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Abstract

When an intense ion beam propagates through a dense background plasma, its current is partially

neutralized by the electron plasma return current. Due to the non-uniformity of the background

plasma electrons longitudinal velocity profile v̄(r), the flow can be unstable. The instability is

similar to the Kelvin-Helmholz instability for the non-uniform flow of an incompressible neutral

fluid, with the electrostatic potential playing the role of pressure. For the case of electron return

current flow, the significant new feature is the presence of the partially self-neutralized magnetic

field of the ion beam, which significantly affects the evolution of small-amplitude excitations. In

this paper the stability properties of the flow of electrons making up the plasma return current is

investigated using the macroscopic cold-fluid-Maxwell equations. It is shown that this flow may

become unstable, but the instability growth rates are exponentially small. This unstable body mode

is qualitatively different from previously studied surface-mode excitations of the electron plasma

return current for an intense ion beam with a sharp radial boundary, which is found to be stable

due to the stabilizing influence of the partially neutralized magnetic field of the ion beam (Roy, P.

K. 2005).
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I. INTRODUCTION

Ion beam propagation in neutralizing background plasma is of interest for many appli-

cations, including ion-beam-driven high energy density physics and heavy ion fusion. The

background plasma is needed to neutralize the ion beam space charge and beam current

so that it can be transported and efficiently focused either ballistically or by the remnant

unneutralized self-magnetic field or applied magnetic field (Roy, P. K. 2005; Logan et. al.,

2007; Sefkow et. al., 2007; Welch et. al., 2007). The ion beam current is neutralized by the

opposing background plasma electron return current (Kaganovich et. al., 2007; Kaganovich

et. al., 2005; Kaganovich et. al., 2001), which implies that the plasma electrons inside

the beam flow with average velocity ve0 = Zb(nb/n0)vb relative to the electrons outside of

the beam. Here, vb is the beam velocity, Zb is the charge state of the beam ions, and nb

and n0 are the beam density and background electron densities, respectively. One of the

main disadvantages of using plasma to transport and focus intense ion beams is that the ion

beam propagation in background plasma may be subject to collective instabilities. There

is a growing body of literature dedicated to studying collective beam-plasma interactions.

For a recent review of collective beam-plasma instabilities see Ref. (Davidson et. al., 2004;

Davidson et. al., 2009). In a recent paper (Startsev et. al., 2009) we have reconsidered the

stability of the background electron return current, found to be strongly unstable by many

previous authors (see for example Refs. (Rose et. al., 2003; Rose et. al., 2005)). We have

shown that the unneutralized magnetic field in the return current layer is responsible for

complete stabilization of this particular instability. In that paper (Startsev et. al., 2009) we

analyzed only the surface modes by making an explicit assumption that the beam radius a

is much greater than the characteristic width of the layer with unneutralized magnetic field.

In the present paper we show that the return current can still support unstable body modes

that are localized at the beam center. In particular, it is found that the instability develops

only if the background electron flow velocity profile v̄(r) satisfies the two resonance condi-

tions ω− kzV̄ (r1) = −ωpe and ω− kzv̄(r2) = ωpe simultaneously at different radial locations

r1 and r2 from the beam center. Here ω is the mode oscillation frequency, kz is the axial

wave-number in the flow direction, and ωpe is the background electron plasma frequency.

The first resonance condition guarantees the existence of the body-mode excitation, whereas

the second resonance condition assures that the mode is unstable. The body mode has a

maximum growth rate for beams with radius of the order of the collisionless electron skin
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depth, a ∼ c/ωpe.

The analysis in the present paper makes use of the formalism developed by one of the

authors (Khudik et. al., 1995). The organization of this paper is the following. In Sec. II,

the Maxwell equations and cold fluid equations describing the motion of the electron fluid

responding to injection of the heavy ion beam into background plasma are analyzed. We use

the conservation of generalized vorticity to derive a single nonlinear vector equation for the

electron fluid velocity. The steady-state solution of this equation describes the equilibrium

electron flow around the beam. This nonlinear equation is linearized around the steady-

state solution, and is used to show that the unstable perturbations are short-wavelength,

electrostatic perturbations with a negligible perturbed magnetic field component. In Sec. III,

the eigenvalue equation for the electrostatic potential perturbations is derived. In Sec.̃IV we

present a detailed analysis of the eigenvalue equation in planar geometry for perturbations

with zero perturbed azimuthal flow velocity. The approximate expressions for the mode

frequencies are found, and an estimate of the maximum growth rate is presented. Finally,

the conclusions are summarized in Sec. V.

II. THEORETICAL MODEL

The analysis presented in this paper is carried out for nonrelativistic ion beams with

v2
b/c

2 ¿ 1. We assume that the beam propagates along the z-axis (longitudinal direction)

with average velocity vb = ezvb. The equation describing the dynamics of the cold, neu-

tralizing election background are the momentum equation for the flow velocity v of the cold

electron fluid,

∂v

∂t
+ (v · ∇)v = − e

m

(
E +

1

c
v ×B

)
, (1)

and Maxwell’s equations for the electric E field and magnetic field B,

∇× E = −1

c

∂B

∂t
, (2)

∇×B =
1

c

∂E

∂t
+

4π

c
e(Zbnbvb − nv), (3)

∇ · E = 4πe(Zbnb + n0 − n), (4)

where n is the electron density, nb,vb and Zb are the ion beam density, velocity and charge

state respectively, and n0 is the plasma ion background density. Also, the constants −e, m,

and c are the electron charge, mass and speed of light, respectively. Combining the curl of
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Eq. (1) with Eq. (2) we obtain the equation for the generalized vortisity Θ = ∇×v−(e/mc)B,

i.e.,

∂Θ

∂t
= ∇× [v ×Θ]. (5)

For the ion beam injected into background plasma, the generalized vorticity is zero every-

where ahead of the beam, and it follows from Eq. (5) that it remains zero everywhere, or

equivalently,

B =
mc

e
∇× v. (6)

Substituting Eq. (6) into the momentum equation (1), we obtain

E = −m

e

(
∂v

∂t
+∇v2

2

)
. (7)

Substituting Eq. (7) into Eq. (4), we obtain the expression for electron density,

n = n0 + Zbnb +
n0

ω2
pe

(
∆

v2

2
+

∂

∂t
∇ · v

)
, (8)

where ∆ ≡ (∇ · ∇) is the Laplacian. Here, ωpe = (4πe2n0/m)1/2 is the electron plasma

frequency. Finally, substituting Eqs. (6)–(8) into Eq. (3), we obtain a nonlinear equation for

the electron flow velocity

λ2
pe∇×∇× v +

1

ω2
pe

[
∂2

∂t2
v +

∂

∂t
∇v2

2
+ v

(
∆

v2

2
+

∂

∂t
∇ · v

)]
+ v

(
1 + Zb

nb

n0

)
= Zb

nb

n0

vb.(9)

Here, λpe = c/ωpe. It follows from Eq. (9) that for (vb/c)
2 ¿ 1 the steady-state solution

v = ezv̄ (∂/∂t = 0) is nonrelativistic (v̄2/c2 ¿ 1) and can be determined from

λ2
pe∆⊥v̄ =

(
1 + Zb

nb

n0

)
v̄ − Zb

nb

n0

vb, (10)

where ∆⊥ ≡ ∂2/∂x2 + ∂2/∂y2 is a transverse Laplacian. Here, we have assumed that nb(x⊥)

and vb(x⊥) are functions of the transverse coordinates x⊥ = (x, y). From Eq. (10), we obtain

an estimate for the steady-state velocity of the background electrons, i.e.,

v̄ ∼ vb
Zbnb/n0

(1 + λpe/a)s + Zbnb/n0

<∼ vb. (11)

Here, a is the radius of the injected beam, and s = 1 for planar geometry, and s = 2 for

a cylindrically-symmetrical beam. Note that it follows from Eq. (8) that the steady-state

normalized electron density n̄ = n/n0 is given by n̄ = 1 + Zbnb/n0, neglecting relativistic

corrections.
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Next, we express v = ezv̄ + v′, and derive the equation for the unstable perturbation

v′ ∼ exp(−iωt + ikzz) about the steady-state equilibrium v̄ given by Eq. (10). Linearizing

equation (9) and neglecting terms (v̄/c)2 ¿ 1, we obtain

c2∇×∇× v′ − ω2v′ − iω [∇(v̄v′z) + ezv̄∇ · v′] + ezv̄∆(v̄v′z) + ω̄2
pev

′ = 0, (12)

where ω̄2
pe = ω2

pen̄. Multiplying Eq. (12) by (ωv′)∗, integrating over x⊥ and taking the

imaginary part, we obtain

Imω
[
c2

∫
dx⊥|∇ × v′|2 +

∫
dx⊥(|ω|2 + ω̄2

pe)|v′|2
]

= Imω
[∫

dx⊥|∇(v̄v′z)|2
]
. (13)

The integral on the right-hand side of Eq. (13) can be expressed as

∫
dx⊥|∇(v̄v′z)|2 =

∫
dx⊥v̄2

{
k2

z |v′|2 + 2kzIm[v′ ×∇× v′∗]z + |(∇× v′)⊥|2
}

−
∫

dx⊥(v̄∆⊥v̄)|v′z|2. (14)

It follows from Eqs. (10) and (11) that the last term in Eq. (14) is (vb/c)
2 ¿ 1 times smaller

than the second term on the left hand side of Eq. (13). Hence, it follows from Eqs. (13) and

(14) that the frequency, longitudinal wave-number, and polarization for unstable perturba-

tions with Imω > 0 must satisfy the conditions

|ω|2 + ω2
pe < k2

zv
2
m, (15)

∫
dx⊥|∇ × v′|2 < (vm/c)2k2

z

∫
dx⊥|v′|2, (16)

where vm = max(v̄). A more detailed analysis shows that the (vm/c)2 factor in Eq. (16)

should be replaced by (vm/c)4. This fact together with Eq. (15) implies that the unstable

perturbations are short-wavelength [k2
zc

2 > (c/vm)2(|ω|2 + ω2
pe) À |ω2 − ω2

pe|] electrostatic

perturbations with v′ ≈ ∇Φ, and that the perturbed magnetic field B′ ∼ ∇×v′ is negligibly

small.

III. EIGENVALUE EQUATION

The equation for the electrostatic short-wave perturbations can be obtained by substitut-

ing v′ = ∇Φ into Eq. (12). Taking the divergence, we obtain an equation for Φ

∇ · [(n̄− Ω2)∇Φ] = (Ω∆Ω)Φ, (17)
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where Ω = (ω − kzv̄)/ωpe. Below we specialize to the case of small beam density with

Zbnb/n0 ¿ 1. In this case, it follows from Eq. (15) that ∇⊥Ω À ∇⊥n̄1/2. Taking this fact

into account and introducing the new variable φ = (n̄− Ω2)1/2Φ, Eq. (17) can be rewritten

in the form of Schrodinger’s equation

k−2
z ∆⊥φ = (1− U)φ, (18)

where the effective potential U is given by

U =
(∇⊥v̄/ωpe)

2

(1− Ω2)2
=

f

(1− Ω2)2
. (19)

Note, that the potential U is small everywhere (U ≈ f ∼ (vb/c)
2(Zbnb/n0)

2(a/λpe)
s for

a ¿ λpe, and U ≈ f ∼ (vb/c)
2(Zbnb/n0)

2(λpe/a)2 for a À λpe) except at a distance d ∼
|∇⊥v̄/ωpe|/|∇⊥Ω| ∼ 1/kz from the resonant points where Ω2 ≈ 1. Therefore, the unstable

mode growth rates are also small with Imω/ωpe < f 1/2/2 ¿ 1.

IV. ANALYSIS OF EIGENVALUE EQUATION

For simplicity, we consider here the stability of planar flow with velocity profile v̄(x),

which is a function of the transverse coordinate x (radial direction). We also consider only

excitations with zero azimuthal velocity component v′y = 0. In this case, the eigenvalue

equation (18) can be written as

d2φ

dx2
= k2

z(1− U)φ. (20)

Note that Eq. (20) is equivalent in the electrostatic limit (k2
zc

2 À |ω2 − ω2
pe|) to Eq. (20) of

Ref. (Startsev et. al., 2009) if one makes the substitution Ez = −(m/e)ωpeΩ/(1 − Ω2)1/2φ.

In Ref. (Startsev et. al., 2009) it was shown that Eq. (20) has no unstable solutions in the

limit of large beam radius a À λpe. Therefore, we study here the the effects of finite beam

radius on the stability of the background electron flow.

We are looking for a solution of Eq. (20) which asymptotically behaves as φ ∼ exp(kzx)

for x → −∞. For arbitrary ω this solution of Eq. (20) will behave as

φ = A+(ω)ekzx + A−(ω)e−kzx, (21)

for x →∞. The frequency of the localized mode is determined from the condition A+(ω) = 0.

For a monotonic, symmetric velocity profile, v̄(|x|), the resonance condition where Ω2 = 1
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Im x

Re x
-x

1
x2

-x
2 x

1

FIG. 1: Path in the complex x-plane along which the potential |U | ¿ 1.

is satisfied at four points x = ±x1(ω) and x = ±x2(ω) (x2 > x1). Let us first consider ω

such that x1(ω) À 1/kz. If we analytically continue Eq. (20) into the complex x-plane, the

potential U will have singularities far enough from each other that we can always go from

x = −∞ to x = +∞ on the real x-axis along a path in the complex x-plane where |U | ¿ 1

[see Fig.1]. Since along this path |(dU/dx)/U | ≥ 1/λpe ¿ kz we can use a quasi-classical

approximation for the ”wave-function” φ and obtain

φ ≈ ekzx (22)

everywhere along this path. Hence, the coefficient A+ ≈ 1 and there are no localized modes.

Now, let ω be such that x1(ω) ∼ 1/kz ¿ λpe. In this case, the two singularities of the

potential at x1 and −x1 are too close to each other, so that the quasi-classical approximation

is not applicable near those singularities. But in this region we can approximate the velocity

profile as parabolic with v̄ = vm(1− x2/a2
∗), and rewrite the eigenvalue equation (20) as

d2φ

dx̄2
=

[
1− x̄2

(x̄2 − ω̄)2

]
φ, (23)

where x̄ = kzx and ω̄ = −(kza∗)2(ωpe + ω − kzvm)/(kzvm). Here a2
∗ ≈ a2 for a À λpe, and

a2
∗ ≈

√
πaλpe for a ¿ λpe. The eigenvalues of Eq. (23) are given by

ω̄0 = −0.1, ω̄n = a+Qn, n = 2, 4, 6, ..., (24)

ω̄n = a−Qn−1, n = 1, 3, 5, ..., (25)

where a+ = −0.125..., a− = −0.00452... and Q = exp(−2π/
√

3). Equation (24) gives the

spectrum of symmetric modes, and Eq. (25) is the spectrum of antisymmetric modes.

The stable localized modes described by Eqs. (24) and (25) become unstable if we take

into account the singularity of the potential at x = ±x2. To obtain the expression for Imω
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let us multiply Eq. (17) by Φ∗ and integrate it over x. Taking the imaginary part, we obtain

∫ ∞

0
kzdx


2ReΩ


 1

k2
z

∣∣∣∣∣
dΦ

dx

∣∣∣∣∣
2

+ |Φ|2

− k−2

z ∆⊥(ReΩ)|Φ|2]

 = 0. (26)

For x ∼ 1/kz, φ ∼ 1, and the function Φ is given by

Φ ∼ Φ0 ≡
∣∣∣∣∣
d2

dx2

(
v̄

kzωpe

)

x=0

∣∣∣∣∣
−1/2

, (27)

and decreases exponentially as x increases. The exception is the neighborhood of the second

resonance x = x2, where the asymptotic behavior of Φ is given by

Φ ∼ exp(−kzx2)

∣∣∣∣∣
1

ωpe

dv̄

dx

∣∣∣∣∣
−1/2

log η, η = 1− Ω. (28)

The neighborhood of x ∼ 1/kz contributes a value of ∼ |Φ0|2 in the integrand in Eq. (26),

and the contribution from the neighborhood of x = x2 is given by (ωp/Imω) exp(−2kzx2).

Hence, from Eq. (26) we obtain the estimate of the mode growth rate given by

Imω = C

∣∣∣∣∣
1

kz

d2v̄

dx2

∣∣∣∣∣
x=0

exp(−2kzx2). (29)

Next we estimate the dependence of the maximum growth rate on the beam radius. From

the resonance conditions

Reω − kzv̄m + ωpe ≈ 0, (30)

Reω − kzv̄(x2)− ωpe ≈ 0, (31)

we obtain

Ψ ≡ (kzx2)min = 2min

[
x2/λpe

|v̄m − v̄(x2)|/c

]
. (32)

For a large beam radius a À λpe, the maximum growth rate will occur at the point

x2 ∼ a,
vm − v(x2)

c
∼ Zbnb

n0

vb

c
, Ψ ∼ a

λpe

n0

Zbnb

c

vb

. (33)

For a beam with small radius a ¿ λpe, we obtain

x2 ∼ a,
vm − v(x2)

c
∼ Zbnb

n0

vb

c

(
a

λpe

)s+1

, Ψ ∼
(

λpe

a

)s
n0

Zbnb

c

vb

, (34)

where s = 1 for planar geometry, and s = 2 for a cylindrically-symmetrical beam. Therefore,

for arbitrary beam radius we can estimate the maximum growth rate as

Imω

ωpe

∼ exp(−2Ψ)

Ψ2
, Ψ ∼

(
c

vb

) (
n0

Zbnb

) [
a

λpe

+

(
λpe

a

)s]
. (35)

It follows from Eq. (35) that the strongest instability corresponds to the injection of a beam

with radius a ∼ λpe.
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V. CONCLUSIONS

In this paper we have studied the stability of nonuniform background electron flow re-

sulting from the injection of a long ion beam into a neutralizing plasma. We have shown

that such flows can support unstable short-wavelength electrostatic perturbations with a

negligible perturbed magnetic field component. The perturbations are localized near the

beam center unlike the surface modes studied previously (Startsev et. al., 2009) which are

localized at the beam edge and had been found to be stable. Moreover, it is found that the

instability develops only if the background electron flow velocity profile v̄(r) satisfies the two

resonance conditions ω − kzV̄ (r1) = −ωpe and ω − kzv̄(r2) = ωpe simultaneously at different

radial locations r1 and r2 from the beam center. The first resonance condition guarantees

the existence of the body-mode excitation, whereas the second resonance condition assures

that the mode is unstable. These body modes have growth rates that are exponentially small

[Eq. (35)] and are largest for beams with radius of the order of the collisionless electron skin

depth, a ∼ c/ωpe.
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