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Abstract
A class of generalized Kapchinskij-Vladimirskij solutions of the nonlinear Vlasov-Maxwell equa-

tions and the associated envelope equations for high-intensity beams in a periodic lattice is derived.

It includes the classical Kapchinskij-Vladimirskij solution as a special case. For a given lattice,

the distribution functions and the envelope equations are specified by eight free parameters.

The class of solutions derived captures a wider range of dynamical envelope behavior for

high-intensity beams, and thus provides a new theoretical tool to investigate the dynamics of

high-intensity beams.

PACS numbers: 29.27.Bd
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For high-intensity charged particle beams in an uncoupled periodic transverse focusing

lattice, the beam envelope dynamics described by the envelope equations is an important

research topic for optimizing beam quality and controlling beam instability. The most com-

prehensive self-consistent description of high-intensity beam dynamics, including both col-

lective transverse dynamics [1–3] and longitudinal dynamics[4], is a kinetic description using

the nonlinear Vlasov-Maxwell (VM) equations [5]. In 1959, Kapchinskij and Vladimirskij

[5, 6] derived the envelope equations as a rigorous solution of the VM equations for a special

distribution function, which is now called the Kapchinskij-Vladimirskij (KV) distribution.

Since then, the envelope equations have become a very important theoretical tool for in-

vestigating the transverse dynamics of high-intensity beams in uncoupled periodic focusing

lattices [1–3, 7–15].

In this Letter, we derive a class of generalized Kapchinskij-Vladimirskij solutions of the

VM equations and the associated nonlinear envelope equations for high-intensity beams in

an uncoupled periodic transverse focusing lattice. The new class of distribution functions

and the associated envelope equations include the classical KV distribution function and

the associated envelope equations as a special case. In the classical KV solution, for a given

focusing lattice and a line density of the beam, the distribution function and associated

envelope equations are specified by two free parameters, i.e., the transverse emittances εx

and εy. In the generalized solutions described in this letter, the distribution functions and

associated envelope equations are specified by eight free parameters, i.e., two transverse

emittances εx and εy, and two 2×2 symmetric and positive definite matrices ξx and ξy. The

KV solution is a special case of the solutions presented here when ξx = ξy = I, where I is

the 2× 2 unit matrix. The choice of ξx and ξy other than the unit matrix I introduces the

dependence on the phase advance φx and φy. Therefore, the new set of envelope equations

enable us to study a much wider class of beam envelope dynamics.

Our starting point is the Vlasov-Maxwell equations that govern the nonlinear evolution

of the distribution function f and the normalized self-field potential ψ,

∂f

∂s
+ v · ∂f

∂x
− (∇ψ + κqxxex + κqxyey) ·

∂f

∂v
= 0 , (1)

∇2ψ =
−2πKb

Nb

ˆ
fdvxdvy . (2)

Here, the normalized self-field potential is defined by ψ = qbφ/γ
3
bmβ

2
b c

2, where φ is the

space-charge potential, βbc is the directed beam velocity in the longitudinal direction,
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γb = (1− β2
b )
−1/2 is the relativistic mass factor, s = βbct is an effective time vari-

able normalized by 1/βbc, Kb = 2Nbq
2
b/γ

3
bmβ

2
b c

2 is the beam self-field perveance, and

Nb =
´
fdxdydvxdvy is the line density. Particle motion in the beam frame is assumed

to be non-relativistic, and (x, y) is the transverse displacement of a beam particle, v =

dx/ds = (vx, vy) is the normalized transverse velocity in the beam frame, and κqx and κqy

are the focusing coefficients for the quadrupole lattice. The −∇ψ term in Eq. (1) describes

the self-field force due to the self-electric and self-magnetic fields of the beam, and it is

nonlinearly coupled to the distribution function f through Eq. (2). Equations (1) and (2)

form a nonlinear integro-differential equation system, and it is in general difficult to find

analytical solutions.

Kapchinskij and Vladimirskij [5, 6] discovered a remarkable solution of the nonlinear VM

equations (1) and (2), which is now called the KV distribution. The solution is constructed

from the well-known Courant-Snyder invariants [16] for a linear focusing lattice

Ix =
x2

w2
x

+ (wxẋ− xẇx)2 , Iy =
y2

w2
y

+ (wyẏ − yẇy)2 . (3)

Here, εx and εy are the constant transverse emittances, and wx and wy are the envelope

functions satisfying the envelope equations,

ẅx + (κqx + κsx)wx = w−3x , ẅy + (κqy + κsy)wy = w−3y . (4)

In Eq. (4), the self-field force are assumed a prior to be a linear function of the displacement

with the defocusing coefficient κsx and κsy, i.e., −∇ψ = −κsxxex− κsyyey. The coefficients

κsx and κsy will be determined self-consistently from the distribution function, which is

required to satisfy the Vlasov equation (1) and simultaneously generate a linear self-field

force in order for the CS invariants to be valid. A distribution function that satisfies both

conditions is the KV distribution given by

fKV =
Nb

πεxεy
δ

(
Ix
εx

+
Iy
εy
− 1

)
, (5)

which obviously satisfies the Vlasov equation (1) because it is a function of the invariants

of the particle dynamics. Here, the constants εx and εy are the transverse emittances. The

density profile projected by the distribution function fKV in the transverse configuration

space is

n (x, y, s) =

ˆ
dẋdẏfKV =

 Nb/πab, 0 ≤ x2/a2 + y2/b2 < 1 ,

0, 1 < x2/a2 + y2/b2 .
(6)
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where a ≡ √εxwx , b ≡
√
εywy . This density profile corresponds to a constant-density beam

with elliptical cross-section and pulsating transverse dimensions a and b. The associated

normalized self-field inside the beam, determined from Eq. (2), is given by

ψ =
−Kb

a+ b

(
x2

a
+
y2

b

)
, 0 ≤ x2/a2 + y2/b2 < 1, (7)

which indeed generates a linear defocusing force with coefficients κsx = −2Kb/a(a+ b), and

κsy = −2Kb/b(a+ b). The KV solution reduces the nonlinear VM equations to the envelope

equations given by Eq. (4) in terms of wx and wy, or equivalently, in terms of a and b as

ä+ κqxa−
2Kb

(a+ b)
=
ε2x
a3
, b̈+ κqyb−

2Kb

(a+ b)
=
ε2y
b3
. (8)

The envelope equations have become an indispensable tool for our understanding of the

dynamical behavior of high-intensity beams.

We now show how to construct a class of more general solutions of the nonlinear VM

equations and the associated envelope equations, which include the classical KV solution as

a special case. It turns out that the class of distribution functions that generate a linear

space-charged force and satisfy the Vlasov equation is much wider than the KV distribution

given by Eq. (5). First, we construct the following invariants for the transverse dynamics of

a single particle that is more general than the CS invariants give by (3). For the dynamics

in the x−direction, the invariant is

Iξx = (x, ẋ)ET
x P

T
x ξxPxEx(x, ẋ)

T , (9)

where ξx, Ex, and Px are 2×2 matrices, and superscript “T ” denotes matrix transpose. The

matrix ξx =

 ξx1 ξx2

ξx2 ξx4

 is a symmetric, positive definite constant matrix, and Ex and Px

are defined as

Ex ≡

 w−1Tx 0

−ẇx wx

 , Px ≡

 cosφx − sinφx

sinφx cosφx

 , (10)

where wx and φx are the envelope function and phase advance, respectively, satisfying

ẅx + (κqx + κsx)wx = w−3x , (11)

dφx/ds = 1/w2
x . (12)

For present purpose, the self-field force is assumed a prior to be a linear function of x,

i.e., −∂ψ/∂x = −κsxxex. It will be determined later self-consistently from the distribution
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function. The superscript “T ” denotes matrix transpose. There are several methods to verify

that Iξx is a constant of the motion. The simplest approach is to exam the transfer map [17]

between the initial point (x0, ẋ0) and (x, ẋ), which is constructed as

M = E−1x P−1x Ex0 =

 wx 0

ẇx
1

wx

 cosφx sinφx

− sinφx cosφx

 w−1x0 0

−ẇx0 wx0

 .

This implies that

PxEx

 x

ẋ

 = Ex0

 x0

ẋ0


is a constant of the motion. Therefore, Iξx given by Eq. (9) for a constant matrix ξx is a

constant of the motion. In addition, because ξx is chosen to be symmetric and positive

definite, Iξx is also positive definite.

When Iξx is chosen to be the 2× 2 unit matrix I, the term P T
x ξxPx in Eq. (9) reduces to

the unit matrix I, and the Iξx invariant becomes the classical CS invariant given by Eq. (3).

In this special case, the invariant is a function of wx, ẇx, x, and ẋ only, and does not depend

on the phase advance φx.

When the ξx matrix is chosen to be any symmetric, positive definite matrix other than

the unit matrix, the invariant Iξx will depend on the phase advance φx. Similarly, the corre-

sponding invariant Iξy in the y−direction can be constructed by replacing the subscript “x”

with “y” in Eqs. (9)-(12). The distribution function for the new class of solutions is chosen

to be

f =
Nb|ξx||ξy|
πεxεy

δ

(
Iξx
εx

+
Iξy
εy
− 1

)
, (13)

where the constants εx and εy are the transverse emittances, and |ξx| and |ξy| are the deter-

minants of ξx and ξy matrices. To be consistent with the assumption that the space-charge

force is linear, it is necessary to verify that this distribution function indeed generates a lin-

ear space-charge force. For this purpose, we calculate the number density in configuration

space defined by n (x, y, s) =
´
dẋdẏf . The velocity integral here is much more difficult to

calculate than in the classical KV case, because (Iξx ,Iξy) depend on (wx, wy) and (φx, φy) in

a non-trivial manner. The special technique required here is the Cholesky decomposition.

For a symmetric, positive definite matrix M, it is always possible to uniquely decompose it

into the form

M = LTL ,
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where L is a lower triangular matrix. This is the Cholesky decomposition. In the present

case, the matrix product ET
x P

T
x ξxPxEx is symmetric and positive definite because ξx is

symmetric and positive definite, and its Cholesky decomposition is

ET
x P

T
x ξxPxEx = LTL , (14)

where

L =

 1

wx

√
|ξx|
hx

0

gx

wx
√
hx
−
√
hxẇx

√
hxwx

 , (15)

hx = ξx4 cos
2 φx + ξx1 sin

2 φx − ξx2 sin 2φx , (16)

gx = (ξx4 − ξx1) cosφx sinφx + ξx2 cos 2φx . (17)

Equation (14) can be verified by straightforward calculation. It is straightforward to confirm

that hx is positive definite from the fact that ξx is positive definite. With help of this

decomposition, the Iξx invariants can be expressed as

Iξx =

 x

wx

√
|ξx|
hx

2

+

[(
gx

wx
√
hx
−
√
hxẇx

)
x+

√
hxwxẋ

]2
. (18)

The Iξy invariant has the same function form, with the subscript “x” replaced by the subscript

“y” in Eqs. (14)-(18).

With the following change of variables

Vx =

(
gx

wx
√
hx
−
√
hxẇx

)
x
√
εx

+

√
hx√
εx
wxẋ ,

Vy =

(
gy

wy
√
hy
−
√
hyẇy

)
y
√
εy

+

√
hy
√
εy
wyẏ ,

dẋdẏ =
1

√
εxεywxwy

dVxdVy ,

the velocity integral
´
dẋdẏf can now be carried out exactly to give

n (x, y, s) =

ˆ
dẋdẏf

=

ˆ
dVxdVy

Nb

πwxwy

√
|ξx||ξy|
hxhyεxεy

δ

(
x2

a2
+
y2

b2
+ V 2

x + V 2
y − 1

)

=


Nb

πab
, 0 ≤ x2/a2 + y2/b2 < 1 ,

0, 1 < x2/a2 + y2/b2 ,
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where a and b are the transverse dimension of the ellipse defined by a ≡ wx
√
hxεx/|ξx| and

b ≡ wy
√
hyεy/|ξy|. The corresponding effective temperature profile is calculated to be

T⊥(x, y, s) ≡
〈
(ẋ− 〈ẋ〉)2 + (ẏ − 〈y〉)2

〉
=


(

εx
2hxw2

x

+
εy

2hyw2
y

)(
1− x2

a2
− y2

b2

)
0 ≤ x2/a2 + y2/b2 < 1 ,

0, 1 < x2/a2 + y2/b2 ,

where 〈χ〉 ≡
´
χfdẋdẏ/

´
fdẋdẏ denotes the moment of χ. As in the case of the classical KV

solution, the density profile n(x, y, s) corresponds to a constant-density beam with elliptical

cross-section and pulsating transverse dimensions a and b. The normalized self-field potential

ψ is quadratic inside the beam [see Eq. (7)], and the corresponding self-field force is linear

with κsx = −2Kb/a(a+ b) , κsy = −2Kb/b(a+ b). The difference here is that the transverse

dimensions a and b now depend on the phase advance φx and φy through the functions hx

and hy. Thus, we have completed the construction of the new class of solution of the VM

equations and the associated envelope equation.

To summarize, the class of generalized KV solutions is specified by the distribution func-

tion in Eq. (13), which reduces the VM equations to a set of envelope equations for wx, wy,

φx, and φy. For easy reference, the complete set of envelope equations is listed here,

ẅx +

[
κqx −

2Kb

a(a+ b)

]
wx = w−3x , (19)

ẅy +

[
κqy −

2Kb

b(a+ b)

]
wy = w−3x , (20)

φ̇x = 1/w2
x , φ̇y = 1/w2

y , (21)

a ≡ wx
√
hxεx/|ξx| , b ≡ wy

√
hyεy/|ξy| , (22)

hx ≡ ξx4 cos
2 φx + ξx1 sin

2 φx − ξx2 sin 2φx , (23)

hy ≡ ξy4 cos
2 φy + ξy1 sin

2 φy − ξy2 sin 2φy , (24)

where the constants εx and εy are the transverse emittances, and ξx =

 ξx1 ξx2

ξx2 ξx4

 and

ξy =

 ξy1 ξy2

ξy2 ξy4

 are symmetric, positive definite constant matrices.

For a given periodic lattice and beam line density Nb, the distribution function and the

envelope equations are specified by eight free parameters, i.e., εx, εy, ξx, and ξy . This class
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of solutions includes the KV distribution and associated envelope equations as a special case

when ξx = ξy = I. This class of solutions is also more general than the classical KV solution

because when ξx 6= I and/or ξy 6= I, the envelope functions wx and wy are coupled to the

phase advance φx and φy through hx and hy, whereas for the KV solution wxand wy are

decoupled from φx and φy. Thus, only two free parameters, i.e., εx and εy, are needed to

specify the classical KV solution. Because of the extra degree of freedom introduced by the

matrices ξx and ξy , the new class of solutions derived here can capture a wider range of

dynamical envelope behavior for high-intensity beams. As a result of the dependence on

the phase advance, φx and φy, the new set of envelope equations in general do not admit

solutions matched to the periodic lattice, since the phase advance is in general not a integer

fraction of 2π.

We now give two numerical examples of the envelope dynamics described by the new set

of envelope equations. We consider the case of a high-intensity beam with εx = εy = ε

and normalized self-field perveance is Kb/ε = 10 in a FODO (acronym for focusing-off-

defocusing-off) focusing lattice with normalized quadrupole focusing field amplitude κ̂qS ≡

qbB
′
q/γbmβbc

2 = 15 and filling factor η = 0.30, where S is the lattice period. For comparison,

the matched solution of the classical KV envelope equations (8) is plotted in Fig. 1 for 20

lattice periods. In Fig. 2, the envelope dynamics is shown for the case where ξx =

 1 0

0 1


and ξy =

 2 0

0 0.5

 . The nonlinear evolution of the envelope shows a complicated pattern,

compared with the matched KV envelope in Fig. 2. Even though the envelope is not matched

with period S in Fig. 2, on a longer distance-scale, the envelope in Fig. 2 is approximately

matched with period of 28S, where S denotes one lattice period. Figure 3 shows the envelope

dynamics for the case where ξx =

 1 0

0 1

 and ξy =

 1 0.5

0.5 1

 , which also manifests

the feature of approximate long-distance periodicity. The approximate periodicity length of

the envelope dynamics in Fig. 3 is 26S. However, the small-scale variation and irregularity

superimposed on top of the long-term periodicity is much more prominent in Fig. 3 than the

case shown in Fig. 2.

In conclusion, we have derived a class of generalized KV solutions of the nonlinear VM

equations and the associated envelope equations for high-intensity beams in a periodic lat-
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Figure 1: Envelope dynamics of a matched KV solution over the interval 0 ≤ s/S ≤ 20.
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Figure 2: Envelope dynamics for the case where ξx =

 1 0

0 1

 and ξy =

 2 0

0 0.5

over the interval

0 ≤ s/S ≤ 100.

tice. It includes the classical KV solution as a special case. For a given periodic lattice

and beam line density, the distribution function and the envelope equations are specified by

eight free parameters. The class of solutions derived here captures a wider range of envelope

dynamics for high-intensity beams, and thus provides us with a new theoretical tool to in-

vestigate the dynamics of high-intensity beams in an uncoupled periodic transverse focusing

lattice.
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Figure 3: Envelope dynamics for the case where ξx =

 1 0

0 1

 and ξy =

 1 0.5

0.5 1

over the

interval 0 ≤ s/S ≤ 100.
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