eigenfrequencies of the dynamics of ξ.

In particular, let µ denote the eigenvalue of M(S) with the largest absolute

value, then the growth rate of ξ is given by ln |µ|. Using the symmetry prop-

erties of the envelope equation [24] , it can be proven that the eigenvalues of

M(S) are independent of the choice of the initial time s0 and initial condi-

tions. Therefore, any one-period solution of Eq. (11) from s = s0 to s = s0+S

for any initial conditions (w0, ẇ0) can be used to calculate the growth rate

ln |µ| of the ξ dynamics.

4. Dynamic stabilization of the ablative Rayleigh-Taylor instability

In this section, we apply the Courant-Snyder theory outlined in Sec. 3

to calculate the growth rate of the transformed interface displacement ξ for

different choices of the modulation function δh(s) with the form

h(s) = 1 + δh(s) = 1 + q sin(2πs/S) , (13)

where s ≡ γ0t is the normalized time, q is the modulation amplitude, and

S ≡ γ0T is the normalized period. The modulation amplitude is selected to

be in the range of 0 < q < 6.

Shown in Fig. 4 is the growth rate plotted as a function of the modula-

tion amplitude q for two different periodicities corresponding to S = 1 and

S = 2, respectively. It is clear that larger modulation amplitude results in a

larger reduction in growth rate, as expected. For a modulation with a period

twice the un-modulated e-folding time, S ≡ γ0T = 2, the instability can be
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completely suppressed when the modulation amplitude q reaches 4.6. Com-

paring the two curves in Fig. 4, we note that a slower modulation generates a

larger reduction of growth rate. This fact is further demonstrated in Fig. 5,

where the growth rate is plotted as a function of the periodicity S for two

different modulation amplitudes. For the case of q = 6, the instability can be

stabilized when S = 1.5. We note that the slope of the curve near S = 1.5

is steep, indicating a sensitive functional dependence of the growth rate on

the periodicity S ≡ γ0T . The complex functional dependence is further

illustrated in Fig. 6, where two modulations with different amplitudes and

periodicities are applied simultaneously. An interesting synergy is observed.

For the first modulation with (q, S) = (2, 1) there is almost no reduction in

growth rate. For the second modulation with (q, S) = (4, 2), the reduction

is about 44%. However, when the two modulations are applied together with

a relative phase α, i.e., h(s) = 1 + 2 sin(2πs) + 4 sin(πs + α), the reduction

reaches 67% provided the relative phase α is chosen correctly. This reduction

in growth rate is much larger than the sum of the reductions due to the two

modulations when applied separately. Furthermore, when the relative phase

α between the two modulations is not selected correctly, the reduction can be

even smaller than that when the second modulation is applied alone. These

results imply that when a wobbler system for heavy ion fusion drivers is de-

signed, it is necessary to carry out a thorough optimization of the modulation

waveform, such that the dynamic stabilization effect can be maximized for a

given modulation amplitude.
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Figure 4: Growth rate plotted as a function of the modulation amplitude q for normalized
period S = 1 and S = 2.
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Figure 5: Plots of growth rate as a function of the periodicity S ≡ γ0T for q = 6 and
q = 3.
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5. Conclusions and future work

To conclude, we have studied the dynamic stabilization of the ablative

Rayleigh-Taylor instability induced by a beam wobbler system that can

deliver a time-modulated energy deposition on the ablation front. Using

a sharp-boundary model for the ablative Rayleigh-Taylor instability and

Courant-Synder theory, we have shown, with an appropriately chosen mod-

ulation waveform, that the instability can be completely stabilized in certain

parameter regimes. It is found that the stabilization effect has a strong depen-

dence on the modulation frequency. Modulation with frequency comparable

to the growth rate is the most effective in terms of stabilizing the instabil-

ity. It is also found that the reduction of the growth rate has a complex

dependence on the modulation waveform. For example, a modulation with

two frequency components can result in a reduction of the growth rate larger

than the sum of the reductions due to the two components when applied
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separately.

The sharp-boundary model reduces the collective dynamics to a second-

order ordinary differential equation for the displacement of the interface with

a time-dependent coefficient. Because it is a system with one degree of free-

dom, the analysis of the dynamics is greatly simplified. In principle, the dy-

namic stabilization mechanism should also be applicable when more degrees

of freedom are allowed. Generalization of the analysis to higher dimensions

[27–29] can include more physical effects, such as compression and heat con-

ductivity, in the system, and thus increase the fidelity of the model. It is also

possible to develop numerical simulation methods for the dynamic stabiliza-

tion process in a more realistic geometry with smooth density gradient, which

corresponds to a dynamic system with infinite degrees of freedom. Progress

in these directions will be reported in the future.

[1] B. G. Logan, L. J. Perkins, J. J. Barnard, Physics of Plasmas 15 (2008)

072701.

[2] E. Henestroza, B. G. Logan, Physics of Plasmas 19 (2012) 072706.

[3] S. Skupsky, T. Kessler, S. Letzring, Y. Chuang, Journal of Applied

Physics 73 (1993) 2678.

[4] N. A. Tahir, D. H. H. Hoffmann, A. Kozereva, A. Tauschwitz, A. Shutov,

J. A. Maruhn, P. S. U. Neuner, J. Jacoby, M. Roth, R. Bock, H. Juranek,

R. Redmer, Phys. Rev. E 63 (2000) 016402.

[5] B. Sharkov, Nucl. Instr. Methods Phys. Res. A577 (2007) 14.

[6] D. H. H. Hoffmann, 2009. Private communication.

14



[7] H. Qin, R. C. Davidson, in: Proceedings of the 2009 Particle Accelerator

Conference, IEEE, New York, 2009, p. 4347.

[8] H. Qin, R. C. Davidson, B. G. Logan, Phy. Rev. Lett. 104 (2010) 254801.

[9] N. Tahir, T. Stohlker, A. Shutov, I. Lomonosov, V. Forotv, M. French,

N. Nettelmann, R. Redmer, A. Piriz, C. Deutsch, Y. Zhao, H. Xu,

G. Xio, P. Zhan, New Journal of Physics 12 (2010) 073022.

[10] H. Qin, R. C. Davidson, B. G. Logan, Laser and Particle Beams 29

(2011) 365.

[11] S. Kawata, T. Sato, T. Teramoto, E. Bandoh, Y. Masubichi, I. Taka-

hashi, Laser and Particle Beams 11 (1993) 757.

[12] A. R. Piriz, N. A. Tahir, D. H. H. Hoffmann, M. Temporal, Physical

Review E 67 (2003) 017501.

[13] A. R. Piriz, M. Temporal, J. J. L. Cela, N. A. Tahir, D. H. H. Hoffmann,

Plasma Phys. Control. Fusion 45 (2003) 1733.

[14] G. Wolf, Physical Review Letters 24 (1970) 444.

[15] F. Troyon, Phys. Fluid 14 (1970) 2069.

[16] J. P. Boris, Comments Plasma Phys. Controlled Fusion 3 (1977) 1.

[17] R. Betti, R. L. McCrory, C. P. Verdon, Physical Review Letters 71

(1993) 3131.

[18] S. Kawata, Y. Iizuka, Y. Kodera, A. I. Ogoyski, T. Kikuchi, Nucl. Instr.

and Meth. A 606 (2009) 152.

15



[19] S. Kawata, Physiscs of Plasmas 19 (2012) 024503.

[20] A. R. Piriz, L. D. Lucchio, G. R. Prieto, Physics of Plasmas 18 (2011)

012702.

[21] A. R. Piriz, J. Sanz, L. Ibanez, Physics of Plasmas 4 (1997) 1117.

[22] E. Courant, H. Snyder, Annals of Physics 3 (1958) 1.

[23] H. Takabe, K. Mima, L. Montierth, R. L. Morse, Phys. Fluids 28 (1985)

3676.

[24] H. Qin, R. C. Davidson, Physical Review Special Topics - Accelerators

and Beams 9 (2006) 054001.

[25] H. Qin, R. C. Davidson, Physical Review Letters 96 (2006) 085003.

[26] R. C. Davidson, H. Qin, Physics of Intense Charged Particle Beams in

High Energy Accelerators, World Scientific, Singapore, p. 82.

[27] H. Qin, R. C. Davidson, Physical Review Special Topic - Accelerators

and Beams 12 (2009) 064001.

[28] H. Qin, R. C. Davidson, Phys. Plasmas 16 (2009) 050705.

[29] H. Qin, M. Chung, R. C. Davidson, Physical Review Letters 103 (2009)

224802.

16


