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This paper places a lowest upper bound on the field energy in electrostatic perturbations in
single-species charged particle beams with initial temperature anisotropy ðTk=T? < 1Þ. The result
applies to all electrostatic perturbations driven by the natural anisotropies that develop in
accelerated particle beams, including Harris-type electrostatic instabilities, known to limit the
luminosity and minimum spot size attainable in experiments. The thermodynamic bound on the
field perturbation energy of the instabilities is obtained from the nonlinear Vlasov-Poisson
equations for an arbitrary initial distribution function, including the effects of intense self-fields,
finite geometry, and nonlinear processes. This paper also includes analytical estimates of the
nonlinear bounds for space-charge-dominated and emittance-dominated anisotropic bi-Maxwellian
distributions.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737180]

I. INTRODUCTION

The physics of high-density, high-current non-neutral par-
ticle beams is characterized by intense nonlinear self-fields
that often make analytical descriptions difficult. These
charged particle beams are essential components of high
energy accelerators and associated transport and storage
systems.1–5 They have become crucial scientific tools for
research on spallation neutron sources, nuclear physics, beam-
driven high energy density physics, and heavy ion inertial
fusion drivers. Thus, much effort has been devoted to under-
standing the underlying physics of the nonlinear processes
occurring in these beams. An important, tractable approach to
solving the detailed dynamics of such systems is often to rely
on advanced numerical tools such as particle-in-cell (PIC)
simulations,6–8 eigenmode codes,9,10 and Monte Carlo
codes11–14 which can simulate the linear and nonlinear phases
of instabilities that may cause a degradation of beam quality.

One example of the instabilities that occur in these sys-
tems is the electrostatic Harris instability,9–12,15,16 which is
driven by the strong temperature anisotropy (Tk=T? # 1,
where the subscripts k and ? denote parallel and perpendicu-
lar to the beam propagation) that develops naturally in the
frame of an accelerated charged particle beam. Much numer-
ical work has been carried out to characterize this type of
instability,9–12,17–19 and it is therefore of particular impor-
tance to develop an analytical framework for comparison
with these results. Previous theoretical work has concen-
trated on investigations of the detailed dynamics of beams
with Kapchinskij-Vladimirskij (KV) distributions,20,21 and
two-temperature bi-Maxwellian distributions.11,12 The for-
malism presented here is an important generalization of the
Fowler bound22,23 that fully incorporates effects of the strong
self-fields, finite geometry, and nonlinear behavior of intense
non-neutral particle beams.

In this paper, we consider a long, coasting single-species
charged particle beam surrounded by a perfectly conducting,
cylindrical wall. The beam properties are assumed to be peri-
odic in the axial direction, and the theoretical model is based

on the nonlinear Vlasov-Poisson equations. The present gener-
alization of Fowler’s method22,23 makes use of the conserva-
tion of energy per unit length U, entropy per unit length S, and
line density N. That is, the Helmholtz free energy F is shown
to be a conserved quantity under these conditions. A field per-
turbation energy is then defined (!F $

Ð
d3xðrd/Þ2=8p) in

reference to the state corresponding to the minimum Helm-
holtz free energy, and any change in the field perturbation
energy is bounded from above using this conservation con-
straint. The minimization of this upper bound, with respect to
the distribution function, gives a lowest upper bound on the
field perturbation energy. The results obtained here are appli-
cable to any specified initial distribution, including anisotropic
beams characterized by the Harris instability, and illustrative
applications assuming initial bi-Maxwellian distributions are
presented.

The organization of this paper is as follows. The theoret-
ical model and definitions are provided in Sec. II, followed
by a review of the unique properties of the thermal equilib-
rium reference distribution in Sec. III. The nonlinear bound
on electrostatic perturbations in charge particle beams is cal-
culated in Sec. IV. Finally, Sec. V demonstrates the utility of
this result in simple analytical limits, and the conclusions are
summarized in Sec. VI.

II. THEORETICAL MODEL AND THE HELMHOLTZ
FREE ENERGY

The analysis in this paper places a limit on the severity
of electrostatic instabilities that occur in intense anisotropic
charged particle beams. The work assumes a single-species
charged particle beam of particles with mass mb and charge
eb. The long, coasting beam is confined transversely by an
applied focusing force Ff ¼ &rwf ðxÞ, where wf ðxÞ is the
effective smooth-focusing potential at position x. The analy-
sis is carried out in the beam frame, where the velocity of
particles is assumed to be non-relativistic and much less then
the average beam velocity Vb in the laboratory frame
(jvj # Vb; c where c is the speed of light in vacuo).
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The Vlasov-Poisson equations provide a fully nonlinear,
self-consistent description of collective processes in the
charged particle beam in the electrostatic approximation.1,2

The Vlasov-Poisson equations are

@fb
@t

þ p

mb
( @fb
@x

þ ð&ebr/&rwf Þ (
@fb
@p

¼ 0 (1)

and

r2/ ¼ &4peb

ð
d3pfb; (2)

where fbðx; p; tÞ is the beam distribution function, / is the
scalar potential for the self-electric field (E ¼ &r/) and all
quantities are in the beam frame.

The work in this paper assumes that the beam is sur-
rounded by a perfectly conducting, cylindrical wall at the ra-
dial location rw. The beam is confined transversely within
the conducting pipe by the applied focusing force, and per-
turbed beam properties are assumed to be spatially periodic
in the axial direction with fundamental periodicity length L.
In summary,

@/
@z

####
r¼rw

¼ 1

r

@/
@h

####
r¼rw

¼ 0; (3)

fbðr; z; h; p; tÞ ¼ fbðr; zþ L; h; p; tÞ; (4)

fbðx; p; tÞ
##
r)rw

¼ 0; (5)

where ðr; h; zÞ are cylindrical polar coordinates, and
r ¼ ðx2 þ y2Þ1=2 is the radial distance from the cylinder axis
located at r¼ 0. Together, these boundary conditions and the
Vlasov-Poisson equations fully describe the nonlinear elec-
trostatic dynamics of a non-relativistic, single-species,
charged particle beam propagating through a conducting
cylindrical pipe.

The nonlinear dynamics described by Eqs. (1)–(5) con-
serve the total energy per unit length U, and the generalized
entropy per unit length SG.

2 Here, the generalized entropy
per unit length is defined by

SG $
ð
d3x

ð
d3pGð fbÞ; (6)

where
Ð
d3x::: ¼ 1

L

Ð L=2
&L=2 dz

Ð 2p
0 dh

Ð rw
0 drr:::, the momentum in-

tegral is over all momentum space, and Gð fbÞ is any smooth
differentiable function of fb that satisfies Gð fb ! 0Þ ¼ 0 with
axial periodicity length L. Thus, the total energy per unit
length U, classical entropy per unit length S, and line density
N are all conserved quantities (independent of t), i.e.,

U ¼
ð
d3x

ð
d3p

p2

2mb
þ wf

$ %
fb þ

jr/j2

8p

" #

¼ const:; (7)

S ¼ &
ð
d3x

ð
d3pfblnð fbÞ ¼ const:; (8)

N ¼
ð
d3x

ð
d3pfb ¼ const: (9)

The generalized Helmholtz free energy F is a linear
combination of these conserved quantities, defined by

F $ U & TS& lN; (10)

where T and l are constant multipliers. Explicitly, the
Helmholtz free energy F can be expressed as

F½ fbðx;p; tÞ+ ¼
ð
d3x

ð
d3p

p2

2mb
þwf þTlnð fbÞ&l

& '
fb

þ
ð
d3x

jr/j2

8p
: (11)

As a linear combination of conserved quantities, the
generalized Helmholtz free energy functional F defined in
Eq. (11) is exactly conserved as the beam dynamically evolves
from an initial state fb0 to some later state fb. Therefore,

DFð fb; fb0Þ$F½ fbðx;p; tÞ+&F½ fb0ðx;p; t0Þ+

¼
ð
d3x

ð
d3p

p2

2mb
þwf

$ %
ð fb& fb0Þ

& '

þ 1

8p

ð
d3x½jr/j2& jr/0j

2+þ
ð
d3x

ð
d3p½Tfblnð fbÞ

&Tfb0lnð fb0Þ&lð fb& fb0Þ+ ¼ 0: (12)

Equation (12) is an exact consequence of the nonlinear
Vlasov-Poisson equations and the boundary conditions in
Eqs. (1)–(5). Equation (12) forms the basis for calculating
the nonlinear bound on electrostatic perturbations in Secs. III
and IV.

III. REFERENCE EQUILIBRIUM STATE WITH
MINIMUM HELMHOLTZ FREE ENERGY

In this section, we determine the equilibrium distribu-
tion that corresponding to an absolute minimum in the
Helmholtz free energy. This distribution will be used as a
reference state in the remainder of this paper. The
extrema of the generalized Helmholtz free energy defined
in Eq. (11) correspond to zeros of the variation of the
functional F with respect to the distribution function
fb, i.e.,

dF ¼ 0

¼
ð
d3x

ð
d3p½ p2=2mb þ wf þ eb/þ Tlnð fbÞ þ T & l+dfb:

(13)

Here, Poisson’s equation and the boundary conditions in
Eqs. (3)–(5) have been combined as follows:

d
ð
d3x

jr/j2

8p

 !

¼
ð
d3x

r/ (rd/
4p

¼ &
ð
d3x

/ ( ðr2d/Þ
4p

¼
ð
d3x

ð
d3peb/dfb: (14)

The class of distribution functions that satisfy the condi-
tion in Eq. (13) is the class fb ¼ gb defined by
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gbðx; pÞ ¼ b exp &
p2

2mb
þ wf þ eb/g

T

 !

; (15)

r2/g ¼ &4peb

ð
d3pgb; (16)

where the constant b is related to the constants l and T by
l ¼ T½1þ lnðbÞ+. Here, the conditions gb ) 0 and
gbðx; jpj ! 1Þ ¼ 0 impose the requirements that T and b
be positive constants. Note that the reference distribution
gb defined in Eq. (15) corresponds to the isotropic thermal
equilibrium distribution with uniform temperature T.
The second variation of the Helmholtz free energy eval-
uated at the thermal equilibrium distribution gb can be
expressed as

d2F
###
gb
¼

ð
d3x

ð
d3p d/dfb þ

T

fb
ðdfbÞ2

& '

gb

¼
ð
d3x

ðrd/Þ2

4p
þ
ð
d3p

T

gb
ðdfbÞ2

" #

> 0: (17)

Thus, the isotropic thermal equilibrium reference distribution
in Eq. (15) represents the absolute minimum of the general-
ized Helmholtz free energy F.1,2 This result, combined with
the linear and nonlinear stability of the thermal equilibrium
state,1,2,24 motivates the special significance given to the
thermal equilibrium gb as a reference state.

IV. NONLINEAR BOUND ON THE CHANGE IN
ELECTROSTATIC FIELD PERTURBATION ENERGY

The conservation of generalized Helmholtz free energy
places a strict constraint on the nonlinear evolution of the
energy in the field perturbations in charged particle beams,
calculated here with respect to the reference distribution
defined in Sec. III. In the remainder of this paper, we use the
notation,

d/ðx; tÞ ¼ /ðx; tÞ & /gðxÞ; (18)

dfbðx; p; tÞ ¼ fbðx; p; tÞ & gbðx; pÞ; (19)

where d/ and dfb denote the changes in / and fb relative to
the thermal equilibrium reference state /g, and gb defined in
Eqs. (15) and (16). The self-field energy associated with the
perturbation d/ ¼ /& /g is

!F $ 1

8p

ð
d3xðrd/Þ2: (20)

As the beam evolves in time from an initial distribution
fb0ðx; p; 0Þ to a distribution fbðx; p; tÞ at time t, the change in
the field perturbation energy is

D!F $ 1

8p

ð
d3x½ðrd/Þ2 & ðrd/0Þ

2+

¼ 1

8p

ð
d3x ðr/Þ2 & ðr/0Þ

2 & 8peb/g

ð
d3pð fb & fb0Þ

& '
;

(21)

where /0 is the self-field potential associated with the initial
distributions fb0. Equations (12) and (21) combine to give

D!Fð fb; fb0Þ ¼ &
ð
d3x

ð
d3p½ð p2=2mb þ wf þ eb/gÞð fb & fb0Þ+

&
ð
d3x

ð
d3p½Tfblnð fbÞ & Tfb0lnð fb0Þ

& lð fb & fb0Þ+: (22)

At extrema of D!F with respect to the distribution fb, the
variation is zero. This corresponds to the condition

dðD!FÞ ¼ 0 ¼ &
ð
d3x

ð
d3p½ p2=2mb þ wf þ eb/g

þ Tlnð fbÞ þ T & l+dfb: (23)

The distribution function that satisfies Eq. (23) is again
the solution fb ¼ gb defined by Eqs. (15) and (16). Again,
l ¼ T½1þ lnðbÞ+, and T and b are positive constants. The
corresponding second variation of D!F is negative, i.e.,

d2D!F
##
gb
¼ &

ð
d3x

ð
d3p

T

gb
ðdfbÞ2 < 0: (24)

This implies that the reference distribution gb corresponds to
a maximum in the value of D!F. Therefore, the energy
change functional D!Fð fb; fb0Þ for any initial distribution fb0
is bounded from above by

½D!F+max ¼ D!Fðgb; fb0Þ ¼
ð
d3x

ð
d3p

(&
p2

2mb
þ wf

þeb/g & T þ Tln
fb0
b

$ %'
fb0 þ Tgb

)
: (25)

Equation (25) provides an upper bound on the change in
field perturbation energy between the initial distribution and
any other distribution. The constants T and b that minimize
the upper bound in Eq. (25) provide the most physically in-
structive bound. These constants are determined from the
transcendental equations,

@½D!F+max
@T

¼
ð
d3x

ð
d3peb

@/g

@T
ð fb0 & gbÞ

& ðS0 & SgÞ & ð1þ lnbÞðN0 & NgÞ ¼ 0; (26)

and

@½D!F+max
@b

¼
ð
d3x

ð
d3peb

@/g

@b
ð fb0 & gbÞ &

T

b
ðN0 & NgÞ ¼ 0:

(27)

Here, S0 and N0 correspond to the entropy per unit length
and number of particles per unit length for the distribution
fb0, while Sg and Ng are the similar quantities for the thermal
equilibrium reference distribution gb.

For a specified initial distribution fb0; the conditions
given by Eqs. (26) and (27) determine the constants T and b
which minimize the upper bound in Eq. (25). The system of
Eqs. (25)–(27) defines a change in field perturbation energy
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larger than or equal to any change that could occur as the
beam evolves through any possible state consistent with
Eqs. (1)–(5). This provides a fully nonlinear, lowest upper
bound on the possible change in field perturbation energy.

The constraints given by Eqs. (26) and (27) are a highly
nonlinear set of equations, which depend on the properties of
the focusing potential wf , the initial distribution function fb0,
the reference distribution gb, and the self-field potentials /0

and /g determined from their respective Poisson’s equations.
The functional forms of the initial distribution function fb0
and focusing potential wf must be specified to determine the
values of the constants T and b.

V. ANALYTICAL LIMITS

This section solves analytically the two limiting cases
corresponding to a space-charge-dominated beam, and an
emittance-dominated beam. In both cases, the initial distri-
bution fb0 is assumed to be an anisotropic bi-Maxwellian
in momentum, infinite in length, and azimuthally symmet-
ric. The transverse focusing force acting on the beam par-
ticles is assumed to be the smooth-focusing approximation
of cyclical quadrupole magnets described by the effective
potential,

wf ¼
1

2
mbx2

f r
2; (28)

where xf is the constant transverse frequency associated
with the applied focusing field.1,2 In the space-charge-domi-
nated regime, N2e2b , 2NT, an initial distribution of this
type corresponds to a flat-top radial density profile,

fb0ðx; pÞ ¼
n̂0

ð2pmbT
2=3
? T1=3

k Þ3=2
Hðrb & rÞ

- exp & p2?
2mbT?

&
p2k

2mbTk

 !

; (29)

where H is the Heaviside step function, T? and Tk are the
transverse and longitudinal temperatures, respectively, n̂0 is
a constant associated with the on-axis density, and rb is the
beam edge radius.1,2 This choice is conveniently similar in
form to the reference distribution gb in the space-charge-
dominated limit. In the limit N2e2b , 2NT, the reference dis-
tribution reduces to

gbðx; pÞ ¼ bHðrg & rÞexp & p2

2mbT

$ %
; (30)

and the corresponding self-field potential is

/gðrÞ ¼
&ebNgr2=r2g; r . rg;

&ebNg 1þ 2ln
r

rg

$ %& '
; r > rg:

8
<

: (31)

Here, rg is the thermal equilibrium distribution edge radius
in the space-charge-dominated limit, and Ng ¼ pr2gb
-ð2pmbTÞ3=2. Substituting this reference potential into
Eqs. (26) and (27) gives

@½D!F+max
@b

¼ 0 ¼ 1

2
Nge

2
b

r2b
r2g
N0 & Ng

 !

& TðN0 & NgÞ (32)

and

@½D!F+max
@T

¼ 0 ¼ & 3

2

Nge2b
2T

r2b
r2g
N0 & Ng

 !

þ S0 & Sg & ð1& lnbÞðN0 & NgÞ: (33)

Enforcing radial force balance on both distributions in
this limit gives

eb
@/0

@r
¼

@wf

@r
¼ eb

@/g

@r
; (34)

for r . rb; rg, which combines with Poisson’s equation to give

N0

Ng
¼ r2b

r2g
: (35)

This reduces the constraint conditions (26) and (27)
determining T and b to the simple requirements S0 ¼ Sg and
N0 ¼ Ng. Enforcing these two constraints, a straightforward
calculation gives the corresponding nonlinear bound in the
simplified form,

½D!F+max ¼ N0T? 1& 3

2

Tk
T?

$ %1=3

þ 1

2

Tk
T?

$ %" #

: (36)

The expression for ½D!F+max given in Eq. (36) is similar
to that given in Ref. 25 for a general bi-Maxwellian momen-
tum distribution in a uniform-density neutral plasma. This is
consistent with the fact that the transverse focusing force in
this limit cancels the self-field force, and leaves a purely ki-
netic Hamiltonian. Although the initial distributions are
assumed to be azimuthally symmetric, the bound does not
require that the perturbations have any symmetry beyond the
periodicity condition in Eq. (4). All bounds in this paper
apply to any electrostatic perturbation accessible within the
fully nonlinear Vlasov-Poisson equations.

The opposite limit, 2NT? , N2e2b, corresponds to
emittance-dominated beams in which space-charge forces
are negligibly small to leading order. The thermal equilib-
rium distribution in this limit becomes

gbðx; pÞ ¼ bexp &
p2 þ m2

bx
2
f r

2

2mbT

 !

: (37)

Again choosing a similar form to the thermal equilibrium dis-
tribution, the anisotropic initial distribution fb0 is taken to be

fb0ðx;pÞ¼
n̂0

ð2pmbT
2=3
? T1=3

k Þ3=2
exp &

p2?þm2
bx

2
f r

2

2mbT?
&

p2k
2mbTk

 !

:

(38)

In this limit, the electric self-field potential and its varia-
tion with the constants T and b are negligibly small. This
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again gives the conditions S0 ¼ Sg and N0 ¼ Ng, where S0
and N0 now correspond to the entropy per unit length and
number of particles per unit length of the initial distribution
in Eq. (38). Determining T and b from these conditions, and
applying the force balance condition wsðrbÞ ¼ T?, the field
perturbation energy bound simplifies to become

½D!F+max ¼ N0T? 2& 5

2

Tk
T?

$ %1=5

þ 1

2

Tk
T?

$ %" #

: (39)

There is no a priori reason that the field perturbations
will grow to levels near the lowest upper bound estimates in
Eqs. (36) and (39). The common behavior of the two expres-
sions, however, gives insight into the physical relevance of
this thermodynamic bound on the change in field perturba-
tion energy. For anisotropies 0 . Tk=T? . 1, both bounds
are maximized when Tk ¼ 0. For the space-charge-
dominated case, this maximum is the transverse kinetic
energy N0T? and represents the extreme case where all of
the transverse kinetic energy of the beam particles is avail-
able to drive unstable perturbations. The emittance-
dominated maximum is larger, allowing for both the kinetic
energy and the focusing potential energy as possible sources
of free energy. The bounds drop rapidly from these maxi-
mum values as Tk=T? increases from 0 to 1, even as the total
kinetic energy of the initial distributions increases. This
steep drop-off represents a significant improvement in under-
standing the free energy available to increase the energy in

field perturbations. It may also suggest that the bound is
approaching actual attainable values, making it a relevant
guide for experimental expectations. Both bounds clearly
show, for example, that the beam is stable for the case
where Tk=T? ¼ 1. This is consistent with the known linear
and nonlinear stability of an isotropic Maxwellian
distribution.1,2,24

Figure 1 shows the two analytical bounds given in
Eqs. (36) and (39) alongside numerical solutions for the gen-
eralized bi-Maxwellian distribution given by

fb0ðx; pÞ ¼
n̂0

ð2pmbT
2=3
? T1=3

k Þ3=2

- exp &
p2? þ m2

bx
2
f r

2 þ 2mbeb/0ðrÞ
2mbT?

&
p2k

2mbTk

" #

;

(40)

which approaches the profiles given by Eqs. (29) and (38) in
the space-charge-dominated and emittance-dominated limits.
The results in Fig. 1 not taken from analytical limits were
obtained by numerical optimization of the free parameters T
and b to minimize the upper bound given by Eq. (25). All of
the solutions exhibit the same general behavior, and the
bound smoothly transitions from one limiting analytical
solution to the other. Each curve shows the simple, yet
powerful physics encapsulated in the fully nonlinear thermo-
dynamic bound.

FIG. 1. The normalized nonlinear thermodynamic bound on the change in field perturbation energy as a function of Tk=T? for bi-Maxwellian distributions
described by Eq. (40) for several values of the dimensionless parameter e2bN0=2T. The bounding curves in the emittance-dominated limit ðe2bN0=2T ! 0Þ and
space-charge-dominated limit ðe2bN0=2T ! 1Þ are obtained from the analytical estimates in Eqs. (39) and (36), respectively.
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VI. CONCLUSIONS

The main result of this paper is that the lowest upper
bound on the unstable field energy of electrostatic perturba-
tions in a single-species charged particle beam is given by
Eq. (25) with the appropriate constant multipliers T and b
determined from Eqs. (26) and (27). This bound is a result of
the conservation of generalized Helmholtz free energy and
applies to all electrostatic perturbations. The bound is a strong
statement about the possible severity of nonlinear instabilities
such as Harris-type instabilities that develop in intense aniso-
tropic non-neutral beams. The lowest upper bound on the field
perturbation energy of these instabilities fully encompasses
intense self-field and nonlinear effects while making no
assumption as to the detailed structure of the perturbations.
The two analytical examples presented here demonstrate that
this bound can significantly improve our understanding of the
free energy available to drive these instabilities. Finally, the
formalism developed here can be applied for any specified ini-
tial distribution function fb0 and provides a powerful frame-
work for determining the lowest upper bound on the field
energy associated with unstable electrostatic perturbations.
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