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Abstract

When an intense ion beam propagates through a dense background plasma, its current is partially neutralized by the
electron plasma return current. Due to the non-uniformity of the background plasma electrons longitudinal velocity
profile v̄(r), the flow can be unstable. The instability is similar to the Kelvin-Helmholz instability for the non-uniform
flow of an incompressible neutral fluid, with the electrostatic potential playing the role of pressure. For the case of
electron return current flow, the significant new feature is the presence of the partially self-neutralized magnetic field of
the ion beam, which significantly affects the evolution of small-amplitude excitations. In this paper the stability
properties of the flow of electrons making up the plasma return current is investigated using the macroscopic cold-
fluid-Maxwell equations. It is shown that this flow may become unstable, but the instability growth rates are
exponentially small. This unstable body mode is qualitatively different from previously studied surface-mode
excitations of the electron plasma return current for an intense ion beam with a sharp radial boundary, which is found
to be stable due to the stabilizing influence of the partially neutralized magnetic field of the ion beam.
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1. INTRODUCTION

Ion beam propagation in neutralizing background plasma is
of interest for many applications, including ion-beam-driven
high energy density physics, and heavy ion fusion. The
background plasma is needed to neutralize the ion beam
space charge and beam current so that it can be transported
and efficiently focused either ballistically or by the remnant
unneutralized self-magnetic field or applied magnetic field
(Roy et al., 2005; Logan et al., 2007; Sefkow et al., 2007;
Welch et al., 2007). The ion beam current is neutralized
by the opposing background plasma electron return current
(Kaganovich et al., 2007, 2005, 2001), which implies that
the plasma electrons inside the beam flow with average vel-
ocity ve0= Zb(nb/n0)vb relative to the electrons outside of
the beam. Here, vb is the beam velocity, Zb is the charge
state of the beam ions, and nb and n0 are the beam density
and background electron densities, respectively. One of
the main disadvantages of using plasma to transport and
focus intense ion beams is that the ion beam propagation

in background plasma may be subject to collective instabil-
ities. There is a growing body of literature dedicated to
studying collective beam-plasma interactions. For a recent
review of collective beam-plasma instabilities see Davidson
et al. (2004, 2009). In a recent paper (Startsev et al., 2009),
we have reconsidered the stability of the background elec-
tron return current, found to be strongly unstable by many
previous authors (Rose et al., 2003, 2005). We have
shown that the unneutralized magnetic field in the return
current layer is responsible for complete stabilization of
this particular instability. In that paper (Startsev et al.,
2009) we analyzed only the surface modes by making an
explicit assumption that the beam radius a is much greater
than the characteristic width of the layer with unneutralized
magnetic field. In the present paper, we show that the return
current can still support unstable body modes that are
localized at the beam center. In particular, it is found that
the instability develops only if the background electron
flow velocity profile v̄(r) satisfies the two resonance
conditions ω− kzv̄(r1)= − ωpe and ω− kzv̄(r2)= ωpe

simultaneously at different radial locations r1 and r2 from
the beam center. Here ω is the mode oscillation frequency,
kz is the axial wave-number in the flow direction, and ωpe is
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the background electron plasma frequency. The first reson-
ance condition guarantees the existence of the body-mode
excitation, whereas the second resonance condition assures
that the mode is unstable. The body mode has a maximum
growth rate for beams with radius on the order of the colli-
sionless electron skin depth, a∼ c/ωpe.
The analysis in the present paper makes use of the formalism

developed by one of the authors (Khudik and Fedoruk, 1995).
The organization of this paper is the following. In Section 2,
the Maxwell equations and cold fluid equations describing
the motion of the electron fluid responding to injection
of the heavy ion beam into background plasma are analyzed.
We use the conservation of generalized vorticity to derive a
single nonlinear vector equation for the electron fluid velocity.
The steady-state solution of this equation describes the equili-
brium electron flow around the beam. This nonlinear equation
is linearized around the steady-state solution, and is used to
show that the unstable perturbations are short-wavelength,
electrostatic perturbations with a negligible perturbed magnetic
field component. In Section 3, the eigenvalue equation for the
electrostatic potential perturbations is derived. In Section 4 we
present a detailed analysis of the eigenvalue equation in planar
geometry for perturbations with zero perturbed azimuthal flow
velocity. The approximate expressions for the mode frequen-
cies are found, and an estimate of the maximum growth
rate is presented. Finally, the conclusions are summarized in
Section 5.

2. THEORETICAL MODEL

The analysis presented in this paper is carried out for nonre-
lativistic ion beams with vb

2/c2≪1. We assume that the beam
propagates along the z-axis (longitudinal direction) with aver-
age velocity vb= ezvb. The equation describing the dynamics
of the cold, neutralizing election background are the momen-
tum equation for the flow velocity v of the cold electron fluid,

∂v
∂t

+ (v ·∇)v = − e

m
E+ 1

c
v × B

( )
, (1)

and Maxwell’s equations for the electric field E and magnetic
field B,

∇ × E = − 1
c

∂B
∂t

, (2)

∇ × B = 1
c

∂E
∂t

+ 4π
c
e(Zbnbvb − nv), (3)

∇ · E = 4πe(Zbnb + n0 − n), (4)

wheren is the electrondensity,nb,vb andZb are the ionbeamden-
sity, velocity and charge state, respectively, and n0 is the plasma
ion background density. Also, the constants−e,m, and c are the
electron charge, mass and speed of light, respectively. Combin-
ing the curl of Eq. (1) with Eq. (2) we obtain the equation for the
generalized vortisity Θ=∇× v− (e/mc)B, i.e.,

∂Θ
∂t

= ∇ × [v × Θ]. (5)

For the ion beam injected into background plasma, the gen-
eralized vorticity is zero everywhere ahead of the beam, and
it follows from Eq. (5) that it remains zero everywhere, or
equivalently,

B = mc

e
∇ × v. (6)

Substituting Eq. (6) into the momentum Eq. (1), we obtain

E = −m

e

∂v
∂t

+∇
v2

2

( )
. (7)

Substituting Eq. (7) into Eq. (4), we obtain the expression for
electron density,

n = n0 + Zbnb + n0
ω2

pe

Δ
v2

2
+ ∂

∂t
∇ · v

( )
, (8)

whereΔ≡ (∇·∇) is the Laplacian. Here,ωpe= (4πe2n0/m)
1/2

is the electron plasma frequency. Finally, substituting Eqs.
(6)–(8) into Eq. (3), we obtain a nonlinear equation for the
electron flow velocity

λ2pe∇ ×∇ × v+ 1
ω2

pe

∂2

∂t2
v+ ∂

∂t
∇

v2

2

[

+ v Δ
v2

2
+ ∂

∂t
∇ · v

( )]

+ v 1+ Zb
nb
n0

( )
= Zb

nb
n0

vb. (9)

Here, λpe= c/ωpe. It follows from Eq. (9) that for (vb/c)
2≪1

the steady-state solution v= ezv̄ (∂/∂ t= 0) is nonrelativistic
(v̄2/c2≪ 1) and can be determined from

λ2peΔ⊥�v = 1+ Zb
nb
n0

( )
�v− Zb

nb
n0

vb, (10)

where Δ⊥≡ ∂2/∂x2+ ∂2/∂y2 is a transverse Laplacian. Here,
we have assumed that nb(x⊥) and vb(x⊥) are functions of the
transverse coordinates x⊥= (x,y). From Eq. (10), we obtain
an estimate for the steady-state velocity of the background elec-
trons, i.e.,

�v ∼ vb
Zbnb/n0

(1+ λ pe/a)s + Zbnb/n0
≲ vb. (11)

Here, a is the radius of the injected beam, and s= 1 for planar
geometry, and s= 2 for a cylindrically-symmetric beam. Note
that it follows fromEq. (8) that the steady-state normalized elec-
tron density n̄= n/n0 is given by n̄= 1+ Zbnb/n0, neglecting
relativistic corrections.
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Next, we express v= ezv̄+ v′, and derive the equation for
the unstable perturbation v′ ∼ exp(−iωt+ ikzz) about the
steady-state equilibrium v̄ given by Eq. (10). Linearizing
Eq. (9) and neglecting terms (v̄/c)2≪ 1, we obtain

c2∇ ×∇ × v′ − ω2v′ − iω ∇(�vv′z)+ ez�v∇ · v′[ ]
+ ez�vΔ(�vv′z)+ �ω2

pev
′ = 0, (12)

where ω̄pe
2 = ωpe

2 n̄. Multiplying Eq. (12) by (ωv′)∗, integrat-
ing over x⊥ and taking the imaginary part, we obtain

Imω c2∫dx⊥|∇ × v′|2 + ∫dx⊥(|ω|2 + �ω2
pe)|v′|2

[ ]

= Imω ∫dx⊥|∇(�vv′z)
2

[ ]
. (13)

The integral on the right-hand side of Eq. (13) can be ex-
pressed as

∫dx⊥|∇(�vv′z)|2 = ∫dx⊥�v2{k2z |v′|2

+ 2kzIm[v′ ×∇ × v′∗]z + |(∇ × v′)⊥|2}

− ∫dx⊥(�vΔ⊥�v)|v′z|2. (14)

It follows from Eqs. (10) and (11) that the last term in Eq.
(14) is (vb/c)

2≪ 1 times smaller than the second term on
the left-hand side of Eq. (13). Hence, it follows from Eqs.
(13) and (14) that the frequency, longitudinal wave-number,
and polarization for unstable perturbations with Imω> 0
must satisfy the conditions

|ω|2 + ω2
pe < k2z v

2
m, (15)

∫ dx⊥|∇ × v′|2 < (vm/c)
2k2z ∫dx⊥|v′|2, (16)

where vm=max(v̄). A more detailed analysis shows that the
(vm/c)

2 factor in Eq. (16) should be replaced by (vm/c)
4. This

fact together with Eq. (15) implies that the unstable pertur-
bations are short-wavelength [kz

2c2> (c/vm)
2(|ω|2+ ωpe

2 )≫

|ω2− ωpe
2 |] electrostatic perturbations with v′ ≈∇Φ, and

that the perturbed magnetic field B′ ∼∇× v′ is negligibly
small.

3. EIGENVALUE EQUATION

The equation for electrostatic short-wavelength perturbations
can be obtained by substituting v′ =∇Φ into Eq. (12).
Taking the divergence, we obtain an equation for Φ

∇ · [(�n−Ω2)∇Φ] = (ΩΔΩ)Φ, (17)

where Ω= (ω− kzv̄)/ωpe. Below we specialize to the case of
small beam density with Zbnb/n0≪ 1. In this case, it follows
from Eq. (15) that∇⊥Ω≫∇⊥n̄

1/2. Taking this fact into ac-
count and introducing the new variable f= (n̄−Ω2)1/2Φ,
Eq. (17) can be rewritten in the form of Schrodinger’s
equation

k−2
z Δ⊥f = (1− U)f, (18)

where the effective potential U is given by

U = (∇⊥�v/ω pe)2

(1− Ω2)2
= f

(1−Ω2)2
. (19)

Note, that the potentialU is small everywhere (U≈ f∼ (vb/c)
2 ×

(Zbnb/n0)
2(a/λpe)

s for a≪ λpe, and U≈ f∼ (vb/c)
2 ×

(Zbnb/n0)
2(λpe/a)

2 for a≫ λpe) except at a distance d∼
|∇⊥v̄/ωpe|/|∇⊥Ω|∼ 1/kz from the resonant points where
Ω2≈ 1. Therefore, the unstable mode growth rates are also
small with Imω/ωpe< f1/2/2≪ 1.

4. ANALYSIS OF EIGENVALUE EQUATION

For simplicity, we consider here the stability of planar flow
with velocity profile v̄(x), which is a function of the trans-
verse coordinate x (radial direction). We also consider only
excitations with zero azimuthal velocity component v′y= 0.
In this case, the eigenvalue Eq. (18) can be written as

d2f

dx2
= k2z (1− U)f. (20)

Note that Eq. (20) is equivalent in the electrostatic limit (kz
2c2

≫ |ω2− ωpe
2 |) to Eq. (20) (Startsev et al., 2009) if one makes

the substitution Ez=−(m/e)ωpeΩ(1−Ω2)1/2f. In (Startsev
et al. (2009), it was shown that Eq. (20) has no unstable sol-
utions in the limit of large beam radius a≫ λpe. Therefore,
we study here the the effects of finite beam radius on the
stability of the background electron flow.

We are looking for a solution of Eq. (20) which asympto-
tically behaves as f∼ exp(kzx) for x→−∞. For arbitrary ω
this solution of Eq. (20) will behave as

f = A+(ω)ekzx + A−(ω)e−kzx, (21)Fig. 1. Path in the complex x-plane along which the potential |U|≪1.

Return current for intense ion beam propagation through background plasma 271



for x→∞. The frequency of the localized mode is deter-
mined from the condition A+(ω)= 0. For a monotonic,
symmetric velocity profile, v̄(|x|), the resonance condition
where Ω2= 1 is satisfied at four points x=±x1(ω) and
x=±x2(ω) (x2> x1). Let us first consider ω such that
x1(ω)≫ 1/kz. If we analytically continue Eq. (20) into
the complex x-plane, the potential U will have singularities
far enough from each other that we can always go from
x=−∞ to x=+∞ on the real x-axis along a path in the
complex x-plane where |U|≪ 1 [see Fig. 1]. Since along
this path |(dU/dx)/U|≥ 1/λpe≪ kz we can use a quasi-
classical approximation for the “wave-function” f and
obtain

f ≈ ekzx, (22)

everywhere along this path. Hence, the coefficient A+≈ 1
and there are no localized modes. Now, let ω be such that
x1(ω)∼ 1/kz≪ λpe. In this case, the two singularities of
the potential at x1 and −x1 are too close to each other, so
that the quasi-classical approximation is not applicable
near those singularities. But in this region we can approxi-
mate the velocity profile as parabolic with v̄= vm(1− x2/
a∗
2), and rewrite the eigenvalue Eq. (20) as

d2f

d�x2
= 1− �x2

(�x2 − �ω)2

[ ]
f, (23)

where x̄= kzx and ω̄=−(kza∗)2(ωpe+ ω− kzvm)/(kzvm).
Here a∗

2 ≈ a2 for a≫ λpe, and a2∗ ≈
��
π

√
aλ pe for a ≪ λ pe.

The eigenvalues of Eq. (23) are given by

�ω0 = −0.1, �ωn = a+Qn, n = 2, 4, 6, . . . , (24)

�ωn = a−Qn−1, n = 1, 3, 5, . . . , (25)

where a+ =−0.125…, a−=−0.00452… and Q = exp
(−2π/

��
3

√
). Equation (24) gives the spectrum of symmetric

modes, and Eq. (25) is the spectrum of anti-symmetric
modes.
The stable localized modes described by Eqs. (24) and

(25) become unstable if we take into account the singularity
of the potential at x=±x2. To obtain the expression for Imω
let us multiply Eq. (17) by Φ∗ and integrate it over x. Taking
the imaginary part, we obtain

∫
∞
0 kzdx 2ReΩ

1
k2z

dΦ

dx

∣∣∣∣
∣∣∣∣2+|Φ|2

( )[

−k−2
z Δ⊥(ReΩ)|Φ|2

] = 0.

(26)

For x∼ 1/kz, f∼ 1, and the function Φ is given by

Φ ∼ Φ0 ≡
d2

dx2
�v

kzω pe

( )
x=0

∣∣∣∣
∣∣∣∣
−1/2

, (27)

and decreases exponentially as x increases. The exception is
in the neighborhood of the second resonance x= x2, where
the asymptotic behavior of Φ is given by

Φ ∼ exp (− kzx2)
1
ωpe

d�v

dx

∣∣∣∣
∣∣∣∣−1/2

log η, η = 1− Ω. (28)

The neighborhood of x∼ 1/kz contributes a value of ∼|Φ0|
2

in the integrand in Eq. (26), and the contribution from the
neighborhood of x= x2 is given by (ωp/Imω)exp(−2kzx2).
Hence, from Eq. (26) we obtain the estimate of the mode
growth rate given by

Imω = C
1
kz

d2�v

dx2

∣∣∣∣
∣∣∣∣
x=0

exp (−2kzx2). (29)

Next we estimate the dependence of the maximum growth
rate on the beam radius. From the resonance conditions

Reω− kz�vm + ω pe ≈ 0, (30)

Reω− kz�v(x2)− ω pe ≈ 0, (31)

we obtain

Ψ ≡ (kzx2)min = 2min
x2/λ pe

|�vm − �v(x2)|/c
[ ]

. (32)

For a large beam radius a≫ λpe, the maximum growth rate
will occur at the point

x2 ∼ a,
vm − v(x2)

c
∼

Zbnb
n0

vb
c
, Ψ ∼

a

λ pe

n0
Zbnb

c

vb
. (33)

For a beam with small radius a≪ λpe, we obtain

x2 ∼ a,
vm − v(x2)

c
∼

Zbnb
n0

vb
c

a

λ pe

( )s+1

, Ψ ∼
λ pe

a

( )s

×
n0
Zbnb

c

vb
, (34)

where s= 1 for planar geometry, and s= 2 for a
cylindrically-symmetrical beam. Therefore, for arbitrary
beam radius we can estimate the maximum growth rate as

Imω

ω pe
∼

exp (−2Ψ)

Ψ2 , Ψ ∼
c

vb

( )
n0
Zbnb

( )
a

λ pe
+ λ pe

a

( )s[ ]
. (35)

It follows from Eq. (35) that the strongest instability corre-
sponds to the injection of a beam with radius a∼ λpe.

5. CONCLUSIONS

In this paper, we have studied the stability of nonuniform
background electron flow resulting from the injection of a
long ion beam into a neutralizing plasma. We have shown
that such flows can support unstable short-wavelength
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electrostatic perturbations with a negligible perturbed mag-
netic field component. The perturbations are localized near
the beam center unlike the surface modes studied previously
(Startsev et al., 2009), which are localized at the beam edge
and had been found to be stable. Moreover, it is found that
the instability develops only if the background electron
flow velocity profile v̄(r) satisfies the two resonance con-
ditions ω− kzv̄(r1)=−ωpe and ω− kzv̄(r2)= ωpe simul-
taneously at different radial locations r1 and r2 from the
beam center. The first resonance condition guarantees the
existence of the body-mode excitation, whereas the second
resonance condition assures that the mode is unstable.
These body modes have growth rates that are exponentially
small [Eq. (35)] and are largest for beams with radius of
the order of the collisionless electron skin depth, a∼ c/ωpe.
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