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Neutralized drift compression offers an effective means for particle beam pulse compression and

current amplification. In neutralized drift compression, a linear longitudinal velocity tilt (head-to-tail

gradient) is applied to the non-relativistic beam pulse, so that the beam pulse compresses as it drifts in

the focusing section. The beam current can increase by more than a factor of 100 in the longitudinal

direction. We have performed an analytical study of how errors in the velocity tilt acquired by the beam

in the induction bunching module limit the maximum longitudinal compression. It is found that the

compression ratio is determined by the relative errors in the velocity tilt. That is, one-percent errors

may limit the compression to a factor of one hundred. However, a part of the beam pulse where the

errors are small may compress to much higher values, which are determined by the initial thermal

spread of the beam pulse. It is also shown that sharp jumps in the compressed current density profile

can be produced due to overlaying of different parts of the pulse near the focal plane. Examples of

slowly varying and rapidly varying errors compared to the beam pulse duration are studied. For beam

velocity errors given by a cubic function, the compression ratio can be described analytically. In this

limit, a significant portion of the beam pulse is located in the broad wings of the pulse and is poorly

compressed. The central part of the compressed pulse is determined by the thermal spread. The scaling

law for maximum compression ratio is derived. In addition to a smooth variation in the velocity tilt,

fast-changing errors during the pulse may appear in the induction bunching module if the voltage pulse

is formed by several pulsed elements. Different parts of the pulse compress nearly simultaneously at

the target and the compressed profile may have many peaks. The maximum compression is a function

of both thermal spread and the velocity errors. The effects of the finite gap width of the bunching

module on compression are analyzed analytically.

Published by Elsevier B.V.
1. Introduction

Longitudinal compression is a standard technique used to
increase the beam intensity in various accelerators [1]. Long-
itudinal compression during neutralized drift is achieved by
accelerating the tail of the beam pulse relative to the head. This
is accomplished experimentally by passing the beam pulse
through a time-dependent bunching module and then through a
plasma region where the beam space charge is neutralized.
Previous longitudinal drift compression analysis has studied
the effects of intrinsic beam momentum spread, plasma, and
B.V.

: þ1 609 243 2418.

ich).
solenoidal final focus conditions on compression [1,2]. Much
focus has also gone towards space-charge neutralization [1,3,4],
where it was shown that plasma can neutralize the space charge
and current of the beam to a very high degree, sufficient to
provide neutralized ballistic focusing. The kinematics of neutra-
lized drift compression is well-developed [5,6]. In the case of an
ideal (perfect) velocity tilt, all beam ions arrive at the same
location at the target plane and the beam compression is
determined by intrinsic velocity spread. In practical devices, the
bunching module operates with some errors in voltage, which
results in errors in the velocity tilt. Due to errors in the velocity
tilt, the beam ions arrive at the target plane at different times,
which limits the compression and determines the final shape of
the pulse at the target. Typically, the velocity errors are much
bigger than the intrinsic thermal spread. Therefore, the effects of
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errors in the velocity tilt on the longitudinal compression dom-
inate the thermal effects. The effects of errors are mostly respon-
sible for the final pulse compression and are the main subject of
this paper. Correspondingly, we analyze a few possible scenarios
for how the errors in the velocity tilt acquired by the beam in the
bunching module can limit the beam compression for future and
current accelerators. This analysis should give designers of the
bunching module the necessary conditions for the accuracy of the
voltage form on the bunching module. An accompanying paper [7]
applies the obtained results to experimental data from the Neutra-
lized Drift Compression eXperiment-I (NDCX-I) [8–10].

We have performed an analytical study of how errors in the
velocity tilt acquired by the beam in the induction bunching
module can limit the maximum longitudinal compression. Due to
errors in the velocity, dvb, the beam pulse width at the target
plane, lf, is of order dvbtf, where tf is the time to reach the target
plane. Correspondingly, the width of the beam pulse is decreased
from the initial pulse width, vb0tp¼ lp, to dvbtf. Here, vb0 and tp are
the initial beam velocity and pulse duration, respectively. This
gives a compression ratio of the order

C �
lp
lf
¼

vb0tp

dvbtf
ð1Þ

The time to reach the target plane is related to the applied
velocity tilt Dvb by

Dvbtf ¼ lp ð2Þ

so that the beam ions from the tail overtake the beam ions at the
head at the target plane after drifting in the compression section.
Typically, the pulse duration is much shorter than the focusing
time, tp5tf, and the velocity modulation is small compared with
the initial beam velocity, 9Dvb9ovb0, with the fractional velocity
tilt, Max(Dvb)/vb0, of order 5–30%. Substituting Eq. (2) into Eq. (1)
gives

C �
Dvb

dvb
¼

DU

dU
ð3Þ

Therefore, the compression ratio is limited by the relative
errors in the applied velocity tilt in the induction bunching
module, compared with the ideal velocity tilt [11], and are related
to the voltage errors in the induction bunching module. Here,
DU¼MvbDvb is the amplitude of the voltage, and dU¼Mvbdvb is a
typical value of the voltage error. Similarly, the minimum com-
pressed pulse duration is dtp � dvbtf =vb ¼ dvbtp=Dvb, and is also
determined by the voltage errors according to

dtp � tp
dU

DU
ð4Þ

Typical values of the relative error in the voltage of the
induction bunching module are about 1–2%. Eq. (3) then gives a
compression, C, in the range C�50–100. This estimate agrees well
with the reported values of longitudinal compression obtained in
experiments [8–10,12]. If there were no errors in the velocity tilt,
then the effects associated with a small thermal velocity vT

(vT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tbz=M

p
and Tbz � 0:2eV) would limit the compression in

Eq. (3) to a value of order

CT �
Dvb

vT
ð5Þ

For example, for the 300 keV beam in NDCX-I, vb0/vT�1000
and CT�300 for a velocity tilt Dvb=vb0 � 1=3 [10]. However, this
would require a very precise design of the induction bunching
module with an error of order 0.1%; and, similarly, the control of
the beam velocity in the ion source should be realized with a
precision within 0.1%.

If the value of the error dvb/Dvb is much smaller for a part of
the beam pulse, then this part of the beam pulse may compresses
to high values, whereas the rest of the pulse does not compress
well. For important practical cases, the analysis of compression is
more complicated because both the thermal spread and errors in
the velocity tilt should be considered simultaneously. This
requires a kinetic treatment of the longitudinal compression.
Analytical formulas for the beam profile dynamics have been
derived and can be used for practical calculations of the long-
itudinal compression. We shall consider three cases: the first two
cases deal with a smooth variation of errors over the beam pulse;
the first one with relatively large errors, dvb/Dvb�10%, and the
second case with smaller errors, dvb/Dvb�1%. For the third case,
we consider errors of similar size to the second case, dvb/Dvb�1%,
but rapidly changing during the pulse. This corresponds to a
technical realization of the induction bunching module consisting
of many independent elements, each introducing an error.

For the case of smooth errors, where only a small portion of
the pulse compresses, it is found that the resulting beam profile at
the target plane has a very wide foot described by a power law,
and the central part is determined by the shape of the distribution
function in thermal velocity spread. For the case of rapidly
changing errors during the pulse, the resulting maximum com-
pression depends weakly on the thermal spread, because the
velocity tilt errors dominate the thermal spread effects at
all times.

This paper is organized as follows: Section 2 provides the basic
equations in both Lagrangian and Eulerian descriptions, Section 3
considers general properties of the effects of voltage errors and
thermal spread on the longitudinal compression, Section 4 ana-
lyzes the effects of the finite gap of the induction bunching
module, and Section 5 summarizes the conclusions. Appendixes
A and B provide additional details on general properties of current
density profiles of compressed pulse for slowly-varying voltage
errors compared to voltage pulse on the bunching module.
2. Basic equations

2.1. Lagrangian description in parametric form neglecting thermal

effects

First, we consider beam compression neglecting the thermal
spread. After the beam pulse passes through a time-dependent
bunching module, the beam acquires the velocity tilt, Dvb(t),
where t is the time of beam interaction with the induction
bunching module. The beam then passes through a plasma region
where the beam space charge is neutralized and space charge
effects can be neglected. The time t can be viewed as a marker of
the beam pulse slice, or as a Lagrangian coordinate. The resulting
change in the beam velocity, Dvb(t), during the pulse interval,
0rtrtp, should be chosen so that all of the beam ions arrive
simultaneously at the same focal plane at a distance, lf, from the
location of the induction bunching module. Here, we consider a
continuous long beam, a part of the beam is compressed by
passing through a bunching module. For example, for NDCX-I
experiment about 500 ns of the 10 ms beam is compressed. The
rest of the beam to0 and t4tp is not compressed at the target
plane. The ion beam dynamics can be described analytically by
following the ion beam trajectory, zb(t,t) as a function of time, t.
The following equation expresses the beam dynamics in a para-
metric form as a function of the time variables, t and t. The ion
beam trajectory after passing an induction bunching module for
t4t is given by

zbðt,tÞ ¼ vbðtÞðt�tÞ, ð6Þ

where vb(t)¼vb0þDvb(t) is the beam velocity after the bunching
module, and vb0�vb(0) is the beam velocity after interaction with
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the induction bunching module at the beginning of the pulse. For
simplicity, both time variables t and t are counted from this
moment. Note, that the initial beam velocity before interaction
with the induction bunching module, vin

b , can be different from
vb0, because the beam head and sometimes the entire pulse is
often decelerated relative to other uncompressed parts of the
beam. The position of a beam ion before interacting with the
induction bunching module at time t, i.e., for tot is

z0ðtÞ ¼ vin
b ðt�tÞ ð7Þ

The condition for longitudinal compression is that all parts of
the compressed beam pulse arrive simultaneously at the same
location, i.e.,

zbðtf ,tÞ ¼ lf , ð8Þ

for all t (see Fig. 1 for a schematic of the beam trajectories during
compression – the so-called ’Applegate’ diagram for velocity
modulation [13,14]). Here, tf¼ lf/vb0 is the time-of-flight of the
beam pulse from the bunching module to the final focus plane.
From Eqs. (6) and (8) it follows that the ideal velocity tilt, Dvi

bðtÞ
should satisfy [15,6]

Dvi
bðtÞ ¼ vb0t=ðtf�tÞ, or; vi

bðtÞ ¼ vb0tf =ðtf�tÞ ð9Þ

The ion line density can be determined from the compression
of the beam pulse, dzb/dz0, where dz0 is the initial distances
between two slices, and dzb is the current distance. Here, we
consider only longitudinal dynamics and do not consider possible
simultaneous radial compression. In neutralized ballistic focusing,
the radial and longitudinal compressions are dynamically
decoupled; therefore, once the longitudinal dynamics is known,
the transverse focusing (which is affected by chromatic aberra-
tions) can be studied independently. Thus, in the following, by
‘‘ion beam density’’ we are referring to ‘‘ion beam line density’’.
The initial position of a beam ion interacting with the induction
bunching module is given by Eq. (7) and the current position is
given by Eq. (6). Therefore, the ion line density is given by

nbðt,tÞ ¼ nin
b

dz0

dzb

����
����¼ nin

b vin
b

@zb=@t
�� �� ð10Þ

Here, nin
b is the beam line density before the bunching module,

which we assumed constant for a long coasting beam produced
by the ion source. Substituting zb(t,t) from Eq. (6) into Eq. (10)
gives

@zb

@t ¼ ðt�tÞdvbðtÞ=dt�vbðtÞ, ð11Þ
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Fig. 1. Schematic of the beam trajectories during compression, -’Applegate’ diagram

for velocity modulation. The arrows indicate the time t when the beam passes

through the tilt core, which changes the beam velocity. (a) The ideal velocity tilt given

by Eq. (9) when the entire beam pulse is compressed at the target plane; (b) the

velocity tilt with errors shown in Fig. 4. Dashed (red) lines show boundaries of the

beam pulse. Dotted (dark yellow) line shows the middle of the pulse. All units are

normalized to the pulse duration, tp, and the pulse length, lp. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)
nbðt,tÞ ¼
nin

b vin
b

vbðtÞ�ðt�tÞdvbðtÞ=dt
�� �� ð12Þ

Eq. (12) has been generalized in Refs. [16–18] taking into
account thermal effects and space-charge effects. From Eq. (12) it
follows that the compression ratio in the current density is given
by

Cjðt,tÞ ¼
nbðt,tÞvbðtÞ

nin
b vin

b

¼
1

91�ðt�tÞdlnvbðtÞ=dt9
ð13Þ

Substituting zb(t,t) from Eq. (6) into Eq. (13) gives the current
compression ratio as a function of the variables z and t tradition-
ally used in klystron theory [13,14]. Note that in contrast to
klystron theory, where the voltage is assumed to be a harmonic
function, voltage in the inductive bunching module is very
different from a harmonic function. Therefore, some of the
features of compressed pulse are very different from the klystron
case. The compression ratio can be expressed as a function of (t,z)
according to

Cjðt,zÞ ¼
1

91�zðdvbðtÞ=vbðtÞ2dtÞ9
ð14Þ

Note that due to current conservation Cj(t,t)¼1 at t¼t, i.e.,
right after passing the induction bunching module. In the follow-
ing, we shall use both the compression ratio for the beam line
density and the current density; they differ by the ratio of the
instantaneous and initial beam velocities and can be easily
converted from one to the other. A convenient way to character-
ize the compression of the pulse is to introduce the time, ts(t),
when different parts of the ion beam pulse compress or when
neighboring slices of the beam arrive at the same position. In
Lagrangian coordinates, this corresponds to a singularity of the
beam line density profile given by Eq. (12), i.e., at time

tsðtÞ ¼
vbðtÞ

dvbðtÞ=dt þt ð15Þ

Substituting Eq. (15) into Eq. (12) gives the compression ratio,
nb=nin

b , as a function of t

C �
nbðt,tÞ

nin
b

¼
1

9t�tsðtÞ9
vin

b

dvbðtÞ=dt
ð16Þ

Because vb0/dvb(t)/dtEtf, the compression ratio at time t¼tf

CEtf/9tf�ts(t)9. In the case of ideal compression, all parts of the
beam pulse compress at the same time, tf. However due to errors
in the applied velocity tilt, different parts of the beam pulse
compress at different times ts(t)atf, and correspondingly the
compression ratio is inversely proportional to the relative error in
the time of compression of different parts of the beam pulse

C �
tf

dtsðtÞ
ð17Þ

Here, dts(t)¼ts(t)�tf.
2.2. Eulerian description neglecting thermal effects

It is instructive to compare the Lagrangian solution given by
Eq. (12) with the solution in Eulerian coordinates; see, for
example, Refs. [16,17]. After the beam pulse passes through the
bunching module completely at time t¼tp, the beam velocity has
a profile as a function of z, and corresponding gradient qvb/qz(z,tp)
and line density profile nb(z,tp). The solution to the fluid equations
for free convection

@n

@t
þ
@vbn

@z
¼ 0, ð18Þ
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can be expressed as [17]

nðz,tÞ ¼
nbðz,tpÞ

1þð@vbðz,tpÞ=@zÞðt�tpÞ
ð19Þ

Here, functions nb(z,tp) and qvb/qz(z,tp) can be determined from
functions nb(t,tp) given by Eq. (12) and z¼zb(t,t) determined from
Eq. (6) for a given t; the gradient of the beam velocity established
by the bunching module is given by

@vbðz,tÞ

@z
¼
@vb=@t
@zb=@t

¼�
1

ð1=dlnvbðtÞ=dtÞ�ðt�tÞ
, ð20Þ

where qzb/qt was used from Eq. (11). Substitution of the ideal
profile given by Eq. (2) into Eq. (20) gives

@vbðz,tpÞ

@z
¼�

1

tf�tp
, ð21Þ

i.e., the established velocity gradient after the beam pulse passes
through the bunching module is constant and the velocity profile
is linear.

The solution is also convenient to consider in the phase-space
(z,v), where each point moves with velocity v along the z-axis, so
that a straight line in phase space with a constant slope remains a
straight line in phase space and compresses into a vertical line
[17,20] (see Fig. 2).

Another informative way to characterize the errors is to
calculate the errors in the applied velocity gradient after the
beam has passed through the bunching module. The first time a
part of the beam compresses corresponds to the maximum value
of the velocity gradient -@vb=@z9max at the time when Eq. (19)
gives a singularity, i.e.,

tmin ¼ tp�
1

@vb=@z9max

ð22Þ

From Eq. (19) it is evident that the compression ratio at time
tmin is given by

Cðz,tminÞ �
nbðz,tÞ

nin
b

¼
nbðz,tpÞ=nin

b

½ð@vb=@zÞ�ð@vb=@zÞ9max�ðtmin�tpÞ
ð23Þ

That is, the compression ratio is inversely proportional to the
error in the applied velocity gradient and time to compression.
Because tmin�tp ¼ 1= @vb=@z9max

� �
and for small amplitude velocity

tilt DvbðtÞ{vin
b , nbðz,tpÞ � nin

b , the compression ratio is inversely
proportional to the relative error in the velocity gradient, i.e.,

Cðz,tÞ � @vb=@z
��
max

½@vb=@z�@vb=@z
��
max
�

ð24Þ
Fig. 2. The phase-space during ideal compression with a linear velocity gradient.

Shown are the normalized beam velocity as a function of the normalized position for

three times: t/tp¼1; 3; 4.9. The initial profile at t/tp¼1 is vb/vb0¼1þ0.25(1�z/lp), and

lp¼vb0tp is the length of the pulse. The pattern schematically shows the spread in

phase space due to thermal effects.
The relation between the velocity gradient and the velocity tilt
as a function of time is given by Eq. (20). The time function, ts(t),
when different parts of the ion beam pulse compress can be used
instead of the velocity gradients. Both functions are related
according to Eq. (20) and Eq. (15) by

@vbðz,tÞ

@z
¼�

1

tsðtÞ�t
; z¼ zbðt,tÞ ð25Þ

For a small velocity tilt and error in the velocity modulation
with 9dvb9{9Dvb9{vin

b , expanding Eq. (15) in dvb=Dvi
b, where Dvi

b

is given by Eq. (9), yields

tsðtÞCtf 1þ
dvb

vb0
�tf

ddvb=dt
vb0

� �
ð26Þ

Note that because the velocity error changes with time on a
time scale short compared to the focusing time, tp5tf, the third
term in Eq. (26) typically dominates the second term. Making use
of the estimates, ddvb/dt�dvb/tp and tf/tp�vb/Dvb, gives for the
influence of errors on the compression time

dtsðtÞ
tf
�

tf ddvb=dt
vb0

�
dvb

Dvb
ð27Þ

Substituting Eq. (27) into Eq. (17) gives

C �
tf

dts
�

Dvb

dvb
ð28Þ

That is, the compression ratio is inversely proportional to the
relative errors in the velocity tilt.

2.3. Lagrangian description in parametric form taking thermal

effects into account

2.3.1. Discussion of effects of thermal spread on maximum

compression

A singularity in the expression of the compression ratio in Eqs.
(12) or (19) is limited by thermal effects. Therefore, these
equations have been generalized, taking into account small
thermal effects. For the ideal velocity profile given by Eq. (9),
the beam line density tends to infinity at t¼tf independently of t
for any slice of the beam pulse, corresponding to perfect com-
pression. The singularity is limited due to effects of the finite
temperature or energy spread of the beam [18,9]. Due to the small
energy spread, ions arrive at different locations at time tf even for
an ideal velocity tilt. Correspondingly, the spread of positions
around the compression location appears over distances vTtf,
where vT is the thermal component of the beam velocity asso-
ciated with the beam energy spread. The thermal spread can be
described by the velocity distribution function, f(v), in the ion
source before acceleration through the bunching module, e.g., by
a Maxwellian velocity distribution function f ðvÞ ¼ n0expð�v2=v2

T Þ=

vT

ffiffiffiffi
p
p

. For a beam pulse with a Maxwellian velocity distribution
function the profile is given by

nbðz,tf Þ ¼
nin

b tpvin
bffiffiffiffi

p
p

vT tf

exp �
ðz�lf Þ

2

t2
f v2

T

 !
ð29Þ

The maximum compression ratio C � nb=nin
b given by Eq. (29)

becomes

Cmax ¼
tpvin

bffiffiffiffi
p
p

vT tf

ð30Þ

which is the ratio of the initial beam pulse width to the width of
the compressed pulse due to thermal spread. For example, for
NDCX-I parameters, the ion beam energy is 300 keV, and
TbzC0:3eV , vT/vb0E10�3; and for a velocity tilt, Dvb/vb0¼

tp/tf¼0.15 [10], Eq. (30) gives Cmax¼84. For NDCX-II parameters
with initial 12 active induction cells, the ion beam energy is
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3 MeV, and TbzC0:3eV , vT/vb0E3�10�4; and for a velocity tilt
Dvb/vb0¼tp/tf¼0.25 [19], Eq. (30) gives Cmax¼470. The above
estimates for the maximum achievable compression strongly rely
on assumptions about the longitudinal temperature.
2.3.2. Discussion of longitudinal temperature

The beam longitudinal temperature and the corresponding
energy spread develop due to several effects. The initial spread
in the beam energy, DEi, is determined by the temperature of
the ion source, Ti; i.e., DEi¼Ti¼500–1200 K¼0.05–0.12 eV.
After acceleration in the diode of the ion source, the beam
energy spread, DEbz, remains unchanged due to conservation of
energy, DEbz¼DEi¼Ti, whereas the beam temperature strongly
decreases due to acceleration cooling, Tbz ¼ T2

i =2Eb. For NDCX-1
expected temperature due to acceleration cooling would be
Tbz ¼ T2

i =2Eb � 10�8eV . Note that the temperature in the perpen-
dicular direction remains the same, Tb?¼Ti [20].

Ref. [6] suggested several possible mechanisms for increasing
the energy spread, including two-dimensional effects in the diode,
and collective effects due to the beam space charge. A detailed
numerical study of both effects was performed; the study made it
clear that neither mechanism leads to significant energy spread
[21]. The energy spread and the beam kinetic energy are shown in
Fig. 3. It is evident from Fig. 3 that there is no energy spread
increase due to two-dimensional effects in the diode region as
opposed to the conjecture in Ref. [6]. The two degrees of freedom
of the beam kinetic energy along and across the z-axis are not
coupled. The space charge of the beam results in the beam ions in
the center of the pipe slowing down, as shown in Fig. 3. However,
as the beam exits to the plasma or the extraction metal plate
under experimental conditions, this difference in kinetic energy is
removed, as evident in Fig. 3 at z¼3 m, because the plasma or the
extraction metal plate are equipotentials. The simulations thus
predict a very small energy spread of several eV in the beam ions.

However, the measured energy spread in NDCX-1 device is
about DEbzr100 eV [12]. The corresponding beam temperature
for DEbz¼100 eV, Tbz¼0.05 eV, does not correspond to the accel-
eration cooling [22]. The Boersch effect may be responsible for the
temperature equipartitioning, Tbz¼Tb? [20,23], caused by the
beam-beam particle Coulomb collisions, or the equipartitioning
can be caused by collective instabilities [24]. Another possible
effect is the voltage drift during acceleration in the diode, which
Fig. 3. The colorplot of energy spread (left) superimposed on the beam kinetic energy (r
results in beam energy variation during the pulse. Currently, the
experimental studies of the longitudinal temperature and energy
spread have not been adequate to resolve this question.

Therefore, in the following we shall assume that Tbz¼Ti, and
that the value is determined by the ion source temperature.

Note that a thermal equilibrium distribution in the beam
energy,

f MðvÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pTz=M
p exp �

Mðv�vbÞ
2

2Tz

 !

corresponds to a Gaussian distribution in the energy spread
DEbEM(v�vb)vb with

f MðDEÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pTz=M
p exp �

ðDEÞ2

4EbTz

 !

Correspondingly, the standard deviation of the energy spread

is 2
ffiffiffiffiffiffiffiffiffiffi
EbTz

p
; the average dispersion of the energy spread isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDEÞ2
D Er

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EbTz

p
; and the full width half maximum (FWHM)

of the energy spread is 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EbTzlnð2Þ

p
. For example, for TbzC0:1eV

and Eb¼300 keV, the energy spread dispersion is 245 eV and the
standard deviation is 347 eV.
2.3.3. Discussion of voltage errors

Another effect that can prevent ions from arriving at the same
location at the same time is associated with the errors in the
applied velocity tilt due to the difference (error) in the voltage of
the bunching module with the required voltage pulse by the ideal
velocity tilt. Typically, errors in the applied velocity tilt are
significantly larger than the beam energy spread before the
bunching module. Typical values of the relative error in the
induction bunching module, dvb/Dvb, are about 1–5% and are
typically higher than the thermal effects vT/Dvb�0.3%. For exam-
ple, in NDCX-1 experiments, the energy spread is 170 eV, whereas
errors in the applied voltage of the bunching module can reach
2 kV [22]. Therefore, the effects of errors in the velocity tilt on the
longitudinal compression dominate the thermal effects and are
the main subject of this section. In general, both effects have to be
taken into account in a full kinetic treatment.
ight) in the NDCX-I device simulated by the WARP particle-in-cell code in Ref. [21].
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2.3.4. Calculating compression in the kinetic approach

A calculation of the beam density in a kinetic approach can be
performed analytically by considering the number of beam
particles in phase space at a given location within an interval
dz. Taking a small thermal velocity, vT, into account, the particle
trajectory becomes z¼zb(t,t)þvt. The distribution function is
constant along the ballistic trajectories. The line density of the
beam is given by the number of beam particles in phase space at a
given location [9], for continues initial beam which gives

nbðz,tÞ ¼

Z t

�1

vin
b dt

Z 1
�1

dvf ðvÞdðz�zbðt,tÞ�vtÞ ð31Þ

where v is the particle’s velocity increment associated with the
thermal spread. Integrating once over velocity gives

nbðz,tÞ ¼
vin

b

t

Z t

�1

dtf
z�zbðt,tÞ

t

� 	
ð32Þ

If the thermal spread is sufficiently small, the distribution
function can be changed to a delta-function f(v)-d(v), and
Eq. (32) becomes the same as Eq. (10). In the limit of ideal
compression when the entire beam pulse compresses, the max-
imum compression is given by the ratio of the initial beam pulse
length to the length of the pulse associated with the thermal
spread (see Fig. 2). The thermal spread length is determined
approximately by the distance a beam particle moves at the
thermal velocity in the positive and negative directions, 7vTtf. In
the case of non-ideal compression with large errors in the velocity
tilt, the beam density is determined by the portion of the phase
space that compresses within a distance 7vTtf from the location
of the maximum compression; and the maximum compression is
given by the ratio of the initial length of the fraction of the beam
pulse that compresses within the thermal spread length (see
Fig. 5(b)). The ion beam line density given by Eq. (32) can be
rewritten as

nbðt,tÞ ¼ nin
b

vin
b Dt

2vT tf

�����
�����, ð33Þ

where we introduced the fraction of the beam pulse Dt(t,t)/tp that
compresses within the thermal spread width, i.e., the range of
values dt such that, zb(tf,tþdt)A[zb(tf,t)�vTtf,zb(tf,t)þvTtf]. Here,

Dtðt,tÞ ¼ 2vT

ni
b

Z
dtf

z�zbðt,tÞ
t

� 	

If the function zb(t,t) has non-zero derivative qzb(t,t)/qt then
the very small thermal spread is not important and the distribu-
tion function can be substituted by a delta-function, f ðvÞ-ni

bdðvÞ
and

Dtðt,tÞ ¼ 2vT t

@zbðt,tÞ=@t ð34Þ

Therefore, the generalized expression for the beam line density
given by Eq. (32) or Eq. (33) takes into account the thermal spread
effects and tends to the previous expression if the thermal effects
are not important, and describes limitations at the singular
locations due to thermal effects when and where the beam pulse
compresses.

In the following sections, specific examples showing the
influence of errors on compression are described in more detail.
We consider first two cases: one with relatively large errors
dvb/Dvb�10%, and the other with small errors dvb/Dvb�1%. We
show that even for large errors, the local value of compression can
be large, whereas the average value of compression over the entire
pulse is small. Only in the case when the errors are small can the
average value of compression over the entire pulse be large.
3. General properties of the Effects of voltage Errors and
thermal spread on the longitudinal compression

3.1. Case 1: relatively large errors (dvb/Dvb�10%) in velocity

modulation

The ideal beam velocity modulation function given by Eq. (9)
has a discontinuity in the derivative at the beginning of the pulse
t¼0, and a discontinuity in the function at the end of the pulse
t¼tp, as shown in Fig. 4. An example of a velocity modulation
described by a smooth function at the beginning and the end of
the pulse is shown in Fig. 4. The absolute value of the error in
the velocity dvb/vb is below one percent for most of the pulse,
0.1ot/tpo0.8. Detailed analysis of the compression can be found
in Appendix A. Here we summarize key results.

The phase-plot evolution is shown in Fig. 5. From Fig. 5 it is
evident that a central part of the beam pulse compresses first
at time t/tp¼5.32 and the head and the tail of pulses compress
later in time. The compression ratio is shown in Fig. 6 for
vT/vb0¼2�10�4, and comparison with the case where vT/vb0¼10�3

is shown in Fig. A5 of Appendix A. For the case of relatively large
errors, dvb/Dvb�10% in the velocity tilt, the central part of beam
pulse where the velocity tilt errors are small compresses well,
whereas the rest of the pulse does not. The compression ratio for
most of the remaining pulse is low �10 (see Figs. 6 and A5 of
Appendix A). The maximum compression CEvb0Dt/2vTt is given by
the ratio of the width of the part of the beam pulse, vb0Dt, which
compresses to within the thermal spread length, 2vTt. Here, Dt(t,t)/tp

is the fraction of the beam pulse that compresses within the thermal
spread length, 2vTt. The compressed beam profile in the center is
determined by thermal effects and reflects the particle distribution
function; the broader wings of the profile are determined by the
errors in the applied velocity tilt. Because of the velocity tilt errors,
the tail and the head of the pulse compress at a later time than the
central part of the pulse. At these times, the compressed beam profile
has a double peak structure (both as a function of z for a given time
or a function of time at a given z). Because at this time the tail of the
pulse overtakes the head, the first peak in the double-peak structure
corresponds to the tail, and the second peak to the head (see Fig. 6
for tob/tp¼5.5;5.9 and zob¼5.54;5.98lp). The double peak structure is
a well-known phenomenon in the klystron theory [13,14] and was
also observed in experiments with an inductive bunching module
[25] and in previous simulations of longitudinal compression [9].
Note that this double-peak structure has rapid rise and low ‘‘foot’’
compared with the case when beam first compresses (compare
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double peak structure in Fig. 6 tob/tp¼5.9 with single pick peak at tob/
tp¼5.3). Such double peak with more compact foot of the pulse
maybe preferable than a single peak structure with higher maximum
compression achieved with larger foot, because compressed part of
the beam contain more particles.

3.2. Case 2: Moderate errors (dvb/Dvb�1%) in velocity modulation

If errors are reduced considerably from the 10% level to the 1%
level, the compressed pulse does not change substantially. This is
because the maximum of the compression ratio is determined by
a small part of the pulse where the velocity errors are comparable
with the thermal spread. Detailed analysis of the compression can
be found in Appendix B. Here we summarize key results.

We introduced two types of errors slowly varying compared
with the beam pulse. The two velocity profiles under consideration,
vb1 and vb2, have errors mostly at the beam pulse head and tail
t/tp¼[0,0.2];[0.8,1] (see Fig. 7). The first profile, vb1, incorporates
errors due to the smoother transition to the unperturbed initial
beam velocity compared with the ideal velocity profile given by
Eq. (9). In addition, the vb2 profile has errors according to,

vb2�vb1 ¼�bvb0ðt=tp�1=2Þ3 ð35Þ
where b¼0.01. We also studied scaling of compression ratio with b
by increasing it ten times to b¼0.1. The latter case corresponds to
large, 10% errors in the velocity tilt comparable to the previous case.
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We introduced the cubic nonlinearity, because an error described by
a linear profile results only in a change of time of the optimal
compression, and does not affect the compression ratio. Further-
more, errors described by a parabolic profile do not correspond to
smoother edges at the beginning and end of the pulse.

Note that large variation in the magnitude of the error does not
change the maximum compression significantly [compare Fig. 8
(a and b)] where the magnitude of error was increased 10 times, from
b¼0.01 in Fig. 8(a) to b¼0.1 in Fig. 8(b)]. The maximum compression
Cmax � vb0Dt=2vT t is given by the ratio of the width of the part of the
beam pulse, vb0Dt, which compresses to within the thermal spread
length, 2vTt. It is shown in Appendix B [Eq. (67)] that the fraction of
the pulse that compresses is given by Dt/tpE(2vTtf/lpb)1/3, and that

Cmax �
1

b1=3

lp
2vT tf

� 	2=3

ð36Þ

From Eq. (36) it is evident that when the magnitude of the error
is increased 10 times, the maximum compression decreased by only
101/3

¼2.2 times, as can be seen by comparing Fig. 8(a) and (b).
3.3. Case 3: small errors (dvb/Dvb�1%) but fast changes in the

velocity modulation

In addition to the smooth variation in the velocity tilt, fast-
changing errors during the pulse may appear in the induction
bunching module. These errors can occur due to the fact that the
voltage pulse is formed by several pulsed elements, and every
element can introduce errors. To model these errors we added a
ripple gvb0sinðt=tgÞ to vb1(t), where g¼3�10�3 and tg¼tp/4p and
where vb1 is shown in Fig. 7. Due to errors, different parts of the
beam pulse compress at different times, as shown in Fig. 9. From
Fig. 9 it is evident that small (less than 1%) errors in the velocity can
result in a large variation in the compression time (�20%). This is
because the compression time is proportional to the time derivative
of the beam velocity according to Eq. (15). Moreover, due to fast
changing errors during the pulse, different parts of pulse compress
simultaneously at the same time or position (see Fig. 9). Correspond-
ingly, the compressed profile may have many peaks as shown in
Fig. 10. From Fig. 10 it is evident that the beam temperature only
affects the height of the narrow peak at time ts, when neighboring
slices of the beam arrive at the same position, and the rest of the
compressed pulse is not affected by the thermal effects.

The maximum compression Cmax � vb0Dt=2vT tf is given by the
ratio of the width of the part of the beam pulse, vb0Dt which
compresses to within the thermal spread length, 2vTt. As shown
in Appendix B the fraction of the pulse that compresses is given
by DtEtg(4vT/gvb)1/2 and

Cmax �
tg
tf

vb

vTg

� 	1=2

ð37Þ

From Eq. (37) it is evident that when the magnitude of velocity
error, g, is increased by a factor of 5, the maximum compression is
decreased only by a factor 51=2C2:2 as can be observed by
comparing Fig. 10(a) and (b).
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4. Analysis of the Effects of the finite gap of the induction
bunching module

For linear inductive accelerators envisioned for Heavy Ion
Inertial Fusion, the induction bunching module is used for accel-
eration and bunch shaping. Current examples are the NDCX-I and
NDCX-II experimental configuration are well described in several
publications [8–10,12,22,19]. In these experiments, a potassium
or lithium ion beam with energy in MeV range passes through an
induction bunching module and then drifts through a neutralized
drift section of several meters length. For a few centimeter gap,
the beam requires 25–30 ns to cross the gap, i.e., about 10–20% of
the modulating waveform duration time (about 300 ns). There-
fore, transit time effects can be important. In what follows, these
effects are studied analytically.

The beam velocity tilt is produced by applying an inductively-
generated voltage to two electrodes, which are schematically
shown in Fig. 11. The electrodes have a hole for beam passage.
The hole radius is equal to the accelerator pipe radius, Rw. The
presence of the hole results in an electric field profile in the gap
that is intrinsically two-dimensional, spreading along the z-
direction over distances of order Rw, and producing both radial
electric field and longitudinal electric field components. There-
fore, together with the velocity change in the z-direction, a beam
ion acquires a velocity change in the r-direction. In order to
calculate the radial velocity change, the radial electric field in the
gap must be determined. The electric field in the gap is electro-
static, because the magnetic field is zero inside the gap, and the
electric field can be obtained from Poisson’s equation, with
boundary condition j¼0 at the left conducting boundary, and
j¼V(t) at the right boundary (see Fig. 11). There are analytical
solutions for the case of a cylindrical pipe with a gap width
s, corresponding to s5Rw, lwbRw, and hw¼0. Here, lw is the
length of the washer, and hw is the height of the washer (see
Fig. 11). The solution of Poisson’s equation for the on-axis
potential to within 1% accuracy is given by [25]

jðx,tÞ ¼
1

2
VðtÞ 1þtanh 1:32

x

Rw

� 	� �
ð38Þ

Here x is the coordinate inside the bunching module. For gap
widths satisfying the conditions, s53.5 Rw, lw*Rw, and hw¼0, it is
found to within 3% accuracy that the electric field on the axis
(r¼0) is given by [25]

Ezðx,tÞ ¼
VðtÞ

b
ffiffiffiffi
p
p exp �

x2

b2

� �
ð39Þ

where

b¼
2ffiffiffiffi
p
p Rw 0:73þ0:53ðs=2RwÞ

2
h i

ð40Þ

Similarly, in the limiting case of very long washers with
lw-N, and long vertical dimensions hw-N, the solution can
be approximated to within 0.02% accuracy by [26]

Ezðx,tÞ ¼
VðtÞ

0:52Rw

1

½2coshð1:54x=RwÞ�
1:54

ð41Þ

All three solutions are compared with the numerical solution
of Poisson’s equation for realistic parameters of the induction
bunching module and are shown in Fig. 12. As evident from
Fig. 12, all solutions give nearly identical results. The change in
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the beam kinetic energy is given by

DEb ¼ e

Z 1
�1

Ez½xðtÞ,t�vdt¼ e

Z 1
�1

Ez½x,tðx,tÞ�dx ð42Þ

Here, t(x,t) is the time when the beam particle reaches the
location x; t denotes the time when the beam particle reaches the
location of the bunching module in the approximation of infi-
nitely small gap as before, which gives

tðx,tÞ ¼
Z x

0

dx

vðx,tÞ
þ

Z 0

�1

dx
1

vðx,tÞ
�

1

vin
b

" #
þt ð43Þ

Recall that the initial beam velocity before interaction with the
induction bunching module is vin

b . Substituting for the electric
field profile Ez¼V(t)f(x) into Eq. (42), where the function f(x)
describes the spatial profile of the electric field and is normalized
according to

R1
�1

f ðxÞdx¼ 1, and calculating in a series expansion
in the small parameter corresponding to the ratio of drift time
through the bunching module to the pulse duration gives

DEb ¼ eVðtÞþeV ’ðtÞ
Z 1
�1

Z x

0

dx

vðxÞ
þ

Z 0

�1

dx
1

vðxÞ
�

1

vin
b

" # !
f ðxÞdx

ð44Þ

Here, V’(t)¼dV(t)/dt and it was assumed that the function f(x)
is an even function of x. Substituting into Eq. (44) for the beam
velocity profile assuming a small velocity modulation in quasi-
stationary potential �V(t)F(x), where FðxÞ ¼

R x
�1

f ðxÞdx

vðxÞ ¼ vin
b þ

eVðtÞ
mvin

b

FðxÞ,

gives

DEb ¼ eVðtÞ 1�
eV ’ðtÞgwRw

2Ein
b vin

b

" #
ð45Þ

Here, Ein
b ¼Mðvin

b Þ
2=2 is the beam initial energy, and Rw is the

wall radius and gw is a coefficient which is determined by the
profile of the electric field in the bunching module according to
one of the equivalent expressions

gwRw ¼

Z 1
�1

dxf ðxÞ

Z x

�1

dx0Fðx0Þ
� 	

¼ 4

Z 1
0

dxf ðxÞx FðxÞ�
1

2

� �
¼ 4

Z 0

�1

dxf ðxÞ

Z 1
x

dx0f ðx0Þx0
� 	

ð46Þ

For a Gaussian profile given by Eq. (39), gwRw ¼ b=
ffiffiffiffiffiffi
2p
p

and

gw ¼

ffiffiffi
2
p

p 0:73þ0:53ðs=2RwÞ
2

h i
ð47Þ

This gives for the gap width smaller than the pipe radius
soRw, b� 2� 0:73Rw=

ffiffiffiffi
p
p

and gwE0.33.
The explanation of the corrections is the following: We

compare the energy acquired by a beam particle in a finite size
gap with that obtained in an infinitely thin gap positioned at the
middle of the finite size gap. As an example, consider V(t)40 and
V0(t)40, i.e., the beam particle is accelerating and the voltage
grows. Because of the finite gap size, the beam particle passes
through the left half of the gap more slowly than the right half of
the gap; therefore it samples a smaller voltage for a longer time
and the energy acquired is smaller than V(t).

The previous calculation did not account for a small radial
variation of the electric field. Away from the axis at larger radius,
the electric field in the accelerator gap is spread over a shorter
axial extent, see Fig. 11. Therefore, the correction to the acquired
beam energy in the accelerator gap is somewhat smaller (effec-
tively shorter Rw). The calculation is straightforward: using the
Poisson law and making series for r{Rw, the electric field can be
calculated near the axis according to

Ezðx,rÞ ¼ Ezðx,rÞ�
r2

4

@2Ezðx,0Þ

@x2
ð48Þ

Substituting Eq. (48) into Eq. (46) gives a radial variation of
DgwRw relative to the axis

DgwRw ¼�
r2

2

Z 1
�1

dxf 2
ðxÞ ð49Þ

Substitution of a Gaussian profile for the electric field in the
gap (Eqs. (39) and (40)) first into Eq. (49) and then into Eq. (45)
gives the correction to the beam energy in the radial direction,

DEbðrÞ ¼ eVðtÞ 1�
eV ’ðtÞgwRw

2Ein
b vin

b

1�
r2

2b2

� 	" #
ð50Þ

Here, again b� 2� 0:73Rw=
ffiffiffiffi
p
p
� 0:84Rw and gwE0.33. A

small variation of the beam energy as a function of radius given
by Eq. (50), is of order 0:1ðeVÞ2rb

2=Ein
b tpvbRw and can be very small

�(eV)/1000. However, this energy spread is not removed during
neutralized ballistic focus (in contrast to the space charge beam
self-potential discussed in Section 2.3.2) and can give rise to
thermal energy spread in induction bunching modules. For
example, DEb(r) is of order 100 eV for NDCX-I parameters.

For typical NDCX-I parameters the transit time, Wt, is b=vin
b ¼

30ns, where b is given by Eq. (40). If the voltage on the induction
bunching module has a high frequency ripple, the beam energy
variation after passing through the bunching module, which has a
finite radius, has a smoothing effect on V(t) as the beam pulse

moves through the electric field, giving VðtÞ-
R1
�1

Vðt0 Þ
Wt

ffiffiffi
p
p exp

�
ðt0 �tÞ2
Wt2

h i
dt’.
5. Discussion

After passing through the induction module, the beam pulse
acquires linear velocity gradient dvb/dx and is compressed at time
tf¼(dvb/dx)�1. Errors in the applied velocity gradient lead to
imperfect compression. We have performed an analytical and
numerical study of how errors in the velocity tilt acquired by the
beam in the induction bunching module limit the maximum
longitudinal compression, C. It is found that the compression
ratio is determined by the relative errors, ddvb/dx, in the applied
velocity tilt compared with the ideal velocity tilt, dvb/dx, and is
related to the voltage errors in the induction bunching module by
Eqs. (14) or (24)

C �
dvb=dx

dðdvb=dxÞ
�

Eb

tf dðdU=dtÞ
ð51Þ

Here, dU¼Mvbdvb, is the characteristic value of the voltage
error and Eb ¼Mv2

b=2 is the beam energy. That is, longer compres-

sion and faster errors limit compression more.

However, a part of the beam pulse where the errors are small,
dvb-0, may be compressed to much higher values which are
determined by the duration of the fraction of the pulse that has
such low values of velocity errors, dvb. If we denote the Dt as the
pulse duration which has such low values, then the compression is

C �
vbDt
dvbtf

ð52Þ

The absolute maximum compression is given by the ratio of
the width of the part of the beam pulse, vb0Dt, which compresses
to within the thermal spread length, 2vTtf, that is Cmax �

vb0Dt=2vT tf . As described for Case 2 in Section 3 for the beam
velocity error in the form dvb¼�bvb0(t/tp�1/2)3, the fraction of
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the pulse that compresses is given by Dt/tpE(2vTtf/lpb)1/3 and

Cmax �
vb0tp

2vTb
1=2tf

 !2=3

:

That is, the compression scales as Cmax � v1=2
b0 Dvb=vTdv1=2

b


 �2=3

with beam velocity errors and thermal spread.
Another interesting feature of this case is that, if the target is

positioned further away from the position of the compression of
the central part, a double peak appears when the compressed
beam suddenly arrives at this location, as shown in Figs. 6 and 8.
Because at this time the tail of the pulse overtakes the head, the
first peak in the double-peak structure corresponds to the tail,
and the second peak to the head. The double peak structure is a
well-known phenomenon in klystron theory [13,14] and was also
observed in experiments with the inductive bunching module
[25] and in previous simulations of longitudinal compression [9].
Note that this double-peak structure has rapid rise and low ‘‘foot’’
compared with the case when beam first compresses. Such
double peak with more compact foot of the pulse maybe prefer-
able than a single peak structure with higher maximum compres-
sion achieved but with a larger foot, because compressed part of
the beam contain more particles.

In addition to a smooth variation in the velocity tilt, fast-
changing errors during the pulse may appear in the induction
bunching module. These errors can occur due to the fact that the
voltage pulse is formed by several pulsed elements, and every
element can introduce errors. Due to fast-changing errors, different
parts of the beam pulse compress at different times, and even small
errors in the velocity result in a large variation in the compression
time, because it is proportional to the time derivative of the voltage.
Moreover, due to fast-changing errors during the pulse, different
parts of the pulse compress nearly simultaneously at the target.
Correspondingly, the compressed profile may have many peaks, as
described for Case 3 in Section 3. Similar to Case 2, the maximum
compression is given by the ratio of the width of the part of the
beam pulse, vb0Dt, which compresses to within the thermal spread
length, 2vTtf, with Cmax � vb0Dt=2vT tf , but the portion of the beam
that compresses tightly is smaller. For example, for a model of fast
errors in the form, dvb ¼ gvb0sinðt=tgÞ, the fraction of the pulse that
compresses is given by DtEtg(4vT/gvb0)1/2 and

Cmax �
tg
tf

vb0

vTg

� 	1=2

:

Here, tg is a typical temporal scale for a change in the velocity
errors, and g¼ dvb=vb0 � dU=Eb is the magnitude of relative
velocity or voltage error, as described for Case 3 in Section 3.
Here, it has been assumed that velocity errors dominate the
thermal spread, g¼ dvb=vb0cvT=vb0. That is, the compression
scales as Cmax � ðvb=vTdvbÞ

1=2tg=tf with beam velocity errors and
thermal spread.

The effects of the finite gap width of the bunching module on
compression have been studied analytically. For an ideal wave-
form, taking this effect into account results in a small 2%
correction, which is small compared with the effects of errors,
and has the effect of moving the compression plane downstream
compared with the ideal case, which constitutes about 4 cm for
typical NDCX-I parameters. For an experimental waveform with a
fast frequency ripple, the effects of the finite gap width of the
bunching module has the effect of smoothing the applied voltage
over b=vin

b ¼ 30ns. Here

b¼
2ffiffiffiffi
p
p Rw 0:73þ0:53ðs=2RwÞ

2
h i

,

and s is the gap width, Rw is the wall radius. Due to radial
variation of the electric field profile in the gap, a beam acquires
different energy as a function of radius. This variation, given by
Eq. (50), is of order 0:1ðeVÞ2rb

2=Ein
b tpvbRw and can be very small

�(eV)/1000. However, this energy spread is not removed during
neutralized ballistic focus (in contrast to the space charge beam
self-potential discussed in Section 2.3.2) and can give rise to
thermal energy spread in induction bunching modules. For
example, DEb(r) is of order 100 eV for NDCX-I and NDCX-II
parameters.
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Appendix A. Compression of the beam pulse with relatively
large errors (dvb/Dvb�10%) in velocity modulation

In this section we provide detailed analysis for the model of
the velocity tilt shown in Fig. 4. The errors, in the applied velocity
gradient after the beam has passed through the bunching module,
are shown in Fig. A1. Because of errors in the applied velocity tilt,
the gradient in the velocity is smaller than the nominal value, and
the beam pulse compresses at a later time. The central part of the
pulse compresses at the time when Eq. (19) gives a singularity, i.e.

tmin ¼ tpþ
1

@vb=@z9max

�� �� ð53Þ

Here @vb=@z9max ¼ 0:231Uvb=lp is the maximal value of the
velocity gradient in the center of the pulse at t/tp¼0.51 and
tmin ¼ tpþ1=0:231¼ 5:321tp. From Eq. (19) it is evident that the
compression ratio at time tmin is given by

Cðz,tÞ �
nbðz,tÞ

n0
¼

nbðz,tpÞ=n0

@vb=@z�@vb=@z
��
max

h i
ðtmin�tpÞ

ð54Þ

The relation between the velocity gradient and the velocity tilt
as a function of time is given by Eq. (20). For the velocity profile
shown in Fig. 4, the central part of the pulse has a variation in the
velocity gradient below 0.4% for about one-fifth of the pulse as
indicated by the two headed (green) arrows in Fig. A1. Corre-
spondingly, this part of the pulse compresses to compression ratio
above 50 according to Eq. (54), taking into account that the time
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to focus for this condition is five times longer than the beam pulse
duration tf/tp¼5 and tmin�tp ¼ 4:3tp.

The time function ts(t) when different parts of the ion beam
pulse compress can be used instead of the velocity gradients. Both
functions are related according to Eq. (20) and Eq. (15) by

@vbðz,tÞ

@z
¼�

1

tsðtÞ�t
; z¼ zbðt,tÞ ð55Þ

The time function ts(t) is plotted in Fig. A2. The function ts(t)
has a minimum in the middle of the pulse, and can be approxi-
mated near the minimum by the parabolic function

tsðtÞ � tminþaðt�tminÞ
2=tp, ð56Þ

where tmin is minimum value of ts(t) at t¼ tmin, and the a is a
constant. Correspondingly, the beam pulse compression is first
achieved at time, t¼ tmin. For the conditions in Fig. A2, the value
of tmin is tmin ¼ 5:32tp rather than t¼5tp for the ideal tilt. From
Eqs. (16) or (17) it is evident that for the central part of the pulse
with ts(t)�ts(0.5tp)o0.1 and dDvb(t)/dtE0.2, the compression
ratio is above 50.

The compression ratio as a function of t for the velocity profile
in Fig. A1 is shown in Fig. A3. Maximum compression occurs at
time tmin ¼ 5:32tp, when the function ts(t) has a minimum, and
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The observed maximum compression is 125 for case (a) because about 1/5th of the pu
the central part of the pulse compresses. At a slightly earlier time
t¼5.3tp, the compression is smaller as shown in Fig. A3. If the
entire pulses compresses to a point, the maximum compression is
given by Eq. (30) and is equal to 564 in Case (a), and 121 in Case (b).
As evident from Fig. A3, only about one-fifth of the pulse compresses
for Case (a) and one-third for Case (b). Therefore, the observed
maximum compression is about 120E(1/5)�564 for Case (a), and
40E(1/3)�121 for Case (b), i.e., one-fifth of the maximum value of
compression for Case (a), and one-third for Case (b), respectively. At
the position of maximum compression, when and where several
slices of the beam pulse arrive at the target plane at nearly the
same time, the slice position zbðtmin,tÞ changes as cubic function
of t (see Fig. 5).

Indeed, substituting Eq. (15) into Eq. (11) gives for the
derivative qzb/qt

@z

@t

����
t

¼
dvbðtÞ

dt t�tsðtÞ½ � ð57Þ

Substituting the parabolic approximation for ts(t) given by
Eq. (56), at the time of maximum compression t¼ tmin, gives

zbðtmin,tÞCzbðtmin,tminÞþ
advb=dt

3tp
ðt�tminÞ

3
ð58Þ
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t p
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Correspondingly, the fraction of the pulse that compresses
within the thermal spread distance 2vTt is proportional to vT

1=3.
For the two Cases (a) and (b) in Fig. A3, vT differs by a factor of
five, and correspondingly the fraction of the pulse that com-
presses also differs approximately by a factor 51/3E1.7.

In experiments, the compression ratio is measured as a
function of time at a fixed position zob. The measurement time
tm(zob,t) is a function of t according vb(t)(tf�t)¼zob, or

tmðzob,tÞ ¼ zob

vbðtÞ
þt ð59Þ

At the position near maximum compression, when and where
several slices of the beam pulse arrive at the target plane at nearly
the same time, tm(zob,t) has little variation (see Fig. 1). The
derivative qtm/qt9z is given by

@tm

@t
jz ¼

@z
@t jt
@z
@t jt
¼

@z
@t jt

vbðtÞ
¼

dvbðtÞ=dt
vbðtÞ

tsðtÞ�tm½ � ð60Þ

Eq. (60) is a linear differential equation for tm and can be
solved analytically. However, an even simpler approximate solu-
tion can be obtained in the limit of a small velocity tilt,
Dvb=vb{1, when variation of tm on the right hand side can be
neglected compared with the variation of the function ts(t). If the
target plane is positioned where a slice tob arrives at the target
zob¼zb(tob,tob) at time t¼tob, then making use of Eq. (60) with the
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5.2

5.3

5.4

t/t
p

τ/tp

Fig. A4. Time of arrival plotted as a function of t(solid curve) given by Eq. (59) and the a

the point of maximum compression zbðtmin ,tminÞ and (b) at zb(5.5tp,0.68tp). (For interpr

web version of this article.)

0

25

50

75

100

125

t/tp

C

5.25 5.30 5.35

t/tp
5.32
fit

Fig. A5. Plot of the compression ratio as a function of time t/tp at the point of maximu

thermal effects with (c) vT/vb0¼2�10�4 and (d) vT/vb0¼10�3 as in Fig. A3. Figures (

optimum compression location at zob ¼ zbðtmin ,tminÞ ¼ 5:34lp and tob ¼ tmin ¼ 5:32tp (bla

times t�tmin
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initial condition that tm(zob,tob)¼tob at tob gives

tmðtÞCtob�ðtob�tminÞ t�tob½ �þ
advb=dt

3vbtp
ðt�tminÞ

3
�ðtob�tminÞ

3
h i

ð61Þ

If the target plane is located at zob ¼ zbðtmin,tminÞ, then
tob ¼ tmin and tob ¼ tmin, which gives

tmðtÞCtminþ
advb=dt

3vbtp
ðt�tminÞ

3
ð62Þ

as shown in Fig. A4(a).
Substitution of the dependence of t(t) from Eq. (62) into Eq. (16)

gives the compression ratio as a function of time at the optimum
focal plane at zob ¼ zbðtmin,tminÞ for times t�tmin

�� ��4vT tf =vb,

Cf ðtÞ ¼
nbðzf ,tÞ

nb0
¼

1

ð9adDvb=dt=tpvb0Þ
1=3
ðt�tminÞ

2=3
ð63Þ

The singularity of the function Cf ðtÞ � 1=ðt�tminÞ
2=3 is such that

a significant portion of the pulse is positioned in the (broad)
wings of the pulse,

R t
tmin

nðtÞdt � ðt�tminÞ
1=3. Near the singularity

point at t�tmin

�� ��ovT tf =vb, the function Cf(t) is determined by the
thermal effects according to:

CðtÞ ¼ Cmaxexp �
v2

b0ðt�tminÞ
2

ðvT tf Þ
2

" #
ð64Þ
0.0 0.5 1.0
5.4

5.5

5.6

t m
/t p

τ/tp

pproximation given by Eq. (62) (dashed, red curve) at two different positions: (a) at

etation of the references to color in this figure legend, the reader is referred to the

5.25 5.30 5.35
0

25

50

t/tp
5.32
fit

C

t/tp

m compression for conditions of Fig. 6. The maximum compression is limited by

c) and (d) show a zoom-in of the compression ratio as a function of time at the

ck solid curve), and the approximation given by Eq. (63) (dashed green curve), for

bed by a Gaussian function for t�tmin

�� ��ovT tf =vb , which is valid for Maxwellian

gure legend, the reader is referred to the web version of this article.)



I.D. Kaganovich et al. / Nuclear Instruments and Methods in Physics Research A 678 (2012) 48–63 61
where Cmax �Dtvb0=2vT tf and Dt/tp is the fraction of the pulse
which compresses.

Note that for a very small thermal spread, the maximum value
of compression is achieved at time t¼ tmin ¼ 5:32tp [see Fig.
A5(a)], whereas for larger thermal spread the maximum value
of compression is achieved at the later time t¼5.5tp [see Fig.
A5(b)], when the beam tail moves closer to the beam head over a
distance of order vTt, as evident in Fig. 5(c).

If the ion beam line density is measured further away from
the bunching module than the optimal location corresponding to
z¼ zbðtmin,tminÞ, then the profile of the compression ratio has two
peaks as a function of time. Indeed, the tail of the beam over-
takes the head of the beam and two extremes appear in the
phase space as evident in Fig. A4. Correspondingly, the function
ts(t) has two roots for the solution to the equation ts(t)¼tob [left-
and right-branches of the function ts(t)], see also Fig. A2. The
arrival time tm(zob,t) of different slices at the target plane given
by Eq. (61) is shown in Fig. A4(b). The three regions of the pulse
arriving at the same time within the thermal spread contribute
to the compressed part of the pulse at tob4tmin, as shown in
Fig. A4(b). The double peak structure in the compression ratio is
evident in Fig. A5(a) and 9(b) for times 5.5tp and 5.9tp. For time
5.5tp the double peak structure is very thin and is nearly
indistinguishable on the plot. Note that in some cases this
double-peak structure may be desirable because of its rapid rise
and low ‘‘foot’’.
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Appendix B. Compression of the beam pulse with Moderate
errors (dvb/Dvb�1%) in velocity modulation

In the previous section, it was shown that even in the limit of
large errors the compression ratio can be large because a small
portion of the beam pulse compresses well where the errors are
small. In this section, we study the more practical example of an
even smaller error in the velocity tilt, dvb/Dvb�1%, as shown in
Fig. B1. The two velocity profiles under consideration, vb1 and vb2,
have larger errors at the beam pulse head and tail t/tp¼

[0,0.2];[0.8,1] (see Fig. B1). The errors appear due to the smoother
transition to the unperturbed velocity compared with the ideal
velocity profile given by Eq. (9). The vb2 profile has additional
errors

vb2�vb1 ¼�bvb0ðt=tp�1=2Þ3, ð65Þ

where b¼0.01. We introduced the cubic nonlinearity because an
error described by a linear profile results only in a change of time
of the optimal compression and does not affect the compression
ratio. Furthermore, errors described by a parabolic profile do not
correspond to smoother edges at the beginning and end of the
pulse. The function ts(t) describing the compression time of
different pulse slices for the velocity modulation shown in
Fig. B1 is presented in Fig. B2.

Because the relative error in the function ts(t) is proportional
to the derivative of velocity, the relative error in the function ts(t)
is a factor of 15 larger than the relative error of the velocity
modulation,

dtsðtÞ
tf
��

tf ddvb=dt
vb0

¼ 15bðt=tp�1=2Þ2 � 15
dvb

vb0
ð66Þ

Substituting dts(t) from Eq. (66) into Eq. (57) gives

dzbðt,tÞ � dvbtf ¼ 5blpðt=tp�1=2Þ3 ð67Þ

and substituting dts(t) into Eq. (16) for the compression ratio at
time t¼tf gives

Cf ðtÞ ¼
1

15bðt=tp�1=2Þ2
ð68Þ

Therefore, even small errors in the velocity tilt lead to a
noticeable change in compression time for different slices of the
beam pulse. Making use of Eq. (60), the time of arrival of the beam
pulse at the location of the optimum compression at tob¼tf¼5tp

and z¼zb(5tp,0.5tp) is given by

tm � tminþ5bðt=tp�1=2Þ3 ð69Þ
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Substituting Eq. (69) into Eq. (68) for the compression ratio at
the optimum focal plane gives

Cf ðtÞ ¼
1

3ð5bÞ1=3
½ðt�tminÞ=tp�

2=3
ð70Þ

and is shown in Fig. B3.
Note that large variation in the magnitude of the error does

not change the maximum compression significantly [compare Fig.
B3(a) and (c) where the magnitude of error was increased 10
times, from b¼0.01 in Fig. B3(a) to b¼0.1 in Fig. B3(c)]. The
maximum compression Cmax � vb0Dt=2vT t is given by the ratio of
the width of the part of the beam pulse, vb0Dt, which compresses
to within the thermal spread length, 2vTt. From Eq. (67) it follows
that the fraction of the pulse that compresses is given by Dt/
tpE(2vTtf/lpb)1/3 and

Cmax �
1

b1=3

lp
2vT tf

� 	2=3

ð71Þ

From Eq. (71) it is evident that when the magnitude of the error
is increased 10 times, the maximum compression decreased by only
101/3

¼2.2 times, as can be seen by comparing Fig. B3(a) and (c) and
is also shown in Fig. B3(d). The maximum compression is more
sensitive to variation in the thermal velocity spread and scales
according to Eq. (71) as v2=3

T . The maximum compression in
Fig. B3(a) is about 3 times larger than in Fig. B3(b), in agreement
with the scaling given by Eq. (71). A factor of five smaller thermal
spread in Fig. B3(a) compared with the Fig. B3(b) gives approxi-
mately a factor of 52=3C2:9 larger maximum compression ratio.

Similar to the previous section, the compression profile has a
double peak structure after optimal compression. This is because
both the tail and the head of the pulse compress at later times than
the central part of the pulse and arrive at the target at slightly
different times, with the tail arriving first. Moreover, because
the compressed part of the tail arrives ahead of the main pulse,
the increase in the beam line density is very fast, in contrast
with the slowly increasing line density profile at the location of
optimal compression [compare time tob/tp¼5.1;5.2 with tob/tp¼5.0
in Fig. B3(a) and (b)].
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