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The Courant–Snyder (CS) theory and the Kapchinskij–Vladimirskij (KV) distribution for high-intensity

beams in an uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The

envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix

envelope equation with matrix operations that are noncommutative. In an uncoupled lattice, the KV

distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-

Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV

solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS

invariant. This solution projects to a rotating, pulsating elliptical beam in transverse configuration

space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear

matrix ordinary differential equation for the envelope matrix, which determines the geometry of the

pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate

the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-

called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate

the beam quality. Instead, the coupling induces beam rotation and reduces beam pulsation. VC 2011
American Institute of Physics. [doi:10.1063/1.3574919]

I. INTRODUCTION

Modern high-intensity beams have many important

applications including high energy density physics, ion-

beam-driven fusion, accelerator-driven subcritical systems,

high-flux neutron sources, and light sources. Because it is

critical to increase beam intensities as much as possible for

these applications, it is becoming increasingly important to

understand the self-field effects of high-intensity beams

including both self-electric and self-magnetic fields in a fully

self-consistent manner, from the nonlinear Vlasov-Maxwell

equations.1 In an uncoupled lattice, the Kapchinskij–Vladi-

mirskij (KV) distribution function analyzed in 1959 (Ref. 2)

is the only known exact self-consistent solution of the non-

linear Vlasov-Maxwell equations for high-intensity beams,

and it provides us with the basic theoretical understanding of

high-intensity beam dynamics in an uncoupled lattice. In

practical accelerators and beam transport systems, the trans-

verse coupling between the horizontal and vertical direc-

tions, induced by error fields and misalignment, is always a

significant effect.3–8 Strong coupling of the transverse dy-

namics is introduced intentionally in certain type of cooling

channels and in the final focusing system for high energy

density physics experiment,9 as well as in the conceptual

design of the Mbius accelerator.10 A beam transport system

with strong coupling was implemented in the spiral line

induction accelerator (SLIA),11–17 which reached up to

10 kA electron current at 5 MeV beam energy. The success

of the proof of concept experiment at SLIA demonstrated the

potential advantages of using a strongly coupled lattice for

transporting high-intensity beams.

In this paper, we present a theoretical framework to study

high-intensity beam dynamics in a coupled lattice using the

Vlasov-Maxwell equations. We generalize the classical KV

solution and the associated nonlinear envelope equations for

high-intensity beams to the case of a coupled lattice.18 To con-

struct the generalized KV solution for high-intensity beams in

a coupled lattice, we need to first generalize the Courant–

Snyder (CS) theory for a single charged particle to the case of

a couple lattice.19–21 In particular, it is necessary to find a gen-

eralized CS invariant. It turns out that the original CS theory

for one degree of freedom can be elegantly generalized to ar-

bitrary degree of freedom using a time-dependent symplectic

transformation technique. The generalized CS theory gives a

complete description of the coupled transverse dynamics and

has the same structure as the original CS theory for one degree

of freedom. The four basic components of the original CS

theory that have physical importance, i.e., the envelope equa-

tion, phase advance, transfer matrix, and the CS invariant, all

have their counterparts, with remarkably similar expressions,

in the generalized CS theory developed here. The unique

feature of the generalized CS theory presented here is the non-

Abelian (noncommutative) nature of the theory. In the gener-

alized theory, the envelope function is generalized to an

envelope matrix, and the envelope equation becomes a matrix

envelope equation with matrix operations that are not commu-

tative. The generalized theory gives a parametrization of the

4D symplectic transfer matrix [Eq. (56)] that has the same

structure as the parametrization of the 2D symplectic transfer

matrix [Eq. (21)] in the original CS theory.b)Invited speaker.

a)Paper KI3 2, Bull. Am. Phys. Soc. 55, 189 (2010).
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Using the generalized CS invariant, we can generalize the

KV solution to the case of a coupled lattice. In the coupled

case, the generalized KV distribution that solves the nonlinear

Vlasov-Maxwell system projects to a rotating, pulsating beam

with elliptical cross-section in transverse configuration space

with constant density inside the beam. Both the major and

minor radii and the tilting angle of the elliptical cross-section

are functions of the time [see Fig. 3(b)], in contrast with the

pulsating upright elliptical beam cross-section for the

uncoupled case [see Fig. 3(a)]. We apply the theoretical

results to the case of a strongly coupled lattice called the N-

rolling lattice, which consists of N equally spaced quadrupole

magnets, each of which rotates by an angle of p/N relative to

its predecessor. It is found that strong coupling does not dete-

riorate the beam quality. Instead, the coupling induces beam

rotation and reduces the beam pulsation. The oscillation am-

plitude of the transverse dimensions decreases for increasing

number of magnets, and the beam cross-section is asymptotic

to a rigid rotor profile as the number of magnet increases.

The paper is organized as follows. In Sec. II, the Vlasov-

Maxwell system of equations for high-intensity beams in a

coupled focusing lattice is presented, and in Sec. III we review

the classical CS theory and KV solution for high-intensity

beams in uncoupled lattices. Then the CS theory is generalized

to coupled lattices in Sec. IV using a time-dependent canonical

transformation technique. The generalized KV solution and

examples of the N-rolling lattices are given in Sec. V.

II. VLASOV-MAXWELL SYSTEM FOR HIGH-INTENSITY
BEAM IN COUPLED FOCUSING LATTICE

In a coupled transverse focusing lattice, the Vlasov-Maxwell

equations that govern the evolution of the distribution function

f of a high-intensity beam and the corresponding normalized

space-charge potential w are

@f

@s
þ v � @f

@x
� rwþ jxxþ jvvð Þ � @f

@v
¼ 0 ; (1)

r2w ¼ �2pKb

Nb

ð
fdvxdvy : (2)

Here, particle motion in the beam frame is assumed to be non-

relativistic, w is the space-charge potential normalized by

c3
bmb2

bc2=qb, bbc is the directed beam velocity in the longitudi-

nal direction, cb ¼ 1� b2
b

� ��1=2
is the relativistic mass factor,

s ¼ bbct is the time variable normalized by 1=bbc,

Kb ¼ 2Nbq2
b=c

3
bmb2

bc2 is the beam self-field perveance,

Nb ¼
Ð

fdxdydvxdvy is the line density, x ¼ ðx; yÞT represents

the transverse displacement of a beam particle, and

v ¼ dx=ds ¼ vx; vy

� �T
is the normalized transverse velocity.

The corresponding normalization factor for the velocity is bbc.

In Eq. (1), the term jxx is the linear focusing force proportional

to the transverse displacement from the beam axis, and jvv is

that proportional to the transverse velocity. In a coupled lattice

with quadrupole, skew-quadrupole, and solenoidal fields,

jx ¼ jq þ js; jq ¼
jqx jqxy

jqyx jqy

� �
; (3)

js ¼
0 X0

�X0 0

� �
; jv ¼

0 2X
�2X 0

� �
; (4)

where the matrix jq describes the focusing fields due to the

quadrupole and skew-quadrupole magnets, and js and jv

describe the focusing field due to the solenoidal lattice. First,

let us consider jq, whose components can be expressed as

jqx ¼ �jqy ¼ jq0ðsÞ cos 2sðsÞ; (5)

jqxy ¼ jqyx ¼ jq0ðsÞ sin 2sðsÞ: (6)

Here, sðsÞ is the rotation angle of the quadrupole magnet and

jq0ðsÞ is the magnetic field gradient on axis normalized by

cbmbbc2=q. In a standard FODO lattice,

sðsÞ ¼

0; � g
4
<

s

S
<

g
4
;

p
2
; � g

4
<

s

S
� 1

2
<

g
4
;

p; � g
4
<

s

S
� 1 <

g
4
;

8>>>><
>>>>:

(7)

jq0ðsÞ ¼
qB0q

cbmbbc2
;

s

S
2 [2

i¼0

i

2
� g

4
;

i

2
þ g

4

� �
;

0; otherwise ;

8<
: (8)

where g is the filling factor of the FODO lattice, S is the lat-

tice period, and B0q is the field gradient on axis for the quad-

rupole magnets. Equation (7) gives jqxy ¼ jqyx ¼ 0;
implying that there is no coupling between x and y due to the

quadrupole magnets. If a misalignment of a FODO quadru-

pole magnet occurs, sðsÞ will be different from its design

value of p or p/2, resulting in a nonvanishing jqxy ¼ jqyx. It

is not difficult to design a quadrupole lattice which strongly

couples the x and y dynamics. For example, we can choose

the following N-rolling quadrupole lattice which consists of

N equally spaced quadrupole magnets (see Fig. 1). Each

magnet rotates by an angle of d ¼ p=N relative to its prede-

cessor, and the filing factor for each magnet is g=N;

s sð Þ ¼

0; � g
2N

<
s

S
<

g
2N

;

p
N

� g
2N

<
s

S
� 1

N
<

g
2N

;

2p
N
� g

2N
<

s

S
� 2

N
<

g
2N

;

:::

p; � g
2N

<
s

S
� 1 <

g
2N

;

8>>>>>>>>>><
>>>>>>>>>>:

(9)

jq0 sð Þ ¼
qB0q

cbmbbc2
; s

S 2 [
N
i¼0

i

N
� g

2N
;

i

N
þ g

2N

� �
;

0; otherwise :

8<
: (10)

This example will be studied in Sec. V. The standard FODO

lattice is a special case of the N-rolling lattice with N ¼ 2.

The solenoidal field in Eq. (4) is expressed in terms of the

normalized Larmor frequency X sð Þ ¼ qBz sð Þ=2cbbbmc2. When

the solenoidal component exists, the ðx; vÞ coordinates in Eqs.

(1) and (2) are not canonical coordinates, i.e., their dynamics
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cannot be cast into the canonical Hamiltonina form. To deter-

mine the dynamics of a single particle or the characteristics of

the Vlasov equation (1), it is advantageous to use a canonical

Hamiltonina form for the dynamical equations. This can be

achieved by introducing the canonical momentum defined as

px ¼ vx � Xy ; (11)

py ¼ vy þ Xx : (12)

The corresponding Hamiltonian is

Hc ¼ z†Aczþ w ; z ¼ x; y; px; py

� �†
; (13)

Ac ¼
j R

R† I
2

� �
; j¼

X2

2
þjqx

2
jqxy

jqyx
X2

2
þjqy

2

0
BB@

1
CCA; R¼

0 �X
2

X
2

0

 !
:

(14)

The Vlasov-Maxwell equations in the canonical coordinates

ðx; pÞ are

@f

@t
þ @H

@p
� @f

@x
� @H

@x
� @f

@p
¼ 0; (15)

r2w ¼ �2pKb

Nb

ð
fdpxdpy : (16)

The momentum dependent part of the focusing force, i.e.,

the term proportional to R, can be transformed away if we

transform to the local Larmor frame.1,19 For simplicity of

presentation, we will assume that there is no solenoidal field

and consider here only the coupling due to skew-quadrupole

magnets given by Eq. (3) in this paper.

The �rw term in Eq. (1) describes the self-field force

and is nonlinearly coupled to f through Eq. (2). Equations

(1) and (2) form a set of nonlinear integro-differential equa-

tions, whose analytical solutions are difficult to find in

general.

III. COURANT–SNYDER THEORY AND KAPCHINSKIJ–
VLADIMIRSKIJ DISTRIBUTION FOR HIGH-INTENSITY
BEAM IN UNCOUPLED FOCUSING LATTICE

For the case of an uncoupled lattice, i.e., jqxy ¼ jqyx ¼ 0;
Eqs. (1) and (2) admit a remarkable exact solution known as

the KV distribution,2 which has played a crucial role in high-

intensity beam physics.22–25 The KV distribution function is

constructed as a function of the CS invariants of the transverse

dynamics.26 Therefore, we first review the CS theory for a

uncoupled lattice.

The transverse dynamics of a charged particle in a linear

focusing lattice jnðsÞ is described by an oscillator equation

with time-dependent frequency

€nþ jnðsÞn ¼ 0 ; (17)

where n represents one of the transverse coordinates, either x
or y; and €n represents d2n=dt2: For a quadrupole lattice,

jxðsÞ ¼ �jyðsÞ: The CS theory26 gives a complete descrip-

tion of the solution to Eq. (17) and serves as the fundamental

theory that underlies the design of modern accelerators and

storage rings. There are four main components of the CS

theory: the envelope equation, the phase advance, the trans-

fer matrix, and the CS invariant. The Courant–Snyder theory

can be summarized as follows. Because Eq. (17) is linear, its

solution can be expressed as a time-dependent linear map

from the initial conditions, i.e., ðn; _nÞ† ¼ M sð Þðn0; _n0Þ†;
where

MðsÞ ¼

ffiffiffiffiffi
b
b0

s
cos/þ a0 sin/½ �

ffiffiffiffiffiffiffiffi
bb0

p
sin/

� 1þaa0ffiffiffiffiffiffiffiffi
bb0

p sin/þ a0�affiffiffiffiffiffi
bb0

p cos/

ffiffiffiffiffi
b0

b

s
cos/� asin/½ �

0
BBBB@

1
CCCCA

(18)

with n0 ¼ nðs ¼ 0Þ; _n0 ¼ _nðs ¼ 0Þ; b0 ¼ bðs ¼ 0Þ; and

a0 ¼ aðs ¼ 0Þ: The superscript † denotes the transpose oper-

ation. The time-dependent functions a sð Þ; b sð Þ; and /ðsÞ in

the transfer matrix MðsÞ are directly related to the envelope

function wðsÞ by

b sð Þ ¼ w2 sð Þ ; a sð Þ ¼ �w _w ; / sð Þ ¼
ðs

0

ds

b sð Þ : (19)

The envelope function wðsÞ satisfies the nonlinear envelope

equation

€wþ jn sð Þw ¼ w�3 : (20)

The physical meanings of b�1 and / correspond to the phase

advance rate and the phase advance, respectively. The

FIG. 1. An N-rolling lattice consists of N equally spaced quadrupole mag-

nets. Each magnet rotates by an angle of d¼p/N relative to its predeces-

sor. The standard FODO lattice is a special case of the N-rolling lattice

with N¼ 2.
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transfer matrix MðsÞ is symplectic and has the following

decomposition:27

MðsÞ ¼ w 0

_w 1
w

� �
cos / sin /
� sin / cos /

� �
w�1

0 0

� _w0 w0

� �
: (21)

The well-known CS invariant26,28 is

I ¼ n2

w2
þ w _n� _wn
	 
2

: (22)

We emphasize that the CS theory provides an important

mathematical scheme to parametrize the symplectic transfer

matrix. The parameters of envelope, phase advance, and CS

invariant furnished by the CS theory are of vital importance

for beam physics. These parameters describe the physical

dimensions and the emittance of the beam and set the foun-

dation for many important concepts in beam physics, as is

demonstrated in the construction of the KV distribution func-

tion for beams with strong space-charge field.

The oscillation dynamics with time-dependent fre-

quency described by Eq. (17) is generic physics problem of

great importance. It can be viewed as the second simplest

physics problem. The associated envelope Equation (20) and

the CS invariant (22) are manifestation of the underpinning

symmetry of the dynamics.28,29

Because the CS invariants are valid for linear,

uncoupled transverse force components, the KV distribution

must self-consistently generates a linear, uncoupled space-

charge force. The KV distribution indeed satisfies this

requirement. It is given by1,2

fKV ¼
Nb

p2exey
d

Ix

ex
þ Iy

ey
� 1

� �
; (23)

Ix ¼
x2

w2
x

þ wxvx � x _wxð Þ2 ; Iy ¼
y2

w2
y

þ wyvy � y _wy

� �2
: (24)

Here, Ix and Iy are the CS invariants for the x- and y-motions,

respectively, ex and ey are the constant transverse emittances,

and wx and wy are the envelope functions satisfying the enve-

lope equations,

€wx þ jxwx ¼ w�3
x ; €wy þ jywy ¼ w�3

y ; (25)

jx ¼ jqx �
2Kb

a aþ bð Þ ; jy ¼ jqy �
2Kb

b aþ bð Þ ; (26)

a � ffiffiffiffi
ex
p

wx ; b � ffiffiffiffi
ey
p

wy : (27)

The density profile in the transverse configuration space pro-

jected by the distribution function fKV in Eq. (23) is given by

n x;y; sð Þ ¼
ð

dvxdvyfKV ¼

Nb

pab
¼ const:; 0� x2

a2
þ y2

b2
< 1;

0; 1 <
x2

a2
þ y2

b2
;

8>><
>>:

(28)

which corresponds to a constant-density beam with elliptical

cross-section and pulsating transverse dimensions a and b

[see Fig. 3(a)]. The associated space-charge potential inside

the beam, determined from Eq. (2), is given by

w ¼ �Kb

aþ b

x2

a
þ y2

b

� �
; 0 � x2

a2
þ y2

b2
< 1: (29)

The KV distribution (23) reduces the original nonlinear Vla-

sov-Maxwell equations (1) and (2) to the two envelope equa-

tions in Eq. (25) for wx and wy or equivalently for a ¼ ffiffiffiffi
ex
p

wx

and b ¼ ffiffiffiffi
ey
p

wy [Eq. (27)]. As the only known solution of the

nonlinear Vlasov-Maxwell equations (1) and (2), the KV dis-

tribution and the associated envelope equations provide very

important elementary theoretical tools for our understanding

of high-intensity beam dynamics.22–25 The KV distribution in

Eq. (23) is constructed from the exact dynamical invariants Ix

and Iy in Eq. (24), and constitutes an exact solution of the Vla-

sov equation (1), which also generates the uncoupled linear

space-charge force assumed a priori.
In Sec. IV, we will first generalize the CS theory to the

case of a coupled lattice, and then in Sec. V the KV solution

will be generalized to high-intensity beams in a coupled fo-

cusing lattice, using the generalized CS invariant in Sec. IV.

IV. GENERALIZED COURANT–SNYDER THEORY FOR
HIGH-INTENSITY BEAM IN A COUPLED FOCUSING
LATTICE

We will generate the CS theory to coupled focusing lat-

tice using a time-dependent canonical transformation tech-

nique.30 Let us consider a linear, time-dependent Hamiltonian

system with n-degree of freedom given by

H ¼ 1

2
zA sð ÞzT ;

z ¼ x1; x2; :::; xn; p1; p2; :::; pnð Þ :
(30)

Here, AðsÞ is a 2n� 2n time-dependent, symmetric matrix,

and s is the time variable. The Hamiltonian in Eq. (13) has

this form with n ¼ 2: We introduce a time-dependent linear

canonical transformation30

�z ¼ S sð Þz ; (31)

such that in the new coordinate �z; the transformed Hamilto-

nian has the form

�H ¼ 1

2
�z �A sð Þ�z T ; (32)

where �AðsÞ is a targeted symmetric matrix. Because the

transformation between z and �z is required to be a canonical

transformation, we have

@�zj

@zk
Jkl
@�zj

@zl
¼ Jij : (33)

Here, J represents the 2n� 2n unit symplectic matrix of

order 2n,

J ¼ 0 I
�I 0

� �
; (34)
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where I is the n� n unit matrix. From Eq. (31), Eq. (33) is

equivalent to

SJST ¼ J ;

i.e., the matrix S specifying the coordination transformation

between z and �z needs to a symplectic matrix. In addition,

the matrix SðsÞ that renders this canonical transformation

needs to satisfy a differential equation, which can be derived

as follows. Hamilton’s equation for z is

_z ¼ JrH : (35)

With the quadratic form of the Hamiltonian in Eq. (30),

Eq. (35) becomes

_zj ¼ Jij
@H

@zj
¼ 1

2
Jij dljAlmzm þ zlAlkdkj

� �
¼ 1

2
Jij Ajm þ Amj

� �
zm ¼ JijAjmzm: (36)

In matrix notation without indices, it is expressed as

_z ¼ JAz : (37)

Because we require that in �z the transformed Hamiltonian is

given by Eq. (32), the following equation holds as well:

_�z ¼ J �A�z: (38)

Using Eq. (31), we can rewrite Eq. (38) as

_�z ¼ J �A�z ¼ J �ASz : (39)

Meanwhile, _�z can be directly calculated from Eq. (31) by

taking a time-derivative, which gives

_�z ¼ _Szþ S _z ¼ _Sþ SJA
� �

z : (40)

Combining Eqs. (39) and (40) gives the differential equation

_S ¼ J �AS� SJA ; (41)

where S needs to satisfy if �z ¼ S tð Þz is a canonical

transformation.

The remarkable feature of Eq. (41) is that its solution S
is always symplectic (i.e., SJST ¼ J), if S is symplectic at

t ¼ 0. To prove this fact, we follow Leach30 and consider the

dynamics of the matrix K ¼ SJST ;

_K ¼ _SJST þ SJ _ST ¼ 2 J �AS� SJAð ÞJST þ SJ �S �AJ þ AJST
� �� �

¼ 2 J �ASJST � SJST �AJ
� �

¼ 2 J �AK �K �AJ½ �: (42)

Equation (42) has a fixed point at K ¼ J: If Sðs ¼ 0Þ is sym-

plectic, i.e., K s ¼ 0ð Þ ¼ J; then _K ¼ 0 and K ¼ J for all s,

and S is symplectic for all s:
A more physical and geometric proof can be given from

the viewpoint of the flow of S (see Fig. 2). Because A is sym-

metric, JJ �A� �ATJJ ¼ 0; which implies that J �A belongs to

the Lie algebra sp 2n;Rð Þ of the Lie group of the symplectic

matrix Sp 2n;Rð Þ: If S 2 Sp 2n;Rð Þ at a given t, then J �AS
belongs to the tangent space of Sp 2n;Rð Þ at S, i.e.,

J �AS 2 TSSP 2n;Rð Þ: This is because if we examine the Lie

group right action with

S : a 7! aS (43)

for any a in Spð2n;RÞ and the associated tangent map

TS : TaSp 2n;Rð Þ ! TaSSp 2n;Rð Þ; (44)

it is evident that J �AS is the image of the Lie algebra element J �A
under the tangential map TS: This means that J �AS is a “vector”

tangential to the space of Sp 2n;Rð Þ at S; if S is on Sp 2n;Rð Þ.
The same argument applies to SJA as well. Consequently, the S
dynamics will stay on the space of Spð2n;RÞ according to Eq.

(41). Because the initial condition for S is arbitrary, we can

always chose the initial condition such that S is symplectic at

s ¼ 0 and guarantee that the time-dependent canonical transfor-

mation satisfying Eq. (41) to be symplectic for all s:
We are now ready to develop the generalized Courant–

Snyder theory for coupled transverse dynamics, using this

technique of time-dependent canonical transformation. As

indicated in Sec. II, for simplicity of presentation, we present

here only the results for the case of the coupled dynamics

induced by a skew-quadrupole component, i.e., jsq 6¼ 0;
R ¼ 0, and X ¼ 0: A treatment of the coupling due to the so-

lenoidal lattice can be found in Ref. 31. We also assume the

space-charge potential is quadratic in ðx; yÞ, i.e.,

�rw ¼ �jsx ; js ¼
jsx jsxy

jsyx jsy

� �
; (45)

where jsxy ¼ jsyx. The Hamiltonian then takes the form of

Hc ¼ z†Acz ; (46)

Ac ¼
j 0

0 I
2

� �
; j ¼ jq þ js: (47)

Our objective is to solve the coupled system by finding the

transfer matrix between the initial condition z0 ¼ x0; y0;ð
_x0; _y0Þ† and z ¼ x; y; _x; _yð Þ† at time s. We accomplish this

goal by two time-dependent canonical transformations. The

first step is to transform Hc into

�Hc ¼ �z† �Ac�z ; �Ac ¼
b�1

2
0

0
b�1

2

0
BB@

1
CCA ; (48)

FIG. 2. (Color online) The space of the symplectic group Sp(2n, R) and

the flow of S on Sp(2n, R). At any given time, J �AS� SJA is always tangen-

tial to Sp(2n, R). Therefore, the flow of S according to Eq. (41) is always

on Sp(2n, R).
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and the second step is to transform �Hc into ��Hc ¼ 0: Here, b
is a time-dependent 2� 2 matrix yet to be determined. As

implied by its notation, the matrix of b is the generalized b
function for the coupled dynamics. The physics that appears

in the first step is the envelope matrix and the non-Abelian

matrix envelope equation. The physics that appears in the

second step is the phase advance. Let �z ¼ Sz be the transfor-

mation that transforms Hc into �Hc: From Eq. (41), the differ-

ential equation for S is

_S ¼ 2 J �AcS� SJAcð Þ : (49)

The solution to Eq. (49) is

S ¼ w�1ð Þ† 0

� _w w

� �
;

where w is the 2� 2 envelope matrix satisfying the envelope

matrix equation

€wþ wj ¼ w�1
� �†

w�1 w�1
� �†

: (50)

The b matrix in Eq. (48) is given by

b�1 ¼ w�1
� �†

w�1; (51)

which is remarkably similar to the phase advance rate

b�1 ¼ 1=w2 in the original Courant–Snyder theory for one

degree of freedom [see Eq. (19)]. The inverse transformation is

z ¼ S�1�z ; S�1 ¼ w† 0

w�1 _ww† w�1

� �
: (52)

The matrix S�1 is the non-Abelian generalization for the first

matrix in the expression of the transfer matrix M in the origi-

nal Courant–Snyder theory, i.e., the first term on the right

hand side of Eq. (21).

The next step is to transform �Hc into ��Hc ¼ 0 with
��Ac ¼ 0 by a transformation specified by ��z ¼ P�z: Following

the same procedure, the differential equation for P is

_P ¼ P _/ ; _/ � 0 � w�1ð Þ†w�1

w�1ð Þ†w�1 0

 !
; (53)

which admits solution of the form

P ¼ P1 P2

�P2 P1

� �
: (54)

From the fact that P belongs to Sp 4;Rð Þ; we can readily

show that PP† ¼ I and Det Pð Þ ¼ 1: Therefore, P corre-

sponds to a rotation in the 4D phase space, P 2 SO 4ð Þ: In

this sense, P† is the 4D non-Abelian generalization of the 2D

rotation matrix in the expression of the transfer matrix M for

the original Courant–Snyder theory, i.e., the second term on

the right hand side of Eq. (21). Because _/† ¼ � _/, it follows

that _/ belongs to the Lie algebra so 4ð Þ of the rotation group

SO 4ð Þ; i.e., _/ is an infinitesimal generator of a 4D rotation.

In other words, _/ is an “angular velocity” in 4D space, which

is equivalent to a phase advance rate in 4D space. The 4D

phase advance rate _/ is determined from the generalized

phase advance matrix b�1 in Eq. (51).

Because ��Hc ¼ 0; the dynamics of ��z is trivial, i.e., ��z ¼ ��z0;
and we have solved the Hamiltonian system Hc in ��z: From
��z ¼ PSz and ��z ¼ ��z0; we obtain the linear map between z0 and

z, i.e.,

z ¼ S�1P�1��z ¼ S�1P�1��z0 ¼ S�1P�1P0S0z0 : (55)

Because P 2 SOð4;RÞ; without loss of generality we select

the initial condition P0 ¼ P t ¼ 0ð Þ ¼ I to obtain z ¼ Mcz0 ;

Mc ¼ S�1P�1S0

¼ w† 0

w�1 _ww† w�1

� �
P1 �P2

P2 P1

� �
w�1†

0 0

� _w0 w0

 !
: (56)

The transfer matrix Mc in Eq. (56) is the 4D non-Abelian

generalization of the transfer matrix in Eq. (21) for one

degree of freedom. The similarities between Mc and M is

evident from Eqs. (56) and (21). The generalized Courant–

Snyder invariant for 4D coupled dynamics corresponding to

the original Courant–Snyder invariant is

ICS ¼ ��z†��z ¼ z†S†P†PSz ¼ z†S†Sz (57)

¼ x†w�1w�1†xþ v†w† � x† _w†
� �

wv� _wxð Þ; (58)

where v ¼ _x the phase advance has been removed due to the

fact that P is a 4D rotation. In general, for any constant real

positive definite matrix �,

ICSg ¼ z†S†P†�PSz (59)

is an invariant of the dynamics and should be called a gener-

alized CS invariant as well. As pointed out in Ref. 6, for the

coupled 4D transverse dynamics, there should be two (inde-

pendent) invariants of this kind.

We now show that the generalized CS theory developed

for coupled transverse dynamics recovers the original CS

theory for dynamics with one degree of freedom as a special

case. For the uncoupled transverse dynamics given by Hc

with jxy¼ jyx¼ 0, j is diagonal, and the matrix envelope

equation (50) admits solutions with diagonal envelope

matrix

w ¼ wx 0

0 wy

� �
:

Consequently, every matrix in Eq. (50) is diagonal, and the

matrix operation is Abelian (commutative). The matrix enve-

lope equation reduces to two decoupled envelope equations

of the conventional form for wx and wy; i.e.,

€wx þ wxjx ¼ w�3
x ; (60)

€wy þ wyjy ¼ w�3
y : (61)

The 2� 2 matrix of phase advance rate b�1 reduces to a di-

agonal matrix as well, i.e.,
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b�1 ¼ w�2
x 0

0 w�2
y

� �
:

The components of the phase advance (54) are

P1 ¼
cos /x 0

0 cos /y

 !
;

P2 ¼
sin /x 0

0 sin /y

 !
;

where _/x ¼ w�2
x and _/y ¼ w�2

y are the phase advances in the

x- and y-directions. The transfer matrix reduces to

M ¼

wx 0 0 0

0 wy 0 0

_wx 0 w�1
x 0

0 _wy 0 w�1
y

0
BBB@

1
CCCA

�

cos /x 0 � sin /x 0

0 cos /y 0 � sin /y

sin /x 0 cos /x 0

0 sin /y 0 cos /y

0
BBB@

1
CCCA

�

w�1
x0 0 0 0

0 w�1
y0 0 0

� _wx0 0 wx0 0

0 � _wy0 0 wy0

0
BBB@

1
CCCA : (62)

Apparently, the ðx; _xÞ dynamics and the ðy; _yÞ dynamics are

decoupled, and the transfer matrices for ðx; _xÞ and ðy; _yÞ
extracted from Eq. (62) are identical to that in Eq. (21) for

one degree of freedom.

V. GENERALIZED KAPCHINSKIJ–VLADIMIRSKIJ
DISTRIBUTION FOR A HIGH-INTENSITY BEAM IN
COUPLED FOCUSING LATTICES

In this section, we generalize the classical KV solution

described in Sec. III to the case of coupled transverse dynamics

when jqxy ¼ jqyx 6¼ 0; using the generalized CS invariant for

coupled transverse lattice developed in Sec. IV. In the coupled

case, the generalized KV distribution that solves the nonlinear

Vlasov-Maxwell systems (1) and (2) projects to a rotating, pul-

sating beam with elliptical cross-section in transverse configu-

ration space with constant density inside the beam. Both the

dimensions a and b and the tilt angle h are functions of

s ¼ bbct [see Fig. 3(b)], in contrast with the pulsating upright

elliptical beam cross-section for the uncoupled case [see Fig.

3(a)]. The rotating, pulsating beam with elliptical cross-section

in transverse configuration space and constant density inside

the beam, generates a coupled linear space-charge force in the

form of Eq. (45), which allows us to apply the generalized CS

invariant for the coupled transverse dynamics. The exact form

of js will be determined self-consistently [see Eq. (76)]. Our

strategy is to use the generalized CS invariant to construct a

generalized KV solution of the Vlasov equation (1), which

also projects to a rotating, pulsating elliptical beam with con-

stant density inside the beam. In this manner, a self-consistent

solution of the nonlinear Vlasov-Maxwell equations (1) and

(2) is found for high-intensity beams in a coupled transverse

focusing lattice.

For clarity, we summarize the key results obtained in

Sec. IV that will be used to construct the generalized KV so-

lution. For a charged particle subject to the coupled linear fo-

cusing force and the coupled linear space-charge force

�rw� jqx ¼ �jx ; j ¼ jq þ js ; (63)

the generalized CS invariant is given by

ICS ¼ x†w�1w�1†xþ v†w† � x† _w†
� �

wv� _wxð Þ ; (64)

where

w ¼ w1 w2

w3 w4

� �

is the 2� 2 envelope matrix determined from the matrix en-

velope equation

€wþ wj ¼ w�1
� �†

w�1 w�1
� �†

: (65)

Because ICS is an invariant of the particle dynamics, any

function of ICS is a solution of the Vlasov equation (1). How-

ever, in order to solve for the nonlinear Vlasov-Maxwell

equations (1) and (2), the distribution function must generate

the coupled linear space-charge force of the form in Eq. (63)

as well. To achieve this goal, we select the distribution func-

tion to be the following generalized KV distribution:

fKV ¼
Nbjwj
Aep

d
ICS

e
� 1

� �
: (66)

Here, Nb and e are constants, where Nb is the line density,

and e is the transverse emittance. Moreover, |w| is the deter-

minant of the envelope matrix w, and A is the area of the

beam cross-section determined by |w| and e. Both |w| and A
are functions of s ¼ bbct. The beam density profile in trans-

verse configuration space is

FIG. 3. (Color online) Beam cross-sections for the KV distribution. (a)

Uncoupled lattice: the cross-section is determined from 0 � x2=a2

þ y2=b2 < 1; (b) Coupled lattice: the cross-section is determined from

0 � xTw�1w�1Tx < e:
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n x; y; sð Þ ¼
ð

d _xd _yfKV ¼
ð

d
r2

e

� �
Nb

A
d

ICS

e
� 1

� �

¼ Nb=A; 0 � xTw�1w�1Tx < e ;
0; e < xTw�1w�1Tx :



(67)

In Eq. (67), the velocity integration with respect to dvxdvy is

calculated in the new coordinates ðp; qÞ defined as

p � w1vx þ w2vy � _w1x� _w2y; (68)

q � w3vx þ w4vy � _w3x� _w4y ; (69)

r2 � p2 þ q2 ; (70)

and the volume element transformation is

dvxdvy ¼
1

jwj dpdq ¼ 2p
jwj rdr :

The density profile nðx; y; sÞ obtained in Eq. (67) is indeed of

the desired form. That is, nðx; y; sÞ is constant inside the

ellipse defined by

x†b�x ¼ e ; b� � w�1w�1†; (71)

and nðx; y; sÞ ¼ 0 outside the ellipse. The ellipse defined by

Eq. (71) is pulsating and rotating. Its transverse dimensions

aðsÞ and bðsÞ and tilt angle hðsÞ depend on s ¼ bbct and are

determined from the matrix b�: Because b� is obviously

real, symmetric, and positive definite, the two eigenvectors

v1 and v2 of b� are orthogonal with two positive eigenvalues

k1 and k2. It is an elementary result32 that the transverse

dimensions of the ellipse are given by a ¼
ffiffiffiffiffiffiffiffiffi
e=k1

p
and

b ¼
ffiffiffiffiffiffiffiffiffi
e=k2

p
, and the tilt angle h is that of v1: The principal

axis theorem32 states that the diagonalizing matrix Q of b�

can be constructed as Q ¼ ðv1; v2Þ with Q�1 ¼ QT and

Q�1 b�Q ¼ k1 0

0 k2

� �
: (72)

We now introduce the rotating frame

X
Y

� �
¼ Q�1 x

y

� �
: (73)

The ellipse in ðX; YÞ coordinates is given

X2

a2
þ Y2

b2
¼ 1 ; (74)

and the self-field force is

� @w=@X
@w=@Y

� �
¼ 2Kb

aþ b

1=a 0

0 1=b

� �
X
Y

� �
: (75)

Transforming back to the ðx; yÞ coordinate, the self-field

force can be expressed as

�
@w=@x

@w=@y

� �
¼ �js

x

y

� �
; js ¼

�2Kb

aþ b
Q

1=a 0

0 1=b

� �
Q�1 :

(76)

The coupled linear space-charge coefficient js is a function of

the envelope matrix w and the constant emittance e: When

Eq. (76) is substituted back into Eq. (63), the envelope equa-

tion (65) becomes a closed nonlinear matrix equation for the

envelope matrix w. Therefore, we have succeeded in finding a

class of self-consistent solutions of the nonlinear Vlasov-Max-

well equations for high-intensity beams in a coupled trans-

verse focusing lattice. The solution reduces to a nonlinear

matrix ordinary differential equation for the envelope matrix

w, which determines the geometry of the pulsating and rotat-

ing beam ellipse. The matrix envelope equation (65) can be

numerically solved in a straightforward manner. Generalized

KV solution can also be constructed using other generalized

CS invariants of Eq. (59) with the help of the block Cholesky

decomposition. This will be addressed in a future publication.

In 1979, Gluckstern11 first derived a self-consistent KV

distribution for the strongly coupled system with continuously

rotated quadrupole field. However, as pointed out by

FIG. 4. (Color online) Matched solution in a standard FODO lattice, which

is a two-rolling lattice. Beam cross-section (a) and major and minor dimen-

sions (b) are plotted as functions of s=S ¼ bbct=S over the interval

0 � s=S � 1. The beam cross-section pulsates without rotation. The trans-

verse dimensions are normalized by
ffiffiffiffiffi
eS
p

:
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Gluckstern, this method is only valid for this special focusing

field. It does not apply to other coupled focusing field configu-

rations such as the N-rolling lattice. On the other hand, the

method developed in the present study is applicable to any

coupled focusing field. Chernin13 also found a KV distribution

solution using a 4� 4 transfer matrix [Eqs. (5)–(7) of Ref. 13]

and found the equation for the evolution of the second order

averages in closed form [Eqs. (3), (5), and (8) in Ref. 13]. To

find a matched solution to these equations Chernin proposed

an iterative algorithm to find the solution numerically. In Ref.

13, the case of continuously rotated quadrupoles was also stud-

ied, and the analytical matched solution was constructed using

Gluckstern’s method, instead of using the iterative numerical

solution. In comparison, our envelope equation (65) is a closed

equation for the envelope matrix which determines the gener-

alized KV distribution.

The generalized CS theory and KV solution and the

associated envelope equation can be used to study both

weakly coupled system and strongly coupled system. An

undesirable misalignment in a standard FODO lattice will

result in a weakly coupled system, which has been studied

in Ref. 18. In this paper, we will investigate the strongly

coupled system with the N-rolling lattices described in

Sec. II. We will compare the cases of strongly coupled

three-rolling lattice and four-rolling lattice with the

uncoupled FODO lattice (two-rolling lattice). In all three

cases presented here, the normalized quadrupole focusing

field is jq � qbB0q=cbmbbc2 ¼ 15. However, the filling fac-

tor for each magnet is reduced proportionally according to

the number of magnets in the lattice, such that the total fill-

ing factor for the entire lattice is 30% for all three cases.

The normalized self-field perveance is Kb=e ¼ 0:1. The ma-

trix envelope equation (65) has been solved numerically to

find a matched solution for each case. The numerical results

plotted in Figs. 4–6 are the beam cross-sections and major

and minor radii plotted a function of s=S ¼ bbct=S for the

FIG. 5. (Color online) Matched solution in a three-rolling lattice. Beam

cross-section (a) and major and minor dimensions (b) are plotted as func-

tions of s=S ¼ bbct=S over the interval 0 � s=S � 1. The beam cross-section

pulsates and rotates. However the amplitude of the transverse pulsations

reduces in comparison to the standard FODO lattice (two-rolling lattice).

The transverse dimensions are normalized by
ffiffiffiffiffi
eS
p

:

FIG. 6. (Color online) Matched solution in a four-rolling lattice. Beam cross-

section (a) and major and minor dimensions (b) are plotted as functions of

s=S ¼ bbct=S over the interval 0 � s=S � 1. The beam cross-section pulsates

and rotates. The amplitude of the transverse pulsations is reduced significantly

in comparison to the standard FODO lattice (two-rolling lattice). The beam

cross-section is asymptotic to a rigid rotor profile as the number of magnets

increases. The transverse dimensions are normalized by
ffiffiffiffiffi
eS
p

:
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three cases, respectively. The transverse dimensions are

normalized by
ffiffiffiffiffi
eS
p

: The dynamics of the beam pulsation

and rotation are clearly demonstrated. By comparing the

three cases, we see that the strong coupling in the three-

rolling and four-rolling lattices does not deteriorate the

beam quality. Instead, the coupling induces beam rotation

and reduces beam pulsation. The oscillation amplitude of

the beam dimensions decreases as the number of magnets

increases. The reduction of oscillation amplitude for the

four-rolling lattice, in comparison with the FODO (two-

rolling) lattice, is remarkable. With a five-rolling lattice

(not shown), we can achieve nearly constant beam radius,

corresponding to a rigid rotor beam profile.

VI. CONCLUSIONS

In this paper, the CS theory and the KV distribution for

high-intensity beams in an uncoupled focusing lattice have

been generalized to the case of coupled transverse dynamics.

The generalized CS theory has the same structure as the origi-

nal CS theory for one degree of freedom. The four basic com-

ponents of the original CS theory, i.e., the envelope equation,

phase advance, transfer matrix, and the CS invariant, all have

their counterparts in the generalized theory. The envelope func-

tion is generalized to an envelope matrix, and the envelope

equation becomes a matrix envelope equation with matrix

operations that are noncommutative. The generalized theory

can provide a valuable framework for accelerator design and

particle simulation studies for strongly and weakly coupled sys-

tem. For example, it has been shown that the stability of

coupled dynamics is completely determined by the generalized

phase advance. Two stability criteria were given, which recover

the known results about the sum and difference resonances in

the weakly coupled limit.19,20 In an uncoupled lattice, the KV

distribution function, first analyzed in 1959, is the only known

exact solution of the nonlinear Vlasov-Maxwell equations for

high-intensity beams including self-fields in a self-consistent

manner. The KV solution has been generalized to high-inten-

sity beams in a coupled transverse lattice using the generalized

CS invariant for coupled transverse dynamics. This solution

projects to a rotating, pulsating elliptical beam in transverse

configuration space, determined by the generalized matrix en-

velope equations. The fully self-consistent solution reduces the

nonlinear Vlasov-Maxwell equations to a nonlinear matrix or-

dinary differential equation for the envelope matrix w, which

determines the geometry of the pulsating and rotating beam

ellipse. This result provides us with a new theoretical tool to

investigate the dynamics of high-intensity beams in a coupled

transverse lattice. In particular, we have designed and studied a

type of strongly couple lattice, the so-called N-rollling lattice,

which consists of N equally spaced quadrupole magnets. Each

magnet rotates by an angle of p=N relative to its predecessor. It

is found that strong coupling does not deteriorate the beam

quality. Instead, the coupling induces beam rotation and

reduces the beam pulsation. The oscillation amplitude of the

transverse beam dimensions decreases for increasing number

of magnets, and the beam cross-section is asymptotic to a rigid

rotor profile as the number of magnets increases.
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